JP2019127998A - Base isolation support device - Google Patents

Base isolation support device Download PDF

Info

Publication number
JP2019127998A
JP2019127998A JP2018010102A JP2018010102A JP2019127998A JP 2019127998 A JP2019127998 A JP 2019127998A JP 2018010102 A JP2018010102 A JP 2018010102A JP 2018010102 A JP2018010102 A JP 2018010102A JP 2019127998 A JP2019127998 A JP 2019127998A
Authority
JP
Japan
Prior art keywords
stacking direction
mounting plate
vibration damping
damping body
isolation support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018010102A
Other languages
Japanese (ja)
Inventor
河内山 修
Osamu Kochiyama
修 河内山
健太 長弘
Kenta Nagahiro
健太 長弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2018010102A priority Critical patent/JP2019127998A/en
Publication of JP2019127998A publication Critical patent/JP2019127998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

To provide a base isolation support device capable of maintaining holdability for one end and the other end of a vibration damping body in a lamination direction and preventing fatigue in a boundary region between the one end and the other end in the lamination direction, and an intermediate part of the vibration damping body between the one end and the other end in the lamination direction, thereby preventing deterioration of earthquake energy attenuation capability.SOLUTION: A base isolation support device 1 includes a laminate 7 having elastic layers 2 and rigid layers 3 which are alternately laminated, and a lead plug 17 disposed in a hollow part 14 extending from an undersurface 12 of an upper attaching plate 10 to a top face 13 of a lower attaching plate 11 in a lamination direction V.SELECTED DRAWING: Figure 1

Description

本発明は、二つの構造物間に配されて両構造物間の相対的な水平振動のエネルギを吸収し、構造物へ入力される振動加速度を低減するための装置、特に地震エネルギを減衰して地震入力加速度を低減し、建築物、橋梁等の構造物の損壊を防止する免震支持装置に関する。   The present invention is a device disposed between two structures for absorbing the energy of relative horizontal vibration between the two structures and for reducing the vibration acceleration input to the structures, in particular for damping seismic energy The present invention relates to a seismic isolation support device that reduces earthquake input acceleration and prevents damage to structures such as buildings and bridges.

交互に積層された弾性層及び剛性層並びにこれら弾性層及び剛性層の内周面で規定された中空部を有する積層体と、この積層体の中空部に配された鉛プラグとを具備した免震支持装置は、知られている。   A laminate comprising an elastic layer and a rigid layer alternately stacked and a hollow portion defined by the elastic layer and the inner circumferential surface of the rigid layer, and a lead plug disposed in the hollow portion of the laminate Vibration support devices are known.

斯かる免震支持装置は、積層体の積層方向の一端側に設けられた構造物の鉛直荷重を当該積層体及び鉛プラグで支持すると共に地震に起因する積層体の積層方向の他端に対しての構造物の水平方向の振動を積層体の剪断弾性変形を伴う鉛プラグの塑性変形(剪断変形)で減衰させる一方、同じく地震に起因する積層体の積層方向の他端の水平方向の振動の構造物への伝達を鉛プラグの塑性変形を伴う積層体の剪断弾性変形で抑制するようになっている。   Such a seismic isolation support apparatus supports the vertical load of the structure provided on one end side of the stack in the stacking direction by the stack and the lead plug and for the other end of the stack in the stacking direction caused by the earthquake. Vibration of the structure in the horizontal direction is damped by plastic deformation (shear deformation) of the lead plug accompanied by shear elastic deformation of the laminate, while horizontal vibration of the other end of the laminate in the stacking direction also caused by earthquakes The transmission to the structure is suppressed by the shear elastic deformation of the laminate accompanied by the plastic deformation of the lead plug.

特開2009−8181号公報JP, 2009-8181, A

ところで、この種の免震支持装置の鉛プラグは、その積層方向の一端部及び他端部の夫々で積層方向の一端及び他端の剛性層又は一端取付板及び他端取付板の内周面で規定された中空部に配されて、当該一端及び他端の剛性層又は一端取付板及び他端取付板に保持されているが、この保持された鉛プラグの積層方向の一端部及び他端部の夫々の積層方向における長さが当該一端部及び他端部での積層方向に直交する方向であって免震における中間部の剪断変形方向の径と比較して短い場合には、当該鉛プラグの積層方向の一端部及び他端部での保持性が低下して、一の地震に起因する積層体の積層方向の他端に対しての構造物の水平方向の振動での積層方向における当該一端部と他端部との間の鉛プラグの中間部での塑性変形(剪断変形)が不十分となり、地震エネルギ減衰能が低下する一方、当該長さが長い場合には、当該鉛プラグの積層方向の一端部及び他端部は、しっかりと保持されるが、当該一端部及び他端部での鉛の流動性が低減して当該一端部及び他端部と鉛プラグの中間部との境界領域に疲労が生じて、長さが短い場合と同様に、地震エネルギ減衰能が低下する虞が生じる。   By the way, the lead plug of this type of seismic isolation support device has a rigid layer at one end and the other end in the stacking direction at the one end and the other end in the stacking direction, or an inner peripheral surface of the one end mounting plate and the other end mounting plate. The one end and the other end in the stacking direction of the held lead plugs are arranged in the hollow portion defined by the above and are held by the rigid layer or the one end mounting plate and the other end mounting plate at the one end and the other end. When the length of each part in the stacking direction is perpendicular to the stacking direction at the one end and the other end and is shorter than the diameter in the shear deformation direction of the middle part in seismic isolation, the lead Retention at one end and the other end of the plug in the stacking direction is reduced, and the structure in the stacking direction in the horizontal vibration of the structure with respect to the other end of the stack in the stacking direction caused by one earthquake Plastic deformation (shear deformation) in the middle of the lead plug between the one end and the other end When the length is long, one end and the other end in the stacking direction of the lead plug are firmly held, but the one end and the other end are sufficient. Flowability of the lead reduces fatigue and causes fatigue in the boundary area between the one end and the other end and the middle part of the lead plug, which may reduce the seismic energy attenuation capability as in the case of a short length. Occurs.

斯かる問題は、鉛プラグにおいて顕著に生じるのであるが、鉛プラグに限らず、塑性変形で振動エネルギを吸収する鉛、錫又は非鉛系低融点合金等の減衰材料からなる振動減衰体でも生じ得る。   Such problems occur notably in lead plugs, but not only in lead plugs but also in vibration damping bodies made of damping materials such as lead, tin or lead-free low melting point alloys that absorb vibration energy by plastic deformation. obtain.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、積層方向における振動減衰体の一端部及び他端部に対する保持性を維持できる一方、積層方向における当該一端部及び他端部と積層方向における当該一端部及び他端部間の振動減衰体の中間部との境界領域での疲労を回避することができ、而して、地震エネルギ減衰能の低下を回避できる免震支持装置を提供することにある。   The present invention has been made in view of the above-mentioned various points, and the object of the present invention is to maintain the retention of one end and the other end of the vibration damping body in the stacking direction, while the one end in the stacking direction Fatigue in the boundary region between the other end and the middle part of the vibration damping body between the one end and the other end in the stacking direction can be avoided, and a drop in seismic energy attenuation ability can be avoided. The object is to provide a seismic isolation support device.

本発明による免震支持装置は、交互に積層された複数の弾性層及び剛性層を有する積層体と、この積層体の積層方向の一端面及び他端面に取付けられた一端取付板及び他端取付板と、弾性層及び剛性層並びに一端取付板及び他端取付板で取り囲まれていると共に積層方向に伸びた中空部に配された振動減衰体とを具備しており、且つ、一端取付板に加わると共に他端取付板に向かう積層方向の荷重を積層体及び振動減衰体で支持するようになっており、振動減衰体は、積層体の積層方向の一端の剛性層又は一端取付板の内周面で規定された中空部の積層方向の一端に配された一端部と、積層体の積層方向の他端の剛性層又は他端取付板の内周面で規定された中空部の積層方向の他端に配された他端部と、積層方向におけるこれら一端部及び他端部間の中空部に配された中間部とを具備しており、中間部の積層方向の一端からの振動減衰体の一端部の積層方向の長さh1及び中間部の積層方向の他端からの振動減衰体の他端部の積層方向の長さh2と積層方向に対して直交する方向であって免震における中間部の剪断変形方向の当該一端部及び他端部の径d1及びd2との比h1/d1及び比h2/d2の夫々は、0.05から0.7の範囲内である。   A seismic isolation support device according to the present invention includes a laminate having a plurality of alternately laminated elastic layers and rigid layers, and one end mounting plate and the other end attached to one end surface and the other end surface of the laminate in the stacking direction. A vibration damping body disposed in a hollow portion surrounded by an elastic layer, a rigid layer, one end mounting plate and the other end mounting plate and extending in the stacking direction, and the one end mounting plate In addition, the load in the stacking direction toward the other end mounting plate is supported by the stacked body and the vibration damping body. The vibration damping body is a rigid layer at one end in the stacking direction of the stacked body or the inner periphery of the one end mounting plate. One end portion disposed at one end in the stacking direction of the hollow portion defined by the surface, and the stacking direction of the hollow portion defined by the rigid layer at the other end in the stacking direction of the laminate or the inner peripheral surface of the other end mounting plate The other end disposed at the other end, the one end in the stacking direction, and the other And an intermediate portion disposed in the hollow portion between the portions, and from the one end in the lamination direction of the intermediate portion, the length h1 in the lamination direction of one end of the vibration damping body and the other end in the lamination direction of the intermediate portion Length d2 of the other end of the vibration damping body in the stacking direction and the diameters d1 and d2 of the one end and the other end in the shear deformation direction of the intermediate portion in the direction orthogonal to the stacking direction Each of the ratio h1 / d1 and the ratio h2 / d2 is in the range of 0.05 to 0.7.

本発明では、振動減衰体の一端部の積層方向の長さh1及び振動減衰体の他端部の積層方向の長さh2と当該一端部及び他端部の積層方向に直交する方向であって免震における中間部の剪断変形方向の径d1及びd2との比h1/d1及び比h2/d2の夫々が、0.05以上であるため、積層方向における振動減衰体の一端部及び他端部に対する保持性を維持できる一方、当該比h1/d1及び比h2/d2の夫々が、0.7以下であるために、免震における中間部の剪断変形での中空部の一端及び他端から当該一端及び他端間の中空部への振動減衰体の流動性を確保できる結果、境界領域での振動減衰体の疲労を回避することができ、而して、地震エネルギ減衰能の低下を回避できる免震支持装置を提供することができる。   In the present invention, the length h1 in the stacking direction of one end of the vibration damping body and the length h2 in the stacking direction of the other end of the vibration damping body are directions orthogonal to the stacking direction of the one end and the other end Since each of the ratios h1 / d1 and ratio h2 / d2 to the diameters d1 and d2 in the shear deformation direction of the intermediate part in the seismic isolation is 0.05 or more, one end and the other end of the vibration damping body in the stacking direction However, since each of the ratio h1 / d1 and ratio h2 / d2 is 0.7 or less, the one end and the other end of the hollow portion in the shear deformation of the intermediate portion in seismic isolation As a result of securing the fluidity of the vibration attenuating body to the hollow portion between the one end and the other end, it is possible to avoid the fatigue of the vibration attenuating body in the boundary region, and thus, it is possible to avoid a decrease in the seismic energy attenuation capacity. A seismic isolation support device can be provided.

本発明による免震支持装置は、好ましくは、他端取付板に対しての一端取付板の積層方向に直交する方向の振動を積層体の剪断弾性変形を伴う振動減衰体の塑性変形で減衰させると共に他端取付板の積層方向に直交する方向の振動の一端取付板への伝達を振動減衰体の塑性変形を伴う積層体の剪断弾性変形で抑制するようになっており、また、本発明における振動減衰体は、好ましい例では、弾性層及び剛性層並びに一端取付板及び他端取付板に対して隙間なしに中空部に配されている。   The seismic isolation support device according to the present invention preferably attenuates vibration in a direction perpendicular to the stacking direction of the one end mounting plate with respect to the other end mounting plate by plastic deformation of the vibration damping body accompanying shear elastic deformation of the stack. At the same time, transmission of vibration in the direction perpendicular to the stacking direction of the other end mounting plate to the one end mounting plate is suppressed by shear elastic deformation of the laminate accompanied by plastic deformation of the vibration damping body, and in the present invention The vibration damping body is, in a preferred example, disposed in the hollow portion without a gap with respect to the elastic layer and the rigid layer and the one end attachment plate and the other end attachment plate.

本発明において、境界領域での疲労による地震エネルギ減衰能の低下をより避けることができる好ましい例では、比h1/d1及び比h2/d2の夫々は、0.5以下である。   In the present invention, in a preferred example where the decrease in seismic energy attenuation ability due to fatigue in the boundary region can be further avoided, each of the ratio h1 / d1 and the ratio h2 / d2 is 0.5 or less.

比h1/d1及び比h2/d2の夫々が小さすぎると、免震における中間部の剪断変形で、振動減衰体の積層方向の一端部及び他端部をしっかりと保持できなくなる虞が生じため、本発明では、0.05以上であるが、好ましい例では、比h1/d1及び比h2/d2の夫々は、0.25以上である。   If each of the ratio h1 / d1 and the ratio h2 / d2 is too small, the shear deformation of the middle part in the seismic isolation may not be able to firmly hold one end and the other end in the stacking direction of the vibration damping body. In the present invention, the ratio is 0.05 or more, but in a preferred example, each of the ratio h1 / d1 and the ratio h2 / d2 is 0.25 or more.

本発明において、振動減衰体は、好ましい例では、塑性変形で振動エネルギを吸収する減衰材料からなり、斯かる減衰材料は、鉛、錫又は非鉛系低融点合金(例えば、錫−亜鉛系合金、錫−ビスマス系合金及び錫−インジウム系合金より選ばれる錫含有合金であって、具体的には、錫42〜43重量%及びビスマス57〜58重量%を含む錫−ビスマス合金等)からなっていてもよい。   In the present invention, the vibration damping body is, in a preferred example, made of a damping material that absorbs vibrational energy by plastic deformation, and such damping material is lead, tin or a lead-free low melting point alloy (eg tin-zinc based alloy) A tin-bismuth alloy and a tin-indium alloy, specifically, a tin-bismuth alloy containing 42 to 43 wt% of tin and 57 to 58 wt% of bismuth). It may be

本発明において、積層方向の一端の剛性層及び一端取付板に関して、好ましい例では、積層方向の一端の剛性層は、その内周面で規定されていると共に振動減衰体の一端部が配された貫通孔を具備しており、この貫通孔は、振動減衰体の一端部の積層方向の長さh1に等しい長さと、当該一端部での積層方向に直交する方向であって免震における中間部の剪断変形方向の径d1に等しい径とを有している。   In the present invention, with respect to the rigid layer at one end in the stacking direction and the one end attachment plate, in a preferred example, the rigid layer at one end in the stacking direction is defined by the inner circumferential surface and one end of the vibration damping body is disposed. A through hole is provided, and the through hole has a length equal to the length h1 in the stacking direction of one end of the vibration damping body and a direction perpendicular to the stacking direction in the one end and the middle portion in seismic isolation And a diameter equal to the diameter d1 in the shear deformation direction of

本発明において、積層方向の他端の剛性層及び他端取付板に関して、好ましい例では、積層方向の他端の剛性層は、その内周面で規定されていると共に振動減衰体の他端部が配された貫通孔を具備しており、この貫通孔は、振動減衰体の他端部の積層方向の長さh2に等しい長さと、当該他端部での積層方向に直交する方向であって免震における中間部の剪断変形方向の径d2に等しい径とを有している。   In the present invention, regarding the rigid layer at the other end in the stacking direction and the other end attachment plate, in a preferred example, the rigid layer at the other end in the stacking direction is defined by the inner circumferential surface and the other end of the vibration damping body The through hole has a length equal to the length h2 of the other end of the vibration damping body in the stacking direction and a direction perpendicular to the stacking direction at the other end. Thus, it has a diameter equal to the diameter d2 in the shear deformation direction of the intermediate part in the seismic isolation.

本発明では、弾性層の素材としては、天然ゴム、シリコーンゴム、高減衰ゴム、ウレタンゴム又はクロロプレンゴム等を挙げることができるが、好ましくは天然ゴムであり、弾性層の各層は、好ましくは、無負荷状態(支持する積層方向の荷重が一端取付板に加えられていない状態)において1mm〜30mm程度の厚みを有しているが、これに限定されず、また、剛性層の素材としては、鋼板、炭素繊維、ガラス繊維若しくはアラミド繊維等の繊維補強合成樹脂板又は繊維補強硬質ゴム板等を挙げることができ、剛性層の各層は、1mm〜6mm程度の厚みを有していても、また、一端及び他端の剛性層は、積層方向において一端及び他端の剛性層間の剛性層の厚み、例えば1mm〜6mm程度の厚みよりも厚い、例えば10mm〜50mm程度の厚みを有していてもよいが、これらに限定されず、加えて、弾性層及び剛性層は、その枚数においても特に限定されず、支持する構造物の荷重、剪断変形量(水平方向歪量)、弾性層の弾性率、予測される構造物への振動加速度の大きさの観点から、安定な免震特性を得るべく、弾性層及び剛性層の枚数を決定すればよい。   In the present invention, examples of the material of the elastic layer include natural rubber, silicone rubber, high damping rubber, urethane rubber, chloroprene rubber and the like, preferably natural rubber, and each layer of the elastic layer is preferably Although it has a thickness of about 1 mm to 30 mm in a no-load state (a state in which the load in the stacking direction to be supported is not applied to the one end mounting plate), the present invention is not limited thereto. Examples thereof include steel plates, fiber-reinforced synthetic resin plates such as carbon fibers, glass fibers, or aramid fibers or fiber-reinforced hard rubber plates, etc. Even if each layer of the rigid layer has a thickness of about 1 mm to 6 mm, The rigid layer at one end and the other end is thicker than the thickness of the rigid layer between the rigid layers at one end and the other end in the stacking direction, for example, about 1 mm to 6 mm, for example, 10 mm to 50 m The elastic layer and the rigid layer are not particularly limited in the number of sheets, but the load, shear deformation amount (horizontal direction) of the structure to be supported. The number of elastic layers and rigid layers may be determined in order to obtain stable seismic isolation characteristics from the viewpoint of the amount of strain), the elastic modulus of the elastic layer, and the predicted magnitude of vibration acceleration to the structure.

また、本発明では、弾性体及び剛性層は、円環状体であって、振動減衰体は、円柱状体が好ましいが、他の形状のもの、例えば弾性体及び剛性層は、楕円環状体若しくは中空方形体であって、振動減衰体は、楕円柱若しくは方形体であってもよく、中空部は、一つでもよいが、これに代えて、複数の中空部を有していてもよく、この複数の中空部の夫々に振動減衰体を配して免震支持装置を構成してもよい。なお、一個の中空部に関して、比h1/d1及び比h2/d2が互いに同一である必要はなく、比h1/d1及び比h2/d2が互いに異なっていてもよく、また、複数の中空部の夫々に関して、比h1/d1及び比h2/d2が中空部の相互において同一である必要はなく、比h1/d1及び比h2/d2が中空部の相互においてそれぞれ異なっていてもよく、また、これら複数の中空部の夫々に関して比h1/d1及び比h2/d2が上記の通り、0.05から0.7の範囲内であることが好ましいが、複数の中空部の一部に関してのみ比h1/d1及び比h2/d2が0.05から0.7の範囲内であってもよい。   Further, in the present invention, the elastic body and the rigid layer are toroidal bodies, and the vibration damping body is preferably a cylindrical body, but those having other shapes, for example, the elastic body and the rigid layer are elliptical annular bodies or In the case of a hollow rectangular body, the vibration damping body may be an elliptic cylinder or a rectangular body, and the hollow portion may be one, or alternatively, may have a plurality of hollow portions. The seismic isolation support device may be configured by arranging a vibration damping body in each of the plurality of hollow portions. Note that the ratio h1 / d1 and the ratio h2 / d2 do not have to be the same for one hollow part, the ratio h1 / d1 and the ratio h2 / d2 may be different from each other, For each, the ratio h1 / d1 and the ratio h2 / d2 do not have to be the same in the hollow part, and the ratio h1 / d1 and the ratio h2 / d2 may be different in the hollow part, respectively, The ratio h1 / d1 and the ratio h2 / d2 are preferably in the range of 0.05 to 0.7 as described above for each of the plurality of hollow portions, but the ratio h1 / d1 is preferably only for part of the plurality of hollow portions. d1 and the ratio h2 / d2 may be in the range of 0.05 to 0.7.

本発明によれば、積層方向における振動減衰体の一端部及び他端部に対する保持性を維持できる一方、積層方向における当該一端部及び他端部と積層方向における当該一端部及び他端部間の振動減衰体の中間部との境界領域での疲労を回避することができ、而して、地震エネルギ減衰能の低下を回避し得る免震支持装置を提供することができる。   According to the present invention, it is possible to maintain the holding property of the vibration damping body to one end and the other end in the stacking direction, and between the one end and the other end in the stacking direction and the one end and the other end in the stacking direction. It is possible to provide a seismic isolation support device capable of avoiding fatigue in the boundary region with the middle portion of the vibration damping body and thus avoiding the reduction in seismic energy damping capability.

図1は、本発明の好ましい実施の形態の一具体例の図2のI−I線矢視断面説明図である。FIG. 1 is a cross-sectional explanatory view taken along the line II in FIG. 2 of a specific example of a preferred embodiment of the present invention. 図2は、図1に示す具体例の一部破断平面説明図である。FIG. 2 is a partially cutaway plan view of the specific example shown in FIG. 図3は、図1に示す具体例の鉛プラグの斜視説明図である。FIG. 3 is a perspective view of the lead plug of the embodiment shown in FIG. 図4は、図1に示す具体例の動作説明図である。FIG. 4 is an operation explanatory view of the specific example shown in FIG. 図5は、本発明に係る免震支持装置の水平変位と水平応力との履歴特性説明図である。FIG. 5 is an explanatory view of hysteresis characteristics of horizontal displacement and horizontal stress of the seismic isolation support device according to the present invention. 図6は、比h1/d1及び比h2/d2と切片荷重比との関係の試験結果説明図である。FIG. 6 is an explanatory view of the test results of the relationship between the ratio h1 / d1 and the ratio h2 / d2 and the intercept load ratio.

以下、本発明及びその実施の形態を、図に示す好ましい具体例に基づいて説明する。なお、本発明は本具体例に何等限定されないのである。   Hereinafter, the present invention and its embodiments will be described based on preferred specific examples shown in the drawings. The present invention is by no means limited to this specific example.

図1から図3に示す本例の免震支持装置1は、交互に積層された複数の円環状の弾性層2及び剛性層3に加えて、弾性層2及び剛性層3の円筒状の外周面4及び5を被覆した円筒状の被覆層6を有する円筒状の積層体7と、積層体7の積層方向(本例では、鉛直方向でもある)Vの一端面及び他端面である円環状の上端面8及び下端面9に取付けられた一端取付板及び他端取付板である円板状の上取付板10及び下取付板11と、弾性層2及び剛性層3並びに上取付板10及び下取付板11で取り囲まれていると共に上取付板10の積層方向Vの一方の面である円形の下面12から下取付板11の積層方向Vの一方の面である円板状の上面13まで積層方向Vに伸びた中空部14に、当該弾性層2の内周面15及び剛性層3の円筒状の内周面16並びに下面12及び上面13に対して隙間なしに配されていると共に積層方向Vに直交する方向、本例では、水平方向Hの塑性変形で振動エネルギを吸収する減衰材料からなる振動減衰体としての鉛プラグ17と、上取付板10を上端面8に、下取付板11を下端面9に夫々取付ける複数のボルト18及び19とを具備している。   The seismic isolation support device 1 of this example shown in FIGS. 1 to 3 has a cylindrical outer periphery of the elastic layer 2 and the rigid layer 3 in addition to the plurality of annular elastic layers 2 and the rigid layer 3 stacked alternately. A cylindrical laminated body 7 having a cylindrical covering layer 6 covering the surfaces 4 and 5, and an annular shape that is one end face and the other end face of the laminated body 7 in the laminating direction (which is also the vertical direction in this example). Disc-shaped upper mounting plate 10 and lower mounting plate 11 which are one end mounting plate and the other end mounting plate attached to the upper end surface 8 and the lower end surface 9; elastic layer 2 and rigid layer 3; From the circular lower surface 12 that is surrounded by the lower mounting plate 11 and is one surface of the upper mounting plate 10 in the stacking direction V to the disk-shaped upper surface 13 that is one surface of the lower mounting plate 11 in the stacking direction V In the hollow portion 14 extending in the stacking direction V, the inner peripheral surface 15 of the elastic layer 2 and the cylindrical inner peripheral surface of the rigid layer 3 As a vibration damping body made of a damping material which is disposed without gaps with respect to the lower surface 12 and the upper surface 13 and in a direction perpendicular to the stacking direction V, in this example, plastic deformation in the horizontal direction H And a plurality of bolts 18 and 19 for attaching the upper mounting plate 10 to the upper end surface 8 and the lower mounting plate 11 to the lower end surface 9, respectively.

厚さt1の天然ゴム製の円環状のゴム板からなる弾性層2の夫々は、積層方向Vのその一方の面及び他方の面である円環状の上面21及び下面22で、水平方向Hに平行なこれら平坦な上面21及び下面22に積層方向Vにおいて対面する剛性層3の積層方向Vの一方の面及び他方の面であって水平方向Hに平行な平坦な下面23及び上面24に夫々加硫接着されており、当該弾性層2の内周面15の夫々は、積層方向Vにおける剛性層3間への鉛プラグ17の部分的な食い込みで凹面になっており、而して、各弾性層2の位置で鉛プラグ17の円筒状の外周面25は、水平方向Hに膨出した凸面になっている。   Each of the elastic layers 2 made of an annular rubber plate made of natural rubber and having a thickness t1 is a horizontal direction H in the annular upper surface 21 and the lower surface 22 which are the one side and the other side in the stacking direction V. One plane and the other plane in the stacking direction V of the rigid layer 3 facing the flat upper surface 21 and the lower surface 22 in parallel in the stacking direction V, respectively, and the flat lower surface 23 and the upper surface 24 parallel to the horizontal direction H, respectively. Each of the inner peripheral surfaces 15 of the elastic layer 2 is vulcanized and bonded, so that the lead plug 17 partially bites into the space between the rigid layers 3 in the stacking direction V. The cylindrical outer peripheral surface 25 of the lead plug 17 at the position of the elastic layer 2 is a convex surface that bulges in the horizontal direction H.

弾性層2の夫々と同心に配された複数の剛性層3において、積層体7の積層方向Vの一端及び他端である最上端及び最下端の剛性層3の夫々は、積層方向Vの厚さt2の円環状の互いに同一の鋼板からなり、積層方向Vにおいて最上端の剛性層3と最下端の剛性層3との間に配された剛性層3の夫々は、弾性層2の厚さt1並びに最上端及び最下端の剛性層3の厚さt2よりも薄い積層方向Vの厚さt3(t3<t1且つt3<t2)の円環状の互いに同一の鋼板からなり、最上端の剛性層3は、その内周面16で規定されていると共に鉛プラグ17の積層方向Vの一方の端部である円柱状の上端部27が配された貫通孔28と、円環状の上面24で開口していると共に貫通孔28を中心として円周方向Rに等間隔に当該上面24に設けられた複数個の有底の螺子穴29とを具備しており、最下端の剛性層3は、その内周面16で規定されていると共に鉛プラグ17の積層方向Vの他方の端部である円柱状の下端部31が配された貫通孔32と、円環状の下面23で開口していると共に貫通孔32を中心として円周方向Rに等間隔に当該下面23に設けられた複数個の有底の螺子穴33とを具備している。   In the plurality of rigid layers 3 disposed concentrically with each of the elastic layers 2, each of the uppermost end and the lowermost rigid layer 3 which is one end and the other end of the lamination direction V of the laminate 7 has a thickness in the lamination direction V Each of the rigid layers 3 made of annular identical steel plates having a thickness t2 and disposed between the uppermost rigid layer 3 and the lowermost rigid layer 3 in the stacking direction V has a thickness of the elastic layer 2 The uppermost rigid layer consists of annular identical steel plates of thickness t3 (t3 <t1 and t3 <t2) in the stacking direction V thinner than t1 and thickness t2 of the uppermost and lowermost rigid layers 3 3 is defined by the inner circumferential surface 16 and is opened by a through hole 28 in which a cylindrical upper end 27 which is one end of the stacking direction V of the lead plug 17 is disposed, and an annular upper surface 24 And provided on the upper surface 24 at equal intervals in the circumferential direction R around the through hole 28. A plurality of bottomed screw holes 29 are provided, and the lowermost rigid layer 3 is defined by the inner circumferential surface 16 and is a circle which is the other end in the stacking direction V of the lead plug 17 A plurality of holes provided in the lower surface 23 are formed at equal intervals in the circumferential direction R around the through-hole 32 and open through the through-hole 32 in which the columnar lower end portion 31 is disposed and the annular lower surface 23. And a screw hole 33 at the bottom.

積層方向Vに直交する方向、本例では、水平方向Hにおいて厚さ5mm程度であって弾性層2と同一の天然ゴムからなると共に積層体7の外周面ともなる円筒状の外周面35並びに積層方向Vの一方及び他方の面としての円環状の上端面36及び下端面37を有した被覆層6は、その円筒状の内周面38で外周面4及び5に加硫接着されている。   A cylindrical outer peripheral surface 35 that is about 5 mm thick in the horizontal direction H in the direction orthogonal to the laminating direction V, is made of the same natural rubber as the elastic layer 2 and also serves as an outer peripheral surface of the laminated body 7 and a laminated layer. The covering layer 6 having an annular upper end surface 36 and lower end surface 37 as one and other surfaces in the direction V is vulcanized and bonded to the outer peripheral surfaces 4 and 5 at the cylindrical inner peripheral surface 38.

而して、水平方向Hに平行な平坦な上端面8は、最上端の剛性層3の上面24と上端面36とを具備しており、同じく水平方向Hに平行な下端面9は、最下端の剛性層3の下面23と下端面37とを具備している。   Thus, the flat upper end surface 8 parallel to the horizontal direction H includes the upper surface 24 and the upper end surface 36 of the uppermost rigid layer 3, and the lower end surface 9 which is also parallel to the horizontal direction H is The lower surface 23 and the lower end surface 37 of the rigid layer 3 at the lower end are provided.

上取付板10は、鉛プラグ17の上端部27の積層方向Vの一方の面としての円形であって水平方向Hに平行である平坦な上端面41並びに最上端の剛性層3の上面24及び被覆層6の上端面36からなる上端面8が接触すると共に水平方向Hに平行である平坦な下面12に加えて、積層方向Vの他方の面としての円形であって水平方向Hに平行である平坦な上面42と、上面42で開口していると共に貫通孔28を中心として円周方向Rに等間隔に当該上面42に設けられた複数個の凹所43と、凹所43に連通する一方、下面12で開口すると共に螺子穴29に対応して貫通孔28を中心として円周方向Rに等間隔に設けられた貫通孔44と、円筒状の側面45と、水平方向Hにおいて側面45の近傍に貫通孔28を中心として円周方向Rに等間隔に設けられた複数個の貫通孔46とを具備しており、斯かる上取付板10は、各凹所43及び各貫通孔44に挿通されて各螺子穴29に螺合される各ボルト18により最上端の剛性層3に固定されるようになっている。   The upper mounting plate 10 is circular as one surface of the upper end portion 27 of the lead plug 17 in the stacking direction V and has a flat upper end surface 41 parallel to the horizontal direction H and the upper surface 24 of the uppermost rigid layer 3 and In addition to the flat lower surface 12 which is in contact with the upper end surface 8 consisting of the upper end surface 36 of the covering layer 6 and is parallel to the horizontal direction H, it is circular as the other surface in the stacking direction V and parallel to the horizontal direction H A flat upper surface 42, a plurality of recesses 43 that are open at the upper surface 42 and that are provided at equal intervals in the circumferential direction R around the through hole 28, and communicate with the recess 43. On the other hand, through-holes 44 that open at the lower surface 12 and are provided at equal intervals in the circumferential direction R around the through-holes 28 corresponding to the screw holes 29, cylindrical side surfaces 45, and side surfaces 45 in the horizontal direction H Circumferential direction around through hole 28 in the vicinity of The upper mounting plate 10 is inserted into each recess 43 and each through hole 44 and screwed into each screw hole 29. It is fixed to the uppermost rigid layer 3 by each bolt 18.

下取付板11は、鉛プラグ17の下端部31の積層方向Vの一方の面としての円形であって水平方向Hに平行である平坦な下端面51並びに最下端の剛性層3の下面23及び被覆層6の下端面37からなる下端面9が接触すると共に水平方向Hに平行である平坦な上面13に加えて、積層方向Vの他方の面としての円形であって水平方向Hに平行である平坦な下面52と、下面52で開口していると共に貫通孔28を中心として円周方向Rに等間隔に当該下面52に設けられた複数個の凹所53と、凹所53に連通する一方、上面13で開口すると共に螺子穴33に対応して貫通孔28を中心として円周方向Rに等間隔に設けられた貫通孔54と、円筒状の側面55と、水平方向Hにおいて側面55の近傍に貫通孔28を中心として円周方向Rに等間隔に設けられた複数個の貫通孔56とを具備しており、斯かる下取付板11は、各凹所53及び各貫通孔54に挿通されて各螺子穴33に螺合される各ボルト19により最下端の剛性層3に固定されるようになっている。   The lower mounting plate 11 is circular as one surface of the lower end portion 31 of the lead plug 17 in the stacking direction V, and is a flat lower end surface 51 parallel to the horizontal direction H and the lower surface 23 of the lowermost rigid layer 3 In addition to the flat upper surface 13 that is in contact with the lower end surface 9 composed of the lower end surface 37 of the coating layer 6 and parallel to the horizontal direction H, it is a circle as the other surface in the stacking direction V and is parallel to the horizontal direction H. It communicates with a certain flat lower surface 52, a plurality of recesses 53 provided in the lower surface 52 at equal intervals in the circumferential direction R centered on the through hole 28, and the recesses 53. On the other hand, through-holes 54 that open at the top surface 13 and are provided at equal intervals in the circumferential direction R around the through-holes 28 corresponding to the screw holes 33, cylindrical side surfaces 55, and side surfaces 55 in the horizontal direction H Circumferential direction around through hole 28 in the vicinity of The lower mounting plate 11 is inserted into each recess 53 and each through hole 54 and screwed into each screw hole 33. Each bolt 19 fixes the lowermost rigid layer 3.

各弾性層2の内周面15、各剛性層3の内周面16、下面12及び上面13で規定された中空部14に配された鉛プラグ17は、最上端の剛性層3の内周面16で規定された中空部14の積層方向Vの一端に配された上端部27と、最下端の剛性層3の内周面16で規定された中空部14の積層方向Vの他端に配された下端部31とに加えて、積層方向Vにおけるこれら上端部27及び下端部31間の中空部14に配された中間部61を具備しており、中間部61は、積層方向Vにおいて最上端及び最下端の剛性層3間の複数の弾性層2の内周面15及び複数の剛性層3の内周面16で規定されており、中間部61の積層方向Vの一端から上端面41までの鉛プラグ17の上端部27の積層方向Vの長さh1(最上端の剛性層3の積層方向Vの厚さt2に等しい)及び中間部61の積層方向Vの他端から下端面51までの鉛プラグ17の下端部31の積層方向Vの長さh2(最下端の剛性層3の積層方向Vの厚さt2に等しく、従って、本例では、h1=h2)と、積層方向Vに対して直交する方向であって図4に示す免震における中間部61の剪断変形方向、本例では水平方向Hの当該上端部27及び下端部31の径d1及びd2(本例では、上端面41及び下端面51の直径であって、しかも、d1=d2であり、加えて、内周面16の径d3と同一、即ち、d1=d2=d3である)との比h1/d1及び比h2/d2の夫々は、0.05から0.7の範囲内、本例では、0.5である。   The lead plug 17 disposed in the hollow portion 14 defined by the inner peripheral surface 15 of each elastic layer 2, the inner peripheral surface 16 of each rigid layer 3, the lower surface 12 and the upper surface 13 is the inner periphery of the uppermost rigid layer 3. At the other end of the hollow portion 14 defined by the upper end portion 27 disposed at one end of the hollow portion 14 defined by the surface 16 in the stacking direction V and the inner circumferential surface 16 of the lowermost rigid layer 3 In addition to the disposed lower end 31, the intermediate portion 61 disposed in the hollow portion 14 between the upper end portion 27 and the lower end portion 31 in the stacking direction V is provided. The inner peripheral surface 15 of the plurality of elastic layers 2 between the uppermost end and the lowermost end rigid layer 3 and the inner peripheral surface 16 of the plurality of rigid layers 3 are defined, and one end to the upper end surface of the middle portion 61 in the stacking direction V Length h1 of the stacking direction V of the upper end portion 27 of the lead plug 17 up to 41 (stacking direction V of the uppermost rigid layer 3 The thickness h2 of the lower end portion 31 of the lead plug 17 from the other end of the middle portion 61 to the lower end face 51 from the other end in the stacking direction V of the intermediate portion 61 and the length h2 of the lowermost end rigid layer 3 The shear deformation direction of the intermediate portion 61 in the seismic isolation shown in FIG. 4 which is equal to the thickness t2 and therefore in the present example is h1 = h2) and perpendicular to the stacking direction V, in the present example the horizontal direction The diameters d1 and d2 of the upper end portion 27 and the lower end portion 31 of H (in this example, the diameters of the upper end surface 41 and the lower end surface 51, and d1 = d2), and the diameter of the inner circumferential surface 16 Each of the ratio h1 / d1 and ratio h2 / d2 to the same as d3 (that is, d1 = d2 = d3) is in the range of 0.05 to 0.7, 0.5 in this example.

塑性変形で振動エネルギを吸収する減衰材料である鉛の中空部14への圧入、充填により作成された鉛プラグ17は、支持する上部の構造物65(図4参照)からの積層方向Vの荷重、本例では、積層方向Vの下向きの力、即ち、鉛直荷重Wが上取付板10に加えられていない状態(無荷重下)でも、内周面15及び16並びに下面12及び上面13に対して隙間なしに配されていると共に弾性層2の弾性力に抗して弾性層2に向って水平方向(剪断方向)Hに張り出して弾性層2に部分的に若干食い込み、弾性層2の内周面15を凹面にする結果、内周面15及び16からなる積層体7の内周面66は、当該弾性層2の内周面15の位置で凹面になっている一方、最上端の剛性層3と最下端の剛性層3との間に配された剛性層3の内周面16の位置で凸面になっており、支持する上部の構造物65からの積層方向Vの鉛直荷重Wが上取付板10に加えられた状態(荷重下)では、弾性層2が積層方向Vにおいて圧縮されて弾性層2の厚みt1が無荷重下の厚みt1よりも小さくなって、積層体7の高さh、延いては、免震支持装置1の高さが低くなる結果、中空部14に圧入、充填された鉛プラグ17は、弾性層2の弾性力に抗して当該弾性層2の弾性変形により水平方向Hに張り出して弾性層2に食い込み、弾性層2の内周面15をより大きく水平方向Hに凹んだ凹面にする。   The lead plug 17 made by press-fitting and filling lead, which is a damping material that absorbs vibrational energy by plastic deformation, into the hollow portion 14 is a load in the stacking direction V from the upper structure 65 (see FIG. 4). In this example, the downward force in the stacking direction V, that is, even when the vertical load W is not applied to the upper mounting plate 10 (under no load), relative to the inner circumferential surface 15 and 16 and the lower surface 12 and the upper surface 13 The elastic layer 2 is disposed in a horizontal direction (shearing direction) H toward the elastic layer 2 against the elastic force of the elastic layer 2 and partially bites into the elastic layer 2. As a result of making the circumferential surface 15 concave, the inner circumferential surface 66 of the laminate 7 consisting of the inner circumferential surfaces 15 and 16 is concave at the position of the inner circumferential surface 15 of the elastic layer 2, while the rigidity of the uppermost end Inner circumferential surface 1 of the rigid layer 3 disposed between the layer 3 and the lowermost rigid layer 3 When the vertical load W in the stacking direction V from the upper structure 65 to be supported is applied to the upper mounting plate 10 (under load), the elastic layer 2 is compressed in the stacking direction V. As a result, the thickness t1 of the elastic layer 2 becomes smaller than the thickness t1 under no load, and as a result, the height h of the laminate 7 and, consequently, the height of the seismic isolation support device 1 is reduced. The lead plug 17 which has been pressed and filled against the elastic force of the elastic layer 2 is stretched in the horizontal direction H by the elastic deformation of the elastic layer 2 and bites into the elastic layer 2 and the inner peripheral surface 15 of the elastic layer 2 Make it a concave surface greatly recessed in the horizontal direction H.

上取付板10に加わると共に下取付板11に向かう積層方向Vの鉛直荷重Wを積層体7及び鉛プラグ17で支持するようになっている以上の免震支持装置1は、図4に示すように、上取付板10が貫通孔46に挿入されたアンカーボルト71を介して構造物65に、下取付板11が貫通孔56に挿入されたアンカーボルト72を介して基礎等の下部の構造物73に夫々固定されて構造物65及び73間に配され、構造物65の鉛直荷重Wを受けて、上取付板10に加わる積層方向Vの鉛直荷重Wを積層体7及び鉛プラグ17で支持すると共に地震においては図4に示すように下取付板11の水平方向Hの振動の上取付板10への伝達を積層体7の水平方向Hの剪断弾性変形で抑制する一方、下取付板11に対しての上取付板10の水平方向Hの振動を鉛プラグ17の水平方向Hの塑性変形で減衰させるようになっている。   As shown in FIG. 4, the above-described seismic isolation support device 1 is adapted to support the vertical load W in the stacking direction V toward the lower mounting plate 11 while being applied to the upper mounting plate 10 by the laminated body 7 and the lead plug 17. The upper mounting plate 10 is inserted into the through hole 46 via the anchor bolt 71. The lower mounting plate 11 is inserted through the through hole 56 via the anchor bolt 72. The vertical load W of the stacking direction V applied to the upper mounting plate 10 is supported by the laminate 7 and the lead plug 17 by receiving the vertical load W of the structure 65 fixed to the structure 73 and arranged between the structures 65 and 73 respectively. At the same time, during an earthquake, as shown in FIG. 4, while the transmission to the upper attachment plate 10 of the vibration of the lower attachment plate 11 in the horizontal direction H is suppressed by the shear elastic deformation of the laminate 7 in the horizontal direction H, the lower attachment plate 11 Against the horizontal direction H of the upper mounting plate 10 And it is adapted to damp vibrations by plastic deformation in the horizontal direction H of the lead plug 17.

免震支持装置1を製造する場合には、まず、弾性層2となる円環状の厚さt1で且つ内周面16の径d3と同一の径を有した凹面に変形する前の内周面15をもった複数枚のゴム板と最上端及び最下端の剛性層3間の剛性層3となる円環状の厚さt3及び径d3の内周面16を有した複数枚の鋼板とを交互に積層して、その下面及び上面に最上端及び最下端の剛性層3となる円環状の厚さt2及び径d1=d2(=d3≧t2)の内周面16を有した鋼板を配置し、型内における加圧下での加硫接着等によりこれらを相互に固定してなる積層体7を形成し、その後、ボルト19を介して下取付板11を最下端の剛性層3に固定し、次に、鉛プラグ17を中空部14に形成すべく、中空部14に鉛を圧入する。鉛の圧入は、鉛プラグ17が積層体7により中空部14において隙間なしに拘束されるように、鉛を中空部14に油圧ラム等により押し込んで行い、鉛の圧入後、ボルト18を介して上取付板10を最上端の剛性層3に固定する。なお、型内における加圧下での加硫接着による積層体7の形成において、弾性層2及び剛性層3の外周面4及び5を覆って被覆層6となるゴムシートを外周面4及び5に捲き付け、該加硫接着と同時に、弾性層2及び剛性層3の外周面4及び5に加硫接着された被覆層6を形成してもよい。また斯かる形成において、弾性層2となるゴム板の内周側の一部が流動して、剛性層3の内周面16、好ましくは最上端及び最下端の剛性層3間の剛性層3の内周面16を覆って、被覆層6の厚さよりも充分に薄い被覆層が形成されてもよい。   When manufacturing the seismic isolation support device 1, first, the inner peripheral surface before being deformed into a concave surface having an annular thickness t <b> 1 to be the elastic layer 2 and the same diameter as the diameter d <b> 3 of the inner peripheral surface 16. A plurality of rubber plates having a number 15 and a plurality of steel plates having an annular surface thickness t3 and an inner circumferential surface 16 of a diameter d3 which becomes the rigid layer 3 between the uppermost and lowermost rigid layers 3 are alternately arranged. Place a steel plate with an annular surface thickness t2 and an inner circumferential surface 16 of diameter d1 = d2 (= d3 ≧ t2) that will become the top and bottom rigid layers 3 on the bottom and top The laminate 7 is formed by fixing them together by vulcanization adhesion under pressure in the mold, and then the lower mounting plate 11 is fixed to the lowermost rigid layer 3 via bolts 19. Next, lead is pressed into the hollow portion 14 in order to form the lead plug 17 in the hollow portion 14. The lead is pressed into the hollow portion 14 with a hydraulic ram or the like so that the lead plug 17 is restrained without gaps in the hollow portion 14 by the laminate 7, and after the lead is pressed in, the bolt 18 is used. The upper mounting plate 10 is fixed to the uppermost rigid layer 3. In the formation of the laminate 7 by vulcanization bonding under pressure in the mold, the outer peripheral surfaces 4 and 5 are covered with the outer peripheral surfaces 4 and 5 to cover the outer peripheral surfaces 4 and 5 of the elastic layer 2 and the rigid layer 3. The coating layer 6 may be formed by vulcanization bonding on the outer peripheral surfaces 4 and 5 of the elastic layer 2 and the rigid layer 3 simultaneously with the brazing and the vulcanization bonding. Further, in such formation, a part of the inner peripheral side of the rubber plate to be the elastic layer 2 flows to form the rigid layer 3 between the inner peripheral surface 16 of the rigid layer 3, preferably the uppermost and lowermost rigid layers 3. The covering layer may be formed to be sufficiently thinner than the thickness of the covering layer 6 so as to cover the inner circumferential surface 16 of the

なお、鉛の中空部14への圧入量によっては、無荷重(W=0)で弾性層2の内周面15が必ずしも凹面に変形しなくてもよい。   Note that the inner circumferential surface 15 of the elastic layer 2 does not necessarily have to be concavely deformed with no load (W = 0) depending on the amount of press-fitting of lead into the hollow portion 14.

こうして製造された免震支持装置1では、比h1(=t2)/d1及びh2(=t2)/d2の夫々が、0.05以上であるために、免震における中間部61の水平方向Hの剪断変形で、積層方向Vにおける鉛プラグ17の上端部27及び下端部31に対する保持性を維持できる一方、比h1(=t2)/d1及びh2(=t2)/d2の夫々が、0.7以下であるために、中空部14の積層方向Vの一端及び他端から当該一端及び他端間の中空部14への鉛プラグ17の塑性流動、換言すれば、中間部61から上端部27及び下端部31への並びに上端部27及び下端部31から中間部61への塑性流動を容易にさせ、鉛プラグ17の上端部27及び下端部31と鉛プラグ17の中間部61との境界領域での鉛プラグ17の塑性流動を生じさせ、境界領域での鉛プラグ17の固定化を回避できて、境界領域での鉛プラグ17の疲労を低減でき、而して、地震エネルギ減衰能の低下を回避できる。   In the seismic isolation support device 1 manufactured in this way, since the ratios h1 (= t2) / d1 and h2 (= t2) / d2 are each 0.05 or more, the horizontal direction H of the intermediate portion 61 in the seismic isolation In the stacking direction V, the retainability of the lead plug 17 with respect to the upper end portion 27 and the lower end portion 31 can be maintained, while each of the ratios h1 (= t2) / d1 and h2 (= t2) / d2 is 0. 7 or less, the plastic flow of the lead plug 17 from one end and the other end in the stacking direction V of the hollow portion 14 to the hollow portion 14 between the one end and the other end, in other words, from the intermediate portion 61 to the upper end portion 27. And the plastic flow from the upper end 27 and the lower end 31 to the middle part 61 to the lower end 31 and the boundary region between the upper end 27 and the lower end 31 of the lead plug 17 and the middle part 61 of the lead plug 17 Flow of the lead plug 17 in the So, it can avoid the immobilization of lead plugs 17 in the boundary area can reduce the fatigue of the lead plug 17 in the boundary area, Thus, it is possible to avoid the deterioration of the seismic energy damping capacity.

地震エネルギ減衰能の低下を回避できることを確認するために、免震支持装置1に相当する以下の3個の免震支持装置を製造した。
3個の免震支持装置に対しての共通事項
弾性層2:厚さt1=5mm、外周面4=120mm角、外周面35=130mm角、変形前の円筒状の内周面15の径(内径)=30mmφであって、剪断弾性率=1.0(N/mm)の天然ゴムからなる環状のゴム板を5枚使用。
最上端及び最下端の剛性層3:夫々厚さt2=22mm、外周面5=120mm角、内周面16の径d1及びd2=30mmφの鋼板を使用。
最上端及び最下端の剛性層3間の剛性層3:厚さt3=3.2mm、外周面5=120mm角、内周面16の径(内径)=d1=d2=30mmφの鋼板を4枚使用。
被覆層6の厚さ=5mm
鉛プラグ17:鉛直荷重Wを積層体7に付加しない状態での中空部14の容積の1倍の鉛を中空部14に充填した。
In order to confirm that the decrease in seismic energy attenuation capability can be avoided, the following three seismic isolation support devices corresponding to the seismic isolation support device 1 were manufactured.
Common matter for three seismic isolation support devices Elastic layer 2: Thickness t1 = 5 mm, outer peripheral surface 4 = 120 mm square, outer peripheral surface 35 = 130 mm square, diameter of cylindrical inner peripheral surface 15 before deformation ( Inner diameter) = 30 mmφ, and using five annular rubber plates made of natural rubber with shear modulus = 1.0 (N / mm 2 ).
Uppermost and lowermost rigid layers 3: Steel plates of thickness t2 = 22 mm, outer peripheral surface 5 = 120 mm square, diameters d1 and d2 = 30 mmφ of inner peripheral surface 16 are used.
Rigid layer 3 between the uppermost and lowermost rigid layers 3: thickness t3 = 3.2 mm, outer peripheral surface 5 = 120 mm square, diameter of inner peripheral surface 16 (inner diameter) = d1 = d2 = 30 mmφ four steel plates use.
Covering layer 6 thickness = 5 mm
Lead plug 17: The hollow portion 14 was filled with lead that is one time the volume of the hollow portion 14 in a state in which the vertical load W is not applied to the laminate 7.

以上を共通事項として、3個の免震支持装置において、
第一の免震支持装置では、
h1/d1=h2/d2=0.3
第二の免震支持装置では、
h1/d1=h2/d2=0.7
第三の免震支持装置では、
h1/d1=h2/d2=0.1
とした。
With the above in common, with three seismic isolation support devices,
In the first seismic isolation support device,
h1 / d1 = h2 / d2 = 0.3
In the second seismic isolation support device,
h1 / d1 = h2 / d2 = 0.7
In the third seismic isolation support device,
h1 / d1 = h2 / d2 = 0.1
And

なお、斯かる比h1/d1及び比h2/d2を免震支持装置で得るために、貫通孔28及び32において、上端面41と下面12との間及び下端面51と上面13との間の夫々に所定の厚みを有するスペーサを介在させて、h1及びh2を変化させた。   In order to obtain such a ratio h1 / d1 and a ratio h2 / d2 in the seismic isolation supporting device, in the through holes 28 and 32, between the upper end surface 41 and the lower surface 12 and between the lower end surface 51 and the upper surface 13 H1 and h2 were changed with a spacer having a predetermined thickness interposed therebetween.

第一、第二及び第三の免震支持装置において、上取付板10に鉛直荷重W=82kNを加えた状態で、最大±25mmの水平変位をもって上取付板10に対して下取付板11に水平方向Hに周期90秒で最大速度1.7mm/sをもった正弦波の繰り返し振動を500回加えて、図5に示す水平変位と水平力との履歴曲線81での切片荷重Qdについて、3回目の繰り返し振動に際してのその値Qdと450回目の繰り返し振動に際してのその値Qd450との比(切片荷重比)=Qd450/Qdを求めた。図6から明らかなように、第一の免震支持装置では、Qd450/Qd=0.78、第二の免震支持装置では、Qd450/Qd=0.91、そして、第三の免震支持装置では、Qd450/Qd=0.73であった。 In the first, second and third seismic isolation support devices, the vertical mounting load 10 is applied to the lower mounting plate 11 with respect to the upper mounting plate 10 with a maximum horizontal displacement of ± 25 mm in a state where a vertical load W = 82 kN is applied to the upper mounting plate 10. With respect to the intercept load Qd in the hysteresis curve 81 of the horizontal displacement and the horizontal force shown in FIG. 5 by applying 500 repetitions of a sine wave having a maximum speed of 1.7 mm / s in the horizontal direction H at a period of 90 seconds, The ratio (intercept load ratio) = Qd 450 / Qd 3 between the value Qd 3 at the third repetitive vibration and the value Qd 450 at the 450th repetitive vibration was determined. As is clear from FIG. 6, Qd 450 / Qd 3 = 0.78 in the first seismic isolation support device, Qd 450 / Qd 3 = 0.91 in the second seismic isolation support device, and third In the seismic isolation support device of Qd 450 / Qd 3 = 0.73.

図6に示す比h1/d1及び比h2/d2と、3回目の繰り返し振動に際しての切片荷重Qdに対する450回目の繰り返し振動に際しての切片荷重値Qd450の比(切片荷重比)=Qd450/Qdとの関係の試験結果から、比h1/d1及び比h2/d2が0.4近傍で最大の比Qd450/Qd=0.92となり、比h1/d1及び比h2/d2が0.05未満であるか又は0.7を超えると、比Qd450/Qdが略0.7以下となり、従って、履歴曲線81で囲まれる面積で表される地震エネルギ減衰能の低下は、比h1/d1及び比h2/d2が0.05から0.7の範囲内であると、それ程生じないで、比h1/d1及び比h2/d2が0.05未満であるか又は0.7を超えると、著しくなり、而して、比h1/d1及び比h2/d2が0.05から0.7の範囲内であると、地震エネルギ減衰能の低下を好ましく回避できる。 The ratio h1 / d1 and the ratio h2 / d2 shown in FIG. 6, the ratio of the intercept load value Qd 450 of when 450-th repetition oscillation of relative sections load Qd 3 of when repeated vibrations the third (intercept load ratio) = Qd 450 / from the test results of the relationship between qd 3, maximum specific Qd 450 / Qd 3 = 0.92 becomes the ratio h1 / d1 and the ratio h2 / d2 is 0.4 vicinity, the ratio h1 / d1 and the ratio h2 / d2 is 0 If the ratio is less than .05 or exceeds 0.7, the ratio Qd 450 / Qd 3 becomes approximately 0.7 or less. Therefore, the reduction in the seismic energy attenuation capability represented by the area surrounded by the hysteresis curve 81 is If the ratio h1 / d1 and the ratio h2 / d2 are in the range of 0.05 to 0.7, the ratio h1 / d1 and the ratio h2 / d2 are less than 0.05 or less than 0.7. When it exceeds, it becomes remarkable, and, When h1 / d1 and the ratio h2 / d2 is in the range of 0.05 to 0.7, the reduction of seismic energy damping capability can preferably avoided.

上記の例の免震支持装置1では、長さh1及び長さh2と厚さt2とは、互いに等しいが、長さh1及び長さh2のうちの少なくとも一方は、厚さt2よりも小さく(短く)てもよく、この場合には、貫通孔28及び32のうちの厚さt2よりも小さくなる長さh1及び長さh2のうちの少なくとも一方に対応する貫通孔に蓋等のスペーサを嵌装して、厚さt2よりも小さい(短い)長さ(h1、h2)を得るようにするとよく、また、上記の例の免震支持装置1では、上端部27を最上端の剛性層3で、下端部31を最下端の剛性層3で夫々水平方向Hに保持したが、これに代えて、最上端の剛性層3及び最下端の剛性層3を省いて、上取付板10及び下取付板11の夫々に蓋等で閉鎖されていると共に水平方向Hにおいて径d1及びd2を、そして、積層方向Vにおいて長さh1及びh2をもった貫通孔を設け、当該貫通孔の夫々にも鉛を圧入、充填して当該貫通孔の夫々に上端部27及び下端部31の夫々を形成し、鉛プラグ17を、上取付板10の内周面で規定された中空部の積層方向Vの一端である径d1及び長さh1の当該貫通孔に配された上端部27と、下取付板11の内周面で規定された中空部の積層方向の他端である径d2及び長さh2の当該貫通孔に配された下端部31と、積層方向Vにおけるこれら上端部27及び下端部31間の中空部に配された中間部61とを具備して構成してもよく、この場合、積層方向Vにおいて最上端及び最下端に配された弾性層2の夫々を上取付板10及び下取付板11の夫々に加硫接着して当該上取付板10及び下取付板11の夫々に固定するとよく、斯かる免震支持装置1でも、比h1/d1及び比h2/d2の夫々が、0.05から0.7の範囲内であると、上記の例の免震支持装置1と同等の効果を生じ得る。   In the seismic isolation support device 1 of the above example, the length h1 and the length h2 and the thickness t2 are equal to each other, but at least one of the length h1 and the length h2 is smaller than the thickness t2 ( In this case, a spacer such as a lid is fitted into the through hole corresponding to at least one of the length h1 and the length h2 smaller than the thickness t2 of the through holes 28 and 32. It is preferable to obtain a length (h1, h2) smaller (shorter) than the thickness t2, and in the seismic isolation support device 1 of the above example, the upper end 27 is the uppermost rigid layer 3. The lower end portion 31 is held in the horizontal direction H by the lowermost rigid layer 3 respectively, but instead the upper end rigid layer 3 and the lowermost rigid layer 3 are omitted, and the upper mounting plate 10 and the lower end are removed. Each of the mounting plates 11 is closed with a lid or the like and has diameters d1 and d2 in the horizontal direction H. And, through holes having lengths h1 and h2 in the stacking direction V are provided, lead is also pressed into and filled in each of the through holes, and the upper end 27 and the lower end 31 are respectively inserted in the respective through holes. The lead plug 17 is formed at the lower end of the hollow portion defined by the inner circumferential surface of the upper mounting plate 10, the upper end portion 27 disposed in the through hole of diameter d1 and length h1 being one end in the stacking direction V; A lower end portion 31 disposed in the through hole having a diameter d2 and a length h2 which is the other end of the hollow portion defined in the inner circumferential surface of the mounting plate 11 in the laminating direction, and the upper end 27 and the lower end in the laminating direction V The intermediate portion 61 disposed in the hollow portion between the portions 31 may be configured, and in this case, each of the elastic layers 2 disposed at the uppermost end and the lowermost end in the stacking direction V may be used as the upper mounting plate 10 And the lower mounting plate 11 are vulcanized and bonded to each of the upper mounting plate 10 and the lower mounting plate 11. Each of the seismic isolation support devices 1 may be fixed, and if the ratio h1 / d1 and the ratio h2 / d2 are in the range of 0.05 to 0.7, the seismic isolation support device of the above example It can produce the same effect as 1.

1 免震支持装置
2 弾性層
3 剛性層
4、5 外周面
6 被覆層
7 積層体
8 上端面
9 下端面
10 上取付板
11 下取付板
12 下面
13 上面
14 中空部
15、16 内周面
17 鉛プラグ
DESCRIPTION OF SYMBOLS 1 Seismic isolation support apparatus 2 elastic layer 3 rigid layer 4, 5 outer peripheral surface 6 coating layer 7 laminated body 8 upper end surface 9 lower end surface 10 upper attachment plate 11 lower attachment plate 12 lower surface 13 upper surface 14 hollow part 15, 16 inner peripheral surface 17 Lead plug

Claims (11)

交互に積層された複数の弾性層及び剛性層を有する積層体と、この積層体の積層方向の一端面及び他端面に取付けられた一端取付板及び他端取付板と、弾性層及び剛性層並びに一端取付板及び他端取付板で取り囲まれていると共に積層方向に伸びた中空部に配された振動減衰体とを具備しており、且つ、一端取付板に加わると共に他端取付板に向かう積層方向の荷重を積層体及び振動減衰体で支持するようになっている免震支持装置であって、振動減衰体は、積層体の積層方向の一端の剛性層又は一端取付板の内周面で規定された中空部の積層方向の一端に配された一端部と、積層体の積層方向の他端の剛性層又は他端取付板の内周面で規定された中空部の積層方向の他端に配された他端部と、積層方向におけるこれら一端部及び他端部間の中空部に配された中間部とを具備しており、中間部の積層方向の一端からの振動減衰体の一端部の積層方向の長さh1及び中間部の積層方向の他端からの振動減衰体の他端部の積層方向の長さh2と積層方向に対して直交する方向であって免震における中間部の剪断変形方向の当該一端部及び他端部の径d1及びd2との比h1/d1及び比h2/d2の夫々は、0.05から0.7の範囲内である免震支持装置。   A laminate having a plurality of alternately laminated elastic layers and rigid layers, one end mounting plate and the other end mounting plate attached to one end surface and the other end surface of the laminate in the stacking direction, an elastic layer and a rigid layer, and A vibration damping body that is surrounded by the one end mounting plate and the other end mounting plate and that is disposed in a hollow portion extending in the stacking direction, and is laminated to the one end mounting plate and toward the other end mounting plate The seismic isolation support device is configured to support the load in the direction by the laminated body and the vibration damping body, and the vibration damping body is a rigid layer at one end in the stacking direction of the laminated body or an inner peripheral surface of the one end mounting plate. The other end in the stacking direction of the hollow portion defined by one end disposed at one end in the stacking direction of the defined hollow portion and the rigid layer at the other end in the stacking direction of the laminate or the inner peripheral surface of the other end mounting plate Between the other end disposed on the side and the one end and the other end in the stacking direction And an intermediate portion disposed in the hollow portion, the length h1 of the end portion of the vibration damping body from the one end in the laminating direction of the intermediate portion and the vibration damping from the other end in the laminating direction of the intermediate portion The length h2 of the other end of the body in the stacking direction and the ratio h1 of the diameters d1 and d2 of the one end and the other end of the shear deformation direction of the intermediate part in the direction perpendicular to the stacking direction The base isolation support apparatus in which each of / d1 and ratio h2 / d2 is in the range of 0.05 to 0.7. 振動減衰体は、弾性層及び剛性層並びに一端取付板及び他端取付板に対して隙間なしに中空部に配されている請求項1に記載の免震支持装置。   The seismic isolation supporting device according to claim 1, wherein the vibration damping body is disposed in the hollow portion without a gap with respect to the elastic layer and the rigid layer and the one end attachment plate and the other end attachment plate. 他端取付板に対しての一端取付板の積層方向に直交する方向の振動を振動減衰体の塑性変形で減衰させると共に他端取付板の積層方向に直交する方向の振動の一端取付板への伝達を積層体の剪断弾性変形で抑制するようになっている請求項1又は2に記載の免震支持装置。   The vibration in the direction orthogonal to the stacking direction of the one end mounting plate with respect to the other end mounting plate is attenuated by the plastic deformation of the vibration damping body and the vibration in the direction orthogonal to the stacking direction of the other end mounting plate is transmitted to the one end mounting plate. The seismic isolation support device according to claim 1 or 2, wherein transmission is suppressed by shear elastic deformation of the laminate. 比h1/d1及び比h2/d2の夫々は、0.5以下である請求項1から3のいずれか一項に記載の免震支持装置。   The seismic isolation support device according to any one of claims 1 to 3, wherein each of the ratio h1 / d1 and the ratio h2 / d2 is 0.5 or less. 比h1/d1及び比h2/d2の夫々は、0.25以上である請求項1から4のいずれか一項に記載の免震支持装置。   The seismic isolation support device according to any one of claims 1 to 4, wherein each of the ratio h1 / d1 and the ratio h2 / d2 is 0.25 or more. 振動減衰体は、塑性変形で振動エネルギを吸収する減衰材料からなる請求項1から5のいずれか一項に記載の免震支持装置。   The seismic isolation support device according to any one of claims 1 to 5, wherein the vibration damping body is made of a damping material that absorbs vibration energy by plastic deformation. 減衰材料は、鉛、錫又は非鉛系低融点合金からなる請求項6に記載の免震支持装置。   The seismic isolation supporting device according to claim 6, wherein the damping material is made of lead, tin or a lead-free low melting point alloy. 中空部を規定する積層体の内周面は、振動減衰体が弾性層に食い込んで、当該弾性層の位置で凹面になっている請求項1から7のいずれか一項に記載の免震支持装置。   The vibration isolation support according to any one of claims 1 to 7, wherein the vibration damping body bites into the elastic layer and the inner peripheral surface of the laminate defining the hollow portion is concave at the position of the elastic layer. apparatus. 中空部を規定する積層体の内周面は、振動減衰体が弾性層に食い込んで、剛性層の位置で凸面になっている請求項1から8のいずれか一項に記載の免震支持装置。   The vibration isolation support device according to any one of claims 1 to 8, wherein the vibration damping body bites into the elastic layer and the inner peripheral surface of the laminate defining the hollow portion is convex at the position of the rigid layer. . 積層方向の一端の剛性層は、その内周面で規定されていると共に振動減衰体の一端部が配された貫通孔を具備しており、この貫通孔は、振動減衰体の一端部の積層方向の長さh1に等しい長さと、当該一端部での積層方向に直交する方向であって免震における中間部の剪断変形方向の径d1に等しい径とを有している請求項1から9のいずれか一項に記載の免震支持装置。   The rigid layer at one end in the laminating direction has a through hole that is defined by the inner peripheral surface and is provided with one end portion of the vibration damping body, and this through hole is a lamination of one end portion of the vibration damping body. The length is equal to the length h1 of the direction, and the diameter is equal to the diameter d1 of the shear deformation direction of the intermediate portion in the direction perpendicular to the stacking direction at the one end and in the seismic isolation. The base isolation support apparatus of any one of the above. 積層方向の他端の剛性層は、その内周面で規定されていると共に振動減衰体の他端部が配された貫通孔を具備しており、この貫通孔は、振動減衰体の他端部の積層方向の長さh2に等しい長さと、当該他端部での積層方向に直交する方向であって免震における中間部の剪断変形方向の径d2に等しい径とを有している請求項10に記載の免震支持装置。   The rigid layer at the other end in the stacking direction is provided with a through hole which is defined by the inner circumferential surface and in which the other end of the vibration damping body is disposed, and this through hole is the other end of the vibration damping body It has a length equal to the length h2 of the stacking direction of the part and a diameter equal to the diameter d2 of the intermediate part in the shear deformation direction in the direction perpendicular to the stacking direction at the other end. The seismic isolation support apparatus of claim 10.
JP2018010102A 2018-01-24 2018-01-24 Base isolation support device Pending JP2019127998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010102A JP2019127998A (en) 2018-01-24 2018-01-24 Base isolation support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010102A JP2019127998A (en) 2018-01-24 2018-01-24 Base isolation support device

Publications (1)

Publication Number Publication Date
JP2019127998A true JP2019127998A (en) 2019-08-01

Family

ID=67472071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010102A Pending JP2019127998A (en) 2018-01-24 2018-01-24 Base isolation support device

Country Status (1)

Country Link
JP (1) JP2019127998A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2006308063A (en) * 2005-03-30 2006-11-09 Oiles Ind Co Ltd Base isolation bearing
JP2017137901A (en) * 2016-02-01 2017-08-10 オイレス工業株式会社 Seismic isolator
JP2017194098A (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2006308063A (en) * 2005-03-30 2006-11-09 Oiles Ind Co Ltd Base isolation bearing
JP2017137901A (en) * 2016-02-01 2017-08-10 オイレス工業株式会社 Seismic isolator
JP2017194098A (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator

Similar Documents

Publication Publication Date Title
CN108474441B (en) Shock absorbing device
JP3205393U (en) Seismic isolation device
WO2017183542A1 (en) Seismic isolator apparatus
WO2018194109A1 (en) Seismic isolation support device
JP6432271B2 (en) Seismic isolation support device
JP6579026B2 (en) Seismic isolation bearings for bridges and bridges using them
JP2019127998A (en) Base isolation support device
JP2019127994A (en) Aseismic base isolation support device
WO2018016402A1 (en) Earthquake-proof support device
JP2019127999A (en) Base isolation support device
JP6853725B2 (en) Seismic isolation support device
JP2019127996A (en) Base isolation support device
JP2000130506A (en) Three-dimensional base isolation device
JP2017187055A (en) Seismic isolator with concentric circle laminated attenuation materials
JP2010090615A (en) Bearing apparatus
JP6354303B2 (en) Laminated rubber bearing device
JP2022170851A (en) Vibration control material
JP2013019530A (en) Damper device
JP2006242212A (en) Layered base isolation device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208