JP2019124616A - Physical quantity sensor - Google Patents

Physical quantity sensor Download PDF

Info

Publication number
JP2019124616A
JP2019124616A JP2018006180A JP2018006180A JP2019124616A JP 2019124616 A JP2019124616 A JP 2019124616A JP 2018006180 A JP2018006180 A JP 2018006180A JP 2018006180 A JP2018006180 A JP 2018006180A JP 2019124616 A JP2019124616 A JP 2019124616A
Authority
JP
Japan
Prior art keywords
physical quantity
mass body
semiconductor substrate
beam element
quantity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018006180A
Other languages
Japanese (ja)
Other versions
JP6921010B2 (en
Inventor
山口 靖雄
Yasuo Yamaguchi
靖雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018006180A priority Critical patent/JP6921010B2/en
Publication of JP2019124616A publication Critical patent/JP2019124616A/en
Application granted granted Critical
Publication of JP6921010B2 publication Critical patent/JP6921010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

To provide a physical quantity sensor with which it is possible to suppress a beam that supports a movable unit from being fastened.SOLUTION: The physical quantity sensor comprises: a mass body provided in a gap part formed in plane of a semiconductor substrate and displaceable in a direction parallel to the plane of the semiconductor substrate in accordance with an inputted physical quantity; an elastic support part connected at one end to the mass body and fixed at other end to the semiconductor substrate, extending in a direction parallel to the plane of the semiconductor substrate in the gap part, and elastically deformed in accordance with the displacement of the mass body; and a fixed electrode provided on the semiconductor substrate, for detecting capacitance generated between the mass body and itself in accordance with the displacement of the mass body. The elastic support part includes a beam formed by being folded back in multiplicity at a plurality of fold-back positions from one end to the other end. The beam includes a plurality of beam elements extending between each of the plurality of fold-back positions. The cross sectional shape of one beam element among the plurality of beam elements includes a slope in a counterface surface facing an other beam element adjacent to the one beam element.SELECTED DRAWING: Figure 1

Description

本発明は、物理量センサに関し、特にMEMS(Micro Electro Mechanical System)技術を用いた物理量センサに関する。   The present invention relates to a physical quantity sensor, and more particularly to a physical quantity sensor using MEMS (Micro Electro Mechanical System) technology.

MEMS技術が用いられた静電容量型の物理量センサとして、加速度センサや角速度センサなどが知られている。例えば、加速度センサは、物理量の入力に対し変位する可動部および変位しない固定部を有し、その可動部は梁に支持されている。特許文献1には、半導体装置として加速度センサが開示されており、その加速度センサは、可動部として可動検出質量体および固定部として固定電極を有し、その可動検出質量体を支持する梁として支持ばねをさらに有する。静電容量型の物理量センサは、可動部と固定部との距離と、それら可動部と固定部とが対面する面積とに依存する静電容量の変化を検出し、入力された物理量に換算する。   As a capacitance-type physical quantity sensor using MEMS technology, an acceleration sensor, an angular velocity sensor, and the like are known. For example, the acceleration sensor has a movable part that displaces with respect to the input of the physical quantity and a fixed part that does not displace, and the movable part is supported by the beam. Patent Document 1 discloses an acceleration sensor as a semiconductor device. The acceleration sensor includes a movable detection mass as a movable portion and a fixed electrode as a fixed portion, and supports the beam as a beam for supporting the movable detection mass. It further has a spring. The capacitance-type physical quantity sensor detects a change in capacitance depending on the distance between the movable part and the fixed part and the area where the movable part and the fixed part face each other, and converts it into the input physical quantity .

特開2009−16717号公報JP, 2009-16717, A

加速度センサが高感度に加速度を検出するには、可動部を支持する梁が変位しやすいことが求められる。また、静電容量の増大も必要であるため、固定部と可動部とは、できるだけ狭い範囲に近接して設けられることが好ましい。しかし、加速度センサを構成する可動部や梁等の構成要素が互いに近接した範囲に形成された場合、加工中や運搬中に生じる振動により、可動部を支持する梁は他の梁に接触し固着することがある。梁が固着した物理量センサは、入力される物理量に対し可動部が正常に変位しないため、所望の特性を発揮することができない、もしくは、物理量を検出することができない。   In order for the acceleration sensor to detect acceleration with high sensitivity, it is required that the beam supporting the movable part be easily displaced. In addition, since it is also necessary to increase the capacitance, it is preferable that the fixed portion and the movable portion be provided in close proximity to each other as narrow as possible. However, when components such as the movable part and the beam that constitute the acceleration sensor are formed in a range close to each other, the beam that supports the movable part contacts other beams due to the vibrations generated during processing and transportation. There is something to do. The physical quantity sensor to which the beam is fixed can not exhibit desired characteristics or can not detect the physical quantity, because the movable part does not displace normally with respect to the input physical quantity.

この発明は上記のような問題を解決するためになされたものであり、可動部を支持する梁の固着を抑制することが可能な物理量センサの提供を目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a physical quantity sensor capable of suppressing the fixation of a beam supporting a movable part.

本発明に係る物理量センサは、半導体基板の面内に形成された空隙部に設けられ、入力される物理量に応じて、半導体基板の面に対して平行な方向に変位可能な質量体と、一端が質量体に接続され、他端が半導体基板に固定され、空隙部において半導体基板の面に対して平行な方向に延在し、質量体の変位に応じて弾性変形する弾性支持部と、半導体基板に設けられ、質量体の変位に応じて質量体との間に生成される静電容量を検出する固定電極と、を備える。弾性支持部は、一端から他端にかけて複数の折り返し位置にて多重に折り返されてなる梁を含む。梁は、複数の折り返し位置の各々の間に延在する複数の梁要素を含む。複数の梁要素のうち一の梁要素の断面形状は、一の梁要素に隣接する他の梁要素と対面する面である対向面に斜面を含む。   A physical quantity sensor according to the present invention is provided in an air gap formed in a plane of a semiconductor substrate, and a mass body displaceable in a direction parallel to the plane of the semiconductor substrate according to an input physical quantity, An elastic support portion which is connected to the mass body, the other end is fixed to the semiconductor substrate, extends in a direction parallel to the surface of the semiconductor substrate in the air gap, and elastically deforms according to the displacement of the mass body; And a fixed electrode provided on the substrate and detecting a capacitance generated between the mass body in response to the displacement of the mass body. The elastic support includes a beam which is folded back in a plurality of folding positions from one end to the other end. The beam includes a plurality of beam elements extending between each of the plurality of folding positions. The cross-sectional shape of one beam element of the plurality of beam elements includes an inclined surface in an opposing surface that is a surface facing another beam element adjacent to the one beam element.

本発明によれば、可動部を支持する梁の固着を抑制する物理量センサの提供が可能である。   According to the present invention, it is possible to provide a physical quantity sensor that suppresses sticking of a beam that supports a movable part.

本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。   The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.

実施の形態における物理量センサの構成を模式的に示す平面図である。It is a top view which shows typically the structure of the physical quantity sensor in embodiment. 実施の形態における梁要素の構成を示す断面図である。It is sectional drawing which shows the structure of the beam element in embodiment. 実施の形態における質量体の第1くし歯および固定電極の第2くし歯の構成を示す断面図である。It is sectional drawing which shows the structure of the 1st comb tooth of the mass in embodiment, and the 2nd comb tooth of fixed electrode. 実施の形態における弾性支持部の構成を示す平面図である。It is a top view which shows the structure of the elastic support part in embodiment. 前提技術における互いに隣接する2つの梁要素が固着した状態を示す平面図である。It is a top view which shows the state which two beam elements which adjoin each other in the base technology adhered. 前提技術における互いに隣接する2つの梁要素が固着した状態を示す断面図である。It is sectional drawing which shows the state which two beam elements which adjoin each other in the base technology adhered. 実施の形態における互いに隣接する2つの梁要素が接触した状態を示す断面図である。It is a sectional view showing a state where two beam elements which adjoin each other in an embodiment contact. 実施の形態の変形例1における梁要素の構成を示す断面図である。It is sectional drawing which shows the structure of the beam element in the modification 1 of embodiment. 実施の形態の変形例2における梁要素の構成を示す断面図である。It is sectional drawing which shows the structure of the beam element in the modification 2 of embodiment.

(物理量センサの構成)
物理量センサは、例えば、静電容量型の物理量センサである。本実施の形態においては、物理量センサは、静電容量型の物理量センサとして、加速度センサを一例に説明する。図1は、本実施の形態における物理量センサの構成を模式的に示す平面図である。
(Configuration of physical quantity sensor)
The physical quantity sensor is, for example, a capacitive physical quantity sensor. In the present embodiment, the physical quantity sensor will be described by taking an acceleration sensor as an example of a capacitive physical quantity sensor. FIG. 1 is a plan view schematically showing the configuration of the physical quantity sensor in the present embodiment.

物理量センサは、質量体1、弾性支持部2および固定電極3で構成され、それらは半導体基板の面内に形成された空隙部4に設けられる。また、図示は省略するが、質量体1、弾性支持部2および固定電極3の表面側は保護部材により覆われている。図1において、表面側とは+z方向のことである。質量体1および弾性支持部2と保護部材との間には間隙が設けられている。保護部材は、例えばガラス基板またはシリコン基板である。また、質量体1および弾性支持部2の裏面側には、空隙部4を介して半導体基板が設けられ、固定電極3等の固定部は半導体基板に固定されている。図1において、裏面側とは−z方向のことである。また、物理量センサには、保護部材との接合部および外部との電気信号を授受する電極部が設けられている。   The physical quantity sensor is composed of a mass body 1, an elastic support 2 and a fixed electrode 3, which are provided in an air gap 4 formed in the plane of the semiconductor substrate. Moreover, although illustration is abbreviate | omitted, the surface side of the mass body 1, the elastic support part 2, and the fixed electrode 3 is covered by the protection member. In FIG. 1, the surface side is the + z direction. A gap is provided between the mass body 1 and the elastic support 2 and the protection member. The protective member is, for example, a glass substrate or a silicon substrate. In addition, a semiconductor substrate is provided on the back surface side of the mass body 1 and the elastic support portion 2 via the air gap 4, and the fixing portion such as the fixed electrode 3 is fixed to the semiconductor substrate. In FIG. 1, the back side is the −z direction. In addition, the physical quantity sensor is provided with a junction with the protective member and an electrode unit that transmits and receives an electrical signal with the outside.

質量体1は、半導体基板の面内に形成された空隙部4に設けられる。質量体1は、後述する固定電極3に対向する第1くし歯11を有する。質量体1は、物理量センサに入力される物理量に応じて、半導体基板の面に対して平行な方向に変位可能である。半導体基板の面に対して平行な方向とは、図1においてx−y平面に対して平行な方向のことである。また、物理量とは、ここでは、加速度である。   The mass body 1 is provided in the space 4 formed in the plane of the semiconductor substrate. The mass body 1 has a first comb tooth 11 facing the fixed electrode 3 described later. The mass body 1 is displaceable in a direction parallel to the plane of the semiconductor substrate according to the physical quantity input to the physical quantity sensor. The direction parallel to the plane of the semiconductor substrate is the direction parallel to the xy plane in FIG. Moreover, a physical quantity is acceleration here.

弾性支持部2は、一端2aが質量体1に接続され、他端2bが半導体基板に固定されており、質量体1を支持している。本実施の形態においては、他端2bは、半導体基板の面内に設けられたアンカー5に保持され、そのアンカー5を介して裏面側の半導体基板に固定されている。弾性支持部2は、空隙部4において半導体基板の面に対して平行な方向に延在する。弾性支持部2は、質量体1の変位に応じて弾性変形する。   The elastic support portion 2 has one end 2 a connected to the mass body 1 and the other end 2 b fixed to the semiconductor substrate to support the mass body 1. In the present embodiment, the other end 2 b is held by the anchor 5 provided in the plane of the semiconductor substrate, and is fixed to the semiconductor substrate on the back side via the anchor 5. The elastic support portion 2 extends in a direction parallel to the surface of the semiconductor substrate in the air gap portion 4. The elastic support portion 2 elastically deforms according to the displacement of the mass body 1.

弾性支持部2は、一端2aから他端2bにかけて複数の折り返し位置21にて多重に折り返されてなる梁を含む。梁は、複数の折り返し位置21の各々の間に延在する複数の梁要素22を含む。つまり、弾性支持部2は、一端2aから他端2bにかけて多重に配置される複数の梁要素22を含む。図2は、梁要素22の構成を示す断面図であり、図1に示されるA−A’における断面を示す。複数の梁要素22のうち一の梁要素22aの断面形状は、一の梁要素22aに隣接する他の梁要素22bに対面する面である対向面23に斜面を含む。本実施の形態において、梁要素22の断面形状は、対向面23に斜面を含む台形を有する。   The elastic support portion 2 includes a beam which is folded in multiples at a plurality of folding positions 21 from the one end 2a to the other end 2b. The beam includes a plurality of beam elements 22 extending between each of a plurality of fold points 21. That is, the elastic support portion 2 includes a plurality of beam elements 22 arranged in multiple from the one end 2a to the other end 2b. FIG. 2 is a cross-sectional view showing the configuration of the beam element 22, and shows a cross-section at A-A 'shown in FIG. The cross-sectional shape of one beam element 22a of the plurality of beam elements 22 includes an inclined surface in the opposing surface 23, which is a surface facing the other beam element 22b adjacent to one beam element 22a. In the present embodiment, the cross-sectional shape of the beam element 22 has a trapezoidal shape including an inclined surface on the facing surface 23.

固定電極3は、半導体基板に設けられ固定されている。つまり、固定電極3は、物理量によって変位しない。固定電極3は、質量体1の第1くし歯11に対向する第2くし歯31を有する。図3は、質量体1の第1くし歯11および固定電極3の第2くし歯31の構成を示す断面図であり、図1に示されるB−B’における断面を示す。第1くし歯11と第2くし歯31とは、所定の距離を隔てて、対向する位置に配置されており、両者の間には静電容量が形成される。物理量センサは、入力される加速度に応じて質量体1が変位し、第1くし歯11と第2くし歯31との距離が変化する。そして、第1くし歯11と第2くし歯31との間に生じる静電容量が変化し、固定電極3はその静電容量の変化を検出する。検出される静電容量の変化は、加速度の算出に用いられる。静電容量は、第1くし歯11と第2くし歯31との間の距離および対向面積で決定される。外来の影響を相対的に小さくするため、第1くし歯11と第2くし歯31との間の距離は短く、互いの対向面積は大きいことが好ましい。そのため、本実施の形態における物理量センサにおいては、第1くし歯11の側面および第2くし歯31の側面のそれぞれは垂直に加工される。   The fixed electrode 3 is provided and fixed to the semiconductor substrate. That is, the fixed electrode 3 is not displaced by the physical quantity. The fixed electrode 3 has a second comb tooth 31 facing the first comb tooth 11 of the mass 1. FIG. 3 is a cross-sectional view showing the configuration of the first comb teeth 11 of the mass body 1 and the second comb teeth 31 of the fixed electrode 3, and shows a cross section along B-B 'shown in FIG. The first comb teeth 11 and the second comb teeth 31 are disposed at opposing positions with a predetermined distance therebetween, and a capacitance is formed between the two. In the physical quantity sensor, the mass body 1 is displaced according to the input acceleration, and the distance between the first comb tooth 11 and the second comb tooth 31 changes. Then, the capacitance generated between the first comb tooth 11 and the second comb tooth 31 changes, and the fixed electrode 3 detects the change in the capacitance. The change in capacitance detected is used to calculate the acceleration. The capacitance is determined by the distance and the facing area between the first and second comb teeth 11 and 31. It is preferable that the distance between the first comb teeth 11 and the second comb teeth 31 be short, and the opposing areas thereof be large, in order to relatively reduce the influence of foreign matter. Therefore, in the physical quantity sensor in the present embodiment, each of the side surface of the first comb tooth 11 and the side surface of the second comb tooth 31 is processed vertically.

以上のように、本実施の形態における物理量センサは、可動部である質量体1の変位から加速度を検出するセンサである。   As mentioned above, the physical quantity sensor in this embodiment is a sensor which detects acceleration from displacement of mass body 1 which is a movable part.

(物理量センサの動作)
物理量センサの弾性支持部2の剛性は、検出対象の加速度に応じて決定される。その弾性支持部2の剛性は、梁の長さ、幅によって調整される。例えば、加速度センサが低加速度を検出する場合または高感度に加速度を検出する場合、質量体1には入力される加速度に対し変位しやすいことが求められる。そのため、長さは長くかつ幅は細い弾性支持部2が用いられる。図4は、本実施の形態における弾性支持部2の構成を示す平面図である。本実施の形態における弾性支持部2は、一端2aから他端2bにかけて複数の折り返し位置21にて多重に折り返されてなる梁を含み、梁は複数の折り返し位置21の各々の間に延在する複数の梁要素22を有する。梁が折り返されずに質量体1とアンカー5とを接続する弾性支持部と比較して、本実施の形態における物理量センサの弾性支持部2は長い。質量体1が動きやすいため、高感度に加速度が検出される。一方で、弾性支持部2が長い場合、物理量センサの加工中または搬送中に生じる様々な力、例えば衝撃力や静電気力によって、弾性支持部2が変位し、互いに隣接する2つの梁要素22が折り返し位置21付近にて接触することがある。
(Operation of physical quantity sensor)
The rigidity of the elastic support portion 2 of the physical quantity sensor is determined according to the acceleration of the detection target. The rigidity of the elastic support portion 2 is adjusted by the length and width of the beam. For example, when the acceleration sensor detects low acceleration or detects acceleration with high sensitivity, the mass body 1 is required to be easily displaced with respect to the input acceleration. Therefore, the elastic support portion 2 having a long length and a narrow width is used. FIG. 4 is a plan view showing the configuration of the elastic support portion 2 in the present embodiment. The elastic support portion 2 in the present embodiment includes a beam which is folded in multiple turns at a plurality of folding positions 21 from one end 2 a to the other end 2 b, and the beams extend between each of the plurality of folding positions 21. It has a plurality of beam elements 22. The elastic support portion 2 of the physical quantity sensor in the present embodiment is longer than the elastic support portion connecting the mass 1 and the anchor 5 without the beam being folded back. Since the mass body 1 is easy to move, the acceleration is detected with high sensitivity. On the other hand, when the elastic support portion 2 is long, the elastic support portion 2 is displaced by various forces generated during processing or conveyance of the physical quantity sensor, for example, impact force or electrostatic force, and the two beam elements 22 adjacent to each other Contact may occur near the folding point 21.

図5は、互いに隣接する2つの梁要素22が接触した状態を示す平面図である。以下、互いに隣接する2つの梁要素22が接触した箇所を接触部24という。図6は、梁要素22の断面形状が長方形である場合に互いに隣接する2つの梁要素22が固着した状態を示す断面図であり、図5に示されるC−C’における断面を示す。梁要素22の断面形状が長方形である場合、対向面23は垂直面を有し、斜面を含まない。複数の梁要素22のうち一の梁要素22aの対向面23は、一の梁要素22aの長方形をなす一面の全面である。その全面が接触部24にて、一の梁要素22aに隣接する他の梁要素22bに固着し、その状態が保持される。   FIG. 5 is a plan view showing a state in which two beam elements 22 adjacent to each other are in contact with each other. Hereinafter, a point at which two beam elements 22 adjacent to each other are in contact with each other is referred to as a contact portion 24. FIG. 6 is a cross-sectional view showing a state in which two beam elements 22 adjacent to each other are fixed when the cross-sectional shape of beam element 22 is rectangular, and shows a cross-section at C-C 'shown in FIG. If the cross-sectional shape of the beam element 22 is rectangular, the facing surface 23 has a vertical surface and does not include a slope. The facing surface 23 of one beam element 22a of the plurality of beam elements 22 is the entire surface of one beam element 22a that is a rectangle. The entire surface is fixed to the other beam element 22b adjacent to one beam element 22a at the contact portion 24, and the state is maintained.

図7は、本実施の形態における互いに隣接する2つの梁要素22が接触した状態を示す断面図であり、図5に示されるC−C’における断面を示す。梁要素22の断面形状が台形である場合、一の梁要素22aは、対向面23の一部にて、一の梁要素22aに隣接する他の梁要素22bに接触する。接触部24の接触面積は、断面形状が長方形である梁要素22における接触部24の面積よりも小さい。その結果、梁要素22の固着が生じにくくなる。   FIG. 7 is a cross-sectional view showing a state in which two beam elements 22 adjacent to each other in the present embodiment are in contact with each other, and shows a cross-section at C-C 'shown in FIG. When the cross-sectional shape of the beam element 22 is trapezoidal, one beam element 22 a contacts another beam element 22 b adjacent to one beam element 22 a at a part of the facing surface 23. The contact area of the contact part 24 is smaller than the area of the contact part 24 in the beam element 22 whose cross-sectional shape is rectangular. As a result, fixation of the beam element 22 is less likely to occur.

(物理量センサの製造方法)
質量体1、弾性支持部2および固定電極3等が形成される半導体基板は、例えばシリコン基板である。質量体1、弾性支持部2および固定電極3等の物理量センサを構成する構造物は、MEMS技術により、つまり、エッチング等の半導体プロセスにより形成される。断面形状が台形である梁要素22は、断面形状が矩形である第1くし歯11と第2くし歯31とは、別工程で形成される。それにより、固着が生じにくい梁要素22を有し、かつ、加速度の検出感度を高める第1くし歯11と第2くし歯31とを有する物理量センサの製造が可能である。
(Manufacturing method of physical quantity sensor)
The semiconductor substrate on which the mass body 1, the elastic support portion 2, the fixed electrode 3 and the like are formed is, for example, a silicon substrate. The structures constituting the physical quantity sensor such as the mass body 1, the elastic support 2 and the fixed electrode 3 are formed by the MEMS technology, that is, by the semiconductor process such as etching. In the beam element 22 having a trapezoidal cross-sectional shape, the first comb teeth 11 and the second comb teeth 31 having a rectangular cross-sectional shape are formed in separate steps. As a result, it is possible to manufacture a physical quantity sensor that has the beam element 22 that is less likely to cause sticking and that has the first comb teeth 11 and the second comb teeth 31 that enhance the detection sensitivity of acceleration.

(効果)
以上をまとめると、実施の形態における物理量センサは、半導体基板の面内に形成された空隙部4に設けられ、入力される物理量に応じて、半導体基板の面に対して平行な方向に変位可能な質量体1と、一端2aが質量体1に接続され、他端2bが半導体基板に固定され、空隙部4において半導体基板の面に対して平行な方向に延在し、質量体1の変位に応じて弾性変形する弾性支持部2と、半導体基板の面内に設けられ、質量体1の変位に応じて質量体1との間に生成される静電容量を検出する固定電極3と、を備える。弾性支持部2は、一端2aから他端2bにかけて複数の折り返し位置21にて多重に折り返されてなる梁を含む。梁は、複数の折り返し位置21の各々の間に延在する複数の梁要素22を含む。複数の梁要素22のうち一の梁要素22aの断面形状は、一の梁要素22aに隣接する他の梁要素22bに対面する面である対向面23に斜面を含む。
(effect)
Summarizing the above, the physical quantity sensor according to the embodiment is provided in the air gap 4 formed in the plane of the semiconductor substrate, and can be displaced in the direction parallel to the plane of the semiconductor substrate according to the input physical quantity. The mass 1 and the one end 2 a are connected to the mass 1, the other end 2 b is fixed to the semiconductor substrate, extends in a direction parallel to the surface of the semiconductor substrate in the gap 4, and the displacement of the mass 1 An elastic support portion 2 elastically deformed in accordance with the fixed electrode 3 and a fixed electrode 3 provided in the plane of the semiconductor substrate to detect an electrostatic capacitance generated between the mass 1 and the mass 1 according to the displacement of the mass 1 Equipped with The elastic support portion 2 includes a beam which is folded in multiples at a plurality of folding positions 21 from the one end 2a to the other end 2b. The beam includes a plurality of beam elements 22 extending between each of a plurality of fold points 21. The cross-sectional shape of one beam element 22a of the plurality of beam elements 22 includes an inclined surface in the opposing surface 23, which is a surface facing the other beam element 22b adjacent to one beam element 22a.

以上の構成により、可動部である質量体1を支持する梁の固着、つまり梁要素22の固着を抑制する物理量センサの提供が可能である。変位しやすいものの固着しにくい弾性支持部2を有する物理センサが得られる。例えば、外部から過大な衝撃力や静電気力等の物理量が入力された場合であっても、一の梁要素22aおよびそれに隣接する梁要素22bの固着が抑制される。よって、物理量センサの製造工程における歩留りが向上し、かつ、物理量センサの信頼性が向上する。本実施の形態における物理量センサは、互いに垂直な側面を有する第1くし歯11および第2くし歯31が近接して設けられ、かつ、固着しにくく変位しやすい弾性支持部2を有する。よって、物理量センサは、高感度にかつ高精度に加速度を検出することができる。   With the above configuration, it is possible to provide a physical quantity sensor that suppresses the fixation of the beam supporting the mass body 1 that is the movable portion, that is, the fixation of the beam element 22. A physical sensor is obtained which has an elastic supporting portion 2 which is difficult to be fixed but which is difficult to be fixed. For example, even when a physical quantity such as an excessive impact force or electrostatic force is input from the outside, adhesion between one beam element 22a and the beam element 22b adjacent thereto is suppressed. Therefore, the yield in the manufacturing process of the physical quantity sensor is improved, and the reliability of the physical quantity sensor is improved. The physical quantity sensor in the present embodiment is provided with a first comb tooth 11 and a second comb tooth 31 having side surfaces perpendicular to each other in proximity to each other, and has an elastic supporting portion 2 which is hard to be fixed and easily displaced. Therefore, the physical quantity sensor can detect acceleration with high sensitivity and high accuracy.

また、実施の形態における物理量センサは、一の梁要素22aの断面形状は、対向面23に斜面を含む台形を有する。   In the physical quantity sensor according to the embodiment, the cross-sectional shape of one beam element 22 a has a trapezoidal shape including an inclined surface in the facing surface 23.

以上の構成により、一の梁要素22aおよびそれに隣接する梁要素22bは、それぞれの側面に互いが平行でない斜面を有するため、それらの接触をより効果的に抑制する。   According to the above configuration, since one beam element 22a and the beam element 22b adjacent thereto have inclined surfaces which are not parallel to each other on their respective side surfaces, their contact is more effectively suppressed.

(実施の形態の変形例1)
図8は、実施の形態の変形例1における梁要素22の構成を示す断面図である。梁要素22の断面形状は、図2に示される台形とは異なり、長さが長い上辺と長さが短い下辺とを有する逆台形である。一の梁要素22aとそれに隣接する他の梁要素22bとが接触したとしても、接触面積が小さいため、梁要素22の固着が抑制される。
(Modification 1 of Embodiment)
FIG. 8 is a cross-sectional view showing the configuration of the beam element 22 in the first modification of the embodiment. The cross-sectional shape of the beam element 22 is an inverted trapezoid having a long upper side and a short lower side unlike the trapezoidal shape shown in FIG. Even if one beam element 22a comes in contact with another beam element 22b adjacent thereto, since the contact area is small, the fixation of the beam element 22 is suppressed.

(実施の形態の変形例2)
図9は、実施の形態の変形例2における梁要素22の構成を示す断面図である。一の梁要素22aの断面形状は、対向面23に凸型の形状をなす頂点25を含む。つまり、一の梁要素22aの断面において、深さ方向の途中に、一の梁要素22aに隣接する他の梁要素22bとの距離が最小になる部分が設けられている。一の梁要素22aとそれに隣接する他の梁要素22bとが接触したとしても、接触面積が小さいため、梁要素22の固着が抑制される。また、本変形例2においては、凸型の形状の頂点25は鈍角であることから、接触による梁要素22の破損が抑えられる。よって、物理量センサの信頼性が向上する。
(Modification 2 of the embodiment)
FIG. 9 is a cross-sectional view showing the configuration of the beam element 22 in the second modification of the embodiment. The cross-sectional shape of one beam element 22 a includes an apex 25 having a convex shape on the facing surface 23. That is, in the cross section of one beam element 22a, a portion where the distance to the other beam element 22b adjacent to one beam element 22a is provided is provided halfway in the depth direction. Even if one beam element 22a comes in contact with another beam element 22b adjacent thereto, since the contact area is small, the fixation of the beam element 22 is suppressed. Further, in the second modification, since the apex 25 of the convex shape has an obtuse angle, breakage of the beam element 22 due to contact can be suppressed. Thus, the reliability of the physical quantity sensor is improved.

また、実施の形態および各変形例において、物理量センサの一例として加速度センサが示されたが、物理量センサが角速度センサ、振動センサ等、梁要素22を有する物理量センサであれば同様の効果を奏する。   Although an acceleration sensor is shown as an example of a physical quantity sensor in the embodiment and each modification, similar effects can be obtained as long as the physical quantity sensor is a physical quantity sensor such as an angular velocity sensor or a vibration sensor having a beam element 22.

なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。   In the present invention, within the scope of the invention, the embodiment can be appropriately modified or omitted.

本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。   Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention.

1 質量体、2 弾性支持部、2a 一端、2b 他端、21 折り返し位置、22 梁要素、23 対向面、25 頂点、3 固定電極、4 空隙部。   1 mass body, 2 elastic support portion, 2a one end, 2b other end, 21 return position, 22 beam element, 23 facing surface, 25 apex, 3 fixed electrode, 4 gap portion.

Claims (3)

半導体基板の面内に形成された空隙部に設けられ、入力される物理量に応じて、前記半導体基板の前記面に対して平行な方向に変位可能な質量体と、
一端が前記質量体に接続され、他端が前記半導体基板に固定され、前記空隙部において前記半導体基板の前記面に対して平行な方向に延在し、前記質量体の変位に応じて弾性変形する弾性支持部と
前記半導体基板に設けられ、前記質量体の前記変位に応じて前記質量体との間に生成される静電容量を検出する固定電極と、を備え、
前記弾性支持部は、前記一端から前記他端にかけて複数の折り返し位置にて多重に折り返されてなる梁を含み、
前記梁は、前記複数の折り返し位置の各々の間に延在する複数の梁要素を含み、
前記複数の梁要素のうち一の梁要素の断面形状は、前記一の梁要素に隣接する他の梁要素と対面する面である対向面に斜面を含む、物理量センサ。
A mass body provided in an air gap formed in a plane of the semiconductor substrate and displaceable in a direction parallel to the plane of the semiconductor substrate according to an input physical quantity;
One end is connected to the mass body, the other end is fixed to the semiconductor substrate, extends in a direction parallel to the surface of the semiconductor substrate in the void portion, and is elastically deformed according to the displacement of the mass body And a fixed electrode provided on the semiconductor substrate and detecting an electrostatic capacitance generated between the mass body and the mass body according to the displacement of the mass body,
The elastic support portion includes a beam which is multiply folded at a plurality of folding positions from the one end to the other end,
The beam includes a plurality of beam elements extending between each of the plurality of folding positions;
The physical quantity sensor, wherein a cross-sectional shape of one beam element among the plurality of beam elements includes an inclined surface on an opposite surface that is a surface facing another beam element adjacent to the one beam element.
前記一の梁要素の前記断面形状は、前記対向面に前記斜面を含む台形を有する、請求項1に記載の物理量センサ。   The physical quantity sensor according to claim 1, wherein the cross-sectional shape of the one beam element has a trapezoidal shape including the inclined surface on the facing surface. 前記一の梁要素の前記断面形状は、前記対向面に凸型の形状をなす頂点を含む、請求項1に記載の物理量センサ。   The physical quantity sensor according to claim 1, wherein the cross-sectional shape of the one beam element includes a vertex having a convex shape on the facing surface.
JP2018006180A 2018-01-18 2018-01-18 Physical quantity sensor Active JP6921010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006180A JP6921010B2 (en) 2018-01-18 2018-01-18 Physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006180A JP6921010B2 (en) 2018-01-18 2018-01-18 Physical quantity sensor

Publications (2)

Publication Number Publication Date
JP2019124616A true JP2019124616A (en) 2019-07-25
JP6921010B2 JP6921010B2 (en) 2021-08-18

Family

ID=67398129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006180A Active JP6921010B2 (en) 2018-01-18 2018-01-18 Physical quantity sensor

Country Status (1)

Country Link
JP (1) JP6921010B2 (en)

Also Published As

Publication number Publication date
JP6921010B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI748157B (en) A MEMS accelerometer
US6923062B2 (en) Sensor
US10429407B2 (en) Three-axis inertial sensor for detecting linear acceleration forces
US7302847B2 (en) Physical quantity sensor having movable portion
US20120160029A1 (en) Acceleration sensor
JP2018146330A (en) Acceleration sensor
JP6067026B2 (en) Micro electro mechanical system (MEMS)
JP2007298405A (en) Electrostatic capacity type sensor
US20150000403A1 (en) Capacitive micromechanical acceleration sensor
US9739797B2 (en) Sensor device
JP2006084327A (en) Capacitance-type mechanical force sensor unit
US20140216156A1 (en) Acceleration sensor
JP2019078561A5 (en) Force sensor and device
JP2005098740A (en) Capacitance-type semiconductor dynamic quantity sensor
JP5654904B2 (en) Capacitance type acceleration sensor
JP2019124616A (en) Physical quantity sensor
JP2005227089A (en) Dynamics quantity sensor apparatus
JP2011247714A (en) Semiconductor physical quantity sensor
JP2007017284A (en) Sensor
JP2011174881A (en) Capacitance type acceleration sensor
JP2010216842A (en) Dynamic quantity detection sensor
US9964561B2 (en) Acceleration sensor
JP2010216834A (en) Sensor for detecting dynamic quantity
JP2005098891A (en) Electrostatic capacity type sensor
JP2004233080A (en) Semiconductor acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6921010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150