JP2019123915A - Method of producing nickel powder - Google Patents

Method of producing nickel powder Download PDF

Info

Publication number
JP2019123915A
JP2019123915A JP2018006241A JP2018006241A JP2019123915A JP 2019123915 A JP2019123915 A JP 2019123915A JP 2018006241 A JP2018006241 A JP 2018006241A JP 2018006241 A JP2018006241 A JP 2018006241A JP 2019123915 A JP2019123915 A JP 2019123915A
Authority
JP
Japan
Prior art keywords
nickel
nickel powder
complex solution
powder
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018006241A
Other languages
Japanese (ja)
Inventor
修 池田
Osamu Ikeda
修 池田
佳智 尾崎
Keichi Ozaki
佳智 尾崎
伸一 平郡
Shinichi Hiragori
伸一 平郡
陽平 工藤
Yohei Kudo
陽平 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018006241A priority Critical patent/JP2019123915A/en
Publication of JP2019123915A publication Critical patent/JP2019123915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a method of producing nickel powder having large bulk density by controlling particle diameter of the nickel powder.SOLUTION: The method of producing nickel powder is provided that comprises: an initial operation in which a nickel sulfate ammine complex solution containing nickel at concentration of 5 to 75 g/L or less is stored and temperature- raised together with a dispersant containing a seed crystal and lignin sodium sulfonate as components to a reaction temperature in a pressurized container equipped with a stirrer, hydrogen gas is then blown into the pressurized container and reduction reaction is performed, thereby obtaining nickel powder in which a complex ion is deposited in the solution on the seed crystal as a deposition; then following A operation is repeated at least once, thus nickel powder having median diameter of 50 to 100 μm and bulk density of 3.0 to 4.5 g/cmis obtained. (A operation) the complex solution in the same amount as the complex solution used during the initial operation, and all amount of the resulting nickel powder is stored into the pressurized container compression container, then temperature-raised to a prescribed reaction temperature, the hydrogen gas is then blown to the pressurized container and a reduction reaction is performed, thus the nickel powder having the deposition formed on the nickel powder is obtained.SELECTED DRAWING: None

Description

本発明は、水素還元により高密度なニッケル粉を製造する方法に関する。   The present invention relates to a method of producing high density nickel powder by hydrogen reduction.

導電性ペースト材料やニッケル水素電池等の正極活物質として使用が期待されるニッケル粉を工業的に製造する方法として、湿式プロセスを用いる方法がある。湿式プロセスにてニッケル粉を工業的に製造する方法にも種々の方法があるが、その中でニッケルを含有する溶液に還元剤を添加して溶液中のニッケルイオンを還元しニッケル粉を製造する方法がある。その中でもニッケルを錯体として有する酸性溶液に水素ガスを吹き込んで還元する方法は、工業的に安価に行うことができ、広く利用されている。   As a method of industrially producing nickel powder expected to be used as a conductive paste material or a positive electrode active material such as a nickel hydrogen battery, there is a method using a wet process. There are also various methods for industrially producing nickel powder in a wet process, in which a reducing agent is added to a solution containing nickel to reduce nickel ions in the solution to produce nickel powder. There is a way. Among them, a method of blowing hydrogen gas into an acidic solution having nickel as a complex for reduction can be industrially performed at low cost and is widely used.

この方法は、特許文献1に示すように、ニッケルを含んだアンミン錯体溶液を加圧容器に入れて密栓後昇温し、その中に水素ガスを吹き込むもので、水素により還元されニッケル粉が得られるものである。
得られたニッケル粉は低密度のものになり易く、低密度のニッケル粉は、嵩張り易くハンドリングの手間となるほかに還元前の溶液に含有された不純物が析出しやすいという課題もあり、このため50〜100μm程度と比較的大きい粒径で同時に嵩密度の大きい、すなわち高密度のニッケル粉が必要である。
In this method, as shown in Patent Document 1, an ammine complex solution containing nickel is placed in a pressure vessel, sealed and then heated, and hydrogen gas is blown into it to obtain nickel powder by reduction with hydrogen. It is
The obtained nickel powder tends to have a low density, and the low density nickel powder is apt to be bulky and takes handling time, and there is also a problem that impurities contained in the solution before reduction are easily precipitated. Therefore, nickel powder having a relatively large particle size of about 50 to 100 μm and a large bulk density, that is, a high density nickel powder is required at the same time.

しかしながら、特許文献1においては、粒子径の制御法について有機添加剤を添加するものについてしか示されておらず、この方法のみでは高密度なニッケル粉を得ることは難しく、他の手法を見出すことが課題となっていた。
さらに非特許文献1には、ニッケル粉を工業的に生産する方法について示されているが、高密度なニッケル粉を得るための方法は見出せていなかった。
However, Patent Document 1 discloses only the addition of an organic additive in the particle diameter control method, and it is difficult to obtain high density nickel powder only by this method, and another method is to be found. Was an issue.
Further, Non-Patent Document 1 discloses a method for industrially producing nickel powder, but no method for obtaining high density nickel powder has been found.

特開2015−140480号公報JP, 2015-140480, A

POWDER METALLURGY、1958、No.1/2、P.40−52POWDER METALLURGY, 1958, no. 1/2, P. 40-52

本発明は、ニッケル粉の粒子径を制御し、嵩密度の大きなニッケル粉の製造方法を提供するが、特にメディアン径が50〜100μmの範囲にある嵩密度の大きなニッケル粉の製造方法を提供するものである。   The present invention controls the particle size of nickel powder and provides a method for producing large bulk density nickel powder, but in particular provides a method for producing large bulk density nickel powder having a median diameter in the range of 50 to 100 μm. It is a thing.

上記の課題を解決するための本発明の第1の発明は、ニッケルを5g/L以上、75g/L以下の濃度で含有する硫酸ニッケルアンミン錯体溶液を、種結晶とリグニンスルホン酸ナトリウムを成分とする分散剤とともに攪拌機を備える加圧容器に貯留して所定反応温度に昇温後、加圧容器内に水素ガスを吹き込み、水素還元反応を施し、前記硫酸ニッケルアンミン錯体溶液中のニッケル錯イオンを前記種結晶上に析出物として析出させたニッケル粉を得る初回操作を行った後、以下のA操作を少なくとも1回繰り返し行うことにより、メディアン径が50μm以上、100μm以下で、3.0〜4.5g/cmの嵩密度をもつニッケル粉を得ることを特徴とするニッケル粉の製造方法である。 A first invention of the present invention for solving the above-mentioned problems comprises a nickel sulfate sulfate solution containing nickel at a concentration of 5 g / L to 75 g / L, a seed crystal and sodium lignin sulfonate as components After the temperature is raised to a predetermined reaction temperature, hydrogen gas is blown into the pressure vessel to carry out a hydrogen reduction reaction, and the nickel complex ion in the nickel sulfate ammonium complex solution is After performing the initial operation to obtain nickel powder precipitated as precipitates on the seed crystals, the following procedure A is repeated at least once to obtain a median diameter of 50 μm to 100 μm, and 3.0 to 4 It is a method for producing a nickel powder characterized by obtaining a nickel powder having a bulk density of 5 g / cm 3 .

(A操作)
前記初回操作時に用いた硫酸ニッケルアンミン錯体溶液と同量の5g/L以上、75g/L以下の濃度でニッケルを含有する硫酸ニッケルアンミン錯体溶液と、前操作において得られたニッケル粉の全量を、攪拌機を備える加圧容器に装入、貯留後、所定反応温度範囲に加熱、昇温、保持後、加圧容器内に水素ガスを吹き込み、水素還元反応を施し、前記ニッケル粉上にニッケル析出物を形成したニッケル粉を得る操作。
(A operation)
The nickel sulfate ammonium complex solution containing nickel at a concentration of 5 g / L or more and 75 g / L or less, which is the same amount as the nickel sulfate ammonium complex solution used in the first operation, and the total amount of nickel powder obtained in the previous operation After charging and storing in a pressure vessel equipped with a stirrer, heating, raising temperature and holding to a predetermined reaction temperature range, hydrogen gas is blown into the pressure vessel to carry out a hydrogen reduction reaction, and nickel precipitates on the nickel powder Operation to obtain formed nickel powder.

本発明の第2の発明は、第1の発明における硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、重量比で0.3〜1.0以下、且つ粒径0.5〜5.0μmのニッケル粉を種結晶として使用することを特徴とするニッケル粉の製造方法である。   According to a second aspect of the present invention, there is provided a nickel according to the first aspect, wherein the nickel has a weight ratio of 0.3 to 1.0 or less, and a particle diameter of 0.5 to 5.0 μm, relative to the weight of nickel in the nickel sulfate ammonium complex solution. It is a manufacturing method of nickel powder characterized by using powder as a seed crystal.

本発明の第3の発明は、第1の発明におけるリグニンスルホン酸ナトリウムからなる分散剤を、種結晶の重量に対して重量比で0.03〜0.13以下を添加することを特徴とするニッケル粉の製造方法である。   The third invention of the present invention is characterized in that the dispersant consisting of sodium lignin sulfonate according to the first invention is added in a weight ratio of 0.03 to 0.13 or less with respect to the weight of the seed crystals. It is a manufacturing method of nickel powder.

本発明の第4の発明は、第1の発明における所定反応温度が、150〜185℃の範囲であることを特徴とするニッケル粉の製造方法である。   A fourth invention of the present invention is the method for producing nickel powder, wherein the predetermined reaction temperature in the first invention is in the range of 150 to 185 ° C.

本発明により、粒子の成長を抑制し、嵩密度が大きなニッケル粉を得ることができる。   According to the present invention, it is possible to suppress the growth of particles and obtain a nickel powder having a large bulk density.

分散剤の添加量と繰り返し回数による嵩密度の推移を表したグラフである。It is a graph showing transition of the bulk density by the addition amount of a dispersing agent, and repetition frequency. 分散剤の添加量と繰り返し回数による粒径の推移を表したグラフである。It is a graph showing transition of the particle size by the addition amount of a dispersing agent, and repetition frequency.

本発明は、ニッケルイオンとアンモニアを含有する硫酸錯体溶液に水素ガスを吹き込んでニッケルイオンを水素還元してニッケル粉末を得る方法に関し、得られたニッケル粉を種結晶として硫酸錯体溶液と加圧容器内に繰り返し装入し、水素ガスを吹き込み、水素還元反応を施してニッケル粉を得る操作を行うことを特徴とし、同時に、初回の水素還元反応前に、リグニンスルホン酸ナトリウムを成分とする分散剤を、その量を調整して添加することで、種晶を分散させ、得られるニッケル粒子の粒子径を制御することを特徴とするものである。   The present invention relates to a method of blowing hydrogen gas into a sulfuric acid complex solution containing nickel ions and ammonia to hydrogen reduce nickel ions to obtain a nickel powder, wherein the obtained nickel powder is used as a seed crystal to form a sulfuric acid complex solution and a pressure vessel. It is characterized by repeatedly charging into the inside, blowing hydrogen gas, and performing a hydrogen reduction reaction to obtain a nickel powder, and at the same time, a dispersant containing sodium lignin sulfonate as a component before the first hydrogen reduction reaction. The seed crystals are dispersed by adjusting the amount thereof to disperse the seed crystals, and the particle diameter of the obtained nickel particles is controlled.

本発明で用いる原材料において、硫酸ニッケルアンミン錯体溶液は、そのニッケル濃度は5g/L以上、75g/L以下が良く、分散剤にはリグニンスルホン酸ナトリウムが望ましく、種結晶の重量に対して重量比で0.03以上、0.13以下の範囲で添加するのが好ましい。
さらに、初回操作時に添加される種晶は、硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、重量比で0.3以上、1.0以下、且つ粒径0.5〜5.0μmのニッケル粉を使用する。
In the raw material used in the present invention, the nickel sulfate ammonium complex solution preferably has a nickel concentration of 5 g / L or more and 75 g / L or less, preferably sodium lignin sulfonate as the dispersant, and the weight ratio to the weight of seed crystals It is preferable to add in the range of 0.03 or more and 0.13 or less.
Further, the seed crystals added at the time of the first operation are nickel powder having a weight ratio of 0.3 or more and 1.0 or less and a particle diameter of 0.5 to 5.0 μm with respect to the weight of nickel in the nickel sulfate ammonium complex solution. Use

本発明は、攪拌機を備える加圧容器内に上記原材料を貯留した後、反応温度に昇温、維持された状態で、水素ガスの吹き込みによる水素還元反応に供せられるが、その反応温度は、150〜185℃の範囲であることが好ましく、容器内の吹き込まれる水素ガスの圧力は、2.5〜3.5MPaの範囲が水素還元反応を効率よく進める範囲として望ましい範囲である。
また、その反応温度範囲に維持する時間は、10〜120分の範囲内で、硫酸ニッケルアンミン錯体溶液中のニッケル錯イオンの殆どを、ニッケル粉に還元可能である。
In the present invention, after the raw materials are stored in a pressurized container equipped with a stirrer, the temperature is raised and maintained at the reaction temperature, and the material is subjected to a hydrogen reduction reaction by blowing in hydrogen gas. The pressure is preferably in the range of 150 to 185 ° C., and the pressure of hydrogen gas blown into the vessel is in the range of 2.5 to 3.5 MPa, which is a desirable range as a range for efficiently advancing the hydrogen reduction reaction.
In addition, the time during which the reaction temperature is maintained is within the range of 10 to 120 minutes, and most of the nickel complex ions in the nickel sulfate ammonium complex solution can be reduced to nickel powder.

上記原材料と、加圧容器及び水素ガスを用い、ニッケル粉を水素還元反応により生成するが、その本発明に係る製造方法を以下に説明する。
[初回操作]
ニッケル濃度を5〜75g/Lの範囲に調節した硫酸ニッケルアンミン錯体溶液を準備する。この硫酸ニッケルアンミン錯体溶液の作製は、例えば、1リットルの硫酸ニッケルアンミン錯体溶液を作製するためには、ニッケル源となる硫酸ニッケル六水和物を336gと、アンミン錯体を形成するための「硫酸アンモニウム」を330g、及び「25%アンモニア水」を191mlに純水を加えて液量を1リットルにして作製する。このような割合で所定容量の硫酸ニッケルアンミン錯体溶液を準備する。
A nickel powder is produced by a hydrogen reduction reaction using the above raw materials, a pressure vessel and hydrogen gas, and the production method according to the present invention will be described below.
[First operation]
Prepare a nickel sulfate ammonium complex solution in which the nickel concentration is adjusted to a range of 5 to 75 g / L. The preparation of this nickel sulfate ammonium complex solution is carried out, for example, to form 1 liter of nickel sulfate ammonium complex solution, using 336 g of nickel sulfate hexahydrate serving as a nickel source and “ammonium sulfate to form an amine complex. The solution volume is made 1 liter by adding pure water to "330 g of" and "25% ammonia water" to 191 ml. A predetermined volume of a nickel sulfate ammonium complex solution is prepared at such a ratio.

この作製した所定容量の硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、重量比で0.3〜1.0以下で、且つ粒径0.5〜5.0μmのニッケル粉を種結晶として硫酸ニッケルアンミン錯体溶液に添加する。
さらに、リグニンスルホン酸ナトリウムからなる分散剤を、種結晶の重量に対して重量比で0.03〜0.13以下を添加、攪拌してニッケル粉を生成するためのニッケル供給源のスラリーを作製する。
Nickel sulfate having a weight ratio of 0.3 to 1.0 or less with respect to the weight of nickel in the prepared solution of nickel sulfate ammonium complex solution and using nickel powder having a particle diameter of 0.5 to 5.0 μm as a seed crystal Add to ammine complex solution.
Furthermore, a dispersant consisting of sodium lignin sulfonate is added at a weight ratio of 0.03 to 0.13 or less based on the weight of the seed crystals, and a slurry of a nickel source is prepared to produce a nickel powder by stirring. Do.

この作製したスラリーを、攪拌機を備える加圧容器に装入、貯留した後、加圧容器を密閉する。その密閉状態の加圧容器内に貯留されたスラリーを反応温度範囲、150℃から185℃に加熱、昇温、保持した状態で加圧容器内に水素ガスを導入し、反応温度範囲にあるスラリー中のニッケル錯イオンから水素還元反応により、種結晶上に析出物として析出させたニッケル粉を生成する。
その際の水素ガスの導入による加圧容器内の圧力は、2.5から3.5MPaの範囲に維持することが望ましい。
The prepared slurry is charged into a pressurized container equipped with a stirrer and stored, and then the pressurized container is sealed. The slurry stored in the closed pressure vessel is heated to 150 ° C to 185 ° C in the reaction temperature range, heated and maintained in a state of holding hydrogen gas introduced into the pressure vessel, and the slurry in the reaction temperature range From the nickel complex ion in the hydrogen reduction reaction, nickel powder precipitated as a precipitate on the seed crystals is formed.
It is desirable to maintain the pressure in the pressurized container by introduction of hydrogen gas at that time in the range of 2.5 to 3.5 MPa.

上記水素ガスによる水素還元反応を所定時間行った後、水素ガスの導入をストップし、反応を停止させ、ニッケル粉が生成したスラリーを冷却して降温した後、加圧容器からニッケル粉が生成したスラリーを排出、固液分離してニッケル粉を回収する。
この回収したニッケル粉を以下に説明する「A操作」に種結晶として供した後、このA操作により生成、回収されたニッケル粉を、再度種結晶として「A操作」に供してニッケル粉を生成する製造過程を得られたニッケル粉が所定の粒径になるまで繰返し行う。
After the hydrogen reduction reaction by the hydrogen gas is performed for a predetermined time, the introduction of the hydrogen gas is stopped to stop the reaction, and the slurry in which the nickel powder is formed is cooled and cooled, and then the nickel powder is formed from the pressure vessel Discharge the slurry, separate solid and liquid, and collect nickel powder.
The recovered nickel powder is used as a seed crystal in "Operation A" described below, and the nickel powder produced and recovered by this operation A is again subjected to "A operation" as a seed crystal to produce nickel powder. The process is repeatedly performed until the obtained nickel powder has a predetermined particle size.

[A操作]
初回操作時に用いた硫酸ニッケルアンミン錯体溶液と同量の5g/L以上、75g/L以下の濃度でニッケルを含有する硫酸ニッケルアンミン錯体溶液と、前操作において得られたニッケル粉の全量を、攪拌機を備える加圧容器に装入、貯留後、所定反応温度範囲に加熱、昇温、保持後、加圧容器内に水素ガスを吹き込み、水素還元反応を施して種結晶のニッケル粉上にニッケル析出物を形成したニッケル粉を得る操作である。
[A operation]
A total of the nickel sulfate ammonium complex solution containing nickel at a concentration of 5 g / L or more and 75 g / L or less, which is the same amount as the nickel sulfate ammonium complex solution used in the first operation, and the total amount of nickel powder obtained in the previous operation are stirred The reactor is charged with hydrogen and stored in a pressure vessel, heated to a predetermined reaction temperature range, heated and maintained, hydrogen gas is blown into the pressure vessel and subjected to a hydrogen reduction reaction to deposit nickel on the seed powder nickel powder. It is operation to obtain nickel powder which formed a thing.

初回操作の後に、A操作を少なくとも1回繰り返し行うことにより、メディアン径が50μm以上、100μm以下で、3.0〜4.5g/cmの嵩密度をもつニッケル粉を得ることができる。
なお、A操作における反応温度、加圧容器内圧力等の諸条件は「初回操作」時の条件と同じで良い。
By repeating the operation A at least once after the initial operation, it is possible to obtain a nickel powder having a median diameter of 50 μm to 100 μm and a bulk density of 3.0 to 4.5 g / cm 3 .
The various conditions such as the reaction temperature and the pressure in the pressure vessel in the operation A may be the same as the conditions in the “first operation”.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

(手順1)
粒子径(メディアン径)が0.5〜5.0μmのニッケル粉22.5g、硫酸ニッケル六水和物336g、硫酸アンモニウム330g、25%アンモニア水191mlに純水約440mlとで液量が1リットルになるよう調合した元液を4分取し、リグニンスルホン酸ナトリウム0.75g、1.5g、2.0g、3.0gを分取したそれぞれの元液に添加し、分散剤濃度の異なる4サンプルを用意した。
(Step 1)
22.5 g of nickel powder with a particle size (median diameter) of 0.5 to 5.0 μm, 336 g of nickel sulfate hexahydrate, 330 g of ammonium sulfate, and about 440 ml of pure water in 191 ml of 25% ammonia water; The original solution prepared to be 4 parts is added, and it is added to each original solution which collected 0.75 g, 1.5 g, 2.0 g and 3.0 g of sodium lignin sulfonate, and 4 samples with different dispersant concentration Prepared.

(手順2)
上記操作手順1で用意した4サンプルを、それぞれ3Lオートクレーブの内筒缶に投入し、内筒缶をオートクレーブに設置した。
(Step 2)
Four samples prepared in the above-mentioned operation procedure 1 were put into inner cans of 3 L autoclave respectively, and the inner cans were installed in the autoclave.

(手順3)
撹拌速度750rpmとし、オートクレーブ内の液温度を185℃、水素ガスを全圧で3.5MPaになるように水素ガスを2L/minで液中に吹き込んだ。
(Step 3)
At a stirring speed of 750 rpm, the solution temperature in the autoclave was 185 ° C., and hydrogen gas was blown into the solution at 2 L / min so that hydrogen gas was 3.5 MPa in total pressure.

(手順4)
水素吹き込み開始から60分が経過した後、水素ガスの吹き込みを停止し、オートクレーブを降温した。
(Step 4)
After 60 minutes from the start of hydrogen blowing, the hydrogen gas blowing was stopped and the temperature of the autoclave was lowered.

(手順5)
70℃以下まで降温後、内筒缶を取り出し、液を濾過してニッケル粉を回収し、回収したニッケル粉の一部を評価用に分取し、洗浄並びに真空乾燥した。
(Step 5)
After lowering the temperature to 70 ° C. or less, the inner can was taken out, the liquid was filtered to collect nickel powder, and a part of the collected nickel powder was separated for evaluation, washed and vacuum dried.

(手順6)
手順5で、それぞれ回収したニッケル粉の全量を投入し、硫酸ニッケル六水和物336g、硫酸アンモニウム330g、25%アンモニア水191mlと純水とで液量が1リットルになるよう調合した4種類の元液を作製した。
(Step 6)
Four kinds of raw materials prepared so that the total volume of nickel powder was collected in procedure 5 and filled with 336 g of nickel sulfate hexahydrate, 330 g of ammonium sulfate, 191 ml of 25% ammonia water and pure water to make the liquid volume 1 liter The solution was made.

(手順7)
手順6で用意した4種類の元液を、それぞれ手順2〜6の要領で9回繰り返し(初回から10回目)の還元反応を行った。
なお、それぞれの還元反応が終わる毎に、手順5で分取・乾燥したニッケル粉の粒子径(メディアン径)を、粒度分布測定装置を用いた測定と、メスシリンダーにニッケル粉を入れ、3分間タップした後に公知の方法で嵩密度を測定した。
(Step 7)
The four types of stock solutions prepared in step 6 were subjected to nine repetitions (first to tenth times) of reduction reaction as in steps 2 to 6, respectively.
The particle diameter (median diameter) of the nickel powder that has been separated and dried in step 5 is measured with a particle size distribution analyzer every time each reduction reaction is completed, and the nickel powder is placed in a measuring cylinder for 3 minutes. After tapping, the bulk density was measured by a known method.

その測定結果を図1と図2に示す。
図1は横軸に初回操作の還元反応を含めた還元反応の繰り返し回数、縦軸に嵩密度[g/cm]を示し、図2は横軸に初回操作の還元反応を含めた還元反応の繰り返し回数、縦軸に粒子径[μm]を示すように還元反応の繰り返し回数を増加させると、粒子径(メディアン径)は徐々に大きくなっていくが、本発明の条件で50〜100μm以下の粒径で、その嵩密度が3.0〜4.5g/cmの範囲にある嵩密度の大きなニッケル粉が得られることが分かった。
The measurement results are shown in FIG. 1 and FIG.
FIG. 1 shows the number of repetitions of the reduction reaction including the reduction reaction of the first operation on the horizontal axis, and the bulk density [g / cm 3 ] on the vertical axis, and FIG. 2 shows the reduction reaction including the reduction reaction of the first operation on the horizontal axis. The particle diameter (median diameter) gradually increases as the number of repetitions of reduction, and the number of repetitions of reduction reaction is increased so that the particle diameter [μm] is shown on the vertical axis, but 50 to 100 μm or less under the conditions of the present invention in the particle size, the bulk density was found to large nickel powder bulk density in the range of 3.0~4.5g / cm 3 is obtained.

(比較例1)
実施例1の手順1において、分散剤を入れなかった以外は、実施例1と同じ要領で、手順2以降の試験を行った。
(Comparative example 1)
Tests in procedure 2 and subsequent steps were performed in the same manner as in example 1 except that no dispersing agent was added in step 1 of example 1.

その測定結果は、還元反応の繰り返し回数を増加させても、粒子径(メディアン径)にはほとんど変化がなく、本発明の条件で100〜160μmの粒径で、その嵩密度が1〜4.5g/cmの範囲のニッケル粉が得られることが分かった。
The measurement results show that there is almost no change in particle diameter (median diameter) even if the number of repetitions of reduction reaction is increased, and the bulk density is 1 to 4 with a particle diameter of 100 to 160 μm under the conditions of the present invention. It was found that a nickel powder in the range of 5 g / cm 3 was obtained.

Claims (4)

ニッケルを5g/L以上、75g/L以下の濃度で含有する硫酸ニッケルアンミン錯体溶液を、種結晶とリグニンスルホン酸ナトリウムを成分とする分散剤とともに攪拌機を備える加圧容器に貯留して所定反応温度に昇温後、加圧容器内に水素ガスを吹き込み、水素還元反応を施し、前記硫酸ニッケルアンミン錯体溶液中のニッケル錯イオンを前記種結晶上に析出物として析出させたニッケル粉を得る初回操作を行った後、
以下のA操作を少なくとも1回繰り返し行うことにより、メディアン径が50μm以上、100μm以下で、3.0〜4.5g/cmの嵩密度をもつニッケル粉を得ることを特徴とするニッケル粉の製造方法。
(A操作)
前記初回操作時に用いた硫酸ニッケルアンミン錯体溶液と同量の5g/L以上、75g/L以下の濃度でニッケルを含有する硫酸ニッケルアンミン錯体溶液と、前操作において得られたニッケル粉の全量を、攪拌機を備える加圧容器に装入、貯留後、所定反応温度範囲に加熱、昇温、保持後、加圧容器内に水素ガスを吹き込み、水素還元反応を施し、前記種結晶のニッケル粉上にニッケル析出物を形成したニッケル粉を得る操作。
A solution of nickel ammine complex containing nickel at a concentration of 5 g / L or more and 75 g / L or less is stored in a pressure vessel equipped with a stirrer together with a seed crystal and a dispersant containing sodium lignin sulfonate as a component to obtain a predetermined reaction temperature After the temperature rise, hydrogen gas is blown into the pressure vessel to carry out a hydrogen reduction reaction to obtain a nickel powder in which nickel complex ions in the nickel sulfate ammonium complex solution are deposited as precipitates on the seed crystals. After doing
A nickel powder having a median diameter of 50 μm to 100 μm and a bulk density of 3.0 to 4.5 g / cm 3 is obtained by repeating the following operation A at least once: Production method.
(A operation)
The nickel sulfate ammonium complex solution containing nickel at a concentration of 5 g / L or more and 75 g / L or less, which is the same amount as the nickel sulfate ammonium complex solution used in the first operation, and the total amount of nickel powder obtained in the previous operation After charging and storing in a pressure vessel equipped with a stirrer, heating, raising temperature and holding to a predetermined reaction temperature range, hydrogen gas is blown into the pressure vessel to carry out a hydrogen reduction reaction, and nickel powder of the seed crystal Operation to obtain the nickel powder which formed the nickel deposit.
前記硫酸ニッケルアンミン錯体溶液中のニッケル重量に対し、重量比で0.3〜1.0以下、且つ粒径0.5〜5.0μmのニッケル粉でこれを種結晶として使用することを特徴とする請求項1記載のニッケル粉の製造方法。   A nickel powder having a weight ratio of 0.3 to 1.0 or less and a particle diameter of 0.5 to 5.0 μm with respect to the weight of nickel in the nickel sulfate ammonium complex solution, which is used as a seed crystal The method for producing nickel powder according to claim 1. 前記リグニンスルホン酸ナトリウムからなる分散剤を、種結晶の重量に対して重量比で0.03〜0.13以下を添加することを特徴とする請求項1記載のニッケル粉の製造方法。   The method according to claim 1, wherein the dispersant comprising sodium lignin sulfonate is added in a weight ratio of 0.03 to 0.13 or less with respect to the weight of the seed crystals. 前記所定反応温度が、150〜185℃の範囲であることを特徴とする請求項1記載のニッケル粉の製造方法。
The method for producing nickel powder according to claim 1, wherein the predetermined reaction temperature is in the range of 150 to 185 ° C.
JP2018006241A 2018-01-18 2018-01-18 Method of producing nickel powder Pending JP2019123915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006241A JP2019123915A (en) 2018-01-18 2018-01-18 Method of producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006241A JP2019123915A (en) 2018-01-18 2018-01-18 Method of producing nickel powder

Publications (1)

Publication Number Publication Date
JP2019123915A true JP2019123915A (en) 2019-07-25

Family

ID=67398012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006241A Pending JP2019123915A (en) 2018-01-18 2018-01-18 Method of producing nickel powder

Country Status (1)

Country Link
JP (1) JP2019123915A (en)

Similar Documents

Publication Publication Date Title
KR20200041978A (en) High voltage lithium nickel cobalt manganese oxide precursor, manufacturing method thereof, and high voltage lithium nickel cobalt manganese oxide cathode material
CN106745331A (en) A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide
CN109422297B (en) Method for regulating and controlling nucleation in crystallization process of nickel-cobalt-manganese precursor
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
CN106029270B (en) The manufacture method of nickel powder
JP2002201028A (en) High density nickel hydroxide coprecipitated with cobalt and manganese, and method for producing the same
CN109942030B (en) Preparation method of high-density small-particle-size spherical cobaltosic oxide
CN112645354B (en) Surface-modified sodium-manganese-iron-based Prussian blue material and preparation method and application thereof
CN113823779B (en) Radial nickel-based precursor and preparation method thereof
US20240025763A1 (en) Preparation method of ni-rich ternary precursor and use thereof
CN110808369B (en) Preparation method of low-sodium-sulfur nickel-cobalt-aluminum ternary precursor
CN108987682B (en) Preparation method of nickel-rich precursor material capable of preventing particle fracture
CN111072075A (en) Preparation method of lithium ion battery anode material
CN104134786A (en) Method for preparing small-particle size high-density spherical cobalt (II,III) oxide
CN113526569A (en) Preparation method of ternary material precursor and material prepared by preparation method
CN110817976B (en) Positive electrode material precursor and preparation method and application thereof
CN108264096A (en) A kind of preparation method of high density little particle nickel cobalt manganese hydroxide
CN114180644B (en) Aluminum-doped cobalt carbonate material, preparation method thereof, aluminum-doped cobaltosic oxide and lithium cobaltate positive electrode material
CN109411749B (en) Large-particle cobaltosic oxide doped with Al and preparation method thereof
JP2019123915A (en) Method of producing nickel powder
CN108610489B (en) Preparation method of nano material based on metal organic framework material and with different dimensions
CN113651372B (en) Discontinuous growth preparation method of high-sphericity twinning-particle-free precursor
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
US9586822B2 (en) Size and morphologically controlled nanostructures for energy storage
JP6202348B2 (en) Method for producing high-density nickel powder