JP2019124703A - Echo-sounding device and multi-beam echo-sounding device - Google Patents

Echo-sounding device and multi-beam echo-sounding device Download PDF

Info

Publication number
JP2019124703A
JP2019124703A JP2019072372A JP2019072372A JP2019124703A JP 2019124703 A JP2019124703 A JP 2019124703A JP 2019072372 A JP2019072372 A JP 2019072372A JP 2019072372 A JP2019072372 A JP 2019072372A JP 2019124703 A JP2019124703 A JP 2019124703A
Authority
JP
Japan
Prior art keywords
echo
signal
transmission signal
transmission
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019072372A
Other languages
Japanese (ja)
Other versions
JP6757083B2 (en
Inventor
笹倉 豊喜
Toyoki Sasakura
豊喜 笹倉
行雄 松尾
Yukio Matsuo
行雄 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquarfusion Co Ltd
Aquafusion Inc
Original Assignee
Aquarfusion Co Ltd
Aquafusion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquarfusion Co Ltd, Aquafusion Inc filed Critical Aquarfusion Co Ltd
Priority to JP2019072372A priority Critical patent/JP6757083B2/en
Publication of JP2019124703A publication Critical patent/JP2019124703A/en
Application granted granted Critical
Publication of JP6757083B2 publication Critical patent/JP6757083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To correct fluctuations, such as those caused by waves, with respect to a marine vessel, without using an acceleration sensor.SOLUTION: Provided is an echo-sounding device which is installed on a mobile body, such as a vessel, to detect a measuring object in the water, and whose depth changes with fluctuations in a vertical direction. The echo-sounding device includes: a transmission signal forming part having a pseudo noise sequence generating circuit for forming a pseudo noise sequence signal, and a modulation signal for forming a transmission signal by modulating a carrier wave signal using the pseudo noise sequence signal of a transmission timing; a transmitting part which periodically transmits the transmission signal, as ultrasound, toward a measuring object located below the mobile body; a receiving part which receives an echo of the ultrasound transmitted from the transmitting part; a correlator which discriminates the echo corresponding to the transmission signal by applying correlation processing to the echo using the pseudo noise sequence signal, and acquires depth raw data from a time difference between the transmission signal and the echo; and a fluctuation correcting part which suppresses a fluctuation constituent by subjecting the depth raw data to fluctuation correction.SELECTED DRAWING: Figure 33

Description

本発明は、水中を伝搬する超音波を使用して深度を測定する音響測深装置及びマルチビーム音響測深装置に関する。   The present invention relates to an echo sounder and multi-beam echo sounder which measure depth using ultrasonic waves propagating in water.

海洋での音響測深技術は古くから行われており、図1に示すように超音波振動子から超音波パルスを発射し、その音波が対象(海底)から反射してくるエコーをとらえて、水中の音波の伝搬速度(約1500m/s)を用いてその深度を計測するものである。この原理を用いた音響測深装置は50年以上も前から製品化されており、今日でもこの原理を用いて海底の深度測量が行われている。このエコーロケーションと呼ばれる技術はこれまで変わることなく、言い換えれば発展することなく使用され続けてきた。   Acoustic sounding technology in the ocean has been used for a long time, and as shown in Fig. 1, ultrasonic pulses are emitted from an ultrasonic transducer, and the echo of the acoustic wave reflected from the target (seafloor) is captured, The depth of the sound wave is measured using the propagation velocity of the sound wave (approximately 1500 m / s). Sound sounding devices using this principle have been commercialized for more than 50 years, and even today, the seafloor depth measurement is performed using this principle. The technique called echolocation has been used without change, in other words without development.

原理は、超音波パルス(例えば1msパルス幅)を発射し、500mの海底だと往復距離1000mを音波の水中速度Vuを1500m/sとすれば、1000/Vu=1000/1500=0.667秒かかって帰ってくるので、そのエコーを受信した後、再び超音波パルスを発射し、同時に船が進んだ分異なった場所の海底深度を計測するわけである。このように船の航行に伴って順次海底の深度を計測し、それを記録紙や画像として液晶画面に表示するのが音響測深装置と呼ばれるものである(例えば特許文献1参照)。   The principle is that an ultrasonic pulse (for example, 1 ms pulse width) is emitted, and if it is a seabed of 500 m and a reciprocating distance of 1000 m is 1500 m / s of sound velocity underwater, 1000 / Vu = 1000/1500 = 0.667 seconds After receiving the echo, it emits an ultrasonic pulse again, and at the same time measures the seabed depth at different locations as the ship advances. In this way, the depth of the seabed is measured sequentially as the ship travels, and it is displayed on a liquid crystal screen as a recording paper or an image, which is called a sound sounding device (see, for example, Patent Document 1).

これまでの音響測深装置は、超音波の水中での音速を考慮し、受信エコーより前に次の送信をしないように発信間隔をコントロールして、測深を行ってきた。図2に示すように、1つのビームだけを備えた測深装置をシングルビーム測深装置といい、近年登場した扇型に複数のビームが拡がるものをマルチビーム測深装置という(例えば特許文献2参照)。マルチビーム測深装置は一度に広い範囲の深度を比較的高密度で計測できる。   So far, sound sounding devices have performed sounding by controlling the transmission interval so that the next transmission is not performed before the reception echo in consideration of the sound velocity of ultrasonic waves in water. As shown in FIG. 2, a sounding apparatus having only one beam is called a single-beam sounding apparatus, and one having a plurality of beams spreading in a fan-shaped form that has appeared in recent years is called a multi-beam sounding apparatus (see, for example, Patent Document 2). Multi-beam sounding instruments can measure a wide range of depths at a relatively high density at one time.

深度をD、送信パルスの送信間隔をTとし、(2D/1500)<Tの場合では、図3Aに示すように、送信パルスと受信エコーの時間差が(2D/1500)に対応したものとなり、この時間差から深度を測定できる。しかしながら、(2D/1500)≧Tの場合では、図3Bに示すように、次の送信パルスの送出後に受信エコーが到来するので、受信エコーがどちらの送信パルスに対応したものかが分からなくなり、時間差FDに基づいて誤った深度を計測することになる。したがって、従来では(2D/1500)<Tの条件が必要であった。   Assuming that the depth is D and the transmission interval of transmission pulses is T, and (2D / 1500) <T, as shown in FIG. 3A, the time difference between the transmission pulse and the reception echo corresponds to (2D / 1500), The depth can be measured from this time difference. However, in the case of (2D / 1500) ≧ T, as shown in FIG. 3B, since the reception echo comes after the transmission of the next transmission pulse, it is impossible to know which transmission pulse the reception echo corresponds to. The wrong depth will be measured based on the time difference FD. Therefore, conventionally, the condition of (2D / 1500) <T was required.

送信周期を短くできないことは、測深の水平方向分解能を小さくできないことになる。図4を参照して船の進行方向(水平方向)の計測の分解能について説明する。船速V(m/s)で深度D(m)の測深を行う場合の水平方向の分解能ΔH(m)は次式で表される。
ΔH=VT>2DV/1500
The inability to shorten the transmission period means that the horizontal resolution of sounding can not be reduced. The resolution of measurement in the traveling direction (horizontal direction) of the ship will be described with reference to FIG. The horizontal resolution ΔH (m) in the case of measuring the depth D (m) at the ship speed V (m / s) is expressed by the following equation.
ΔH = VT> 2DV / 1500

例えば船が10kt(時速10×1.852km)で航行し、送信の周期が1秒の場合、約5m毎にしか測深データは得られない。深度1,000mの海底を計測するには、送信周期Tを(1,000×2)/1,500=1.33秒以上にしないと計測できないが、船が10ktで航行すれば1.33秒後には6.7m進んでいるので、計測の分解能ΔHは6.67mということになる。マルチビーム測深装置は一度に広い範囲の深度を計測できるが、船の進行方向の計測の分解能はシングルビームと同様である。   For example, when the ship travels at 10 kt (10 x 1.852 km / hr) and the transmission period is 1 second, the sounding data can be obtained only about every 5 m. In order to measure the seabed at a depth of 1,000 m, it can not be measured unless the transmission cycle T is (1,000 × 2) /1,500=1.33 seconds, but 1.33 if the ship sails at 10 kt Since it advances 6.7 m after a second, the resolution ΔH of the measurement is 6.67 m. Multi-beam sounding devices can measure a wide range of depths at one time, but the resolution of the measurement of the ship's heading is similar to that of a single beam.

従来の音響測深装置では、計測の分解能を高くするためには船の速度を低下させる以外に方法がなかった。したがって、従来の音響測深装置は、測深の分解能を高くする場合に測深に要する時間が長くなる問題があった。   In conventional sound sounding devices, there was no other way but to reduce the speed of the ship to increase the resolution of the measurement. Therefore, the conventional sounding apparatus has a problem that the time required for sounding becomes long when the resolution of sounding is increased.

さらに、図5に示すように、海底を音波によって測量する場合、基準海面に対して波の動揺を受けて計測する深度は真の海底よりも深くなったり浅くなったりする。計測によって得られる海底深度は図6に示すようになり、真の海底までの距離を測定することができない。この問題を解決するために、動揺の成分を検出し、動揺補正することが必要とされる。   Furthermore, as shown in FIG. 5, when the bottom of the sea is surveyed by sound waves, the depth of measurement upon receiving wave motion relative to the reference sea level may be deeper or shallower than the true bottom. The seabed depth obtained by the measurement is as shown in FIG. 6, and the distance to the true seabed can not be measured. In order to solve this problem, it is necessary to detect the motion component and correct the motion.

上述したように、従来の音響測深機では送信周期を短くすることができず、送信周期が波による動揺の周期に比べて長いか、又はほぼ等しいので、波の影響による動揺を検出して動揺補正することが困難であった。サンプリング定理から、動揺の周波数成分の最大値の2倍以上の周波数でサンプリングしなければ動揺成分を検出することは不可能である。したがって、動揺の補正をする場合、従来は特許文献3に示されるように、3軸の回転角及び変位量を検出し、検出結果によって動揺補正行うのが通常であった。   As described above, in the conventional echo sounder, the transmission period can not be shortened, and the transmission period is longer or almost equal to the oscillation period of the wave, so the oscillation due to the influence of the wave is detected and the oscillation is generated. It was difficult to correct. According to the sampling theorem, it is impossible to detect the oscillation component unless sampling is performed at a frequency twice or more the maximum value of the oscillation frequency component. Therefore, in the case of correcting the movement, it has been the conventional practice to detect the rotation angles and displacement amounts of the three axes and perform the movement correction according to the detection result as disclosed in Patent Document 3.

特開2001−083247号公報Japanese Patent Application Publication No. 2001-083247 特開2006−220436号公報Unexamined-Japanese-Patent No. 2006-220436 特開2010−025739号公報JP, 2010-025739, A

動揺の変位量の検出のためには、加速度センサが使用される。加速度を1回積分することによって速度を求め、さらに、速度を積分することによって変位量が求められる。このような加速度センサを使用する動揺検出は、誤差が発生し、誤差の補正が必要となる問題があった。さらに、加速度センサを必要とし、コストの増加を招く問題があった。   An acceleration sensor is used to detect the amount of displacement of the movement. The velocity is determined by integrating the acceleration once, and the amount of displacement is determined by integrating the velocity. The motion detection using such an acceleration sensor has a problem that an error occurs and it is necessary to correct the error. Furthermore, there is a problem that an acceleration sensor is required, resulting in an increase in cost.

したがって、本発明の目的は、加速度センサを使用しないで受信信号を使用して動揺補正を行うことができる音響測深装置及びマルチビーム音響測深装置を提供することにある。   SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an echo sounding system and multi-beam echo sounding system capable of performing motion correction using received signals without using an acceleration sensor.

本発明は、船などの移動体に設置され、水中の測定対象を探知し、上下方向の動揺によって深度が変化する音響測深装置において、
疑似雑音系列信号を生成する疑似雑音系列発生回路及び送信タイミングの疑似雑音系列信号によって搬送波信号を変調して送信信号を形成する変調回路を有する送信信号形成部と、
送信信号を周期的に超音波として移動体の下方に位置する測定対象に向けて送出する送信部と、
送信部から送出された超音波のエコーを受信する受信部と、
エコーを疑似雑音系列信号によって相関処理を行うことによって、送信信号と対応するエコーを判別し、送信信号及びエコーの時間差に基づいて深度生データを取得する相関器と、
深度生データに対して動揺補正を行うことによって動揺成分を抑圧する動揺補正部と、
動揺補正部の出力が供給される表示及び/又は記録装置とを備え、
送信信号の周期は、水中の音波の速度をVuとし、深度をDとする場合に、(2D/Vu)以下とされ、且つ動揺成分の周期に比べてサンプリング定理を満足するものとなされた音響測深装置である。
また、本発明は、船などの移動体に設置され、水中の測定対象を探知し、上下方向の動揺によって深度が変化するマルチビーム音響測深装置において、
疑似雑音系列信号を生成する疑似雑音系列発生回路及び送信タイミングの疑似雑音系列信号によって搬送波信号を変調して送信信号を形成する変調回路を有する送信信号形成部と、
送信信号を周期的に超音波として移動体の下方に位置する測定対象に向けて送出する送信部と、
送信部から送出された超音波のエコーを受信する受信部と、
エコーを疑似雑音系列信号によって相関処理を行うことによって、送信信号と対応するエコーを判別し、送信信号及びエコーの時間差に基づいて深度生データを取得する相関器と、
深度生データに対して動揺補正を行うことによって動揺成分を抑圧する動揺補正部と、
動揺補正部の出力が供給される表示及び/又は記録装置とを備え、
送信信号の周期は、水中の音波の速度をVuとし、深度をDとする場合に、(2D/Vu)以下とされ、且つ動揺成分の周期に比べてサンプリング定理を満足するものとなされ、
送信部によって扇状に多数の超音波ビームを送出する
マルチビーム音響測深装置である。
The present invention relates to an acoustic sounding apparatus which is installed on a moving object such as a ship, detects an object to be measured in water, and whose depth changes due to vertical oscillation.
A transmission signal formation unit having a pseudo noise sequence generation circuit that generates a pseudo noise sequence signal, and a modulation circuit that modulates a carrier signal by a pseudo noise sequence signal of transmission timing to form a transmission signal;
A transmitting unit that periodically transmits a transmission signal as an ultrasonic wave toward a measurement target located below the moving body;
A receiving unit for receiving an echo of the ultrasonic wave transmitted from the transmitting unit;
A correlator that determines echoes corresponding to transmission signals by correlating the echoes with pseudo noise sequence signals, and acquires raw depth data based on the time difference between the transmission signals and the echoes;
A motion correction unit that suppresses motion components by performing motion correction on depth raw data;
A display and / or recording device to which the output of the motion compensation unit is supplied;
The period of the transmission signal is set to (2D / Vu) or less when the velocity of the sound wave in the water is Vu and the depth is D, and the sound made to satisfy the sampling theorem compared with the period of the motion component It is a sounding device.
The present invention is also directed to a multi-beam echo sounding system installed on a moving object such as a ship and detecting a measurement object in the water, the depth of which changes due to vertical movement.
A transmission signal formation unit having a pseudo noise sequence generation circuit that generates a pseudo noise sequence signal, and a modulation circuit that modulates a carrier signal by a pseudo noise sequence signal of transmission timing to form a transmission signal;
A transmitting unit that periodically transmits a transmission signal as an ultrasonic wave toward a measurement target located below the moving body;
A receiving unit for receiving an echo of the ultrasonic wave transmitted from the transmitting unit;
A correlator that determines echoes corresponding to transmission signals by correlating the echoes with pseudo noise sequence signals, and acquires raw depth data based on the time difference between the transmission signals and the echoes;
A motion correction unit that suppresses motion components by performing motion correction on depth raw data;
A display and / or recording device to which the output of the motion compensation unit is supplied;
Assuming that the velocity of the sound wave in the water is Vu and the depth is D, the period of the transmission signal is less than (2D / Vu), and the sampling theorem is satisfied compared to the period of the motion component.
It is a multi-beam echosounder that transmits multiple ultrasonic beams in a fan-like manner by a transmitter.

本発明によれば、送信周期を短くすることができるので、水平方向の分解能を高くすることができ、例えば波による動揺成分を正確に検出することができ、検出された動揺成分を使用して動揺補正を行うことができる。加速度センサを使用しないので、コストの増加を防止でき、誤差の影響を少なくできる。なお、ここに記載された効果は必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であっても良い。   According to the present invention, since the transmission cycle can be shortened, the resolution in the horizontal direction can be increased. For example, the fluctuation component due to waves can be accurately detected, and the detected fluctuation component is used. Upset correction can be performed. Since the acceleration sensor is not used, the cost increase can be prevented and the influence of the error can be reduced. Note that the effects described herein are not necessarily limited, and any of the effects described herein may be used.

音響測深の原理を示す略線図である。It is a basic diagram which shows the principle of sound sounding. シングルビーム測深とマルチビーム測深を説明するための略線図である。It is a basic diagram for demonstrating single beam sounding and multi-beam sounding. 従来の音響測深装置の説明に用いる波形図である。It is a wave form diagram used for explanation of the conventional sound echo sounding device. 従来の音響測深装置の水平方向分解能の説明に用いる略線図である。It is a basic diagram used for explanation of horizontal direction resolution of the conventional sounding instrument. 波による動揺を説明するための略線図である。It is a basic diagram for explaining the oscillation by a wave. 波による動揺の影響を説明するための略線図である。It is a schematic diagram for demonstrating the influence of the fluctuation by a wave. 音響測深装置の一例の構成を示すブロック図である。It is a block diagram showing composition of an example of an echo sounding device. 音響測深装置における相関器の説明に用いるブロック図である。It is a block diagram used for description of the correlator in an echo sounding device. 相関器の出力の説明に用いる波形図である。It is a wave form diagram used for description of the output of a correlator. 受信信号を表示する場合を説明する略線図である。It is a basic diagram explaining the case where a received signal is displayed. 送信信号の変調方法の一例を示す波形図である。It is a wave form diagram which shows an example of the modulation method of a transmission signal. 音響測深装置の説明に用いる波形図である。It is a wave form diagram used for explanation of a sound sounding device. 音響測深装置の水平方向分解能の説明に用いる略線図である。It is a basic diagram used for explanation of horizontal direction resolution of a sound sounding device. 音響測深装置の説明に用いる波形図である。It is a wave form diagram used for explanation of a sound sounding device. 音響測深装置の水平方向分解能の説明に用いる略線図である。It is a basic diagram used for explanation of horizontal direction resolution of a sound sounding device. 音響測深装置のシミュレーションの結果を説明に用いる略線図である。It is a basic diagram which uses the result of simulation of a sound sounding device for explanation. 改良された音響測深装置のシミュレーションの結果を説明に用いる略線図である。It is a basic diagram which uses the result of simulation of the improved sounding instrument for explanation. 従来の音響測深装置による表示画像と改良された音響測深装置による表示画像を比較して示す略線図である。It is a basic diagram which compares and shows the display image by the conventional echosounding device, and the display image by the improved echosounding device. 音響測深装置の送信信号の一例の波形図である。It is a wave form diagram of an example of a transmitting signal of an echo sounding device. 音響測深装置において二つのゴールドコード信号が重なった場合の説明に用いる波形図である。It is a wave form diagram used for description when two gold code signals overlap in an echo sounding device. 開口合成サイドスキャンソナーの原理を説明するための略線図である。It is a basic diagram for explaining the principle of opening synthetic side scan sonar. 開口合成の指向特性を説明するための略線図である。It is a schematic diagram for demonstrating the directional characteristic of aperture synthetic | combination. 開口合成の原理を説明するための略線図である。It is a schematic diagram for demonstrating the principle of aperture synthetic | combination. 点ターゲットの一例を示す略線図である。It is a basic diagram which shows an example of a point target. 点ターゲットの一例の画像を示す略線図である。It is a basic diagram which shows the image of an example of a point target. 点ターゲットの一例の開口合成前の画像と開口合成後の画像を示す略線図である。It is a basic diagram which shows the image before opening synthetic | combination of an example of a point target, and the image after opening synthetic | combination. 点ターゲットの一例の開口合成前の画像と開口合成後の画像を示す略線図である。It is a basic diagram which shows the image before opening synthetic | combination of an example of a point target, and the image after opening synthetic | combination. 2点ターゲットの一例の開口合成前の画像と開口合成後の画像を示す略線図である。It is a basic diagram which shows the image before opening synthetic | combination of an example of a two-point target, and the image after opening synthetic | combination. マルチビーム音響測深機の説明に用いる略線図である。It is a schematic diagram used for description of a multi-beam echo sounder. マルチビーム音響測深機の構成を示すブロック図である。It is a block diagram which shows the structure of a multi-beam echo sounder. 波浪による動揺の説明に使用する略線図である。It is a basic diagram used for explanation of oscillation by waves. 動揺補正された海底を示す略線図である。It is a schematic diagram which shows the seabed by which the motion correction was carried out. 本発明の一実施の形態における動揺補正の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the motion compensation in one embodiment of this invention. 本発明の一実施の形態における動揺補正の一例を説明するための略線図である。It is a schematic diagram for demonstrating an example of the motion compensation in one embodiment of this invention. 本発明の一実施の形態における動揺補正の他の例を説明するためのブロック図である。It is a block diagram for demonstrating the other example of the motion compensation in one embodiment of this invention. 本発明の一実施の形態における動揺補正の他の例を説明するためのブロック図である。It is a block diagram for demonstrating the other example of the motion compensation in one embodiment of this invention. 動揺補正前のデータと動揺補正後のデータを示す略線図である。It is a basic diagram which shows the data before shaking correction, and the data after shaking correction. 本発明の一実施の形態における動揺補正のさらに他の例を説明するためのブロック図である。It is a block diagram for demonstrating the further another example of the motion compensation in one embodiment of this invention. 本発明の他の実施の形態を説明するための略線図である。FIG. 10 is a schematic diagram for describing another embodiment of the present invention. 本発明の他の実施の形態を説明するためのブロック図である。It is a block diagram for describing other embodiment of this invention.

以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、本発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において、特に本発明を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
本発明の説明は、以下の順序にしたがってなされる。
<1.改良された音響測深装置>
<2.開口合成>
<3.マルチビーム音響測深機>
<4.一実施の形態>
<5.他の実施の形態>
<6.応用例>
<7.変形例>
Hereinafter, embodiments of the present invention will be described. The embodiments described below are preferable specific examples of the present invention, and various technically preferable limitations are added. However, the scope of the present invention is particularly preferable in the following description. The embodiments are not limited to these embodiments unless otherwise stated.
The description of the invention will be made in the following order.
<1. Improved sound sounder>
<2. Opening synthesis>
<3. Multi-beam echo sounder>
<4. One embodiment>
<5. Other Embodiments>
<6. Application example>
<7. Modified example>

<1.改良された音響測深装置>
波に対して動揺補正を行う場合、海上で船を静止させ、波により船が上下動することによる水深の変化を検出することによって、動揺成分を検出することができる。そして、測深の測定結果から検出した動揺成分をキャンセルすることによって動揺補正を行うことができる。このように、動揺成分の検出は、音響測深によってできるので、以下の説明では、最初に短い送信周期でもって深度を測定することを可能とする改良された音響測深装置について説明し、その後に動揺補正について説明する。
<1. Improved sound sounder>
When motion correction is performed on a wave, the motion component can be detected by stopping the ship at sea and detecting a change in water depth due to the ship moving up and down by the wave. Then, the motion compensation can be performed by canceling the motion component detected from the measurement result of sounding. Thus, since the detection of the motion component can be done by sound sounding, the following description will first describe an improved sounding apparatus that allows measuring the depth with a short transmission period and then the motion The correction will be described.

図7は、改良された音響測深装置の電気的構成を示す。一定周期のパルス信号の送信トリガパルスを発生する送信トリガ発生器1が設けられており、送信トリガパルスがPN系列発生器としてのゴールドコード発生器2及び表示又は記録装置10に供給される。表示及び/又は記録装置10は、液晶等の表示装置及び/又は半導体メモリ等の記録装置と表示又は記録のための演算装置とを含んでいる。   FIG. 7 shows the electrical configuration of the improved echosounder. A transmission trigger generator 1 is provided which generates a transmission trigger pulse of a pulse signal of a constant period, and the transmission trigger pulse is supplied to a gold code generator 2 as a PN sequence generator and a display or recording device 10. The display and / or recording device 10 includes a display device such as liquid crystal and / or a recording device such as a semiconductor memory and an arithmetic device for display or recording.

ゴールドコード発生器2は、送信トリガパルスと同期してゴールドコードを発生する。ゴールドコード以外のM系列等のPN(Pseudorandom Noise)系列を使用しても良い。ゴールドコードがパルス変調器3に供給され、ゴールドコードが例えばBPSK(Binary Phase Shift Keying)に よってデジタル変調される。搬送波の周波数は数kHz〜数百kH
zとされる。
The gold code generator 2 generates a gold code in synchronization with the transmission trigger pulse. A pseudorandom noise (PN) series such as an M series other than the gold code may be used. The gold code is supplied to the pulse modulator 3, and the gold code is digitally modulated by, for example, BPSK (Binary Phase Shift Keying). Carrier frequency is several kHz to several hundreds kH
It is assumed that z.

パルス変調器3の出力信号が送信アンプ4に供給され、送信アンプ4において増幅等の処理がなされる。送信アンプ4の出力信号が送波器5に供給される。送波器5から水中に対して超音波が送出される。発射された水中超音波のエコーが受波器6によって受波される。送波器5及び受波器6としては一体型の構成を使用してもよい。   An output signal of the pulse modulator 3 is supplied to the transmission amplifier 4, and processing such as amplification is performed in the transmission amplifier 4. The output signal of the transmission amplifier 4 is supplied to the transmitter 5. Ultrasonic waves are transmitted from the transmitter 5 to water. The echo of the emitted underwater ultrasonic wave is received by the receiver 6. The transmitter 5 and the receiver 6 may use an integral structure.

受波器6からの受波データが受信アンプ7に供給され、増幅等の処理を受けて後、相関器8に供給される。相関器8の出力が検波回路9に供給される。相関器8によって送信パルスに対応する受信エコーが取り出される。検波回路9は表示のための演算(例えばA/D変換)を行う。検波回路9の出力が表示及び/又は記録装置10に供給され、送信パルスに対してエコーが受信されるまでの時間がそれぞれ表示及び/又は記録される。   The wave reception data from the wave receiver 6 is supplied to the reception amplifier 7, and after being subjected to processing such as amplification, is supplied to the correlator 8. The output of the correlator 8 is supplied to the detection circuit 9. Correlator 8 extracts the received echo corresponding to the transmitted pulse. The detection circuit 9 performs an operation (eg, A / D conversion) for display. The output of the detection circuit 9 is supplied to the display and / or recording device 10, and the time until the echo is received for the transmission pulse is displayed and / or recorded, respectively.

図8は、相関検出の処理を示している。受信エコー信号が4064ステップのシフトレジスタSRに直列に入力される。なお、シフトレジスタSRに対して前後の複数の受信エコー信号を加算するなどしてSN比を向上させることが好ましい。加算処理によってノイズが低減でき、低い送信出力とすることが可能になり、装置の小型化や省電力設計が可能になる。シフトレジスタSRを動作させるシフトクロックが(20×8=1,600kHz=1.6MHz)とされている。この周波数は一例であって搬送波周波数(20kHz)の2倍以上の周波数のシフトクロックを使用できる。受信エコー信号がシフトレジスタSRに供給されることによって搬送波信号の8倍の周波数でもってサンプリングされる。   FIG. 8 shows the process of correlation detection. The received echo signal is serially input to the 4064-step shift register SR. Preferably, the SN ratio is improved by, for example, adding a plurality of reception echo signals before and after to the shift register SR. The addition process can reduce noise and enable a low transmission output, thereby enabling downsizing of the device and power saving design. The shift clock for operating the shift register SR is (20 × 8 = 1, 600 kHz = 1.6 MHz). This frequency is an example, and it is possible to use a shift clock having a frequency twice or more that of the carrier frequency (20 kHz). The reception echo signal is sampled at a frequency eight times that of the carrier signal by being supplied to the shift register SR.

シフトレジスタSRに対して並列に演算回路EXA1〜EX127が設けられている。演算回路EXA1〜EX127のそれぞれは、排他的論理和回路と加算回路(4064回路)とから構成されている。演算回路EXA1〜EX127のそれぞれの排他的論理和回路に対して共通にシフトレジスタSRの4064ビットが供給される。   Operation circuits EXA1 to EX127 are provided in parallel with shift register SR. Each of the arithmetic circuits EXA1 to EX127 is composed of an exclusive OR circuit and an adder circuit (4064 circuit). The 4064 bits of the shift register SR are commonly supplied to the exclusive OR circuits of the arithmetic circuits EXA1 to EX127.

一方、演算回路EXA1〜EX127のそれぞれの排他的論理和回路に対してゴールドコードのコードG1のレプリカ(レプリカは4064ビット)、コードG2のレプリカ、・・・、コードG127のレプリカがそれぞれ供給される。排他的論理和回路は、2つの入力のビットが同じ値であれば、出力が"0"となり、2つの入力のビットが異なる値であ
れば、出力が"1"となる。各排他的論理和回路の4064ビットの出力が加算される。加
算は、"1" の個数がNであれば、Nの値の振幅の信号を出力するものである。否定論理をとることによって、2つの入力が一致するほど大きな値の出力が得られる。演算回路EXA1〜EX127の加算出力は図9に示すものとなる。大きな振幅の出力が送信パルスのゴールドコードと一致する受信エコー信号を示している。
On the other hand, the replica of the code G1 of the gold code (replica is 4064 bits), the replica of the code G2,..., The replica of the code G127 are respectively supplied to the exclusive OR circuits of the arithmetic circuits EXA1 to EX127. . In the exclusive OR circuit, the output is "0" if the bits of the two inputs have the same value, and the output is "1" if the bits of the two inputs are different values. The output of 4064 bits of each exclusive OR circuit is added. The addition is to output a signal with an amplitude of N if the number of "1" s is N. By taking a negative logic, an output with a larger value is obtained as the two inputs match. The addition outputs of the arithmetic circuits EXA1 to EX127 are as shown in FIG. The large amplitude output indicates a received echo signal that matches the gold code of the transmitted pulse.

図10は、表示及び/又は記録装置10において表示を行う場合を説明するものである。表示及び/又は記録装置10に対しては送信トリガパルスが供給されており、送信トリガパルスのタイミングが画面の上側の発信線(0m)として表示される。送信トリガパルスに対する検波回路9からの検波信号を例えば色を付けて表示する。送信トリガパルスは数Hzから数十Hzの速い繰り返し信号であるので、相関器8からの送信トリガパルスのそれぞれに対応した検波信号を順次並べるように表示することによって、従来の音響測深装置と比較して数倍から数十倍の速さで測深画像が現れることになる。   FIG. 10 illustrates the case of displaying on the display and / or recording device 10. A transmission trigger pulse is supplied to the display and / or recording device 10, and the timing of the transmission trigger pulse is displayed as a transmission line (0 m) on the upper side of the screen. The detection signal from the detection circuit 9 with respect to the transmission trigger pulse is displayed, for example, with a color. Since the transmission trigger pulse is a fast repeating signal of several Hz to several tens Hz, the detection signal corresponding to each of the transmission trigger pulses from the correlator 8 is displayed in order to compare with the conventional sounding sound system Then, a sounding image will appear at a speed several times to several tens of times.

図11は、パルス変調の一例を説明するものである。例えば200kHzの搬送波の4周期 (4波)毎にゴールドコードのビットの"0"及び"1"と対応して位相を0及びπに切り替える。搬送波の周波数は一例であり、他の周波数であってもよく、BPSK以外のQPSK等の変調方式を使用してもよい。さらに、位相変調に限らず、振幅変調を使用してもよい。   FIG. 11 illustrates an example of pulse modulation. For example, every four cycles (four waves) of a carrier of 200 kHz, the phase is switched to 0 and π corresponding to “0” and “1” of the bits of the gold code. The frequency of the carrier wave is an example, and may be another frequency, and a modulation scheme such as QPSK other than BPSK may be used. Furthermore, not only phase modulation but amplitude modulation may be used.

相関器8においてデジタル信号処理で相関検出がなされる。1ビットが4周期で構成されており、各周期が8サンプルでデジタル化される。したがって、ゴールドコードのコードが127ビットの場合、一つの受信エコー信号は、(127×4×8=4064ビット)となる。   Correlation detection is performed by digital signal processing in the correlator 8. One bit consists of 4 cycles, and each cycle is digitized by 8 samples. Therefore, if the code of the Gold code is 127 bits, one received echo signal is (127 × 4 × 8 = 4064 bits).

上述した改良された音響測定装置では、送信信号及び受信エコー信号(海底エコー)を識別することができる。図12に示すように、送信信号Aと送信信号Bとが異なるゴールドコードとされている。送信信号Aと対応する受信エコー信号が送信信号Bの後に受信されてその受信エコー信号が送信Aに対応するものであることを識別できる。したがって、従来のような送信周期Tに関する制限((2D/1500)<T)をなくすことができる。   In the above-described improved acoustic measurement device, the transmitted signal and the received echo signal (bottom echo) can be identified. As shown in FIG. 12, the transmission signal A and the transmission signal B have different gold codes. A receive echo signal corresponding to transmit signal A may be received after transmit signal B to identify that the receive echo signal corresponds to transmit A. Therefore, the restriction ((2D / 1500) <T) on the transmission cycle T as in the prior art can be eliminated.

改良された音響測定装置では水平方向の分解能が次式に示すものとなる。
ΔH=VT
In the improved acoustic measurement device, the horizontal resolution is as follows:
ΔH = VT

例えば船が10kt(時速10×1.852km)で航行し、送信の周期が0.1秒の場合、ΔH=0.5mとなり、測深深度とは無関係に水平方向の分解能(計測間隔)を決めることができる。図13に示すように、深度にかかわらず、送信周期Tと船速Vのみから水平方向の分解能ΔHが決められる。さらに、6種類の送信信号を識別することができる場合を図14及び図15に模式的に示す。このように、送信周期Tを短いものとでき、深度とは関係なく測深が可能となり、高い水平の計測分解能を得ることができる。   For example, if the ship sails at 10 kt (10 x 1.852 km / h) and the transmission period is 0.1 seconds, then ΔH = 0.5 m, and the horizontal resolution (measurement interval) is determined regardless of the sounding depth. be able to. As shown in FIG. 13, regardless of the depth, the resolution ΔH in the horizontal direction can be determined from only the transmission cycle T and the boat speed V. Furthermore, cases in which six types of transmission signals can be identified are schematically shown in FIG. 14 and FIG. Thus, the transmission period T can be made short, and sounding can be performed regardless of the depth, and high horizontal measurement resolution can be obtained.

なお、送信信号の識別は周波数などによっても行うことができるが、周波数弁別方式では使用する周波数範囲を広くすると、水中の伝搬損失が周波数によって異なるので、探知距離に周波数差が出るなど好ましくない。改良された音響測定装置では1つの周波数によって送信信号を識別するので、かかる問題が生じない。すなわち、送信信号を識別できるので、送信周期は従来のように海底のエコーが帰ってきてから次の送信信号を発射するという制約がなくなり、短い送信周期で測深が可能なり、水平方向の分解能を飛躍的に向上させることができる。   Although identification of the transmission signal can be performed by frequency etc., if the frequency range to be used is broadened in the frequency discrimination method, the propagation loss in water differs depending on the frequency, so it is not preferable that the detection distance has a frequency difference. Such problems do not occur because the improved acoustic measurement device identifies the transmitted signal by one frequency. That is, since the transmission signal can be identified, the transmission period is not restricted from emitting the next transmission signal after return of the bottom echo as in the prior art, so that sounding can be performed with a short transmission period, and horizontal resolution It can be improved dramatically.

図16、図17及び図18を参照してシミュレーションの結果と実測の例とを説明する。図16は、従来の音響測深装置で得られる送信信号と受信エコー信号(海底エコー)である。送信周期は0.1sec で海底のエコーが0.07sec のあたりに現れている。送信信号はエコーが受信されてから次の送信を行い、送信を行ってから受信するまでの時間を計測することにより深度を知ることができる。この場合、水中音速を1500/sec とすれば、(0.07×1,500/2=52.5m)の深度を得ることができる。   A simulation result and an example of actual measurement will be described with reference to FIGS. 16, 17 and 18. FIG. 16 shows a transmission signal and a reception echo signal (seafloor echo) obtained by the conventional sounding apparatus. The transmission period is 0.1 sec, and the echo of the seabed appears around 0.07 sec. It is possible to know the depth by transmitting the next transmission after echo is received and measuring the time from transmission to reception. In this case, if the speed of sound in water is 1,500 / sec, it is possible to obtain a depth of (0.07 × 1,500 / 2 = 52.5 m).

一方、改良された音響測定装置による音響測深装置は、送信周期は深度に関わりなく決めることができ、図17の例では送信周期が0.05sec である。送信信号の間に海底の受信エコー信号が得られるが、送信信号には識別可能なコード番号A,B,C,・・・が付加されているので相関器を通過後には受信信号を識別できる。この例よりももっと短い送信周期でも識別可能となる。また、送信信号と受信信号が重なっても識別可能である。   On the other hand, in the sound sounding-up apparatus by the improved sound measurement apparatus, the transmission cycle can be determined regardless of the depth, and in the example of FIG. 17, the transmission cycle is 0.05 sec. The reception echo signal of the seabed is obtained between the transmission signals, but since the distinguishable code numbers A, B, C, ... are added to the transmission signals, the reception signals can be identified after passing through the correlator. . Even shorter transmission cycles than in this example can be identified. In addition, identification is possible even if the transmission signal and the reception signal overlap.

実際の受信エコー信号について従来方式の音響測深装置の画像と改良された音響測定装置による音響測深装置の画像を比較してみる。図18A及び図18Bは、従来の音響測深装置の画像である。図18は、従来方式の音響測深機の画像と改良された音響測定装置による音響測深機の画像とを比較したものである。図18Aは、従来方式の画像で横軸が30秒の画像で、図18Bは、横軸が3秒の画像である。この例では1秒間に4回の送信を行った画像で、横軸はかなり粗い画像となる。   Let us compare the image of the conventional echosounder with the image of the echosounder with the improved acoustic measurement device for the actual received echo signal. 18A and 18B are images of a conventional sounding instrument. FIG. 18 is a comparison of the image of the conventional echosounder with the image of the echosounder by the improved acoustic measurement device. FIG. 18A is an image of the conventional method and the image of which horizontal axis is 30 seconds, and FIG. 18B is an image of which horizontal axis is 3 seconds. In this example, in the image transmitted four times per second, the horizontal axis is a rather rough image.

これに対して図18Cは、改良された音響測定装置の方式を適用し送信周期を0.05sec とし、1秒間に20回の送信を行ったときの画像である。図18Dは、図18Cの一部を拡大したものである。図18Bと比較してかなり細かい横軸方向の分解能があることがわかる。送信周期を1秒間に50回にしたときの実際の送信信号は図19のようになる。200kHzの信号を5次127ビットのゴールドコードで4波を1ビットとして位相変調し、20ms毎に異なるゴールドコードで変調したパルス信号を並べて送信を行う。   On the other hand, FIG. 18C is an image when transmission is performed 20 times per second by applying the method of the improved acoustic measurement device, setting the transmission cycle to 0.05 sec. FIG. 18D is an enlarged view of a part of FIG. 18C. It can be seen that there is fairly fine resolution in the horizontal axis direction compared to FIG. 18B. The actual transmission signal when the transmission cycle is 50 times per second is as shown in FIG. A signal of 200 kHz is phase-modulated with four waves as one bit with a fifth order 127-bit gold code, and pulse signals modulated with different gold codes are aligned every 20 ms to be transmitted.

1つのパルス幅Pdは、搬送波の周波数をfc、1ビットに使用する波の数をNサイクル、ゴールドコードの長さをMビットとすると、次の式で表すものとなる。
Pd=(1/fc)×N×M
Assuming that the carrier frequency is fc, the number of waves used for one bit is N cycles, and the length of the gold code is M bits, one pulse width Pd is represented by the following equation.
Pd = (1 / fc) × N × M

搬送波周波数fc=200kHz、1ビットに使用する波の数N=4、ゴールドコードの長さM=127の場合にはパルス幅Pdは次に示すものとなる。
Pd=1/200000×4×127=0.00254=2.54msec
In the case where the carrier frequency fc = 200 kHz, the number N of waves used for one bit = 4, and the gold code length M = 127, the pulse width Pd is as follows.
Pd = 1/200000 x 4 x 127 = 0.00254 = 2.54 msec

さらに送信周期を短くして、2つの送信パルスが重なるように送信しても、相関処理後は分離できる。図20は、2つのゴールドコード信号(GC1及びGC2)を重ねて送信又は受信しても、それら2つのゴールドコード信号を分離して検出できることを示すものである。   Furthermore, even if the transmission cycle is shortened and two transmission pulses are transmitted so as to overlap, they can be separated after correlation processing. FIG. 20 shows that even if two gold code signals (GC1 and GC2) are superimposed and transmitted or received, these two gold code signals can be detected separately.

<2.開口合成>
次に開口合成について説明する。開口合成とは、1つの送受波器を動かすことによって長い開口の送受波器と等価となる指向性を形成し分解能を上げる手法で
ある。図21に示すように長さdの送受波器を移動させながら送受信を繰り返し、長さLの送受波器と等価となる水平方向の分解能を得る手法のことで、開口合成ソナーとして利用されている。簡単な説明をすれば、図22に示すように送受波器の長さdによる指向角に比べ、開口合成後の送受波器の長さLの指向角はその比d/Lだけ鋭くなるので分解能
が向上するというものである。
<2. Opening synthesis>
Next, aperture synthesis will be described. Aperture synthesis is a method of increasing the resolution by forming directivity that is equivalent to a long aperture transducer by moving one transducer. It is a method to obtain horizontal resolution equivalent to the transducer with length L by repeating transmission and reception while moving the transducer with length d as shown in FIG. There is. Briefly, as shown in FIG. 22, the directivity angle of the length L of the transducer after aperture synthesis becomes sharper by the ratio d / L than the directivity angle by the length d of the transducer. The resolution is improved.

図23に示す座標系で、P(x,y)の位置からの反射信号の合成信号S(x,y)は次式で表すことができる。   In the coordinate system shown in FIG. 23, the composite signal S (x, y) of the reflection signal from the position of P (x, y) can be expressed by the following equation.

ここでAnは指向性関数、tn はターゲットPまでの往復に要する時間で、水中音速をcとすると、次式で表すことができる。   Here, An is the directivity function, and tn is the time required for the round trip to the target P, where c is the speed of sound in water and can be expressed by the following equation.

開口合成で分解能が向上することを計算機シミュレーションを用いて説明する。図24のような位置に点ターゲットがあったとすると、従来方式の音響測深装置又はソナーでは、このターゲットのエコーは図25で示すように円弧状の画像になる。図26Aはわかりやすいように一部分を拡大した画像となっているが、この画像は既に改良された音響測定装置による方式を採用しており、1秒間に20回の送信、すなわちこの画像の上では100回分のエコーのシミュレーション画像である。   The improvement of the resolution by the aperture synthesis will be described using computer simulation. Assuming that there is a point target at the position as shown in FIG. 24, the echo of this target becomes an arc-shaped image as shown in FIG. 25 in the conventional sound sound system or sonar. FIG. 26A is an image in which a part is enlarged so as to be easy to understand, but this image already adopts the method by the improved acoustic measurement device, and transmits 20 times a second, ie, 100 on this image. It is a simulation image of echo of a batch.

この画像から開口合成の手法を用いて処理すれば、図26Bに示すような画像になる。図26Cは図26Bの一部を拡大して示している。図26B及び図26Cから分かるように、点ターゲットが0.1m程度の分解能で探知できていることがわかる。開口合成の条件として、送信周期を0.05sec (20回/秒)、送受波器の移動速度を2m/sec 、開口長を10mとした。   If this image is processed using the method of aperture synthesis, an image as shown in FIG. 26B is obtained. FIG. 26C is an enlarged view of a part of FIG. 26B. As can be seen from FIGS. 26B and 26C, it can be seen that a point target can be detected with a resolution of about 0.1 m. As the conditions for aperture synthesis, the transmission period is 0.05 sec (20 times / sec), the moving speed of the transducer is 2 m / sec, and the aperture length is 10 m.

同様に従来方式で開口合成手法を採用した場合の画像が図27Aのように、送信周期が1秒間に1回の場合、移動速度を2m/sec 、開口長を10mとしたとき、5回の送信しかできないので受信エコーも5回分しかない。したがって開口合成を行っても図27Bに示すような低分解能の画像しか得られない。   Similarly, in the case where the image obtained when the aperture combining method is adopted in the conventional method is as shown in FIG. 27A, and the transmission speed is once per second, the moving speed is 2 m / sec and the opening length is 10 m There are only 5 receive echoes as it can only transmit. Therefore, even if aperture synthesis is performed, only a low resolution image as shown in FIG. 27B can be obtained.

図28は、2つの点ターゲットを0.2m離して配置した場合の画像で、開口合成前(図28A)は2つの点ターゲットは分離できないが、開口合成後(図28B)は2つの点ターゲットを分離できている。図28Cは図28Bの一部を拡大して示している。   FIG. 28 shows an image in which two point targets are arranged at a distance of 0.2 m. Before the aperture synthesis (FIG. 28A), the two point targets can not be separated, but after the aperture synthesis (FIG. 28B), two point targets Can be separated. FIG. 28C shows a part of FIG. 28B in an enlarged manner.

開口合成の手法は既存の技術であるが、改良された音響測定装置の手法を用いて送信周期を早めることにより開口合成の手法を有効に利用できる。すなわち、従来の開口合成方法では、従来の音響測深と同様、受信エコーが戻ってきてから次の送信を行うので、最大探知距離をRとしたときの送信周期Tは、上述したように(2R/1500<T)の関係を満たす必要がある。したがって、最大探知距離をR=500mとしたとき、(T>2×500/1500=0.67sec )にしなければならないので、通常1回/秒の送信周期となる。これに対し、改良された音響測定装置の手法を用いれば、送信周期は最大探知距離の制約を受けずに設定できるので、20回/秒が可能になり、開口合成を有効に使用することができる。   Although the aperture synthesis method is an existing technique, the aperture synthesis method can be effectively used by advancing the transmission period using the improved acoustic measurement device method. That is, in the conventional aperture synthesis method, as in the conventional sound sounding, the next transmission is performed after the reception echo returns, so the transmission cycle T when the maximum detection distance is R is as described above (2R It is necessary to satisfy the relationship of / 1500 <T). Therefore, when the maximum detection distance is R = 500 m, (T> 2 × 500/1500 = 0.67 sec), and therefore, the transmission cycle is usually 1 time / sec. On the other hand, if the method of the improved sound measurement device is used, the transmission period can be set without being restricted by the maximum detection distance, and 20 times / second can be made, so that aperture synthesis can be used effectively. it can.

上述した改良された音響測定装置の利点は次の通りである。
従来の音響測深装置等は、水中での音波の速度に制約を受けていたが、改良された音響測定装置ではこの制約が解消される。水中での音波の速度の制約とは、従来の音響測深装置等は送信信号を送出してから海底などのエコー信号を受信してから次の送信信号を送出していたことをいう。
従来の音響測深装置等で開口合成処理を行う場合、かかる制約から送信周期を早くできないので、開口内での受信データを増やすためには船速を遅くする方法しか取り得なかった。改良された音響測定装置の技術を採用すれば、従来の音響測深装置等に比べて数倍から数十倍の送信周期で送信信号を送出できるので、開口合成を行う場合、従来の技術に比べ圧倒的に有利である。
The advantages of the improved acoustic measurement device described above are as follows.
Conventional acoustic sounding devices and the like have been limited by the velocity of sound waves in water, but the improved acoustic measurement device overcomes these limitations. The restriction of the velocity of the sound wave in water means that the conventional sound sounding device etc. has sent the next transmission signal after sending the transmission signal and receiving an echo signal from the seabed or the like.
When the aperture synthesis process is performed by the conventional sound sounding apparatus or the like, the transmission cycle can not be made fast due to the restriction. Therefore, in order to increase the reception data in the opening, only the method of reducing the ship speed can be taken. If the technology of the improved sound measurement device is adopted, the transmission signal can be transmitted with a transmission cycle several to several tens times that of the conventional sound sounding device etc. It is overwhelmingly advantageous.

音波の速度の制約により送信周期を短くできないので、受信信号は前の受信信号との相関がない場合が多いので複数の受信信号を加算するなどしてSN比を向上させることは困難である。一方改良された音響測定装置では、送信周期を飛躍的に短くできるので、前後の信号に相関がある。したがって、前後の受信信号を加算するなどしてSN比を向上できるので、低い送信出力でも受信信号を加算処理することが可能になり、装置の小型化や省電力設計が可能になる。   Since the transmission period can not be shortened due to the restriction of the speed of the sound wave, the received signal often has no correlation with the previous received signal, so it is difficult to improve the SN ratio by adding a plurality of received signals. On the other hand, in the improved acoustic measurement device, the transmission period can be shortened dramatically, so there is a correlation between the signals before and after. Therefore, the signal-to-noise ratio can be improved by, for example, adding the received signals before and after, so that the received signals can be added even with a low transmission output, and downsizing of the device and power saving design can be achieved.

なお、魚群探知機とよく似た技術としてレーダーが知られている。レーダーは空中で使用する機器のため電波を利用している。電波の速度は300,000km/sec であり、水中の音波の速度1.5km/sec と比較して200,000倍ものスピードがある。このため、レーダーの探知範囲を例えば100kmとしても、100kmの電波の往復時間は0.00067sec =0.67msとなり、送信周期は1msが可能となる。すなわち1秒間に1,000回の送信を行っても受信エコーと重なることはない。一方、水中で1,000mの海底を探知しようとすると、受信エコー信号は1,000×2/1500=1.33秒後に返ってくるので送信周期は1.5秒程度になる。レーダーと音響測深装置では、現実的な探知距離100kmと1,000mに対して1.5秒/1ms=1,500倍もの比が有り、音波の速度がいかに音響測深装置等の水中音響機器の送信周期に制約を与えているかわかる。改良された音響測定装置を使用すれば、この制約は解消され、送信周期を飛躍的に早くできるので、画期的な音響測深装置等を設計できることが可能となる。   Radar is known as a technology similar to a fish finder. Radar uses radio waves for equipment used in the air. The speed of radio waves is 300,000 km / sec, which is 200,000 times faster than the speed of sound waves in water of 1.5 km / sec. Therefore, even if the detection range of the radar is, for example, 100 km, the round-trip time of the 100-km radio wave is 0.00067 sec = 0.67 ms, and the transmission cycle can be 1 ms. That is, even if 1,000 transmissions are performed per second, they do not overlap with the reception echo. On the other hand, when trying to detect the bottom of a 1,000 m underwater, the reception echo signal will be returned after 1,000 × 2/1500 = 1.33 seconds, so the transmission period will be about 1.5 seconds. Radar and acoustic sounding devices have a ratio of 1.5 seconds / 1 ms = 1,500 times the realistic detection distance of 100 km and 1,000 m, and the speed of the sound wave is how underwater acoustic equipment such as acoustic sounding devices etc. It can be understood whether the transmission cycle is restricted. If the improved acoustic measurement device is used, this restriction is eliminated and the transmission period can be made much faster, so that it is possible to design an innovative acoustic sounding device or the like.

<3.マルチビーム音響測深機>
改良された音響測定装置の他の例としてマルチビーム音響測深機について述べる。図29に示すように、マルチビーム音響測深機は、船の進行方向に狭く、左右方向に広いファンビームと言われる指向性を持ち一つの送信機から送信信号が送信される。送信ビームとクロスするように、船の前後方向には広く、左右方向には狭いビームを複数有するので、マルチビーム音響測深機と称されるのである。図30は改良された音響測定装置の他の例のマルチビーム音響測深機の構成を示している。
<3. Multi-beam echo sounder>
A multi-beam echosounder is described as another example of an improved acoustic measurement device. As shown in FIG. 29, the multi-beam acoustic sounder has a directivity called narrow fan beam in the direction of travel of the ship and a wide fan beam in the left and right direction. A transmitter is transmitted from one transmitter. It is called a multi-beam echo sounder because it has a plurality of wide beams in the longitudinal direction of the ship and narrow beams in the lateral direction so as to cross the transmission beams. FIG. 30 shows the configuration of a multi-beam echo sounder of another example of the improved acoustic measurement device.

上述したのと同様に、送信側の構成として、送信トリガ発生器1、ゴールドコード発生器2、パルス変調器3、送信アンプ4及び送波器5が設けられている。送波器5から水中超音波が送出される。送信信号は、数Hzから数十Hzの送信周期を持つ信号である。   As described above, the transmission trigger generator 1, the gold code generator 2, the pulse modulator 3, the transmission amplifier 4 and the transmitter 5 are provided as the configuration on the transmission side. Underwater ultrasonic waves are transmitted from the transmitter 5. The transmission signal is a signal having a transmission cycle of several Hz to several tens Hz.

マルチビーム音響測深機の受信部は、シングルビーム音響測深機の受信部と異なり、複数の受波器61 〜6N を有する。受波器61 〜6N に対して受信アンプ71 〜7N が接続され、受信アンプ71 〜7N に対して相関器81 〜8N が接続される。相関器81 〜8N
からの出力信号がゴールドコード毎の出力をビームフォーミング回路11に入力し、ビームフォーミングを行い、複数の受波ビームを形成する。
Unlike the receiver of a single-beam echo sounder, the receiver of the multi-beam echo sounder has a plurality of receivers 61 to 6N. The receiving amplifiers 71-7N are connected to the receivers 61-6N, and the correlators 81-8N are connected to the receiving amplifiers 71-7N. Correlator 81 to 8N
The output signal from the signal is input to the beam forming circuit 11 for an output for each gold code, and beam forming is performed to form a plurality of received beams.

ビームフォーミング回路11は、例えば米国特許第4,159,462号明細書に記載されているように、各相関器81 〜8N の出力がそれぞれ供給されるアナログ遅延回路とアナログ遅延回路の遅延素子を選択することによって所定の遅延を与える遅延選択マトリクスとアナログ遅延回路の出力を加算する加算回路とを含む回路である。ビームフォーミング回路11の出力が表示及び/又は記録装置10に供給され、送信パルスに対してエコーが受信されるまでの時間がそれぞれ表示及び/又は記録される。かかるマルチビーム音響測深機に対して改良された音響測定装置を適用した場合も上述と同様の作用効果を得ることができる。   For example, as described in U.S. Pat. No. 4,159,462, the beam forming circuit 11 includes delay elements of an analog delay circuit and an analog delay circuit to which the outputs of the respective correlators 81 to 8N are respectively supplied. It is a circuit including a delay selection matrix which gives a predetermined delay by selection and an addition circuit which adds the output of the analog delay circuit. The output of the beamforming circuit 11 is supplied to the display and / or recording device 10, and the time until the echo is received for the transmitted pulse is displayed and / or recorded, respectively. When the improved acoustic measurement device is applied to such a multi-beam echo sounder, the same effects as those described above can be obtained.

<4.一実施の形態>
本発明による動揺補正装置の一実施の形態について説明する。図5及び図6を参照して説明したように、海底(海底面を意味する)を超音波によって計測する場合、基準海面に対して波の動揺を受けて計測する深度は真の海底よりも深くなったり浅くなったりする。図31は、波による船の動揺の周期が1Hzで、上下動が+/−1mを想定した場合の実際の海底に対して計測によって得られる海底計測値を示したものである。音響測深機による海底の計測値は動揺の影響を受けて変化する。船が波で持ち上げられたときには計測値は実際の海底の深度(破線で示す)よりも深く出るし、船が沈んだときは浅く出る。図31の例では真の海底(破線)に対して計測による深度データ(実線)が動揺の影響を受けていることがわかる。動揺補正を行った結果を図32に示す。図32に示すように、波による動揺成分を取り除いた結果、真の海底をほぼ検出することができる。海底が比較的平坦な場合、波による動揺は深度の変化としてとらえることができる。上述した音響測深装置は、送信信号の周期を短いものとできるので、波による動揺成分を検出することが可能である。鉛直方向の変化(深度の変化)以外にも揺れの成分が存在するが、検出され動揺成分には、揺れの成分も含まれているので、揺れの成分を別に扱う必要がない。このような点から本発明においては、送信信号の周期は、水中の音波の速度をVuとし、深度をDとする場合に、(2D/Vu)以下とされ、且つ動揺成分の周期に比べてサンプリング定理を満足するものとなされる。
<4. One embodiment>
An embodiment of a motion compensation device according to the present invention will be described. As described with reference to FIGS. 5 and 6, when measuring the seabed (meaning the seabed surface) by ultrasonic waves, the depth measured in response to wave motion relative to the reference sea surface is higher than that of the true seabed. It gets deeper or shallower. FIG. 31 shows bottom measurement values obtained by measurement with respect to an actual bottom under the assumption that the cycle of ship motion by waves is 1 Hz and the vertical motion is assumed to be +/- 1 m. The seafloor measurement by the echo sounder changes under the influence of the fluctuation. When the ship is lifted by waves the measurements will go deeper than the actual bottom of the seabed (shown by the dashed line) and when the ship is sunk it will come out shallower. In the example shown in FIG. 31, it can be seen that the measured depth data (solid line) is affected by the fluctuation with respect to the true bottom of the sea (broken line). The result of the motion correction is shown in FIG. As shown in FIG. 32, as a result of removing the fluctuation component due to waves, it is possible to almost detect the true seabed. When the seabed is relatively flat, wave motion can be regarded as a change in depth. The above-described acoustic sounding apparatus can make the period of the transmission signal short, so that it is possible to detect an oscillation component due to waves. There is a sway component other than the change in the vertical direction (the change in depth), but the detected sway component also includes the sway component, so it is not necessary to separately handle the sway component. From this point of view, in the present invention, when the velocity of the sound wave in water is Vu and the depth is D, the period of the transmission signal is less than (2D / Vu) and compared to the period of the motion component. It is assumed that the sampling theorem is satisfied.

本発明の一実施の形態では、対象物(例えば海底)の真の深度の変化に比して動揺成分(例えば波)の変化がより激しいことに基づいて、周波数分離によって動揺成分を計測データから除去することによって動揺補正を行うものである。動揺成分の変化に比して深度変化が激しいような場合では、本発明の一実施の形態によって動揺補正が困難である。実際には、極端に起伏が激しい岩礁地帯を除いて多くの場合に本発明の一実施の形態による動揺補正を適用することができる。   In one embodiment of the present invention, the oscillation component is separated from the measurement data by frequency separation based on the fact that the fluctuation component (for example, wave) changes more rapidly than the change in the true depth of the object (for example, the seabed). It is what makes upset by removing it. In the case where the change in depth is severer than the change in the movement component, the movement correction is difficult according to an embodiment of the present invention. In fact, in most cases except for the extremely rough rocky area, the motion correction according to one embodiment of the present invention can be applied.

周波数分離の方法の一例は、海底の深度データをフーリエ変換し、動揺成分と考えられる周波数領域を除去するようなフィルタを用いて動揺成分を除去した後、逆フーリエ変換を行えば真の海底に近い成分のみが再生される。図33は、この処理の流れを示すフローチャートである。   One example of the frequency separation method is to Fourier transform the depth data of the seabed and remove the fluctuation component using a filter that removes the frequency region considered to be a fluctuation component, and then performing inverse Fourier transformation to the true seafloor Only close components are regenerated. FIG. 33 is a flowchart showing the flow of this process.

ステップST1:海底深度データをフーリエ変換する。フーリエ変換の結果、例えば図34に示すように、動揺成分を含むフーリエ変換データが得られる。図3の中心のピークが真の海底の周波数成分であり、1Hz付近の小さな山が波による動揺の周波数成分を示している。
ステップST2:フーリエ変換データをフィルタリングする。すなわち、図34において破線で示すように、0.5Hz以上の成分を除く処理を行い、1Hz付近の小さな山の成分を除去する。
ステップST3:フィルタリング後のデータを逆フーリエ変換する。この結果、図32において実線で示すように、真の海底の起伏に近い海底のデータが得られる。実際の応用時には、あらかじめ波の成分を予測又は測定し、その周波数成分を除去することによって真の海底深度を求めることができる。
Step ST1: Fourier transform the seafloor depth data. As a result of the Fourier transform, for example, as shown in FIG. 34, Fourier transform data including a motion component is obtained. The peak at the center of FIG. 3 is the frequency component of the true bottom, and the small mountain near 1 Hz shows the frequency component of the wave-induced oscillation.
Step ST2: Filter Fourier transform data. That is, as shown by a broken line in FIG. 34, processing is performed to remove components of 0.5 Hz or more, and small mountain components near 1 Hz are removed.
Step ST3: Inverse Fourier transform the filtered data. As a result, as shown by a solid line in FIG. 32, data of the bottom near the undulation of the true bottom is obtained. In practical applications, the true bottom depth can be determined by predicting or measuring wave components in advance and removing its frequency components.

周波数分離の方法の他の例は、図35に示すように、海底深度生データをローパスフィルタ (又はバンドパスフィルタ)21に供給し、動揺成分を除去するものである。海底深度生データは、動揺成分を含み、動揺補正前のデータを意味する。ローパスフィルタ(又はバンドパスフィルタ)21として、図36に示すように、例えばFIR(Finite Impulse Response)フィルタの 構成を使用できる。IIR(Infinite Impulse Response)の構
成のデジタルフィルタを使用して もよい。図36において、単位遅延素子Zの直列接続
に対して入力データが供給され、直列接続の段間からそれぞれ取り出された複数のサンプルに対して乗算器M1 〜Mn によって係数a0 〜an をそれぞれ乗算する。乗算器M1 〜Mn の出力が加算器ADによって加算されることによって出力データyn が得られる。係数a0 〜an によって所望の周波数特性のデジタルフィルタを構成することができる。
Another example of the frequency separation method is to supply bottom depth raw data to a low pass filter (or band pass filter) 21 as shown in FIG. The seafloor depth raw data includes a motion component and means data before motion correction. As the low pass filter (or band pass filter) 21, as shown in FIG. 36, for example, a configuration of an FIR (Finite Impulse Response) filter can be used. Infinite Impulse Response (IIR) configuration digital filters may be used. In FIG. 36, input data is supplied to the series connection of unit delay elements Z, and multipliers M1 to Mn multiply coefficients a0 to an by a plurality of samples respectively taken out between stages of the series connection. . The outputs of the multipliers M1 to Mn are added by the adder AD to obtain output data yn. The coefficients a0 to an can constitute a digital filter of desired frequency characteristics.

図37A及び図37Bは、1秒間に100回の送信周期で得られた海底深度生データをローパスフィルタ(又はバンドパスフィルタ)21に対して入力し、ローパスフィルタ(又はバンドパスフィルタ)21の出力に動揺補正がなされた海底深度データを得る例を示している。図37A及び図37Bにおいて、実線22が海底深度生データを示し、破線23が動揺補正後の海底深度データを示す。動揺補正によって真の海底深度を示すデータが得られる。   37A and 37B input bottom depth raw data obtained at a transmission cycle of 100 times per second to the low pass filter (or band pass filter) 21 and output the low pass filter (or band pass filter) 21. Shows an example of obtaining seafloor depth data on which motion correction is made. In FIG. 37A and FIG. 37B, a solid line 22 indicates bottom depth raw data, and a broken line 23 indicates bottom depth data after motion correction. The motion correction provides data indicating the true bottom depth.

図38を参照して本発明の一実施の形態の動揺補正のさらに他の例について説明する。図7で示す本発明の音響測深機を用いて深度データを収録する。収録された深度データは図38に示すような時刻と深度値のデータである。この例では、1秒間に20回の送信を行って得られた深度データである。もちろん1秒間に100回送信すればさらに細かい深度データを得ることができる。   Another example of the motion compensation of the embodiment of the present invention will be described with reference to FIG. Depth data is recorded using the echo sounder of the present invention shown in FIG. The recorded depth data is data of time and depth value as shown in FIG. In this example, it is depth data obtained by performing 20 transmissions per second. Of course, more detailed depth data can be obtained by transmitting 100 times a second.

得られたこの深度データを図33に示すバッチ処理フローに入力することによって動揺補正処理を行うことができる。   The motion correction process can be performed by inputting the obtained depth data into the batch process flow shown in FIG.

<5.他の実施の形態>
本発明の他の実施の形態は、動揺成分を海面に静止して浮かんでいる船(浮標でもよい)によって検出して検出した動揺成分によって準リアルタイムに動揺補正を行うものである。図39に示すように、深度観測の調査船31が所定のコースと速度で航行する場合、調査船とほぼ同一の波の影響を受ける海域に、動揺成分を検出するための船32を静止して浮かべるようにする。船32によって検出された動揺成分が無線で調査船31に対して送信される。調査船31において、船32から受信した動揺成分によって動揺補正がなされる。
<5. Other Embodiments>
In another embodiment of the present invention, motion correction is performed in a near real time by the motion component detected and detected by a ship (a buoy may be a float) floating on the sea surface stationary. As shown in FIG. 39, when the research vessel 31 for depth observation travels with a predetermined course and speed, the ship 32 for detecting the motion component is stopped in the sea area affected by the waves almost the same as the research vessel. Make me The oscillation component detected by the ship 32 is wirelessly transmitted to the survey ship 31. In the research ship 31, the movement correction is made by the movement component received from the ship 32.

図40に示すように、船32には、海底に対して超音波を送出する送波器41と、海底からのエコーを受信する受波器42が設けられている。送波器41及び受波器42に対して動揺検出部43が接続されている。動揺検出部43は、図7に示し、上述した深度測定と同様の構成及び信号処理によって深度データを得る。この深度データは、船32が同じ場所に静止しているので、深度は一定であるはずであるが、波により上下動を行うので動揺成分のみのデータとなる。動揺データが無線通信部44に供給され、動揺データを含む送信データが調査船31に対して送信される。   As shown in FIG. 40, the ship 32 is provided with a transmitter 41 for transmitting an ultrasonic wave to the seabed and a receiver 42 for receiving an echo from the seabed. A motion detection unit 43 is connected to the transmitter 41 and the receiver 42. The motion detection unit 43 obtains depth data by the same configuration and signal processing as the depth measurement shown in FIG. 7 and described above. The depth data should be constant because the ship 32 is stationary at the same place, but it is data of only the fluctuation component since it moves up and down by waves. The oscillation data is supplied to the wireless communication unit 44, and the transmission data including the oscillation data is transmitted to the survey ship 31.

調査船31には、図7に示し、上述した深度測定と同様の音響測深装置が備えられている。図40では動揺補正と関連する一部の構成のみが示されている。受波器6で受信され、受信アンプ7から出力される深度生データがローパスフィルタ又はバンドパスフィルタ48に供給される。船32からの動揺データが受信され、無線通信部45から動揺データが出力される。動揺データが調整回路46に供給される。   The survey ship 31 is provided with an acoustic sounding system similar to the depth measurement shown in FIG. 7 and described above. FIG. 40 shows only a part of the configuration associated with the motion correction. Raw depth data received by the receiver 6 and output from the receiving amplifier 7 is supplied to a low pass filter or band pass filter 48. The motion data from the ship 32 is received, and the wireless communication unit 45 outputs the motion data. The oscillation data is supplied to the adjustment circuit 46.

調整回路46は、送られてきた動揺データをフーリエ変換し、波による動揺の周波数成分を検出し、検出結果に基づいて制御信号を形成する。制御信号は、動揺成分の周波数成分を除去するようにローパスフィルタ又はバンドパスフィルタ48のカットオフ周波数を制御するものである。この制御信号がローパスフィルタ又はバンドパスフィルタ48のカットオフ周波数の制御信号として供給される。これにより、準リアルタイムで動揺補正を行うことができる。   The adjustment circuit 46 Fourier-transforms the transmitted oscillation data, detects a frequency component of oscillation due to waves, and forms a control signal based on the detection result. The control signal controls the cut-off frequency of the low pass filter or band pass filter 48 so as to remove the frequency component of the fluctuation component. This control signal is supplied as a control signal of the cutoff frequency of the low pass filter or the band pass filter 48. Thereby, it is possible to perform upset correction in near real time.

本発明の他の実施の形態は、実際に検出された動揺データを使用して動揺補正を行うので、精度を高くすることができる。調査船以外に検出のための船、浮標等が必要となるが、複数の調査船で検出用の船、浮標等を共用することによってコストの削減を図ることができる。また、動揺検出のための船の音響測深装置は、調査船の音響測深装置と同様の構成であり、動揺検出のための船と調査船の役割を交代させることが簡単であり、運用面の工夫によってコストの削減が可能である。   Another embodiment of the present invention can achieve high accuracy because the motion correction is performed using actually detected motion data. In addition to survey vessels, vessels for detection, buoys, etc. are required, but cost reduction can be achieved by sharing vessels for detection, buoys, etc. among multiple survey vessels. In addition, the sounding system of the ship for motion detection has the same configuration as the sounding system of the research ship, and it is easy to alternate the roles of the ship and the research ship for motion detection. Cost can be reduced by devising.

<6.応用例>
本発明は、超音波振動子アレイにより構成されるトランスデューサを用いて超音波の送受信を行なうものがある。船舶から海底に向けて扇状に送信ビームを照射し、受信ビームを通して海底を見るようになされる。この結果、送信ビーム範囲と受信ビーム範囲が重なる部分の海底が調べられる。マルチビーム法では、方位ごとにその方位にメインビームが向くような所定のビームパターンを持つ受信ビームを形成することで、方位ごとの超音波エコーの強さを推定することができる。かかるマルチビーム法における動揺補正に対してこの発明を適用できる。
<6. Application example>
According to the present invention, ultrasonic waves are transmitted and received using a transducer constituted by an ultrasonic transducer array. The transmitting beam is fan-shapedly directed from the ship to the seabed, and the seabed is viewed through the receiving beam. As a result, the bottom of the portion where the transmit beam range and the receive beam range overlap is examined. In the multi-beam method, it is possible to estimate the intensity of ultrasound echo for each direction by forming a reception beam having a predetermined beam pattern such that the main beam is directed to that direction for each direction. The present invention can be applied to the motion correction in the multi-beam method.

<7.変形例>
以上、本発明の実施の形態について具体的に説明したが、本発明は、上述の実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値などを用いてもよい。例えば相関検出を行う場合、受信エコー信号をコードに復調してから相関を検出することも可能である。さらに、以上の説明では音響測深装置について述べたが、マルチビーム音響測深装置、サイドスキャンソナー、魚群探知機、スキャニングソナー等の音響測深技術を使用する装置に対して本発明を適用することができる。さらに、海上の波浪に限らず、淡水における音響測深装置の動揺補正に対しても本発明を適用することができる。
<7. Modified example>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, Various deformation | transformation based on the technical idea of this invention are possible. For example, the configurations, methods, processes, shapes, materials, numerical values, and the like described in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, and the like may be used as necessary. It is also good. For example, when correlation detection is performed, it is also possible to demodulate the received echo signal into a code and then detect the correlation. Furthermore, although the above description has described an echo sounding apparatus, the present invention can be applied to an apparatus using an echo sounding technique such as a multi-beam echo sounding system, a side scan sonar, a fish finder, a scanning sonar, etc. . Furthermore, the present invention can be applied not only to sea waves but also to motion correction of an echo sounder in fresh water.

なお、上述した実施の形態における処理装置の機能は、磁気ディスク、光磁気ディスク、ROM等の記録媒体にプログラムとして記録することができる。したがって、この記録媒体をコンピュータで読み取ってMPU(Micro Processing Unit)、DSP(Digital Signal Processor)等で 実行することにより音響測定装置の機能を実現することができる。   The functions of the processing apparatus in the above-described embodiment can be recorded as a program on a recording medium such as a magnetic disk, a magneto-optical disk, or a ROM. Therefore, the function of the acoustic measurement device can be realized by reading this recording medium with a computer and executing it with a micro processing unit (MPU), a digital signal processor (DSP) or the like.

1 送信トリガパルス発生器
2 ゴールドコード発生器
3 パルス変調器
5 送波器
6 受波器
8 相関器
10 表示及び/又は記録装置
21 ローパスフィルタ又はバンドパスフィルタ
SR シフトレジスタ
EXA1〜EX127 演算回路
1 Transmission Trigger Pulse Generator 2 Gold Code Generator 3 Pulse Modulator 5 Transmitter 6 Receiver 8 Correlator 10 Display and / or Recording Device 21 Low Pass Filter or Band Pass Filter SR Shift Register EXA1 to EX127 Arithmetic Circuit

Claims (2)

船などの移動体に設置され、水中の測定対象を探知し、上下方向の動揺によって深度が変化する音響測深装置において、
疑似雑音系列信号を生成する疑似雑音系列発生回路及び送信タイミングの前記疑似雑音系列信号によって搬送波信号を変調して送信信号を形成する変調回路を有する送信信号形成部と、
前記送信信号を周期的に超音波として移動体の下方に位置する測定対象に向けて送出する送信部と、
前記送信部から送出された超音波のエコーを受信する受信部と、
前記エコーを前記疑似雑音系列信号によって相関処理を行うことによって、前記送信信号と対応する前記エコーを判別し、前記送信信号及び前記エコーの時間差に基づいて深度生データを取得する相関器と、
前記深度生データに対して動揺補正を行うことによって動揺成分を抑圧する動揺補正部と、
前記動揺補正部の出力が供給される表示及び/又は記録装置とを備え、
前記送信信号の周期は、水中の音波の速度をVuとし、深度をDとする場合に、(2D/Vu)以下とされ、且つ前記動揺成分の周期に比べてサンプリング定理を満足するものとなされた音響測深装置。
In an echo sounder, which is installed on a moving object such as a ship, detects an object to be measured in water, and whose depth changes due to vertical oscillation,
A transmission signal formation unit having a pseudo noise sequence generation circuit that generates a pseudo noise sequence signal, and a modulation circuit that modulates a carrier signal with the pseudo noise sequence signal of transmission timing to form a transmission signal;
A transmitter configured to periodically transmit the transmission signal as an ultrasonic wave toward a measurement target located below the mobile object;
A receiving unit for receiving an echo of the ultrasonic wave transmitted from the transmitting unit;
A correlator that determines the echo corresponding to the transmission signal by correlating the echo with the pseudo noise sequence signal, and acquires raw depth data based on a time difference between the transmission signal and the echo;
A motion correction unit that suppresses motion components by performing motion correction on the depth raw data;
A display and / or recording device to which the output of the motion correction unit is supplied;
The period of the transmission signal is set to (2D / Vu) or less when the velocity of the sound wave in water is Vu and the depth is D, and the sampling theorem is satisfied compared to the period of the motion component Echo sounder.
船などの移動体に設置され、水中の測定対象を探知し、上下方向の動揺によって深度が変化するマルチビーム音響測深装置において、
疑似雑音系列信号を生成する疑似雑音系列発生回路及び送信タイミングの前記疑似雑音系列信号によって搬送波信号を変調して送信信号を形成する変調回路を有する送信信号形成部と、
前記送信信号を周期的に超音波として移動体の下方に位置する測定対象に向けて送出する送信部と、
前記送信部から送出された超音波のエコーを受信する受信部と、
前記エコーを前記疑似雑音系列信号によって相関処理を行うことによって、前記送信信号と対応する前記エコーを判別し、前記送信信号及び前記エコーの時間差に基づいて深度生データを取得する相関器と、
前記深度生データに対して動揺補正を行うことによって動揺成分を抑圧する動揺補正部と、
前記動揺補正部の出力が供給される表示及び/又は記録装置とを備え、
前記送信信号の周期は、水中の音波の速度をVuとし、深度をDとする場合に、(2D/Vu)以下とされ、且つ前記動揺成分の周期に比べてサンプリング定理を満足するものとなされ、
前記送信部によって扇状に多数の超音波ビームを送出する
マルチビーム音響測深装置。
A multi-beam echo sounder, which is installed on a moving object such as a ship, detects the measurement object in the water, and whose depth changes due to vertical oscillation,
A transmission signal formation unit having a pseudo noise sequence generation circuit that generates a pseudo noise sequence signal, and a modulation circuit that modulates a carrier signal with the pseudo noise sequence signal of transmission timing to form a transmission signal;
A transmitter configured to periodically transmit the transmission signal as an ultrasonic wave toward a measurement target located below the mobile object;
A receiving unit for receiving an echo of the ultrasonic wave transmitted from the transmitting unit;
A correlator that determines the echo corresponding to the transmission signal by correlating the echo with the pseudo noise sequence signal, and acquires raw depth data based on a time difference between the transmission signal and the echo;
A motion correction unit that suppresses motion components by performing motion correction on the depth raw data;
A display and / or recording device to which the output of the motion correction unit is supplied;
The period of the transmission signal is set to (2D / Vu) or less when the velocity of the sound wave in water is Vu and the depth is D, and the sampling theorem is satisfied compared to the period of the motion component ,
A multi-beam echosounder, which sends out a large number of ultrasonic beams in a fan-like manner by the transmitter.
JP2019072372A 2019-04-05 2019-04-05 Echo sounder and multi-beam echo sounder Active JP6757083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019072372A JP6757083B2 (en) 2019-04-05 2019-04-05 Echo sounder and multi-beam echo sounder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019072372A JP6757083B2 (en) 2019-04-05 2019-04-05 Echo sounder and multi-beam echo sounder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017173750A Division JP2018010006A (en) 2017-09-11 2017-09-11 Echo sounder, echo sounding method, and multi-beam echo sounder

Publications (2)

Publication Number Publication Date
JP2019124703A true JP2019124703A (en) 2019-07-25
JP6757083B2 JP6757083B2 (en) 2020-09-16

Family

ID=67398554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072372A Active JP6757083B2 (en) 2019-04-05 2019-04-05 Echo sounder and multi-beam echo sounder

Country Status (1)

Country Link
JP (1) JP6757083B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414261A (en) * 1977-07-04 1979-02-02 Nippon Telegr & Teleph Corp <Ntt> Coded pulse ultrasonic wave transmitter receiver
US4244036A (en) * 1978-12-21 1981-01-06 Westinghouse Electric Corp. Electronic stabilization for displaced phase center systems
JPS5821178A (en) * 1981-07-30 1983-02-07 Nec Corp Ultrasonic detector
JPH02115782A (en) * 1988-10-25 1990-04-27 Nec Corp Estimated stranding distance instrument
JPH0566265A (en) * 1991-09-09 1993-03-19 Furuno Electric Co Ltd Sounding support device
JPH07218254A (en) * 1993-04-01 1995-08-18 Unyusho Kowan Gijutsu Kenkyusho Oceanographic meter
JPH0968569A (en) * 1995-08-31 1997-03-11 Matsushita Electric Works Ltd Ultrasonic sensor
JPH10325871A (en) * 1997-05-26 1998-12-08 Kokusai Kogyo Kk Narrow multi-beam depth measuring system
JP2000111647A (en) * 1998-10-02 2000-04-21 Mitsubishi Heavy Ind Ltd Obstacle detector
US6285628B1 (en) * 1999-09-13 2001-09-04 L3 Communications Corporation Swept transit beam bathymetric sonar
JP2002090456A (en) * 2000-09-21 2002-03-27 Kokusai Kogyo Co Ltd Topographic measuring apparatus
JP2002131427A (en) * 2000-10-26 2002-05-09 Mitsubishi Heavy Ind Ltd Ultrasonic searching method and device, and ultrasonic analyzing device
JP2002214341A (en) * 2001-01-17 2002-07-31 Nec Corp Synthetic aperture sonar and method of processing synthetic aperture
JP2004117129A (en) * 2002-09-26 2004-04-15 Nec Corp Synthetic aperture sonar, method of correcting oscillation used therefor, and program thereof
JP2010025739A (en) * 2008-07-18 2010-02-04 Hitachi Ltd Composite opening sonar
JP2010127771A (en) * 2008-11-27 2010-06-10 Nec Corp Synthetic aperture sonar, and method and program for correcting phase error of synthetic aperture sonar
WO2011102130A1 (en) * 2010-02-18 2011-08-25 パナソニック株式会社 Ultrasonic measurement method and ultrasonic measurement device
JP2013104811A (en) * 2011-11-15 2013-05-30 Kansai Electric Power Co Inc:The Apparatus and method for ultrasonic distance measurement
WO2013088951A1 (en) * 2011-12-12 2013-06-20 株式会社村田製作所 Position measurement device

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414261A (en) * 1977-07-04 1979-02-02 Nippon Telegr & Teleph Corp <Ntt> Coded pulse ultrasonic wave transmitter receiver
US4244036A (en) * 1978-12-21 1981-01-06 Westinghouse Electric Corp. Electronic stabilization for displaced phase center systems
JPS5821178A (en) * 1981-07-30 1983-02-07 Nec Corp Ultrasonic detector
JPH02115782A (en) * 1988-10-25 1990-04-27 Nec Corp Estimated stranding distance instrument
JPH0566265A (en) * 1991-09-09 1993-03-19 Furuno Electric Co Ltd Sounding support device
JPH07218254A (en) * 1993-04-01 1995-08-18 Unyusho Kowan Gijutsu Kenkyusho Oceanographic meter
JPH0968569A (en) * 1995-08-31 1997-03-11 Matsushita Electric Works Ltd Ultrasonic sensor
JPH10325871A (en) * 1997-05-26 1998-12-08 Kokusai Kogyo Kk Narrow multi-beam depth measuring system
JP2000111647A (en) * 1998-10-02 2000-04-21 Mitsubishi Heavy Ind Ltd Obstacle detector
US6285628B1 (en) * 1999-09-13 2001-09-04 L3 Communications Corporation Swept transit beam bathymetric sonar
JP2002090456A (en) * 2000-09-21 2002-03-27 Kokusai Kogyo Co Ltd Topographic measuring apparatus
JP2002131427A (en) * 2000-10-26 2002-05-09 Mitsubishi Heavy Ind Ltd Ultrasonic searching method and device, and ultrasonic analyzing device
JP2002214341A (en) * 2001-01-17 2002-07-31 Nec Corp Synthetic aperture sonar and method of processing synthetic aperture
JP2004117129A (en) * 2002-09-26 2004-04-15 Nec Corp Synthetic aperture sonar, method of correcting oscillation used therefor, and program thereof
JP2010025739A (en) * 2008-07-18 2010-02-04 Hitachi Ltd Composite opening sonar
JP2010127771A (en) * 2008-11-27 2010-06-10 Nec Corp Synthetic aperture sonar, and method and program for correcting phase error of synthetic aperture sonar
WO2011102130A1 (en) * 2010-02-18 2011-08-25 パナソニック株式会社 Ultrasonic measurement method and ultrasonic measurement device
JP2013104811A (en) * 2011-11-15 2013-05-30 Kansai Electric Power Co Inc:The Apparatus and method for ultrasonic distance measurement
WO2013088951A1 (en) * 2011-12-12 2013-06-20 株式会社村田製作所 Position measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大塚 清,外1名: ""マルチナロービーム音響測深機(シービーム)による海底地形調査"", 日本音響学会誌, vol. 第47巻第1号, JPN6020009138, 25 December 1990 (1990-12-25), pages 51 - 56, ISSN: 0004325714 *

Also Published As

Publication number Publication date
JP6757083B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2017158659A1 (en) Acoustic measurement device, acoustic measurement method, shaking component detection device, shaking component detection method, multi-beam acoustic measurement device, and synthetic aperture sonar
JP6255449B1 (en) Acoustic sounding device, sound sounding method and multi-beam sound sounding device
US11846704B2 (en) Acoustic doppler system and method
NO153021B (en) DEVICE FOR MEASUREMENT OF WATER FLOW
JP2007064768A (en) Underwater detection system
JP6587564B2 (en) Acoustic measurement device, acoustic measurement method, multi-beam acoustic measurement device, and aperture synthesis sonar
JP6724593B2 (en) Active sonar and control method of active sonar
JP2018010006A (en) Echo sounder, echo sounding method, and multi-beam echo sounder
WO2018173148A1 (en) Echo sounding device and echo sounding method
Colin et al. False-alarm reduction for low-frequency active sonar with BPSK pulses: experimental results
JP6402224B1 (en) Acoustic sounding device and acoustic sounding method
Rajapan et al. Importance of underwater acoustic imaging technologies for oceanographic applications–a brief review
US11802949B2 (en) Underwater information visualizing device
RU75060U1 (en) ACOUSTIC LOCATION SYSTEM OF NEAR ACTION
JP6757083B2 (en) Echo sounder and multi-beam echo sounder
Saxena A review of shallow-water mapping systems
JP2010175429A (en) Synthetic aperture sonar
WO2011058527A1 (en) Method and apparatus for processing sonar signals
Odell et al. A versatile tracking system for AUV testing
JP5259076B2 (en) Ultrasonic transceiver and scanning sonar
CN116500625B (en) Recovery imaging method, device, system, electronic equipment and readable storage medium
EP4206732A1 (en) Scanning a body of water with a fishing sonar apparatus
JP2021196269A (en) Device and method for echo sounding
JP2599009B2 (en) Ultrasonic transmission / reception method
WO2023126219A1 (en) Scanning a body of water with a fishing sonar apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6757083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250