JP2019129644A - Electric power flow calculating device - Google Patents

Electric power flow calculating device Download PDF

Info

Publication number
JP2019129644A
JP2019129644A JP2018010729A JP2018010729A JP2019129644A JP 2019129644 A JP2019129644 A JP 2019129644A JP 2018010729 A JP2018010729 A JP 2018010729A JP 2018010729 A JP2018010729 A JP 2018010729A JP 2019129644 A JP2019129644 A JP 2019129644A
Authority
JP
Japan
Prior art keywords
power
power flow
initial value
voltage
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010729A
Other languages
Japanese (ja)
Other versions
JP7033253B2 (en
Inventor
悠人 長田
Yuto Osada
悠人 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018010729A priority Critical patent/JP7033253B2/en
Publication of JP2019129644A publication Critical patent/JP2019129644A/en
Application granted granted Critical
Publication of JP7033253B2 publication Critical patent/JP7033253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an electric power flow calculating device with which it is possible to converge electric power flow calculation without diverging it and reliably calculate a voltage at each point and the distribution of electric power flow, etc., in a utility grid.SOLUTION: Provided is an electric power flow calculating device composed of the hardware and software of a computer device, comprising: a data input unit 11 to which the facility information of a utility grid having distributed power supplies and power generation/load information including the amounts of generated power and load of the utility grid; a flow calculation unit 12 for calculating a voltage at each point and the active and reactive electric power of the utility grid on the basis of the facility information and the power generation/load information; and a data output unit 13 for outputting the result of the calculation. The flow calculation unit 12 includes determination means for determining the divergence/convergence of calculation and initial value change means for changing the initial value of at least one of the voltage/current at each point and the electric power flow of the utility grid. When the divergence of calculation is determined by the determination means, the initial value is changed by the initial value change means until the convergence of calculation is determined.SELECTED DRAWING: Figure 3

Description

この発明は、分散型電源が接続された電力系統における電圧、有効電力、無効電力等の状態や分布を計算する電力潮流計算装置に関するものである。   The present invention relates to a power flow calculation apparatus that calculates states and distributions of voltage, active power, reactive power, and the like in a power system to which a distributed power supply is connected.

配電系統の制御において、電力事業者には、一般需要家の電圧を所定の管理幅(101±6[V])に維持することが求められている。
一方、近年では、太陽光発電装置等の分散型電源の普及により、逆潮流の発生や配電系統の負荷分布の急変に起因して、系統電圧を上記の管理幅に維持することが困難になってきており、系統電圧を維持するには、電圧制御機器の制御定数の変更や新規設備の導入が必要になる。
そこで、電圧制御機器の制御定数の変更等によって電力系統の電圧や電力潮流(有効・無効電力の流れ)がどのように変化するかをシミュレーションするために、電力潮流計算が用いられている。
In the control of the distribution system, electric power companies are required to maintain the voltage of general consumers within a predetermined management width (101 ± 6 [V]).
On the other hand, in recent years, with the spread of distributed power sources such as solar power generation devices, it has become difficult to maintain the system voltage within the above management range due to the occurrence of reverse power flow and sudden changes in the load distribution of the distribution system. In order to maintain the system voltage, it is necessary to change the control constant of the voltage control device or introduce new equipment.
Therefore, power flow calculation is used to simulate how the voltage and power flow (active / reactive power flow) of the power system change due to a change in the control constant of the voltage control device.

図6は、実際の電力系統に対応する系統モデルの構成図である。
図6において、Gは系統電源、SVRはタップの切り替えにより出力電圧を調整する自動電圧調整器、Fは配電線、PVは太陽光発電装置、Loadは需要家、N〜Nはノードを示す。
FIG. 6 is a configuration diagram of a system model corresponding to an actual power system.
In FIG. 6, G is a system power supply, SVR the automatic voltage regulator for regulating the output voltage by switching the taps, F is the distribution line, PV solar power device, Load is customer, N 1 to N 4 is a node Show.

電力潮流計算では、下記の数式1に示すように、系統電源Gの電圧V,自動電圧調節器SVRの変圧比(タップ)や配電線Fのインピーダンス(抵抗R及びリアクタンスX)等の設備情報、太陽光発電装置PVの有効電力PPV及び無効電力QPVからなる発電情報、需要家Loadの有効電力PLoad及び無効電力QLoadからなる負荷情報を入力として、各ノードN〜Nにおける電圧V〜Vや有効電力P〜P、無効電力Q〜Qの分布を求めている。なお、SVRの変圧比ではなく、目標電圧とLDC(Line Drop Compensator)制御のr,xを入力しても良い。
[数式1]
[V1〜4,P1〜4,Q1〜4]=f(V,Tap,r,x,PPV,QPV,PLoad,QLoad
In power flow calculation, as shown in Formula 1 below, facility information such as voltage V s of grid power G, transformation ratio (tap) of automatic voltage regulator SVR, impedance (resistance R and reactance X) of distribution line F, etc. Power generation information consisting of active power P PV and reactive power Q PV of photovoltaic power generation device PV, and load information consisting of active power P Load and reactive power Q Load of customer Load are input at each node N 1 to N 4 Distributions of voltages V 1 to V 4 , active powers P 1 to P 4 , and reactive powers Q 1 to Q 4 are obtained. The target voltage and r, x of LDC (Line Drop Compensator) control may be input instead of the transformation ratio of SVR.
[Equation 1]
[V 1-4 , P 1-4 , Q 1-4 ] = f (V s , Tap, r, x, P PV , Q PV , P Load , Q Load )

このような電力潮流計算方法としては、一般に高電圧のループ状系統に適用されるNR(Newton−Raphson)法や、放射状系統に特化した特許文献1記載のBFS(Backward−Forward Sweep)法が知られている。
このうち、BFS法では、図7(a)に示すように、初期設定(ステップS201)により電力系統の基準電圧を決定した後、放射状系統の末端側から電流または電力潮流を計算していくBackward Sweepという計算処理(ステップS202)と、放射状系統の電源側から電圧変化を計算していくForward Sweepという計算処理(ステップS203)とを繰り返し実行し、電圧の誤差が前回計算時と比較して規定値より小さくなった時点、或いは、放射状系統の末端での電流もしくは電力潮流が規定値より小さくなった時点で計算が収束したと判断して終了する(ステップS204 Yes)。
As such a power flow calculation method, there are an NR (Newton-Raphson) method generally applied to a high-voltage loop system, and a BFS (Backward-Forward Sweep) method described in Patent Document 1 specialized in a radial system. Are known.
Among these, in the BFS method, as shown in FIG. 7A, after determining the reference voltage of the power system by the initial setting (step S201), the Backward is calculated from the end side of the radial system. A calculation process called “Sweep” (step S202) and a calculation process called “forward sweep” (step S203) for calculating a voltage change from the power supply side of the radial system are repeatedly executed, and the voltage error is defined in comparison with the previous calculation. It is determined that the calculation has converged when the current or power flow at the end of the radial system becomes smaller than the specified value when it becomes smaller than the value, and the process is ended (Yes in step S204).

また、特に太陽光発電装置等の分散型電源が導入された電力系統では、時間により変動する分散型電源の発電量に対応できるか否かを評価する必要があるため、潮流計算を実行するごとに計算時間に対応した負荷や発電量にて、連続した時間の系統状態を計算(連続潮流計算)する。
図7(b)は、上述した連続潮流計算のフローチャートである。1日のうち複数時間の電圧分布を求める場合には、まず、計算時間に応じた負荷や発電量を設定する(ステップS100)。そして、例えばn分(例えば1分から10分程度)ごとに、図7(a)に示した潮流計算を、時間を増加させながら終了時間になるまで連続的に行う(ステップS200〜S400)。
In addition, especially in power systems where distributed power sources such as solar power generation devices are introduced, it is necessary to evaluate whether or not the power generation amount of distributed power sources that fluctuates over time must be evaluated. The system state of continuous time is calculated with the load and power generation corresponding to the calculation time (continuous power flow calculation).
FIG. 7B is a flowchart of the above-described continuous power flow calculation. When obtaining a voltage distribution for a plurality of hours in a day, first, a load and a power generation amount corresponding to the calculation time are set (step S100). Then, for example, every n minutes (for example, about 1 to 10 minutes), the tidal current calculation shown in FIG. 7A is continuously performed while increasing the time until the end time is reached (steps S200 to S400).

この場合、前回(n分前)の時間断面で計算した電圧分布或いは電流もしくは電力潮流を初期値として、今回の潮流計算に利用することができる。通常、需要家の負荷は緩やかに変化し、短時間(例えば1分から10分程度)では大きく変化しないことが多い。このため、連続潮流計算においては、前回の潮流計算時の電圧値を初期値として設定すれば計算が収束しやすくなる。
または、前回(n分前)の時間断面で計算した電流もしくは電力潮流を初期値として、今回の潮流計算に利用することもできる。連続潮流計算においては、前回の潮流計算時の電流もしくは電力潮流を初期値として設定すれば、計算が収束しやすくなる。電流もしくは電力潮流を初期値として設定する場合、図7(a)の初期設定(ステップS201)では電力系統の電流もしくは電力潮流を初期値として設定する。既に電力系統の電流もしくは電力潮流があるため、1度目のBackward Sweepという計算処理(ステップS202)はスキップする。その後、放射状系統の電源側から電圧変化を計算していくForward Sweepという計算処理(ステップS203)を行う。2回目以降は、電圧を初期値とする場合と同じである。
以下では電圧を初期とした場合の手法を説明するが、電流や電力潮流を初期値としても構わない。
In this case, the voltage distribution or current or power flow calculated in the previous time section (n minutes ago) can be used as an initial value for the current flow calculation. Usually, the load of the customer changes gradually and often does not change significantly in a short time (for example, about 1 to 10 minutes). For this reason, in the continuous power flow calculation, if the voltage value at the time of the previous power flow calculation is set as the initial value, the calculation tends to converge.
Alternatively, the current or power flow calculated in the previous (n minutes ago) time cross section may be used as the initial value for the current power flow calculation. In continuous power flow calculation, if current or power flow at the time of previous power flow calculation is set as an initial value, the calculation tends to converge. When the current or power flow is set as the initial value, the current or power flow of the power system is set as the initial value in the initial setting (step S201) of FIG. Since there is already the current or power flow of the power system, the first Backward Sweep calculation process (step S202) is skipped. Thereafter, a calculation process called forward sweep (step S203) for calculating a voltage change from the power supply side of the radial system is performed. The second and subsequent times are the same as in the case of setting the voltage to the initial value.
In the following, a method when the voltage is set as an initial value will be described, but a current or power flow may be set as an initial value.

ここで、図8は、電力系統のある点において、BFS法による潮流計算を繰り返し実行した場合の、計算の繰り返し回数に応じた電圧の収束状態を概念的に示した図である。
実際の電力系統には、電圧値によって制御量が変化する電圧制御機器等が存在するため、図8に示すほど単純ではないが、計算の繰り返し回数が多くなるほど電圧は収束値へと近付いていくことが多い。しかし、電圧の初期値が収束値に対して離れ過ぎている場合には、BFS法、NR法の何れの方法でも、計算が収束せずに発散してしまい、解が得られない場合がある。
Here, FIG. 8 is a diagram conceptually showing a voltage convergence state according to the number of repetitions of the calculation when the power flow calculation by the BFS method is repeatedly executed at a certain point of the power system.
In an actual power system, there are voltage control devices etc. whose control amount changes depending on the voltage value, so it is not as simple as shown in FIG. 8, but the voltage approaches the convergence value as the number of iterations of calculation increases. There are many things. However, if the initial value of the voltage is too far from the convergence value, the calculation may not converge but diverge and the solution may not be obtained by either the BFS method or the NR method. .

従来では、電圧の初期値を基準電圧または前回潮流計算時の電圧値に設定することが多い。しかし、近年では太陽光発電装置等の分散型電源の普及が進んでいるため、日射量により、短時間であっても出力が大きく変化することがある。このため、連続潮流計算において、前回潮流計算時の電圧を初期値として設定しても、計算が発散してしまう場合がある。   Conventionally, the initial value of the voltage is often set to the reference voltage or the voltage value at the previous power flow calculation. However, in recent years, the spread of distributed power sources such as solar power generation devices has progressed, and therefore the output may change significantly even for a short time depending on the amount of solar radiation. For this reason, in the continuous power flow calculation, even if the voltage at the previous power flow calculation is set as the initial value, the calculation may diverge.

一方、特許文献2には、本来の潮流計算が発散して最適解を求めることができない場合に、電圧の位相角及び大きさが有効電力,無効電力にそれぞれ比例するという線形近似により簡易潮流計算を行うようにした最適潮流計算装置が記載されている。   On the other hand, in Patent Document 2, when the original power flow calculation diverges and an optimal solution cannot be obtained, a simple power flow calculation is performed by linear approximation that the phase angle and magnitude of the voltage are proportional to the active power and the reactive power, respectively. An optimal power flow calculation device is described which performs the above.

特開平8−214458号公報([0019]〜[0021]、図4等)JP-A-8-214458 ([0019] to [0021], FIG. 4 etc.) 特許第3986675号公報([0017],[0081]、図7等)Japanese Patent No. 3986675 ([0017], [0081], FIG. 7 etc.)

前述の特許文献2に記載された最適潮流計算装置では、潮流計算が発散する場合に簡易潮流計算を行って近似解を求めているため、求められた電圧分布等が最適である保証はない。
そこで、本発明の解決課題は、潮流計算が発散する場合には電圧等の初期値を変更して再度、計算を行うことにより、潮流計算を確実に収束させるようにした電力潮流計算装置を提供することにある。
In the optimum power flow calculation device described in Patent Document 2 described above, when the power flow calculation diverges, a simple power flow calculation is performed to obtain an approximate solution. Therefore, there is no guarantee that the obtained voltage distribution or the like is optimal.
Therefore, the problem to be solved by the present invention is to provide a power flow calculation device that reliably converges the power flow calculation by changing the initial value of the voltage or the like and performing the calculation again when the power flow calculation diverges. There is to do.

上記課題を解決するため、請求項1に係る発明は、電子計算装置のハードウェア及びソフトウェアにより構成される電力潮流計算装置であって、
分散型電源を有する電力系統の設備情報、前記電力系統の発電量,負荷量を含む発電・負荷情報が入力されるデータ入力部と、前記設備情報及び前記発電・負荷情報に基づいて前記電力系統の各点における電圧及び有効電力・無効電力を計算する潮流計算部と、前記潮流計算部による計算結果を出力するデータ出力部と、を備え、
前記潮流計算部は、
計算の発散・収束を判定する判定手段と、少なくとも前記電力系統の各点における電圧、電流または電力潮流の何れかの初期値を変更する初期値変更手段と、を有し、前記判定手段により計算の発散を判定した場合には前記判定手段により計算の収束が判定されるまで、前記初期値変更手段により前記初期値を変更して再計算を行うことを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a power flow calculation device configured by hardware and software of an electronic calculation device,
A data input unit for receiving facility information of a power system having a distributed power source, power generation / load information including the power generation amount and load amount of the power system, and the power system based on the facility information and the power generation / load information A power flow calculation unit for calculating the voltage and active power / reactive power at each point, and a data output unit for outputting a calculation result by the power flow calculation unit,
The tidal current calculator is
Determination means for determining divergence / convergence of calculation, and initial value changing means for changing an initial value of at least one of voltage, current, and power flow at each point of the power system, and the calculation by the determination means When the divergence is determined, the initial value is changed by the initial value changing means and recalculation is performed until the convergence of the calculation is determined by the determining means.

請求項2に係る発明は、請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最大で負荷の需要量が最小である時の前記電力系統の各点における電圧と前記電力系統の送り出し電圧との差分と、所定の係数との積を求め、この積を前記送り出し電圧に加算した値を前記各点における電圧の初期値として設定することを特徴とする。
The invention according to claim 2 is the power flow calculation apparatus according to claim 1,
The initial value changing means includes
The product of the difference between the voltage at each point of the power system and the delivery voltage of the power system when the amount of power generation of the distributed power source is maximum and the load demand is minimum is determined by A value obtained by adding the product to the delivery voltage is set as an initial value of the voltage at each point.

請求項3に係る発明は、請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最大で負荷の需要量が最小である時の前記電力系統の各点における電流或いは電力潮流を潮流計算により求め、この電流或いは電力潮流と所定の係数との積を前記各点における電流或いは電力潮流の初期値として設定することを特徴とする。
The invention according to claim 3 is the power flow calculation apparatus according to claim 1,
The initial value changing means includes
The current or power flow at each point of the power system when the power generation amount of the distributed power source is maximum and the load demand is minimum is obtained by power flow calculation, and the product of the current or power flow and a predetermined coefficient is calculated. It is set as an initial value of current or power flow at each point.

請求項4に係る発明は、請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最小で負荷の需要量が最大である時の前記電力系統の各点における電圧と前記電力系統の送り出し電圧との差分と、所定の係数との積を求め、この積を前記送り出し電圧に加算した値を前記各点における電圧の初期値として設定することを特徴とする。
The invention according to claim 4 is the power flow calculation device according to claim 1,
The initial value changing means includes
Find the product of the difference between the voltage at each point of the power system and the supply voltage of the power system when the power generation amount of the distributed power source is minimum and the load demand is maximum, and a predetermined coefficient, A value obtained by adding a product to the output voltage is set as an initial value of the voltage at each point.

請求項5に係る発明は、請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最小で負荷の需要量が最大である時の前記電力系統の各点における電流或いは電力潮流を求め、この電流或いは電力潮流と所定の係数との積を前記各点における電流或いは電力潮流の初期値として設定することを特徴とする。
The invention according to claim 5 is the power flow calculation device according to claim 1,
The initial value changing means includes
The current or power flow at each point of the power system when the power generation amount of the distributed power source is minimum and the load demand is maximum, and the product of this current or power flow and a predetermined coefficient is obtained at each point Set as an initial value of current or power flow in the

請求項6に係る発明は、請求項1〜5の何れか1項に記載した電力潮流計算装置において、
前記初期値変更手段により初期値を変更して前記潮流計算部が計算した結果を新たな初期値として、前記潮流計算部が所定の時間ごとに連続して潮流を計算することを特徴とする。
The invention according to claim 6 is the power flow calculation device according to any one of claims 1 to 5,
It is characterized in that the tidal current calculation unit continuously calculates the tidal current every predetermined time, using the initial value changed by the initial value changing means and the result calculated by the tidal current calculation unit as a new initial value.

本発明によれば、潮流計算が発散する場合に、電力系統の各点における電圧等の初期値を変更して繰り返し計算し直すことにより、潮流計算を収束させ、電力系統の電圧や電力潮流の分布を確実に把握することができる。   According to the present invention, when the tidal current calculation diverges, the tidal current calculation is converged by changing the initial value of the voltage and the like at each point of the power system repeatedly and recalculating, so that the power system voltage and power tidal current can be converged. The distribution can be grasped reliably.

本発明の実施形態が適用される電力系統をモデル化した構成図である。It is the block diagram which modeled the electric power grid | system to which embodiment of this invention is applied. 図1における電子計算装置の機能を示すブロック図である。It is a block diagram which shows the function of the electronic computer in FIG. 本発明の実施形態による連続潮流計算のフローチャートである。3 is a flowchart of continuous power flow calculation according to an embodiment of the present invention. 本発明の実施形態における高めの初期値の説明図である。It is explanatory drawing of the high initial value in embodiment of this invention. 本発明の実施形態における、前回潮流計算時の電圧初期値、新たに設定される高めの初期値,低めの初期値等の説明図である。It is explanatory drawing of the voltage initial value at the time of the last power flow calculation in embodiment of this invention, the high initial value set newly, the low initial value etc. 系統モデルの構成図である。It is a block diagram of a systematic model. BFS法による計算手順の説明図(図7(a))及び連続潮流計算方法の説明図(図7(b))である。It is explanatory drawing (FIG. 7 (a)) of the calculation procedure by BFS method, and explanatory drawing (FIG.7 (b)) of a continuous power flow calculation method. 電力系統のある時点においてBFS法を繰り返し実行した場合の、電圧の収束状態を概念的に示した図である。It is the figure which showed notionally the convergence state of a voltage when the BFS method is repeatedly performed at a certain point in the power system.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態が適用される電力系統をモデル化した構成図である。図1において、系統モデルの構成は図6と同一であり、系統電源G、自動電圧調整器SVR、配電線F、太陽光発電装置PV、需要家Load、ノードN〜Nを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram modeling a power system to which this embodiment is applied. In Figure 1, the configuration of the system model is the same as FIG. 6, a system power source G, the automatic voltage regulator SVR, distribution line F, photovoltaic device PV, customer Load, the node N 1 to N 4 .

潮流計算を行う電子計算装置10は、例えばパーソナルコンピュータ(PC)等のハードウェアとこれに実装されたソフトウェアとによって構成されている。この電子計算装置10には、系統電源Gの電圧Vs,t、配電線Fの抵抗r及びリアクタンスx、自動電圧調整器SVRの変圧比Tap,等の設備情報と、太陽光発電装置PVの有効電力PPV,t,無効電力QPV,tからなる発電情報と、需要家Loadの有効電力PLoad,t,無効電力QLoad,tからなる負荷情報とが入力される。ここで、添え字tを付けた諸量は時間によって値が変化するものである。
電子計算装置10は、n分(例えば1分から10分程度)ごとに連続して潮流計算を行い、電力系統の各点における電圧V1,t〜V4,tや有効電力P1,t〜P4,t,無効電力Q1,t〜Q4,t等の電力潮流の分布を出力する。
The electronic computing device 10 that performs the tidal current calculation is configured by hardware such as a personal computer (PC) and software installed in the hardware. This electronic computing device 10 includes facility information such as the voltage V s, t of the system power supply G, the resistance r and reactance x of the distribution line F, the transformation ratio Tap, t of the automatic voltage regulator SVR, and the photovoltaic power generator PV The generation information including the active power P PV, t and the reactive power Q PV, t and the load information including the active power P Load, t of the customer Load and the reactive power Q Load, t are input. Here, various values with the subscript t change with time.
The electronic computing device 10 continuously calculates the power flow every n minutes (for example, about 1 to 10 minutes), and the voltages V 1, t to V 4, t and active powers P 1, t to The distribution of power flow such as P4 , t , reactive power Q1 , t to Q4 , t etc. is output.

図2は、電子計算装置10の機能を示すブロック図である。
図2において、データ入力部11には、前述した設備情報、発電情報・負荷情報が適宜な伝送手段を介して入力される。
潮流計算部12では、演算処理手段の動作によって図7(b)に示したような連続潮流計算を行い、電力系統の各点における電圧、有効電力,無効電力を演算する。また、潮流計算部12は、後述するように、潮流計算の発散・収束を判定し、かつ、電力系統の各点における電圧等の初期値を変更する手段を備えている。これらの演算、判定、初期値変更等の処理は、コンピュータのハードウェア及びソフトウェアの機能によって実現されるものである。
連続潮流計算により得られた電力系統の各部の電圧V1,t〜V4,tや電力潮流(有効電力P1,t〜P4,t,無効電力Q1,t〜Q4,t)の分布は、データ出力部13によりディスプレイに表示され、あるいは図示されていない上位の系統監視装置等に伝送される。
FIG. 2 is a block diagram showing the functions of the electronic computing device 10. As shown in FIG.
In FIG. 2, the facility information and the power generation information / load information described above are input to the data input unit 11 through appropriate transmission means.
The power flow calculation unit 12 performs continuous power flow calculation as shown in FIG. 7B by the operation of the arithmetic processing means, and calculates voltages, active powers, and reactive powers at each point of the power system. Further, as will be described later, the power flow calculation unit 12 includes means for determining the divergence / convergence of power flow calculation and changing initial values such as voltages at each point of the power system. These operations such as calculation, determination, and initial value change are realized by functions of computer hardware and software.
Voltage V1 , t to V4 , t and power flow of each part of the power system obtained by continuous power flow calculation (active power P1 , t to P4 , t , reactive power Q1 , t to Q4 , t ) The distribution of is displayed on the display by the data output unit 13 or is transmitted to a superior system monitoring device or the like (not shown).

図3は、潮流計算部12により実行される連続潮流計算のフローチャートを示している。
まず、今回の計算が連続潮流計算の初回か2回目以降かを判定し、初回である場合は(ステップS1 YES)、前回潮流計算結果がないため、電力系統の基準電圧を初期値として潮流計算を実行する(ステップS2)。今回の計算が2回目以降である場合は(ステップS1 NO)、前回潮流計算時の各点の電圧を初期値として潮流計算を実行する(ステップS3)。
FIG. 3 shows a flowchart of continuous power flow calculation performed by the power flow calculation unit 12.
First, it is determined whether the current calculation is the first or second time of continuous power flow calculation. If it is the first time (YES in step S1), there is no previous power flow calculation result, so the power flow calculation is performed using the power system reference voltage as the initial value. Is executed (step S2). If the current calculation is the second time or later (NO in step S1), the power flow calculation is executed with the voltage at each point at the time of the previous power flow calculation as an initial value (step S3).

ステップS2またはステップS3による潮流計算を実行した後、計算が収束したか否かを判定する(ステップS4)。収束の判定は、例えば、図7(a)に示したBFS法による潮流計算の繰り返し時に、系統内の各点の電圧V1,t〜V4,tを前回計算時の電圧V1,t−1〜V4,t−1とそれぞれ比較し、全ての点で電圧の差が1.00−6[p.u.]以下となったら計算が収束したと判定する(ステップS4 YES)。
また、発散の判定は、例えば、上限電圧を1.5 [p.u.]、下限電圧を0.5 [p.u.]とし、各点の電圧V1,t〜V4,tのうちの何れかが、BFS法による潮流計算の繰り返し時に上記の上限電圧を上回るか、あるいは下限電圧を下回った場合に計算が発散していると判定する(ステップS4 NO)。
なお、この実施形態では潮流計算にBFS法を用いているが、本発明は、NR法を用いる場合にも同様に適用可能である。
After executing the power flow calculation in step S2 or step S3, it is determined whether or not the calculation has converged (step S4). Determination of convergence, for example, when the repetition of flow calculation by BFS method shown in FIG. 7 (a), the voltage V 1 of the points in the grid, t ~V 4, voltages V 1 at the time t of the previous calculation, t -1 to V4 and t-1 , respectively, and it is determined that the calculation has converged if the voltage difference at all points is 1.00 -6 [pu] or less (YES in step S4).
The determination of the divergence, for example, the upper limit voltage 1.5 [p.u.], a lower limit voltage and 0.5 [p.u.], the voltage V 1, t ~V 4, t for each point It is determined that the calculation is diverged if any of them exceeds the upper limit voltage or falls below the lower limit voltage at the time of repetition of the power flow calculation by the BFS method (step S4 NO).
In addition, although BFS method is used for tidal current calculation in this embodiment, the present invention is applicable similarly, also when using NR method.

次に、ステップS4で発散と判定された場合に、発散の方向を判定する(ステップS5)。
計算した電圧が前述した上限電圧の1.5 [p.u.]を上回って発散していた場合、つまり高電圧方向に発散していた場合には、収束する電圧が高めにあると想定されるため、現在の初期値より高めの電圧を初期値に設定して潮流計算を実行する(ステップS6)。また、計算した電圧が下限電圧の0.5 [p.u.]を下回って発散していた場合、つまり低電圧方向に発散していた場合には、収束する電圧が低めにあると想定されるため、現在の初期値より低めの電圧を初期値に設定して潮流計算を実行する(ステップS7)。
Next, when it is determined in step S4 that there is a divergence, the direction of the divergence is determined (step S5).
If the calculated voltage diverges beyond the upper limit voltage of 1.5 [p.u.] described above, that is, if it diverges in the high voltage direction, it is assumed that the converging voltage is higher. Therefore, the power flow calculation is executed with the voltage higher than the current initial value set to the initial value (step S6). If the calculated voltage diverges below the lower limit voltage of 0.5 [p.u.], that is, if it diverges in the lower voltage direction, it is assumed that the converged voltage is lower. Therefore, the flow calculation is executed by setting a voltage lower than the current initial value to the initial value (step S7).

ここで、初期値として新たに設定される高めの電圧(以下、高めの初期値),低めの電圧(以下、低めの初期値)について説明する。
まず、高めの初期値とは、例えば、電力系統に接続されている太陽光発電装置PVの出力が最大であって需要家Loadの負荷が最小である時の各点の電圧分布を計算し、この電圧分布と電力系統の送り出し電圧(系統電源Gの電圧)Vとの差分値であるΔVに係数K(K=0〜1)を掛けた値を送り出し電圧Vに加算した電圧(その電圧分布)をいう。
また、低めの初期値とは、太陽光発電装置PVの出力が最小(ゼロを含む)であって需要家Loadの負荷が最大である時の各点の電圧分布を計算し、この電圧分布と送り出し電圧Vとの差分値である負の値ΔVに係数K(K=0〜1)を掛けた値を送り出し電圧Vに加算した電圧(その電圧分布)をいう。
電流或いは電力潮流を初期値とする場合は、高めの電圧に相当する初期値として、電力系統に接続されている太陽光発電装置PVの出力が最大であって需要家Loadの負荷が最小である時の各点の電流或いは電力潮流を計算し、この値に係数K(K=0〜1)を掛けた値を各点の初期値として設定する。また、低めの電圧に相当する初期値として、太陽光発電装置PVの出力が最小(ゼロを含む)であって需要家Loadの負荷が最大である時の各点の電流或いは電力潮流を計算し、この値に係数K(K=0〜1)を掛けた値を各点の初期値として設定する。
Here, a higher voltage (hereinafter referred to as a higher initial value) and a lower voltage (hereinafter referred to as a lower initial value) newly set as initial values will be described.
First, the higher initial value is, for example, calculating the voltage distribution at each point when the output of the photovoltaic power generator PV connected to the power system is maximum and the load of the consumer Load is minimum, A voltage obtained by adding a value obtained by multiplying ΔV, which is a difference value between the voltage distribution and the power supply voltage (voltage of the system power supply G) V s , by a coefficient K (K = 0 to 1) to the supply voltage V s Voltage distribution).
The lower initial value is calculated by calculating the voltage distribution at each point when the output of the photovoltaic power generator PV is minimum (including zero) and the load of the customer load is maximum. It refers to delivery voltage V s a negative value ΔV to the coefficient K (K = 0 to 1) voltage obtained by adding the voltage V s send out value obtained by multiplying a difference value (that voltage distribution).
When current or power flow is taken as an initial value, the output of the photovoltaic power generation system PV connected to the electric power system is the largest and the load of the customer Load is the smallest as the initial value corresponding to a higher voltage The current or power flow at each point in time is calculated, and a value obtained by multiplying this value by a coefficient K (K = 0 to 1) is set as the initial value of each point. In addition, as an initial value corresponding to a lower voltage, the current or power flow at each point when the output of the photovoltaic power generation device PV is minimum (including zero) and the load of the consumer load is maximum is calculated. A value obtained by multiplying this value by a coefficient K (K = 0 to 1) is set as an initial value of each point.

図4は、高めの初期値を概念的に説明した図であり、K=0の場合、K=0.5の場合、及びK=1の場合の、送り出し点(系統電源G)からの距離に応じた電圧の初期値をそれぞれ示している。図示するように、係数Kを適宜設定し、各点の電圧と送り出し電圧Vとの差分ΔVと係数Kとの積を送り出し電圧Vに加算することで、系統上の各点における電圧の新たな初期値を求めることができる。
なお、図5は、前回潮流計算時の電圧初期値と、新たに設定される高めの初期値,低めの初期値を概念的に示した図である。
上述した新たな初期値の演算・変更や、計算の収束及び発散の判定は、潮流計算部12の演算処理によって容易に実現可能である。
FIG. 4 is a diagram conceptually illustrating a high initial value, and in the case of K = 0, K = 0.5, and K = 1, the distance from the delivery point (system power G) The initial values of the voltages according to the are respectively shown. As shown, by setting the coefficient K as appropriate, it adds the feed to the voltage V s the product of the difference ΔV and the coefficient K of the voltage V s feeding the voltage of each point, the voltage at each point on line A new initial value can be obtained.
FIG. 5 is a diagram conceptually showing a voltage initial value at the time of the previous power flow calculation, a newly set higher initial value, and a lower initial value.
The above-described calculation / change of the new initial value and determination of convergence and divergence of the calculation can be easily realized by the calculation process of the power flow calculation unit 12.

図3に戻って、高めの初期値を用いて潮流計算(ステップS6)を行った結果、未だに計算が発散する場合には、ステップS6とは逆に初期値を低めに設定して再度、潮流計算を行う(ステップS8,S10)。
また、低めの初期値を用いて潮流計算(ステップS7)を行った結果、未だに計算が発散する場合には、ステップS7とは逆に初期値を高めに設定して再度、潮流計算を行う(ステップS9,S11)。
その後、終了時間になったか否かを判断し、終了時間になっていなければ、系統内で時間により変化する値(例えば、太陽光発電装置PVの有効電力PPV,t,無効電力QPV,tからなる発電情報と、需要家Loadの有効電力PLoad,t,無効電力QLoad,tからなる負荷情報等)を変更し、ステップS1からの処理を繰り返し実行する(ステップS12 NO,S13)。
Returning to FIG. 3, as a result of performing the tidal current calculation (step S6) using a higher initial value, if the calculation still diverges, the initial value is set to a lower value contrary to step S6 and the tidal current is performed again. Calculation is performed (steps S8 and S10).
In addition, if the calculation still diverges as a result of performing the tidal current calculation (step S7) using the lower initial value, the tidal current calculation is performed again by setting the initial value higher, contrary to step S7. Steps S9 and S11).
Thereafter, it is determined whether or not the end time has been reached. If the end time has not been reached, values that change with time in the system (for example, the active power P PV, t , the reactive power Q PV, The power generation information consisting of t and the load information consisting of the active power P Load, t of the customer load, the reactive power Q Load, t, etc.) are changed, and the processing from step S1 is repeatedly executed (NO in step S12, S13). .

なお、図3に示したフローチャートでは、高めの初期値と低めの初期値とを用いる2通りの場合につき潮流計算を行っているが、発散しやすい電力系統の場合には、係数Kを0〜1の範囲で細かく変更する等の方法により、高めから低めまで段階的に多数の初期値を設定して潮流計算を行っても良い。
また、この実施形態では、電力系統の各点における電圧等の初期値を変更する場合について説明したが、分散型電源や負荷の定格動作時の有効電力と無効電力との和の初期値を変更して連続潮流計算を行っても良い。
In the flowchart shown in FIG. 3, the power flow is calculated for two cases using a higher initial value and a lower initial value, but in the case of a power system which is easily diverged, the coefficient K is 0 to 0. It is also possible to perform tidal current calculation by setting a large number of initial values stepwise from high to low by a method of finely changing in the range of 1.
Further, in this embodiment, the case where the initial value such as the voltage at each point of the power system is changed has been described, but the initial value of the sum of the active power and the reactive power at the rated operation of the distributed power source or the load is changed. Then, continuous power flow calculation may be performed.

G:系統電源
SVR:自動電圧調整器
F:配電線
PV:太陽光発電装置
Load:需要家
〜N:ノード
10: 電子計算装置(PC)
11:データ入力部
12:潮流計算部
13:データ出力部
G: system power supply SVR: automatic voltage regulator F: distribution line PV: Photovoltaic device Load: customer N 1 to N 4: Node 10: electronic computing device (PC)
11: data input unit 12: tidal current calculation unit 13: data output unit

Claims (6)

電子計算装置のハードウェア及びソフトウェアにより構成される電力潮流計算装置であって、
分散型電源を有する電力系統の設備情報、前記電力系統の発電量,負荷量を含む発電・負荷情報が入力されるデータ入力部と、前記設備情報及び前記発電・負荷情報に基づいて前記電力系統の各点における電圧及び有効電力・無効電力を計算する潮流計算部と、前記潮流計算部による計算結果を出力するデータ出力部と、を備え、
前記潮流計算部は、
計算の発散・収束を判定する判定手段と、少なくとも前記電力系統の各点における電圧、電流または電力潮流の何れかの初期値を変更する初期値変更手段と、を有し、前記判定手段により計算の発散を判定した場合には前記判定手段により計算の収束が判定されるまで、前記初期値変更手段により前記初期値を変更して再計算を行うことを特徴とする電力潮流計算装置。
A power flow calculation device comprising hardware and software of an electronic calculation device, comprising:
A data input unit for receiving facility information of a power system having a distributed power source, power generation / load information including the power generation amount and load amount of the power system, and the power system based on the facility information and the power generation / load information A power flow calculation unit for calculating the voltage and active power / reactive power at each point, and a data output unit for outputting a calculation result by the power flow calculation unit,
The tidal current calculator is
Determination means for determining divergence / convergence of calculation, and initial value changing means for changing an initial value of at least one of voltage, current, and power flow at each point of the power system, and the calculation by the determination means When the divergence is determined, until the convergence of the calculation is determined by the determination unit, the initial value is changed by the initial value changing unit and recalculation is performed.
請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最大で負荷の需要量が最小である時の前記電力系統の各点における電圧と前記電力系統の送り出し電圧との差分と、所定の係数との積を求め、この積を前記送り出し電圧に加算した値を前記各点における電圧の初期値として設定することを特徴とする電力潮流計算装置。
In the power flow calculation device according to claim 1,
The initial value changing means includes
The product of the difference between the voltage at each point of the power system and the delivery voltage of the power system when the amount of power generation of the distributed power source is maximum and the load demand is minimum is determined by A power flow calculation apparatus, wherein a value obtained by adding a product to the delivery voltage is set as an initial value of the voltage at each point.
請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最大で負荷の需要量が最小である時の前記電力系統の各点における電流或いは電力潮流を潮流計算により求め、この電流或いは電力潮流と所定の係数との積を前記各点における電流或いは電力潮流の初期値として設定することを特徴とする電力潮流計算装置。
In the power flow calculation device according to claim 1,
The initial value changing means includes
The current or power flow at each point of the power system when the power generation amount of the distributed power source is maximum and the load demand is minimum is obtained by power flow calculation, and the product of the current or power flow and a predetermined coefficient is calculated. The power flow calculation device set as an initial value of current or power flow at each point.
請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最小で負荷の需要量が最大である時の前記電力系統の各点における電圧と前記電力系統の送り出し電圧との差分と、所定の係数との積を求め、この積を前記送り出し電圧に加算した値を前記各点における電圧の初期値として設定することを特徴とする電力潮流計算装置。
In the power flow calculation device according to claim 1,
The initial value changing means includes
The product of the difference between the voltage at each point of the electric power system and the delivery voltage of the electric power system when the amount of power generation of the distributed power source is minimum and the amount of load demand is maximum is determined by A power flow calculation apparatus, wherein a value obtained by adding a product to the delivery voltage is set as an initial value of the voltage at each point.
請求項1に記載した電力潮流計算装置において、
前記初期値変更手段は、
前記分散型電源の発電量が最小で負荷の需要量が最大である時の前記電力系統の各点における電流或いは電力潮流を求め、この電流或いは電力潮流と所定の係数との積を前記各点における電流或いは電力潮流の初期値として設定することを特徴とする電力潮流計算装置。
In the power flow calculation device according to claim 1,
The initial value changing means includes
The current or power flow at each point of the power system when the power generation amount of the distributed power source is minimum and the load demand is maximum, and the product of this current or power flow and a predetermined coefficient is obtained at each point The electric power flow calculation apparatus characterized by setting as an initial value of the electric current or electric power flow in.
請求項1〜5の何れか1項に記載した電力潮流計算装置において、
前記初期値変更手段により初期値を変更して前記潮流計算部が計算した結果を新たな初期値として、前記潮流計算部が所定の時間ごとに連続して潮流を計算することを特徴とする電力潮流計算装置。
In the power flow calculation apparatus according to any one of claims 1 to 5,
The electric power is characterized in that the power flow calculation unit continuously calculates the power flow every predetermined time with the result calculated by the power flow calculation unit changing the initial value by the initial value changing means as a new initial value. Tidal current calculation device.
JP2018010729A 2018-01-25 2018-01-25 Power flow calculation device Active JP7033253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010729A JP7033253B2 (en) 2018-01-25 2018-01-25 Power flow calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010729A JP7033253B2 (en) 2018-01-25 2018-01-25 Power flow calculation device

Publications (2)

Publication Number Publication Date
JP2019129644A true JP2019129644A (en) 2019-08-01
JP7033253B2 JP7033253B2 (en) 2022-03-10

Family

ID=67471419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010729A Active JP7033253B2 (en) 2018-01-25 2018-01-25 Power flow calculation device

Country Status (1)

Country Link
JP (1) JP7033253B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207848A1 (en) * 2013-06-26 2014-12-31 三菱電機株式会社 Voltage monitoring control device, and voltage monitoring control method
WO2015079554A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Device for estimating state of power grid, state estimation method thereof, and power grid control system
WO2017033881A1 (en) * 2015-08-26 2017-03-02 東京電力ホールディングス株式会社 Power-distribution-system monitoring system and control method for power-distribution-system monitoring system
JP2017184364A (en) * 2016-03-29 2017-10-05 株式会社日立製作所 Distributed power supply controller and distributed power supply control method
JP6245396B1 (en) * 2017-04-19 2017-12-13 富士電機株式会社 Tidal current calculation device, tidal current calculation method, and tidal current calculation program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207848A1 (en) * 2013-06-26 2014-12-31 三菱電機株式会社 Voltage monitoring control device, and voltage monitoring control method
WO2015079554A1 (en) * 2013-11-29 2015-06-04 株式会社日立製作所 Device for estimating state of power grid, state estimation method thereof, and power grid control system
WO2017033881A1 (en) * 2015-08-26 2017-03-02 東京電力ホールディングス株式会社 Power-distribution-system monitoring system and control method for power-distribution-system monitoring system
JP2017184364A (en) * 2016-03-29 2017-10-05 株式会社日立製作所 Distributed power supply controller and distributed power supply control method
JP6245396B1 (en) * 2017-04-19 2017-12-13 富士電機株式会社 Tidal current calculation device, tidal current calculation method, and tidal current calculation program

Also Published As

Publication number Publication date
JP7033253B2 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
EP3392995B1 (en) Voltage stability monitoring device and method
Bai et al. Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints
Abdelaziz et al. Maximum loadability consideration in droop-controlled islanded microgrids optimal power flow
WO2016074187A1 (en) Fast generation adjustment algorithm for energy management system
US20140257715A1 (en) Robust Power Flow Methodologies for Distribution Networks with Distributed Generators
US9985435B2 (en) Power sharing for DC microgrids
JP6785717B2 (en) Optimal tidal current calculator, optimal tidal current calculation method, and optimal tidal current calculation program
Wang et al. Accurate semidefinite programming models for optimal power flow in distribution systems
Sundaresh et al. A modified Newton–Raphson load flow scheme for directly including generator reactive power limits using complementarity framework
Jabr High-order approximate power flow solutions and circular arithmetic applications
JP2018078712A (en) Tidal current calculation device, tidal current calculation method, and tidal current calculation program
Haileselassie et al. Secondary control in multi-terminal VSC-HVDC transmission system
Bedoya et al. A method for computing minimum voltage stability margins of power systems
JP6067289B2 (en) Reduced model creation device, creation method and creation program for power system
Otomega et al. Emergency alleviation of thermal overloads using model predictive control
Zarate et al. Fast computation of security margins to voltage collapse based on sensitivity analysis
JP2019129644A (en) Electric power flow calculating device
JP6245396B1 (en) Tidal current calculation device, tidal current calculation method, and tidal current calculation program
JPWO2021014579A1 (en) Power converters and distributed power systems
JP6727156B2 (en) Power system state estimation device
Tavares et al. Practical method for computing the maximum loading point using a load flow with step size optimisation
US11368024B2 (en) Controllers for photovoltaic-enabled distribution grid
JP7480630B2 (en) Distributed power supply control device
Gutiérrez et al. Integration of the Synthetic Dynamics Power Flow Equations with the Optimal Multiplier
JP2017070151A (en) Installation planning device for voltage regulation apparatus, installation planning method for voltage regulation apparatus, and installation planning system and program for voltage regulation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220209

R150 Certificate of patent or registration of utility model

Ref document number: 7033253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02