JP2019122979A - Abnormal vibration detection method of rolling mill - Google Patents

Abnormal vibration detection method of rolling mill Download PDF

Info

Publication number
JP2019122979A
JP2019122979A JP2018004842A JP2018004842A JP2019122979A JP 2019122979 A JP2019122979 A JP 2019122979A JP 2018004842 A JP2018004842 A JP 2018004842A JP 2018004842 A JP2018004842 A JP 2018004842A JP 2019122979 A JP2019122979 A JP 2019122979A
Authority
JP
Japan
Prior art keywords
rolling
vibration
frequency
speed
vibration detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004842A
Other languages
Japanese (ja)
Other versions
JP6844552B2 (en
Inventor
昌英 矢島
Masahide Yajima
昌英 矢島
渉 馬場
Wataru Baba
渉 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018004842A priority Critical patent/JP6844552B2/en
Publication of JP2019122979A publication Critical patent/JP2019122979A/en
Application granted granted Critical
Publication of JP6844552B2 publication Critical patent/JP6844552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an abnormal vibration detection method of a rolling mill capable of determining accurately abnormal vibration linked to a chatter mark.SOLUTION: At a cold rolling time of a metal plate, a vibration signal is collected by a vibration meter installed on one or more places on a rolling stand, and frequency analysis by fast Fourier transformation is performed at every prescribed period, to vibration signals collected in a constant speed condition having little fluctuation of rolling speed, and an averaging process is performed to spectrum values of obtained each frequency component.SELECTED DRAWING: Figure 2

Description

本発明は、圧延機で金属板の圧延中に発生するチャタリングの検知に好適な圧延機の異常振動検出方法に関する。   The present invention relates to a method for detecting abnormal vibration of a rolling mill, which is suitable for detecting chattering generated during rolling of a metal plate by the rolling mill.

金属板の製造における冷間圧延機やテンションレベラーなどの圧延設備では、異常振動(チャタリング)が発生すると金属板表面に幅方向のマーク(チャタマーク)が生じ、金属板の長手方向に縞状模様となることが知られており、これまで、このような異常振動を検出する技術として種々の提案がなされてきた。
特許文献1では、金属圧延機各部の1か所異常に振動検出器を設置し、振動の加速度及び振動のエネルギーが一定値を超えた時に異常信号を発するようにしている。
In rolling equipment such as cold rolling mills and tension levelers in the manufacture of metal plates, when abnormal vibration (chattering) occurs, marks in the width direction (chatter marks) are formed on the surface of the metal plate, and stripe patterns are formed in the longitudinal direction of the metal plate. In the past, various proposals have been made as a technique for detecting such abnormal vibration.
In patent document 1, a vibration detector is installed in one place abnormality of each part of a metal rolling mill, and when an acceleration of vibration and energy of vibration exceed a fixed value, an abnormal signal is emitted.

特許文献2では、圧延機各部の1か所異常に振動検出器を設置し、検出した振動周波数がミル固有振動数、ギアの噛み合い不良、ベアリング不良、スピンドルとロールのカップリングのガタ、ロール疵より発生する固有の振動周波数をチャタマーク発生原因毎の基本周波数とし、振動の実測値の周波数分析を行った結果が、チャタマーク発生原因毎の基本周波数の整数倍の周波数において設定値を超えたときにチャタリング発生と定義している。   In Patent Document 2, a vibration detector is installed at one place in each part of the rolling mill, and the detected vibration frequency is the natural frequency of the mill, gear meshing failure, bearing failure, play of the spindle-roll coupling, roll 疵The inherent vibration frequency generated by this is regarded as the fundamental frequency for each chatter mark occurrence cause, and the result of frequency analysis of the measured value of the vibration exceeds the set value at the frequency of integral multiples of the fundamental frequency for each chatter mark occurrence It is defined as chattering occurrence.

特許文献3では、振動センサの固有振動数領域の振動を測定してミクロ的なスリップを検知するようにしている。
特許文献4では、鋼帯圧延機に設けられた振動センサで検出した運転中の振動値を周波数解析し、圧延機の軸受の傷発生を示す周波数と照合して異常有無を検知するようにしている。
特許文献5では、圧延機のスタンド間における鋼板張力値の変動を読み込み、張力値の変動を周波数解析し、圧延機の異常発生時鋼板の固有振動数を含む周波数帯域における各周波数の強度を求め、それが所定の閾値異常になったときに異常と判断している。
特許文献6では−、圧延機の入出側の小径ロールに設置した振動計により検出した振動値のうち、鋼板の弦振動の周波数に一致する成分が予め設定した閾値を超えた場合に異常と判定している。
In Patent Document 3, the vibration in the natural frequency region of the vibration sensor is measured to detect micro slip.
In Patent Document 4, a vibration value during operation detected by a vibration sensor provided in a steel strip rolling mill is subjected to frequency analysis, and the presence or absence of abnormality is detected by collating with a frequency indicating occurrence of a scratch on a bearing of the rolling mill. There is.
In Patent Document 5, the fluctuation of the steel plate tension value between the stands of the rolling mill is read, the fluctuation of the tension value is frequency analyzed, and the strength of each frequency in the frequency band including the natural frequency of the steel plate at the occurrence of abnormality of the rolling mill is determined When it becomes a predetermined threshold abnormality, it is judged as abnormal.
In Patent Document 6, among the vibration values detected by a vibrometer installed on the small diameter roll on the entry and exit side of the rolling mill, a component that matches the frequency of the string vibration of the steel plate exceeds the preset threshold. doing.

特開昭50−8445号公報Japanese Patent Application Laid-Open No. 50-8445 特開平8−108205号公報JP-A-8-108205 特開平7−12641号公報Japanese Patent Application Laid-Open No. 7-12641 特開2010−234422号公報JP, 2010-234422, A 特開2014−4612号公報JP, 2014-4612, A 特開2016−153138号公報JP, 2016-153138, A

ところで、上記特許文献1に記載された先行技術では、設置した振動計から得られる振動加速度に対し、周波数解析等はせずに閾値を設定する方法が提案されているが、得られる振動加速度は主に低周波数の振動強度が支配的となり、周波数の高い側の振動強度の変化を捉えることは難しいという課題がある。
また、特許文献2〜6に記載された先行技術のように、設備的に予め予測される周波数に着目して振動監視する方法も提案されているが、本発明者等が冷間圧延機で発生するチャタマークについて調査したところ、設備的に予め予測される周波数以外でも、チャタマークが発生するケースがあり、特性の周波数のみを監視していてはチャタマーク発生を捉えられないという課題がある。なお、そのようなチャタリングは、操業中の板破断を起因としたロールの微小疵や圧延機の附帯設備が発生する微小振動がロールに多角形摩耗を引き起こすことを原因としており、予め周波数を予見することが不可能であるという課題がある。さらに、そのようなチャタマークを引き起こす振動は、例えばベアリング故障等で発生する振動強度に比べて非常に小さいことが経験上分っている。
By the way, in the prior art described in the above-mentioned patent documents 1, although the method of setting a threshold without doing frequency analysis etc. is proposed to the vibrational acceleration obtained from the installed vibration meter, the vibrational acceleration obtained is The vibration intensity of low frequency is mainly dominant, and there is a problem that it is difficult to capture the change of the vibration intensity on the high frequency side.
Also, as in the prior art described in Patent Documents 2 to 6, a method of monitoring vibration by paying attention to equipment-predicted frequency in advance is also proposed, but the present inventors et al. As a result of investigating the generated chatter marks, there are cases where chatter marks are generated other than the frequency previously predicted in equipment, and there is a problem that chatter mark generation can not be caught if only the characteristic frequency is monitored. . Such chattering is caused by the occurrence of polygon wear on the roll due to the minute vibrations of the roll and the accessory equipment of the rolling mill caused by the breakage of the plate during operation, and the frequency is predicted in advance. There is a problem that it is impossible to do. Furthermore, it is empirically known that the vibration that causes such chatter marks is very small compared to the vibration intensity generated due to, for example, a bearing failure.

なお、そのような、チャタマークを異常振動として検出するために周波数を特定せずに閾値を設けた場合には、通常発生しているチャタマークに繋がらないギアの噛み合い振動、ベアリング振動や振動ノイズを異常と判断してしまうという課題がある。
そこで、本発明は、上記先行技術の課題に着目してなされたものであり、チャタマークに繋がる異常振動を正確に判定することができる圧延機の異常振動検出方法を提供することを目的としている。
In addition, when a threshold is provided without specifying the frequency to detect such a chatter mark as abnormal vibration, meshing vibration of a gear that is not connected to the chatter mark that is normally generated, bearing vibration or vibration noise There is a problem that it is judged as abnormal.
Therefore, the present invention has been made focusing on the problems of the above prior art, and it is an object of the present invention to provide a method of detecting abnormal vibration of a rolling mill which can accurately determine abnormal vibration leading to chatter marks. .

上記課題を解決するために、本発明に係る圧延機の異常振動検出方法の一態様は、金属板の冷間圧延時に、圧延スタンドの1か所以上に設置した振動計により振動信号を収集し、圧延速度の変動が少ない定速状態であるときに収集した振動信号に対して所定周期毎に高速フーリエ変換による周波数解析を行い、得られた各周波数成分のスペクトル値に対して平均化処理を行う。   In order to solve the above-mentioned subject, one mode of the abnormal vibration detection method of the rolling mill concerning the present invention collects a vibration signal with a vibrometer installed in one or more places of a rolling stand at the time of cold rolling of a metal plate. The frequency analysis is performed by fast Fourier transform for every predetermined period on the vibration signal collected when the rolling speed fluctuates at a constant speed with little fluctuation, and the averaging process is performed on the spectrum values of the obtained frequency components. Do.

本発明の一態様によれば、チャタマークを発生する異常振動を的確に検出することができる。   According to one aspect of the present invention, abnormal vibration that generates chatter marks can be accurately detected.

本発明を適用し得る圧延設備の概略構成を示すシステム構成図である。It is a system configuration figure showing a schematic structure of rolling equipment to which the present invention can be applied. 振動信号処理計算機で実効する異常振動検出処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormal vibration detection processing procedure effective with a vibration signal processing computer. 圧延速度の変化を示す特性線図である。It is a characteristic diagram which shows the change of a rolling speed. 高速圧延時における周波数解析結果を示す波形図であって、(a)は平均化処理前の周波数解析結果、(b)は平均化処理誤の周波数解析結果を示す。It is a wave form diagram showing the frequency analysis result at the time of high speed rolling, and (a) shows the frequency analysis result before averaging processing, and (b) shows the frequency analysis result of averaging processing error. 低速圧延時における周波数解析結果を示す波形図であって、(a)は平均化処理前の周波数解析結果、(b)は平均化処理誤の周波数解析結果を示す。It is a wave form diagram showing the frequency analysis result at the time of low speed rolling, and (a) shows the frequency analysis result before averaging processing, and (b) shows the frequency analysis result of averaging processing error.

以下、本発明に係る鋼塊転回装置の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Hereinafter, an embodiment of a steel block rolling apparatus according to the present invention will be described based on the drawings. Each drawing is schematic and may be different from the actual one. In addition, the following embodiments illustrate apparatuses and methods for embodying the technical idea of the present invention, and the configuration is not specified to the following. That is, the technical idea of the present invention can be variously modified within the technical scope described in the claims.

先ず、本発明を適用し得る圧延システム構成について図1を伴って説明する。
異常振動の検出対象となる冷間連続圧延機(コールドタンデムミル)10は、4つの圧延スタンドST1〜ST4が所定間隔を保って一列に配置されている。
各圧延スタンドSTi(i=1〜4)は、ミルハウジング11内に、金属板(鋼帯)12を圧延するための一対のワークロール(WR)13及びワークロール13に圧下力を作用させるための一対のバックアップロール(BUR)14を備えている。
各圧延スタンド間には、テンションメータロール15とパスラインロール16とが設けられている。
First, a rolling system configuration to which the present invention can be applied will be described with reference to FIG.
In a cold continuous rolling mill (cold tandem mill) 10 to be subjected to abnormal vibration detection, four rolling stands ST1 to ST4 are arranged in a line at a predetermined interval.
Each rolling stand STi (i = 1 to 4) applies a pressure to a pair of work rolls (WR) 13 and work rolls 13 for rolling the metal plate (steel strip) 12 in the mill housing 11 A pair of backup rolls (BUR) 14 are provided.
A tension meter roll 15 and a pass line roll 16 are provided between the rolling stands.

そして、各圧延スタンドSTiのミルハウジング11の上部に振動計17が設けられていると共に、テンションメータロール15及びパスラインロール16にもそれぞれ振動計18が設けられている。これら振動計17及び18は、圧電素子型センサが好適であるが、これに限定されるものではなく、任意の振動計を適用することができる。
また、冷間連続圧延機10の出側における圧延スタンドST4のワークロール13の回転速度を検出して圧延速度を検出する圧延速度検出部19が設けられている。この圧延速度検出部19としては、ワークロール13の回転速度を検出する場合に限らず、メジャリングロールのような接触式板速検出器やレーザードップラー法を使用した非接触式板速検出器を適用するようにしてもよい。
And while the vibration meter 17 is provided in the upper part of the mill housing 11 of each rolling stand STi, the vibration meter 18 is provided also in the tension meter roll 15 and the pass line roll 16, respectively. The vibration sensors 17 and 18 are preferably piezoelectric element type sensors, but are not limited thereto, and any vibration meter can be applied.
In addition, a rolling speed detection unit 19 is provided which detects the rolling speed by detecting the rotational speed of the work roll 13 of the rolling stand ST4 on the outlet side of the cold continuous rolling mill 10. The rolling speed detection unit 19 is not limited to the case of detecting the rotational speed of the work roll 13, and may be a non-contact type board speed detector such as a contact type board speed detector such as a measuring roll or a laser Doppler method. It may be applied.

各振動計17及び18で検出した振動検出信号SV及び圧延速度検出部19で検出した圧延速度検出信号Vrは、振動信号処理計算機20に入力される。
この振動信号処理計算機20は、各振動計17及び18から入力される振動検出信号SVについて個別に異常振動検出処理を行う。
この異常振動検出処理は、所定のサンプリング周期T1で収集した振動検出信号SVに対して高速フーリエ変換(FFT)方式の周波数解析を行って振動検出信号SVに含まれる周波数成分とその大きさを表すスペクトル値を求める周波数解析処理を複数回実行する。そして、振動信号処理計算機20は、複数回の周波数解析処理結果である各スペクトル値を平均化処理してチャタマークを発生するスペクトル値を抽出し、抽出したスペクトル値と閾値とを比較して異常振動であるか否かを判定する。
The vibration detection signal SV detected by each of the vibration meters 17 and 18 and the rolling speed detection signal Vr detected by the rolling speed detection unit 19 are input to the vibration signal processing computer 20.
The vibration signal processing computer 20 individually performs abnormal vibration detection processing on the vibration detection signals SV input from the respective vibration meters 17 and 18.
In this abnormal vibration detection processing, frequency analysis of a fast Fourier transform (FFT) method is performed on the vibration detection signal SV collected at a predetermined sampling period T1 to represent frequency components included in the vibration detection signal SV and the magnitude thereof. A frequency analysis process for obtaining spectrum values is performed multiple times. Then, the vibration signal processing computer 20 averages each spectrum value, which is the result of frequency analysis processing of a plurality of times, to extract a spectrum value that generates chatter marks, and compares the extracted spectrum value with a threshold to make abnormality. It is determined whether or not it is vibration.

ここで、周波数解析を行うサンプリング周期T1は、実装されている計算機の能力と、要求される周波数解析範囲及び分解能により決定されるが、圧延機のチャタリングは0〜1000Hzで発生することを考慮すると、サンプリング周波数は2000Hz以上が要求され、かつ5Hz以下の周波数分解能を持つことが好ましく、そうした場合にはサンプリング周期T1は、0.2秒以上にすることが好ましい。ただし、サンプリング周期を長くしすぎた場合には後で実施する平均化処理においてサンプル数が少なくなるため、サンプリング周期T1は、0.2〜1秒の範囲とすることが好ましい。   Here, the sampling period T1 for performing frequency analysis is determined by the capability of the computer mounted and the required frequency analysis range and resolution, but considering that chattering of the rolling mill occurs at 0 to 1000 Hz. The sampling frequency is required to be 2000 Hz or more, and preferably have a frequency resolution of 5 Hz or less. In such a case, the sampling period T1 is preferably 0.2 seconds or more. However, if the sampling cycle is too long, the number of samples decreases in the averaging process performed later, so that the sampling cycle T1 is preferably in the range of 0.2 to 1 second.

平均化処理は、一定圧延速度で一定時間以上圧延している区間(平均処理区間と称する)で実施する。平均化処理は、ごく一般的な算術平均処理であり、平均化処理区間でえられているサンプリング周期T1毎の周波数解析結果(N回分)を周波数毎に加算し、サンプリング回数Nで除した値を平均値とする。
ここで、一定圧延速度とは圧延速度が例えば±1m/min以内の変動幅で圧延していることが望ましい。これは圧延速度の変動が大きい区間で平均化した場合には、速度に応じて周波数の変化する振動について得られる周波数応答はブロード化してしまうためである。
また、一定時間以上とは、一定圧延速度で少なくとも10点以上の周波数解析結果が得られるような時間とすることが望ましい。例えばサンプリング周期T1を1秒とした場合には一定時間が10秒以上一定圧延速度で圧延していることが必要となる。
The averaging process is performed in a section (referred to as an average processing section) rolling at a constant rolling speed for a fixed time or more. The averaging process is a very general arithmetic averaging process, and the result of dividing the frequency analysis result (N times) for each sampling cycle T1 obtained in the averaging process interval by frequency and dividing by the sampling frequency N As the average value.
Here, as for the constant rolling speed, it is desirable that the rolling speed is rolling within a fluctuation range of, for example, ± 1 m / min. This is because, when averaging is performed in a section where the fluctuation of the rolling speed is large, the frequency response obtained for the vibration whose frequency changes according to the speed becomes broad.
In addition, it is desirable that the predetermined time or more be a time at which a frequency analysis result of at least 10 points or more can be obtained at a constant rolling speed. For example, in the case where the sampling period T1 is 1 second, it is necessary that the constant time rolling is performed at a constant rolling speed for 10 seconds or more.

次に、異常振動検出処理について図2のフローチャートを伴って具体的に説明する。
この異常振動検出処理は、振動検出信号SVのサンプリング周期T1に余裕時間を加えた作動周期でメインプログラムに対するタイマ割込処理として実行される。
この異常振動検出処理は、図2に示すように、先ず、ステップS1で、圧延速度検出器19で検出した圧延速度Vr(n)を読み込み、次いでステップS2に移行して振動検出信号SV(n)を読み込んで振動検出信号記憶領域に記憶する振動検出信号読込処理を起動する。この振動検出信号読込処理は、振動計17又は18から出力される振動検出信号SVをサンプリング周期T1の間収集して記憶部21に形成された振動検出信号記憶領22に記憶する。
Next, the abnormal vibration detection processing will be specifically described with reference to the flowchart of FIG.
This abnormal vibration detection processing is executed as timer interrupt processing for the main program in an operation cycle obtained by adding a margin to the sampling cycle T1 of the vibration detection signal SV.
In this abnormal vibration detection process, as shown in FIG. 2, first, in step S1, the rolling speed Vr (n) detected by the rolling speed detector 19 is read, and then, the process proceeds to step S2 and the vibration detection signal SV (n And the vibration detection signal read processing to be stored in the vibration detection signal storage area is started. In the vibration detection signal reading process, the vibration detection signal SV output from the vibration meter 17 or 18 is collected during the sampling period T1 and stored in the vibration detection signal storage area 22 formed in the storage unit 21.

次いで、ステップS3に移行して、圧延速度フラグFが“0”にリセットされているか否かを判定し、F=“0”であるときには、ステップS4に移行する。このステップS4では、ステップS1で読み込んだ圧延速度Vr(n)を基準圧延速度Vrbとして一次記憶部に記憶し、次いでステップS5に移行して圧延速度フラグFを“1”にセットしてから割込処理を終了する。
一方、ステップS3の判定結果が圧延速度フラグFが“1”にセットされているときには、ステップS6に移行して、基準圧延速度VrbからステップS1で読み込んだ圧延速度Vr(n)を減算した絶対値が予め設定された速度偏差ΔV(例えば1m/min)を超えているか否かを判定する。この判定は、金属板12の圧延速度Vrが定速であるか否かを判定するものである。このステップS6の判定結果が、|Vrb−Vr(n)|>ΔVであるときには、定速状態ではないものと判断してステップS7に移行し、周波数解析結果記憶領域の解析結果を消去してから前述したステップS4に移行する。
Subsequently, the process proceeds to step S3, and it is determined whether the rolling speed flag F is reset to "0". If F = "0", the process proceeds to step S4. In step S4, the rolling speed Vr (n) read in step S1 is stored as the reference rolling speed Vrb in the primary storage unit as the reference rolling speed Vrb, and then the process proceeds to step S5 and the rolling speed flag F is set to "1". Finish the loading process.
On the other hand, when the determination result in step S3 is that the rolling speed flag F is set to "1", the process proceeds to step S6, and the absolute value obtained by subtracting the rolling speed Vr (n) read in step S1 from the reference rolling speed Vrb. It is determined whether the value exceeds a preset speed deviation ΔV (for example, 1 m / min). This determination is to determine whether the rolling speed Vr of the metal plate 12 is a constant speed. When the determination result in step S6 is | Vrb−Vr (n) |> ΔV, it is determined that the vehicle is not in the constant speed state, and the process proceeds to step S7 to erase the analysis result in the frequency analysis result storage area The process proceeds to step S4 described above.

また、ステップS6の判定結果が、|Vrb−Vr(n)|≦ΔVであるときには、金属板12の圧延速度Vrが変動が少ない定速であると判断してステップS8に移行する。
このステップS8では、振動検出信号記憶領域に記憶されている前回の振動検出信号SV(n−1)を高速フーリエ変換(FFT)方式の周波数解析を行い、振動信号に含まれる周波数成分とその大きさを表すスペクトル値でなる解析結果を得、この解析結果を記憶部21に形成された解析結果記憶領域23に記憶してからステップS9に移行する。
Further, when the determination result in step S6 is | Vrb−Vr (n) | ≦ ΔV, it is determined that the rolling speed Vr of the metal plate 12 is a constant speed with little fluctuation, and the process proceeds to step S8.
In this step S8, the frequency analysis of the fast Fourier transform (FFT) method is performed on the previous vibration detection signal SV (n-1) stored in the vibration detection signal storage area, and the frequency component and its size included in the vibration signal After obtaining an analysis result composed of spectrum values representing heights and storing the analysis result in the analysis result storage area 23 formed in the storage unit 21, the process proceeds to step S9.

このステップS9では、解析結果記憶領域に所定数N個(例えばN=10)の解析結果が蓄積されたか否かを判定する。このステップS9の判定結果が、解析結果の記憶数がN個に達していない場合にはそのままタイマ割込処理を終了する。
また、ステップS9の判定結果が、解析結果の記憶数がN個に達したときには、ステップS10に移行して、各解析結果の平均化処理を行ってからステップS11に移行する。この平均化処理は、各解析結果の周波数毎にスペクトル値を加算した合計スペクトル値を個数Nで除して平均値を算出する。
ステップS11では、平均化した周波数解析結果からチャタマークを発生させるチャタリング原因周波数のスペクトル値を抽出し、このチャタリング原因周波数のスペクトル値と予め設定した正常時のチャタリング原因周波数のスペクトル値であるスペクトル値閾値と比較する。
In step S9, it is determined whether a predetermined number N (for example, N = 10) of analysis results are accumulated in the analysis result storage area. If the determination result in step S9 indicates that the number of stored analysis results has not reached N, the timer interrupt processing is ended as it is.
In addition, when the determination result in step S9 reaches N, the number of storages of analysis results reaches N, the process proceeds to step S10, the averaging process of each analysis result is performed, and the process proceeds to step S11. In this averaging process, a total spectrum value obtained by adding spectrum values for each frequency of each analysis result is divided by the number N to calculate an average value.
In step S11, the spectrum value of the chattering cause frequency for generating the chatter mark is extracted from the averaged frequency analysis result, and the spectrum value of the chattering cause frequency and the spectrum value of the chattering cause frequency at the normal time set beforehand. Compare to threshold.

ここで、チャタリング原因周波数は、冷間連続圧延機10の圧延速度によって変化する。すなわち、金属板12を冷間連続圧延機10で圧延する場合の圧延速度は、図3に示すように、停止状態から圧延開始すると、約800m/minの高速圧延速度まで10秒程度で一気に増速した後高定速圧延状態となり、その後約200秒を超えた時点で約600m/minの低速圧延速度まで減速した後低定速圧延状態となり、この低定速圧延状態から270秒を超えた時点で一気に減速されて停止される。このように、圧延速度は、高定速圧延状態と低定速圧延状態の2段階に変化し、これに応じてチャタリング原因周波数も変化する。すなわち、高定速圧延状態でのチャタリング原因周波数は510Hzとなり、低定速圧延状態でのチャタリング原因周波数は400Hzとなる。   Here, the chattering cause frequency changes according to the rolling speed of the cold rolling mill 10. That is, as shown in FIG. 3, when rolling is started from the stopped state, the rolling speed in the case of rolling the metal plate 12 by the cold continuous rolling mill 10 increases rapidly in about 10 seconds to a high speed rolling speed of about 800 m / min. High speed constant rolling state after speeding up and then slowing down to low speed rolling speed of about 600 m / min after about 200 seconds, then low constant speed rolling state and over 270 seconds from this low constant speed rolling state At the moment it is decelerated at once and stopped. As described above, the rolling speed changes in two stages of the high constant speed rolling state and the low constant speed rolling state, and the chattering cause frequency also changes accordingly. That is, the chattering cause frequency in the high constant speed rolling state is 510 Hz, and the chattering cause frequency in the low constant speed rolling state is 400 Hz.

したがって、冷間連続圧延機10が正常であるときに、高定速圧延状態のチャタリング原因周波数510Hzにおけるスペクトル値をスペクトル閾値として求めておくと共に、低定速圧延状態のチャタリング原因周波数400Hzにおけるスペクトル値をスペクトル閾値として求めておき、基準圧延速度Vrbに基づいてチャタリング原因周波数のスペクトル閾値を決定する。
このステップS11の比較結果が抽出したスペクトル値がスペクトル閾値を超えているときにはチャタリングが発生していると判断してステップS12に移行し、アラームを発信してからステップS13に移行する。また、ステップS11の判定結果が、抽出したスペクトル値がスペクトル閾値以下であるときには正常と判断してステップS13に移行する。
このステップS13では、周波数解析結果記憶領域及び振動検出信号記憶領域の記憶データを消去してからステップS14に移行し、圧延速度フラグFを“0”にリセットしていからタイマ割込処理を終了する。
Therefore, when the cold continuous rolling mill 10 is normal, the spectrum value at the chattering cause frequency 510 Hz in the high constant speed rolling state is determined as the spectrum threshold, and the spectrum value at the chattering cause frequency 400 Hz in the low constant speed rolling state Is determined as the spectrum threshold, and the spectrum threshold of the chattering cause frequency is determined based on the reference rolling speed Vrb.
If the spectrum value extracted as the comparison result in step S11 exceeds the spectrum threshold value, it is determined that chattering has occurred, the process proceeds to step S12, an alarm is issued, and then the process proceeds to step S13. Further, when the determination result in step S11 is that the extracted spectrum value is equal to or less than the spectrum threshold value, it is determined as normal, and the process proceeds to step S13.
In this step S13, after the stored data in the frequency analysis result storage area and the vibration detection signal storage area are erased, the process proceeds to step S14, and the timer interrupt processing is ended since the rolling speed flag F is reset to "0". .

次に、本発明に係る異常振動検出方法について説明する。
この異常振動検出方法では、圧延速度Vrの変動が少ない圧延状態を一定時間継続している状態で異常判定を行う。このため、前述した図2のフローチャートに示すように、振動計17又は18から振動検出信号を読み込む度に圧延速度検出部19から圧延速度Vr(n)を読み込んで定速圧延状態であるか否かを判断している。
したがって、図3に示すように、時点t1で冷間圧延を開始し、時点t2で高定速圧延状態に移行した場合を想定すると、時点t1から時点t2までの間では、圧延速度Vrが急勾配で増加している。このとき、図2の異常判定処理を開始したときに圧延速度フラグFは“0”に初期化されるので、ステップS1で読み込んだ圧延速度Vr(n)が基準圧延速度Vrbとして記憶される(ステップS4)。このとき、圧延速度フラグFが“1”にセットされることにより、次回のタイマ割込時には、ステップS3からステップS6に移行し、読み込んだ圧延速度Vr(n)が基準圧延速度Vrbに対して速度偏差ΔV(±1m/min)以内の定速状態であるか否かを判定する。
Next, an abnormal vibration detection method according to the present invention will be described.
In this abnormal vibration detection method, the abnormality determination is performed in a state where the rolling state in which the fluctuation of the rolling speed Vr is small is continued for a predetermined time. Therefore, as shown in the flowchart of FIG. 2 described above, the rolling speed Vr (n) is read from the rolling speed detection unit 19 every time the vibration detection signal is read from the vibration meter 17 or 18 and the constant speed rolling state is determined It is determined.
Therefore, as shown in FIG. 3, assuming that cold rolling is started at time t1 and transition to the high constant speed rolling state is performed at time t2, the rolling speed Vr becomes steep between time t1 and time t2. It is increasing with the slope. At this time, when the abnormality determination process of FIG. 2 is started, the rolling speed flag F is initialized to “0”, so the rolling speed Vr (n) read in step S1 is stored as the reference rolling speed Vrb ( Step S4). At this time, since the rolling speed flag F is set to "1", at the next timer interruption, the process proceeds from step S3 to step S6, and the read rolling speed Vr (n) is relative to the reference rolling speed Vrb. It is determined whether or not the vehicle is in a constant speed state within the speed deviation ΔV (± 1 m / min).

このとき、圧延速度Vrの加速状態では、|Vrb−Vr(n)|>ΔVとなり、周波数解析結果記憶部には解析結果が記憶されていないが、記憶データが消去されて、読み込んだ圧延速度Vr(n)が再度基準圧延速度Vrbとして記憶される。
この状態が繰り返されて圧延速度が高定速圧延状態となって、圧延速度Vrの変動が少なくなった時点から、読み込んだ振動検出信号SV(n)の解析を開始する。この場合、ステップS2で読み込みを開始した振動検出信号SV(n)については読み込みが完了するまでに0.2〜1秒掛かるので、前回のタイマ割込処理で記憶した振動検出信号SV(n)について高速フーリエ変換方式の周波数解析を実行する(ステップS8)。
At this time, in the acceleration state of the rolling speed Vr, | Vrb−Vr (n) |> ΔV, and the analysis result is not stored in the frequency analysis result storage unit, but the stored data is erased and the rolling speed read Vr (n) is again stored as the reference rolling speed Vrb.
This state is repeated, and the rolling speed changes to the high constant speed rolling state, and analysis of the read vibration detection signal SV (n) is started from the time when the fluctuation of the rolling speed Vr decreases. In this case, the vibration detection signal SV (n) whose reading is started in step S2 takes 0.2 to 1 second to complete reading, so the vibration detection signal SV (n) stored in the previous timer interrupt process The frequency analysis of the fast Fourier transform method is performed for (step S8).

このときの周波数解析結果は、図4(a)に示すように、0〜1000Hzの周波数範囲で、周波数毎に多数のスペクトル値が発生している。ここで、高定速圧延状態における圧延速度Vr=800m/minにおけるチャタリング原因周波数510Hzについては近傍の振動によるスペクトル値に埋もれており、チャタリング原因周波数のスペクトル値を抽出することができない。
このため、本実施形態では、圧延速度Vrが定速を維持している状態で、振動検出信号SVをサンプリングする毎に、複数N回(N=10)周波数解析を実行し、解析結果を周波数解析結果記憶領域に記憶して行く。
In the frequency analysis result at this time, as shown in FIG. 4A, a large number of spectrum values are generated for each frequency in a frequency range of 0 to 1000 Hz. Here, the chattering cause frequency 510 Hz at the rolling speed Vr = 800 m / min in the high constant speed rolling state is buried in the spectrum value due to the nearby vibration, and the spectrum value of the chattering cause frequency can not be extracted.
For this reason, in the present embodiment, in a state where the rolling speed Vr maintains a constant speed, multiple N times (N = 10) frequency analysis is executed every time the vibration detection signal SV is sampled, and the analysis result is a frequency Store in the analysis result storage area.

そして、周波数解析結果記憶領域に複数N個の周波数解析結果が記憶されたときに、ステップS9からステップS10に移行して、記憶された複数N個の周波数解析結果における各周波数毎のスペクトル値を平均化処理する。すなわち、各周波数分析結果の周波数におけるスペクトル値を個別に加算した合計スペクトル値を記憶数Nで除する算術平均処理を行って平均スペクトル値を算出する。
このように、N個の周波数分析結果を周波数毎のスペクトル値を平均化処理することにより、チャタリング原因周波数510Hzにおける平均スペクトル値は、チャタリングを生じさせる振動が連続して起きているので、チャタリング原因周波数の平均スペクトル値は図4(b)に示すように、ピークがはっきりと表れる。これに対して、チャタリング原因周波数の前後の周波数では、振動が不規則であるため、平均化すると平均スペクトル値が小さくなる。
Then, when a plurality N of frequency analysis results are stored in the frequency analysis result storage area, the process proceeds from step S9 to step S10, and spectrum values for each frequency in the stored plurality N of frequency analysis results are obtained. Averaging process. That is, the average spectrum value is calculated by performing arithmetic mean processing in which the total spectrum value obtained by individually adding the spectrum values at the frequency of each frequency analysis result is divided by the storage number N.
Thus, the average spectrum value at the chattering cause frequency of 510 Hz is caused by the generation of chattering continuously by averaging the N frequency analysis results and the spectrum value for each frequency. The peak of the average spectrum value of the frequency appears clearly as shown in FIG. 4 (b). On the other hand, since the vibration is irregular at frequencies before and after the chattering cause frequency, the average spectrum value becomes smaller when averaged.

したがって、図4(b)からチャタリング原因周波数510Hzの平均スペクトル値を抽出し、この平均スペクトル値を正常時のスペクトル値であるスペクトル閾値と比較する(ステップS11)。これにより、異常振動であるか否かを判別することができ、チャタリング原因周波数510Hzの平均スペクトル値がスペクトル閾値以下であるときには正常と判断して周波数解析結果記憶領域及び振動検出信号記憶領域の記憶データを消去し(ステップS13)、圧延速度フラグFを“0”にリセットする(ステップS14)。   Therefore, an average spectrum value of the chattering cause frequency of 510 Hz is extracted from FIG. 4B, and this average spectrum value is compared with a spectrum threshold which is a spectrum value at the normal time (step S11). This makes it possible to determine whether the vibration is abnormal or not, and when the average spectrum value of the chattering cause frequency 510 Hz is equal to or less than the spectrum threshold, it is judged normal and storage of the frequency analysis result storage area and the vibration detection signal storage area The data is erased (step S13), and the rolling speed flag F is reset to "0" (step S14).

このため、次のタイマ割込タイミングで、新たな基準圧延速度Vrbが設定されて、振動検出信号SVの読み込み処理と周波数分析処理及び平均化処理が実行される。
なお、振動検出信号記憶領域に1又は2以上の振動検出信号が記憶されている状態で、圧延速度Vr(n)が基準圧延速度Vrbから速度偏差ΔVを超えて変動した場合には、それまでの記憶された振動検出信号及び周波数分析結果が消去されて、読み込み中の振動検出信号から新たに周波数分析が開始される。
Therefore, at the next timer interruption timing, a new reference rolling speed Vrb is set, and the reading process of the vibration detection signal SV, the frequency analysis process, and the averaging process are executed.
If one or more vibration detection signals are stored in the vibration detection signal storage area, and the rolling speed Vr (n) fluctuates from the reference rolling speed Vrb beyond the speed deviation ΔV, The stored vibration detection signal and frequency analysis result are erased, and frequency analysis is newly started from the vibration detection signal being read.

その後、時点t3で圧延速度Vrが減速を開始すると、周波数解析が中断され、時点t4で低定速圧延状態となって、定速状態が一定時間継続されたときに周波数解析が実行され、周波数解析結果が複数N個となった時点で、平均化処理が実行されてチャタリング原因周波数400Hzの平均スペクトル値と正常時のスペクトル値であるスペクトル閾値と比較して、異常振動の検出が行われる。
この場合も、平均化処理前の周波数分析結果は、図5(a)に示すように、ある程度ピーク値を判断可能であるが、平均化処理を行うことにより、図5(b)に示すように、チャタリング原因周波数400Hzにおける平均スペクトル値がより明確に判別することができる。
After that, when the rolling speed Vr starts decelerating at time t3, frequency analysis is interrupted, and low constant speed rolling state is entered at time t4, and frequency analysis is performed when constant speed state is continued for a fixed time, When the analysis results become N, the averaging process is executed to detect the abnormal vibration by comparing the average spectrum value of the chattering cause frequency 400 Hz with the spectrum threshold value which is the spectrum value at the normal time.
Also in this case, as shown in FIG. 5 (a), the frequency analysis result before the averaging process can determine the peak value to some extent, but as shown in FIG. 5 (b) by performing the averaging process. In addition, the average spectrum value at the chattering cause frequency of 400 Hz can be determined more clearly.

このように、本実施形態によると、圧延速度が定速状態を一定期間維持している状態で、振動検出信号を所定のサンプリング周期でサンプリングし、サンプリングした振動検出信号を周波数分析して周波数毎のスペクトル値を得る周波数分析処理を行う。この周波数分析処理を複数回繰り返し、複数の周波数分析結果を平均化処理することにより、チャタリング原因周波数における平均スペクトル値を得ることにより、チャタリング原因周波数のスペクトル値を正確に検出することができる。そして、この平均スペクトル値をスペクトル閾値と比較することで、チャタリングが生じる異常振動が発生しているか否かを正確に判断することができる。   As described above, according to the present embodiment, the vibration detection signal is sampled at a predetermined sampling period and the sampled vibration detection signal is subjected to frequency analysis for each frequency while the rolling speed is maintained at a constant speed for a fixed period. Perform a frequency analysis process to obtain spectral values of The spectrum value of the chattering cause frequency can be accurately detected by obtaining the average spectrum value at the chattering cause frequency by repeating the frequency analysis process a plurality of times and averaging the plural frequency analysis results. Then, by comparing the average spectrum value with the spectrum threshold value, it can be accurately determined whether or not abnormal vibration causing chattering has occurred.

なお、上記実施形態では、振動検出信号SVのサンプリング周期を1秒とし周波数分析を行うことを10回繰り返す場合について説明したが、これに限定されるものではなく、上述したようにサンプリング周期T1は0.2秒以上に設定すればよく、また平均化を行う分析結果数は10個に限定されるものではなく、任意に設定することができる。
また、上記実施形態では、振動検出信号を収集する毎に、圧延速度Vrも収集する場合について説明したが、これに限定されるものではなく、所定数の振動検出信号を連続的に収集し、その間に所定間隔で圧延速度Vrを収集して、圧延速度の変動があった時点で、再度振動検出信号の収集を開始するようにしてもよい。
In the above embodiment, the case where the frequency analysis is repeated ten times while the sampling period of the vibration detection signal SV is 1 second has been described, but the present invention is not limited to this. As described above, the sampling period T1 is It may be set to 0.2 seconds or more, and the number of analysis results to be averaged is not limited to 10, and can be set arbitrarily.
In the above embodiment, although the rolling speed Vr is also collected each time the vibration detection signal is collected, the present invention is not limited to this, and a predetermined number of vibration detection signals are continuously collected. In the meantime, the rolling speed Vr may be collected at a predetermined interval, and when there is a fluctuation of the rolling speed, collection of the vibration detection signal may be started again.

この場合には、サンプリング周期T1の振動検出信号を収集する毎に、周波数分析処理を実行し、周波数分析結果がN個に達したときに、周波数分析結果を平均化処理すればよい。
また、上記実施形態では、圧延速度を最終スタンドST4で検出する場合について説明したが、これに限定されるものではなく、各圧延スタンドST1〜ST3に個別に設けるようにしてもよい。
In this case, frequency analysis processing may be executed each time a vibration detection signal with a sampling period T1 is collected, and frequency analysis results may be averaged when N frequency analysis results are reached.
Moreover, although the said embodiment demonstrated the case where a rolling speed was detected by last stand ST4, it is not limited to this, You may make it provide separately in each rolling stand ST1-ST3.

10…冷間連続圧延機、11…ハウジング、12…金属板、13…ワークロール、14…バックアップロール、15…テンションメータロール、16…パスラインロール、17,18…振動計、19…圧延速度検出部、20…振動信号処理計算機、21…振動検出信号記憶領域、22…周波数分析結果記憶領域   DESCRIPTION OF SYMBOLS 10 ... Cold continuous rolling machine, 11 ... Housing, 12 ... Metal plate, 13 ... Work roll, 14 ... Backup roll, 15 ... Tension meter roll, 16 ... Pass line roll, 17, 18 ... Vibration meter, 19 ... Rolling speed Detection unit, 20: Vibration signal processing computer, 21: Vibration detection signal storage area, 22: Frequency analysis result storage area

Claims (2)

金属板の冷間圧延時に、圧延スタンドの1か所以上に設置した振動計により振動信号を収集し、圧延速度の変動が少ない定速状態であるときに収集した振動信号に対して所定周期毎に高速フーリエ変換による周波数解析を行い、得られた各周波数成分のスペクトル値に対して平均化処理を行うことを特徴とする圧延機の異常振動検出方法。   During cold rolling of a metal plate, vibration signals are collected by a vibrometer installed at one or more locations of the rolling stand, and the vibration signals collected when the rolling speed is in a constant speed state with little fluctuation every predetermined cycle A method of detecting abnormal vibration of a rolling mill, comprising performing frequency analysis by fast Fourier transform and performing averaging processing on spectrum values of the respective frequency components obtained. 前記平均化処理を行ったスペクトル値が予め得られている該当する定速圧延速度における正常時のスペクトル値を超えたときに異常と判定することを特徴とする請求項1に記載の圧延機の異常振動検出方法。   The rolling mill according to claim 1, characterized in that when the spectrum value subjected to the averaging process exceeds the spectrum value at normal time at the corresponding constant speed rolling speed obtained in advance, it is judged as abnormal. Abnormal vibration detection method.
JP2018004842A 2018-01-16 2018-01-16 Abnormal vibration detection method for rolling mill Active JP6844552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004842A JP6844552B2 (en) 2018-01-16 2018-01-16 Abnormal vibration detection method for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004842A JP6844552B2 (en) 2018-01-16 2018-01-16 Abnormal vibration detection method for rolling mill

Publications (2)

Publication Number Publication Date
JP2019122979A true JP2019122979A (en) 2019-07-25
JP6844552B2 JP6844552B2 (en) 2021-03-17

Family

ID=67397262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004842A Active JP6844552B2 (en) 2018-01-16 2018-01-16 Abnormal vibration detection method for rolling mill

Country Status (1)

Country Link
JP (1) JP6844552B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191691A (en) * 2020-10-13 2021-01-08 邯郸钢铁集团有限责任公司 Method for rapidly judging and processing vibration of rolling mill
CN112668500A (en) * 2020-12-30 2021-04-16 太原科技大学 Xgboost-based rolling mill multi-target vibration prediction method
CN113182351A (en) * 2021-04-15 2021-07-30 首钢集团有限公司 Method and device for judging generation position of vibration chatter marks of hot continuous rolling mill
CN114007770A (en) * 2019-08-08 2022-02-01 普锐特冶金技术日本有限公司 Operation assisting method and operation assisting device for rolling facility, and rolling facility
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007770A (en) * 2019-08-08 2022-02-01 普锐特冶金技术日本有限公司 Operation assisting method and operation assisting device for rolling facility, and rolling facility
CN114007770B (en) * 2019-08-08 2023-07-28 普锐特冶金技术日本有限公司 Operation support method and operation support device for rolling mill, and rolling mill
CN112191691A (en) * 2020-10-13 2021-01-08 邯郸钢铁集团有限责任公司 Method for rapidly judging and processing vibration of rolling mill
CN112191691B (en) * 2020-10-13 2022-06-14 邯郸钢铁集团有限责任公司 Method for rapidly judging and processing vibration of rolling mill
CN112668500A (en) * 2020-12-30 2021-04-16 太原科技大学 Xgboost-based rolling mill multi-target vibration prediction method
CN112668500B (en) * 2020-12-30 2023-12-29 太原科技大学 Xgboost-based rolling mill multi-target vibration prediction method
CN113182351A (en) * 2021-04-15 2021-07-30 首钢集团有限公司 Method and device for judging generation position of vibration chatter marks of hot continuous rolling mill
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Also Published As

Publication number Publication date
JP6844552B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP2019122979A (en) Abnormal vibration detection method of rolling mill
JP6296046B2 (en) Vibration abnormality detection method and apparatus in cold rolling or temper rolling
JP6365526B2 (en) Bearing deterioration detection method and bearing deterioration detection device for small diameter roll
EP3903953B1 (en) Chattering detection method for cold rolling mill, chattering detection device for cold rolling mill, cold rolling method, and cold rolling mill
JP5487681B2 (en) Steel strip rolling machine diagnostic device and diagnostic method
US6463775B1 (en) Method and apparatus for detecting chattering in cold rolling mill
JP5799611B2 (en) Chattering detection method for cold rolling mill
JP2013111614A (en) Method of detecting chattering of cold rolling mill and device for detecting chattering
JPH0712638A (en) Method and apparatus for detecting abnormal vibration in winding device of cold
US20190383297A1 (en) Method and device for determining an indicator for a prediction of an instability in a compressor and use thereof
US20240033799A1 (en) Method for detecting abnormal vibration of rolling mill, apparatus for detecting abnormality of rolling mill, rolling method, and method for producing metal strip
EP4282551A1 (en) Abnormal vibration detection method for rolling mill, abnormality detection device, rolling method, and method for manufacturing metal strip
JP5924490B2 (en) Abnormality detection method and cold rolling method in cold rolling
JP6841264B2 (en) Abnormal vibration detection method in cold rolling
JP6572981B2 (en) Chatter mark prevention method and chatter mark prevention apparatus
JP2015009261A (en) Method and device for detecting chattering of cold rolling mill
KR102151428B1 (en) Apparatus for detecting abrasion of roll and mehod of detecing abrasion of rolll using the same
Maggioni et al. In-process quality characterization of grinding processes: A sensor-fusion based approach
Vogl et al. Bearing metrics for health monitoring of machine tool linear axes
KR100929017B1 (en) Plate Break Prediction Method and Apparatus Using Plate Break Prediction Parameters in Cold Rolling Mill
JP5750910B2 (en) Passing plate abnormality detecting device and passing plate abnormality detecting method
KR100920578B1 (en) An apparatus for measuring the thickness of coil
KR19980053189A (en) How to detect hot rolling mill chatter
JP2013116489A (en) Method for detecting fracture in strip in hot rolling finishing mill
Patidar et al. Study of detection of defects in rolling element bearings using vibration and acoustic measurement methods-A Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250