JP2019122237A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2019122237A
JP2019122237A JP2018166446A JP2018166446A JP2019122237A JP 2019122237 A JP2019122237 A JP 2019122237A JP 2018166446 A JP2018166446 A JP 2018166446A JP 2018166446 A JP2018166446 A JP 2018166446A JP 2019122237 A JP2019122237 A JP 2019122237A
Authority
JP
Japan
Prior art keywords
magnet
stator
circumferential direction
axis
magnetization vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166446A
Other languages
Japanese (ja)
Other versions
JP7031539B2 (en
Inventor
高橋 裕樹
Hiroki Takahashi
裕樹 高橋
和也 岩▲瀬▼
Kazuya Iwase
和也 岩▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to PCT/JP2018/048248 priority Critical patent/WO2019131908A1/en
Priority to DE112018006717.3T priority patent/DE112018006717T5/en
Priority to CN201880083908.XA priority patent/CN111566904B/en
Publication of JP2019122237A publication Critical patent/JP2019122237A/en
Priority to US16/915,116 priority patent/US11664693B2/en
Application granted granted Critical
Publication of JP7031539B2 publication Critical patent/JP7031539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a rotary electric machine capable of easily providing a magnetic part having a surface flux density distribution near to a sine wave.SOLUTION: A rotary electric machine comprises: a rotator 40 including a magnetic unit 1042 that contains a plurality of magnetic poles in which each polarity is alternated in a circumferential direction; and a stator 50. The magnet unit 1042 includes: a plurality of first magnets 1010 having a linear magnetization vector; and a plurality of second magnets 1020 having the linear magnetization vector. Each of the first magnets 1010 is arranged to the circumferential direction in a prescribed interval, and the plurality of second magnets 1020 is arranged at a position different from the adjacent first magnets 1010 in the circumferential direction. The magnetization vector in each first magnet 1010 is along a radial direction. The magnetization vector in each second magnet 1020 is near to the circumferential direction than the magnetization vector of each first magnet 1010.SELECTED DRAWING: Figure 26

Description

この明細書における開示は、回転電機に関する。   The disclosure in this specification relates to a rotating electrical machine.

従来、回転電機として、電磁鋼板を積層させてなる回転子コアに磁石収容孔を形成し、その磁石収容孔に磁石を挿入したIPM(Interior Permanent Magnet)型の回転子が普及してきている。このような回転子に採用される磁石としては、例えば、特許文献1に示すようなものがある。特許文献1によれば、正弦波に近い表面磁束密度分布を有する磁石とすることができ、ラジアル磁石と比べて緩やかな磁束変化のため渦電流損を抑制することができる。また、コギングトルクやトルクリプルなどを抑制しつつ、磁束密度を高めることも可能となる。   2. Description of the Related Art Conventionally, as an electric rotating machine, an IPM (Interior Permanent Magnet) type rotor in which a magnet accommodation hole is formed in a rotor core formed by laminating electromagnetic steel sheets and a magnet is inserted in the magnet accommodation hole has become widespread. As a magnet employ | adopted as such a rotor, there exists a thing as shown to patent document 1, for example. According to Patent Document 1, a magnet having a surface magnetic flux density distribution close to a sine wave can be obtained, and eddy current loss can be suppressed because of a gradual change in magnetic flux compared to a radial magnet. It is also possible to increase the magnetic flux density while suppressing cogging torque and torque ripple.

特開2017−99071号公報JP 2017-99071 A

ところで、特許文献1に記載されている磁石の磁石磁路は、曲線状となっている。磁石磁路を曲線状に着磁するためには、磁化容易軸を曲線に沿って配向する等、直線状に磁石磁路を形成する場合には必ずしも必要とされない特別な工程を実施する必要があった。つまり、直線状の磁石磁路を有する磁石に比較して、曲線状の磁石磁路を有する磁石を製造するには手間がかかるという問題があった。   By the way, the magnet magnetic path of the magnet described in Patent Document 1 has a curved shape. In order to magnetize the magnet magnetic path in a curved shape, it is necessary to carry out a special process which is not necessarily required when forming the magnet magnetic path in a straight line, such as orienting the magnetization easy axis along the curve. there were. That is, there is a problem that it takes time and effort to manufacture a magnet having a curved magnet magnetic path as compared to a magnet having a linear magnet magnetic path.

本発明は、上記課題に鑑みてなされたものであり、その目的は、正弦波に近い表面磁束密度分布を有する磁石部を容易に設けることができる回転電機を提供することにある。   This invention is made in view of the said subject, The objective is to provide the rotary electric machine which can provide easily the magnet part which has surface magnetic flux density distribution close | similar to a sine wave.

この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。   The disclosed aspects in this specification employ different technical means in order to achieve their respective goals. The objects, features and advantages disclosed in the present specification will become more apparent by reference to the following detailed description and the accompanying drawings.

手段1は、
周方向に極性が交互となる複数の磁極を含む磁石部を有する界磁子と、多相の電機子巻線を有する電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機において、
前記磁石部は、直線状の磁化ベクトルを有する複数の第1磁石と、直線状の磁化ベクトルを有する複数の第2磁石とを有しており、
複数の前記第1磁石は、前記周方向に所定間隔で配置されるとともに、複数の前記第2磁石は、前記周方向において隣り合う前記第1磁石の間となる位置に配置されており、
前記第1磁石における磁化ベクトルは、前記回転子の径方向、又は前記径方向よりも磁極中心となるd軸側に傾く方向に沿っており、
前記第2磁石における磁化ベクトルは、前記第1磁石の磁化ベクトルに比較して、周方向に近くなっている。
Means 1 is
A field element having a magnet portion including a plurality of magnetic poles of alternating polarity in a circumferential direction, and an armature having a multiphase armature winding, any one of the field element and the armature In a rotating electrical machine with a rotor
The magnet unit includes a plurality of first magnets having a linear magnetization vector and a plurality of second magnets having a linear magnetization vector,
The plurality of first magnets are disposed at predetermined intervals in the circumferential direction, and the plurality of second magnets are disposed at positions between the adjacent first magnets in the circumferential direction,
The magnetization vector in the first magnet is along the direction which is inclined to the radial direction of the rotor or the d-axis side which is the center of the magnetic pole than the radial direction,
The magnetization vector in the second magnet is closer to the circumferential direction than the magnetization vector of the first magnet.

第1磁石は、周方向に所定間隔で配置されるとともに、第2磁石は、周方向において隣り合う前記第1磁石の間となる位置に配置される。このため、第1磁石において、d軸に沿った直線状の磁化ベクトル(磁化の方向)を形成する場合(パラレル配向にする場合)、磁束密度がd軸側に集まりにくくなる。特に界磁子が、電機子に対して径方向内側に配置されると顕著となる。   The first magnets are disposed at predetermined intervals in the circumferential direction, and the second magnets are disposed at positions between the adjacent first magnets in the circumferential direction. For this reason, in the first magnet, when forming a linear magnetization vector (direction of magnetization) along the d-axis (in the case of parallel orientation), the magnetic flux density is hard to gather on the d-axis side. In particular, when the field element is disposed radially inward with respect to the armature, it becomes remarkable.

そこで、第1磁石における磁化ベクトルを、回転子の径方向、又は径方向よりも磁極中心となるd軸側に傾く方向に沿うようにした。これにより、直線状の磁化ベクトルが形成されている第1磁石及び第2磁石を使用するにもかかわらず、磁束密度がd軸側に集まりやすくなり、表面磁束密度分布を正弦波状に近づかせることができる。   Therefore, the magnetization vector in the first magnet is made to be along the direction which is inclined toward the d-axis side which is the center of the magnetic pole than the radial direction of the rotor or the radial direction. As a result, in spite of using the first magnet and the second magnet in which linear magnetization vectors are formed, the magnetic flux density tends to be concentrated on the d-axis side, and the surface magnetic flux density distribution is made to approach a sine wave. Can.

手段2は、手段1において、前記第2磁石における磁化ベクトルは、磁極境界となるq軸に直交する方向に対して、電機子側に傾いている。   In the means 2, in the means 1, the magnetization vector in the second magnet is inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary.

第2磁石において、q軸に直交する方向に沿った直線状の磁化ベクトルを形成する場合(パラレル配向にする場合)、磁束密度がd軸側に集まりにくくなる。特に界磁子が、電機子に対して径方向内側に配置されると顕著となる。   In the second magnet, when forming a linear magnetization vector along a direction orthogonal to the q-axis (in the case of parallel orientation), the magnetic flux density is less likely to gather on the d-axis side. In particular, when the field element is disposed radially inward with respect to the armature, it becomes remarkable.

そこで、第2磁石における磁化ベクトルを、磁極境界となるq軸に直交する方向に対して、電機子側に傾くようにした。これにより、直線状の磁化ベクトルが形成されている第1磁石及び第2磁石を使用するにもかかわらず、磁束密度がd軸側に集まりやすくなり、表面磁束密度分布を正弦波状に近づかせることができる。   Therefore, the magnetization vector in the second magnet is inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary. As a result, in spite of using the first magnet and the second magnet in which linear magnetization vectors are formed, the magnetic flux density tends to be concentrated on the d-axis side, and the surface magnetic flux density distribution is made to approach a sine wave. Can.

手段3は、
周方向に極性が交互となる複数の磁極を含む磁石部を有する界磁子と、多相の電機子巻線を有する電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機において、
前記磁石部は、直線状の磁化ベクトルを有する複数の第1磁石と、直線状の磁化ベクトルを有する複数の第2磁石とを有しており、
複数の前記第1磁石は、前記周方向に所定間隔で配置されるとともに、複数の前記第2磁石は、前記周方向において隣り合う前記第1磁石の間となる位置に配置されており、
前記第2磁石における磁化ベクトルは、磁極境界となるq軸に直交する方向に対して、電機子側に傾いており、
前記第1磁石における磁化ベクトルは、前記第2磁石の磁化ベクトルに比較して、径方向に近くなっている。
Means 3
A field element having a magnet portion including a plurality of magnetic poles of alternating polarity in a circumferential direction, and an armature having a multiphase armature winding, any one of the field element and the armature In a rotating electrical machine with a rotor
The magnet unit includes a plurality of first magnets having a linear magnetization vector and a plurality of second magnets having a linear magnetization vector,
The plurality of first magnets are disposed at predetermined intervals in the circumferential direction, and the plurality of second magnets are disposed at positions between the adjacent first magnets in the circumferential direction,
The magnetization vector in the second magnet is inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary,
The magnetization vector of the first magnet is closer to the radial direction than the magnetization vector of the second magnet.

第2磁石において、q軸に直交する方向に沿った直線状の磁化ベクトルを形成する場合(パラレル配向にする場合)、磁束密度がd軸側に集まりにくくなる。特に界磁子が、電機子に対して径方向内側に配置されると顕著となる。   In the second magnet, when forming a linear magnetization vector along a direction orthogonal to the q-axis (in the case of parallel orientation), the magnetic flux density is less likely to gather on the d-axis side. In particular, when the field element is disposed radially inward with respect to the armature, it becomes remarkable.

そこで、第2磁石における磁化ベクトルを、磁極境界となるq軸に直交する方向に対して、電機子側に傾くようにした。これにより、直線状の磁化ベクトルが形成されている第1磁石及び第2磁石を使用するにもかかわらず、磁束密度がd軸側に集まりやすくなり、表面磁束密度分布を正弦波状に近づかせることができる。   Therefore, the magnetization vector in the second magnet is inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary. As a result, in spite of using the first magnet and the second magnet in which linear magnetization vectors are formed, the magnetic flux density tends to be concentrated on the d-axis side, and the surface magnetic flux density distribution is made to approach a sine wave. Can.

手段4は、手段1〜3のいずれかにおいて、前記第1磁石には、磁化ベクトルが反電機子側から電機子側へ向かう方向となる第1A磁石と、磁化ベクトルが電機子側から反電機子側へ向かう方向となる第1B磁石と、があり、前記第1A磁石と前記第1B磁石とは周方向において交互に配置されており、
前記第2磁石には、反電機子側に設定される中心点を中心として放射状に複数の磁化ベクトルが形成されており、
前記中心点は、前記第1A磁石よりも前記第1B磁石側に設定される。
In means 4 according to any one of means 1 to 3, in the first magnet, the first A magnet, in which the magnetization vector is directed from the opposite armature side to the armature side, and the second magnetization vector from the armature side The first B magnet has a direction toward the child side, and the first A magnet and the first B magnet are alternately arranged in the circumferential direction,
In the second magnet, a plurality of magnetization vectors are formed radially about a central point set on the opposite side of the armature,
The center point is set closer to the first B magnet than the first A magnet.

第2磁石の大きさや形状(曲率等)によっては、複数の磁化ベクトルを平行に設定すると(パラレル配向にすると)、磁石磁路の長さを十分な長さとすることができない場合がある。そこで、第2磁石に、反電機子側に設定される中心点を中心として放射状に複数の磁化ベクトルを設けることとした(いわゆるラジアル配向にした)。また、中心点を、第1A磁石よりも第1B磁石側に設定した。これにより、第2磁石における磁化ベクトルを、磁極境界となるq軸に直交する方向に比較して、電機子側に傾けつつ、磁石磁路の長さを長くすることができる。   Depending on the size and shape (curvature and the like) of the second magnet, if the plurality of magnetization vectors are set in parallel (parallel orientation), the length of the magnet magnetic path may not be sufficient. Therefore, a plurality of magnetization vectors are provided radially to the second magnet centering on a center point set on the side opposite to the armature (a so-called radial orientation is used). Also, the center point was set closer to the first B magnet than the first A magnet. This makes it possible to lengthen the length of the magnet magnetic path while inclining to the armature side, as compared with the magnetization vector in the second magnet in the direction perpendicular to the q-axis serving as the magnetic pole boundary.

手段5は、手段1〜3のいずれかにおいて、前記第1磁石には、磁化ベクトルが反電機子側から電機子側へ向かう方向となる第1A磁石と、磁化ベクトルが電機子側から反電機子側へ向かう方向となる第1B磁石と、があり、前記第1A磁石と前記第1B磁石とは周方向において交互に配置されており、
周方向において隣り合う第1磁石の間に配置される前記第2磁石は、磁化ベクトルが異なる複数の磁石により構成されており、
前記第2磁石のうち前記第1A磁石側の部分では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、電機子側に傾くように構成されている一方、
前記第2磁石のうち前記第1B磁石側の部分では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、反電機子側に傾くように構成されている。
The means 5 is any one of the means 1 to 3, wherein the first magnet has a magnetization vector which is directed from the armature side to the armature side, and the magnetization vector from the armature side to the electric machine. The first B magnet has a direction toward the child side, and the first A magnet and the first B magnet are alternately arranged in the circumferential direction,
The second magnets disposed between the adjacent first magnets in the circumferential direction are composed of a plurality of magnets having different magnetization vectors,
The magnetization vector is configured to be inclined toward the armature with respect to the direction perpendicular to the q-axis serving as the magnetic pole boundary in the portion on the side of the first A magnet of the second magnet,
The magnetization vector is configured to be inclined to the side opposite to the armature with respect to the direction perpendicular to the q-axis serving as the magnetic pole boundary in the portion on the side of the first B magnet of the second magnet.

周方向において、第2磁石を磁化ベクトルが異なる複数の磁石により構成し、第1A磁石側の部分では、磁化ベクトルが、q軸に直交する方向に対して、電機子側に傾くようにする一方、第1B磁石側の部分では、磁化ベクトルが、q軸に直交する方向に対して、反電機子側に傾くようにした。これにより、磁化ベクトルを周方向に沿った曲線に近づけることができ、磁石磁路を長くして、d軸における磁束密度を向上させることができる。また、表面磁束密度分布を正弦波状に近づかせることができる。   In the circumferential direction, the second magnet is composed of a plurality of magnets having different magnetization vectors, and in the part on the side of the first A magnet, the magnetization vector is inclined toward the armature with respect to the direction orthogonal to the q axis In the part on the side of the first B magnet, the magnetization vector is inclined to the side opposite to the armature with respect to the direction orthogonal to the q-axis. Thus, the magnetization vector can be made close to a curve along the circumferential direction, and the magnetic flux path can be increased by lengthening the magnet path. Also, the surface magnetic flux density distribution can be made to approach a sine wave.

手段6は、手段1〜5のいずれかにおいて、前記第1磁石の磁化ベクトルは複数形成されており、第1磁石の磁化ベクトルは、d軸から離れるほど、d軸に対して傾く角度が大きくなる。   In the means 6, in any of the means 1 to 5, a plurality of magnetization vectors of the first magnet are formed, and the magnetization vector of the first magnet is inclined at a large angle with respect to the d axis as it goes away from the d axis. Become.

これにより、d軸における磁束密度を向上させつつ、表面磁束密度分布を正弦波状に近づかせることができる。   Thereby, the surface magnetic flux density distribution can be made to approach a sine wave while improving the magnetic flux density in the d axis.

手段7は、手段1〜6のいずれかにおいて、前記界磁子は、前記電機子に対して径方向内側に配置される。   In the means 7, in any of the means 1 to 6, the field element is disposed radially inward with respect to the armature.

この場合において、より表面磁束密度分布を正弦波状に近づかせることができる。   In this case, it is possible to make the surface magnetic flux density distribution more sinusoidal.

手段8は、手段1〜7のいずれかにおいて、前記磁石部は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である。   In the means 8, in any of the means 1 to 7, the magnet unit has an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density of 1.0 [T] or more.

これにより、トルクを向上させることができる。   This can improve the torque.

手段9は、手段1〜8のいずれかにおいて、前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さい。   In any of the means 1 to 8, the armature winding has conductor portions arranged at predetermined intervals in the circumferential direction at positions facing the field element, and the conductor portions The radial thickness dimension is smaller than the circumferential width dimension of one phase in one magnetic pole.

これにより、トルクを向上させつつ、導線部における渦電流損を抑制できる。   Thereby, the eddy current loss in a conducting wire part can be suppressed, improving a torque.

手段10は、手段1〜9のいずれかにおいて、
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、
前記電機子において、
周方向における前記各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、1磁極における前記磁石部の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料、若しくは非磁性材料を用いる構成か、
又は周方向における前記各導線部の間に導線間部材を設けていない構成となっている。
The means 10 is any of the means 1 to 9
The armature winding has conducting wire portions arranged at predetermined intervals in a circumferential direction at a position facing the field element,
In the armature,
An inter-conductor member is provided between the conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is Wt, and the saturation flux density of the inter-conductor member is Bs. A configuration using a magnetic material or nonmagnetic material having a relationship of Wt × Bs ≦ Wm × Br, where Wm is the width dimension of the magnet portion in one magnetic pole and Br is the residual magnetic flux density of the magnet portion. Or
Alternatively, the inter-conductor member is not provided between the conductor portions in the circumferential direction.

これにより、磁気飽和に起因するトルク制限を解消することができる。   Thereby, the torque limitation caused by the magnetic saturation can be eliminated.

手段11は、手段1〜10のいずれかにおいて、
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部を有し、
前記導線部を構成する各導線は、複数の素線が束ねられているとともに、束ねられた素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体となっている
これにより、導線部における渦電流損を抑制できる。
The means 11 is any of the means 1 to 10:
The armature winding has conducting wire portions arranged at predetermined intervals in a circumferential direction at a position facing the field element,
Each of the conductive wires constituting the conductive wire portion is a bundle of a plurality of strands and a bundle of strands whose resistance value between the bundled strands is larger than the resistance of the strands themselves Thus, the eddy current loss in the wire portion can be suppressed.

回転電機の縦断面斜視図。The longitudinal section perspective view of rotation electrical machinery. 回転電機の縦断面図。FIG. 図2のIII−III線断面図。III-III sectional view taken on the line of FIG. 図3の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of FIG. 回転電機の分解図。The exploded view of rotation electrical machinery. インバータユニットの分解図。The exploded view of an inverter unit. 固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図。The torque diagram which shows the relationship between the ampere turn and torque density of a stator winding. 回転子及び固定子の横断面図。FIG. 2 is a cross-sectional view of a rotor and a stator. 図8の一部を拡大して示す図。The figure which expands and shows a part of FIG. 固定子の横断面図。FIG. 固定子の縦断面図。The longitudinal cross-sectional view of a stator. 固定子巻線の斜視図。The perspective view of a stator winding. 導線の構成を示す斜視図。The perspective view which shows the structure of a conducting wire. 素線の構成を示す模式図。The schematic diagram which shows the structure of a strand. n層目における各導線の形態を示す図。The figure which shows the form of each conducting wire in the n-th layer. n層目とn+1層目の各導線を示す側面図。The side view which shows each conducting wire of the n-th layer and the n + 1st layer. 実施形態の磁石について電気角と磁束密度との関係を示す図。The figure which shows the relationship of an electrical angle and magnetic flux density about the magnet of embodiment. 比較例の磁石について電気角と磁束密度との関係を示す図。The figure which shows the relationship of an electrical angle and magnetic flux density about the magnet of a comparative example. 回転電機の制御システムの電気回路図。The electric circuit diagram of the control system of rotary electric machine. 制御装置による電流フィードバック制御処理を示す機能ブロック図。FIG. 5 is a functional block diagram showing a current feedback control process by the controller. 制御装置によるトルクフィードバック制御処理を示す機能ブロック図。FIG. 6 is a functional block diagram showing a torque feedback control process by the controller. 第2実施形態における回転子及び固定子の横断面図。The cross-sectional view of the rotor and stator in 2nd Embodiment. 図22の一部を拡大して示す図。The figure which expands and shows a part of FIG. 磁石ユニットにおける磁束の流れを具体的に示す図。The figure which shows concretely the flow of the magnetic flux in a magnet unit. 第3実施形態における回転子及び固定子の横断面図。The cross-sectional view of the rotor and stator in 3rd Embodiment. 第3実施形態における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in 3rd Embodiment. 比較例における磁石ユニットの横断面図。FIG. 7 is a cross-sectional view of a magnet unit in a comparative example. 磁石ユニットにおける磁化ベクトルを模式的に示す図。The figure which shows the magnetization vector in a magnet unit typically. 磁石ユニットにおける表面磁束密度分布と電気角との関係を示す図。The figure which shows the relationship of the surface magnetic flux density distribution and an electrical angle in a magnet unit. 第4実施形態における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in 4th Embodiment. 第4実施形態の磁石ユニットにおける磁化ベクトルを模式的に示す図。The figure which shows typically the magnetization vector in the magnet unit of 4th Embodiment. 第5実施形態における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in 5th Embodiment. 第5実施形態の磁石ユニットにおける磁化ベクトルを模式的に示す図。The figure which shows typically the magnetization vector in the magnet unit of 5th Embodiment. 別例における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in another example. 第6実施形態における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in 6th Embodiment. 変形例1における固定子の断面図。Sectional drawing of the stator in modification 1. FIG. 変形例1における固定子の断面図。Sectional drawing of the stator in modification 1. FIG. 変形例2における固定子の断面図。Sectional drawing of the stator in modification 2. FIG. 変形例3における固定子の断面図。Sectional drawing of the stator in modification 3. FIG. 変形例4における固定子の断面図。Sectional drawing of the stator in modification 4. FIG. 変形例7における回転子及び固定子の横断面図。FIG. 18 is a cross-sectional view of a rotor and a stator in a seventh modification. 変形例8において操作信号生成部の処理の一部を示す機能ブロック図。FIG. 16 is a functional block diagram showing a part of processing of an operation signal generation unit in a modification 8; キャリア周波数変更処理の手順を示すフローチャート。The flowchart which shows the procedure of a carrier frequency change process. 変形例9において導線群を構成する各導線の接続形態を示す図。FIG. 18 is a view showing a connection form of the respective conducting wires constituting the conducting wire group in the modification 9; 変形例9において4対の導線が積層配置されている構成を示す図。The figure which shows the structure by which 4 pairs of conducting wires are laminatedly arranged in the modification 9. FIG. 変形例10においてインナロータ型の回転子及び固定子の横断面図。FIG. 18 is a cross-sectional view of an inner rotor type rotor and a stator in Modification 10; 図46の一部を拡大して示す図。The figure which expands and shows a part of FIG. インナロータ型の回転電機の縦断面図。The longitudinal cross-sectional view of the inner rotor type rotary electric machine. インナロータ型の回転電機の概略構成を示す縦断面図。FIG. 2 is a longitudinal sectional view showing a schematic configuration of an inner rotor type rotating electric machine. 変形例11においてインナロータ構造の回転電機の構成を示す図。FIG. 18 is a view showing a configuration of a rotary electric machine having an inner rotor structure in Modification 11. 変形例11においてインナロータ構造の回転電機の構成を示す図。FIG. 18 is a view showing a configuration of a rotary electric machine having an inner rotor structure in Modification 11. 変形例12において回転電機子形の回転電機の構成を示す図。FIG. 18 is a view showing a configuration of a rotary armature type rotary electric machine according to a modification 12; 変形例14における導線の構成を示す断面図。Sectional drawing which shows the structure of the conducting wire in the modification 14. FIG. リラクタンストルク、磁石トルク及びDMの関係を示す図。The figure which shows the relationship between reluctance torque, magnet torque, and DM. ティースを示す図。Figure showing the teeth. 別例における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in another example. 別例における磁石ユニットの横断面図。The cross-sectional view of the magnet unit in another example.

図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。   Several embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding portions and / or associated portions may be provided with the same reference symbols, or reference symbols with different places of one hundred or more places. The description of the other embodiments can be referred to for the corresponding parts and / or parts to be associated.

本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。   The rotating electrical machine in the present embodiment is, for example, used as a vehicle power source. However, the rotary electric machine can be widely used for industrial use, for vehicles, for home appliances, for OA equipment, for game machines, and the like. In addition, in the following each embodiment, the same code | symbol is attached | subjected to the mutually same or equal part in the figure, and the description is used about the part of the same code | symbol.

(第1実施形態)
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII−III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
First Embodiment
The rotary electric machine 10 according to the present embodiment is a synchronous multiphase AC motor, and has an outer rotor structure (eversion structure). The outline | summary of the rotary electric machine 10 is shown in FIG. 1 thru | or FIG. 1 is a longitudinal sectional perspective view of the rotating electrical machine 10, FIG. 2 is a longitudinal sectional view in the direction along the rotating shaft 11 of the rotating electrical machine 10, and FIG. 3 is a direction perpendicular to the rotating shaft 11. FIG. 4 is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along the line III-III in FIG. 2), FIG. 4 is a cross-sectional view showing a part of FIG. It is. In FIG. 3, hatching indicating a cut surface is omitted except for the rotating shaft 11 for convenience of illustration. In the following description, the direction in which the rotation shaft 11 extends is taken as the axial direction, the direction radially extending from the center of the rotation shaft 11 is taken as the radial direction, and the direction extending circumferentially around the rotation shaft 11 is taken as the circumferential direction.

回転電機10は、大別して、軸受ユニット20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。本実施形態の回転電機10は、「界磁子」としての回転子40と、「電機子」としての固定子50とを有する構成となっており、回転界磁形の回転電機として具体化されるものとなっている。   The rotary electric machine 10 roughly includes a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is disposed coaxially with the rotation shaft 11, and is assembled in an axial direction in a predetermined order, whereby the rotary electric machine 10 is configured. The rotary electric machine 10 of the present embodiment is configured to have a rotor 40 as a "field element" and a stator 50 as an "armature", and is embodied as a rotary electric field type rotary electric machine. It has become.

軸受ユニット20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。軸受21,22により、回転軸11を回転可能に支持する一組の軸受が構成されている。   The bearing unit 20 has two bearings 21 and 22 which are disposed to be separated from each other in the axial direction, and a holding member 23 for holding the bearings 21 and 22. The bearings 21 and 22 are, for example, radial ball bearings, and each include an outer ring 25, an inner ring 26, and a plurality of balls 27 disposed between the outer ring 25 and the inner ring 26. The holding member 23 has a cylindrical shape, and the bearings 21 and 22 are assembled on the inner side in the radial direction. The rotary shaft 11 and the rotor 40 are rotatably supported on the inner side in the radial direction of the bearings 21 and 22. The bearings 21 and 22 constitute a set of bearings that rotatably support the rotating shaft 11.

各軸受21,22では、不図示のリテーナにより玉27が保持され、その状態で各玉同士のピッチが保たれている。軸受21,22は、リテーナの軸方向上下部に封止部材を有し、その内部に非導電性グリース(例えば非導電性のウレア系グリース)が充填されている。また、内輪26の位置がスペーサにより機械的に保持され、内側から上下方向に凸となる定圧予圧が施されている。   In each of the bearings 21 and 22, the balls 27 are held by a retainer (not shown), and the pitch between the balls is maintained in this state. The bearings 21 and 22 have sealing members at the upper and lower portions in the axial direction of the retainer, and the inside thereof is filled with non-conductive grease (for example, non-conductive urea-based grease). Further, the position of the inner ring 26 is mechanically held by the spacer, and a constant pressure preload that is convex in the vertical direction from the inside is applied.

ハウジング30は、円筒状をなす周壁31を有する。周壁31は、その軸方向に対向する第1端と第2端を有する。周壁31は、第1端に端面32と有するとともに、第2端に開口33を有する。開口33は、第2端の全体において開放されている。端面32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受ユニット20が固定されている。また、ハウジング30内、すなわち周壁31及び端面32により区画された内部スペースには、中空円筒状の回転子40と中空円筒状の固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面32の側で回転軸11に片持ち支持されている。   The housing 30 has a cylindrical peripheral wall 31. The peripheral wall 31 has a first end and a second end opposite in the axial direction. The peripheral wall 31 has an end face 32 at a first end and an opening 33 at a second end. The opening 33 is open at the entire second end. A circular hole 34 is formed in the center of the end face 32, and the bearing unit 20 is fixed by a fixing tool such as a screw or a rivet in a state of being inserted into the hole 34. Further, a hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are accommodated in the housing 30, that is, in an internal space defined by the peripheral wall 31 and the end surface 32. In the present embodiment, the rotary electric machine 10 is of the outer rotor type, and the stator 50 is disposed inside the housing 30 in the radial direction of the cylindrical rotor 40. The rotor 40 is cantilevered on the rotary shaft 11 on the side of the end face 32 in the axial direction.

回転子40は、中空筒状に形成された磁石ホルダ41と、その磁石ホルダ41の径方向内側に設けられた環状の磁石ユニット42とを有している。磁石ホルダ41は、略カップ状をなし、磁石保持部材としての機能を有する。磁石ホルダ41は、円筒状をなす円筒部43と、同じく円筒状をなしかつ円筒部43よりも小径の固定部(attachment)44と、それら円筒部43及び固定部44を繋ぐ部位となる中間部45とを有している。円筒部43の内周面に磁石ユニット42が取り付けられている。   The rotor 40 has a magnet holder 41 formed in a hollow cylindrical shape, and an annular magnet unit 42 provided radially inward of the magnet holder 41. The magnet holder 41 has a substantially cup shape and has a function as a magnet holding member. The magnet holder 41 is a cylindrical portion 43 having a cylindrical shape, and an intermediate portion serving as a portion connecting the cylindrical portion 43 and the fixing portion 44, which has the same cylindrical shape and has an attachment 44 smaller in diameter than the cylindrical portion 43. And 45. The magnet unit 42 is attached to the inner peripheral surface of the cylindrical portion 43.

なお、磁石ホルダ41は、機械強度が充分な冷間圧延鋼板(SPCC)や、鍛造用鋼、炭素繊維強化プラスチック(CFRP)等により構成されている。   The magnet holder 41 is made of cold rolled steel plate (SPCC) having sufficient mechanical strength, steel for forging, carbon fiber reinforced plastic (CFRP) or the like.

固定部44の貫通孔44aには回転軸11が挿通される。貫通孔44a内に配置された回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して磁石ホルダ41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。   The rotating shaft 11 is inserted into the through hole 44 a of the fixed portion 44. The fixing portion 44 is fixed to the rotating shaft 11 disposed in the through hole 44 a. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing portion 44. The fixing portion 44 may be fixed to the rotating shaft 11 by spline connection using an unevenness, key connection, welding, caulking, or the like. Thus, the rotor 40 rotates integrally with the rotating shaft 11.

また、固定部44の径方向外側には、軸受ユニット20の軸受21,22が組み付けられている。上述のとおり軸受ユニット20はハウジング30の端面32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。   Further, the bearings 21 and 22 of the bearing unit 20 are assembled on the radial outside of the fixing portion 44. As described above, since the bearing unit 20 is fixed to the end surface 32 of the housing 30, the rotary shaft 11 and the rotor 40 are rotatably supported by the housing 30. Thereby, the rotor 40 is rotatable in the housing 30.

回転子40には、その軸方向に対向する二つの端部の一方にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受ユニット20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、磁石ホルダ41の、その軸方向に対向する二つの端部の一方において、その軸方向に離間する二つの軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。   The rotor 40 is provided with a fixing portion 44 only at one of two axially opposite ends thereof, whereby the rotor 40 is supported in a cantilever manner on the rotation shaft 11. Here, the fixed portion 44 of the rotor 40 is rotatably supported by the bearings 21 and 22 of the bearing unit 20 at two different positions in the axial direction. That is, the rotor 40 is rotatably supported by two axially spaced bearings 21 and 22 at one of two axially opposite ends of the magnet holder 41. Therefore, stable rotation of the rotor 40 is realized even if the rotor 40 is supported by the rotary shaft 11 in a cantilever manner. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.

また、軸受ユニット20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受ユニット20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧、又は定圧予圧のいずれであっても良い。定位置予圧の場合、軸受21と軸受22の外輪25はいずれも保持部材23に対して、圧入、又は接着等の方法を用いて接合されている。また、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。ここで軸受21の外輪25を軸受21の内輪26に対して軸方向に異なる位置に配置する事で予圧を発生させることができる。軸受22の外輪25を軸受22の内輪26に対して軸方向に異なる位置に配置する事でも予圧を発生させることができる。   Further, in the bearing unit 20, the bearing 22 near the center of the rotor 40 (lower side in the figure) and the bearing 21 on the opposite side (upper side in the figure) The dimensions are different. For example, the bearing 22 near the center of the rotor 40 has a larger gap size than the bearing 21 on the opposite side. In this case, even if vibration due to swing of the rotor 40 or imbalance due to component tolerance acts on the bearing unit 20 on the side closer to the center of the rotor 40, the influence of the swing or vibration is well absorbed. Ru. Specifically, by increasing the play size (gap size) by preloading in the bearing 22 near the center of the rotor 40 (the lower side in the figure), the vibration generated in the cantilever structure is absorbed by the play portion. Ru. The preload may be either fixed position preload or constant pressure preload. In the case of fixed position preloading, the bearing 21 and the outer ring 25 of the bearing 22 are both joined to the holding member 23 using a method such as press fitting or adhesion. Further, the bearing 21 and the inner ring 26 of the bearing 22 are both joined to the rotary shaft 11 using a method such as press fitting or bonding. Here, by disposing the outer ring 25 of the bearing 21 at a position different from the inner ring 26 of the bearing 21 in the axial direction, it is possible to generate a preload. The preload can also be generated by arranging the outer ring 25 of the bearing 22 at a position different from the inner ring 26 of the bearing 22 in the axial direction.

また定圧予圧を採用する場合には、軸方向において、軸受22と軸受21に挟まれた領域から軸受22の外輪25に向けて予圧が発生する様に予圧用バネ、例えばウェーブワッシャ24等を軸受22と軸受21に挟まれた同領域に配置する。この場合も、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。軸受21、又は軸受22の外輪25は、保持部材23に対して所定のクリアランスを介して配置される。このような構成とすることで、軸受22の外輪25には軸受21から離れる方向に予圧用バネのバネ力が作用する。そして、この力が回転軸11を伝わることで、軸受21の内輪26を軸受22の方向に押し付ける力が作用する。これにより、軸受21,22ともに、外輪25と内輪26の軸方向の位置がずれ、前述した定位置予圧と同様に2つのベアリングに予圧を掛けることができる。   When a constant pressure preload is employed, a preload spring, for example, a wave washer 24 or the like, is bearing so that a preload is generated from the region between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22 in the axial direction. It arrange | positions in the same area | region pinched | interposed into 22 and the bearing 21. FIG. Also in this case, the bearing 21 and the inner ring 26 of the bearing 22 are both joined to the rotating shaft 11 using a method such as press fitting or bonding. The bearing 21 or the outer ring 25 of the bearing 22 is disposed with respect to the holding member 23 via a predetermined clearance. With such a configuration, the spring force of the preload spring acts on the outer ring 25 of the bearing 22 in the direction away from the bearing 21. Then, when this force is transmitted through the rotary shaft 11, a force that presses the inner ring 26 of the bearing 21 in the direction of the bearing 22 acts. As a result, the axial positions of the outer ring 25 and the inner ring 26 deviate in both the bearings 21 and 22, and two bearings can be preloaded in the same manner as the fixed position preload described above.

なお、定圧予圧を発生させる際には、必ずしも図2に示す様に軸受22の外輪25にバネ力を印加する必要は無い。例えば、軸受21の外輪25にバネ力を印加しても良い。また軸受21,22のいずれかの内輪26を回転軸11に対して所定のクリアランスを介して配置し、軸受21,22の外輪25を保持部材23に対して圧入、又は接着等の方法を用いて接合することで、2つのベアリングに予圧を掛けても良い。   When generating a constant pressure preload, it is not always necessary to apply a spring force to the outer ring 25 of the bearing 22 as shown in FIG. For example, a spring force may be applied to the outer ring 25 of the bearing 21. Further, the inner ring 26 of any one of the bearings 21 and 22 is disposed with a predetermined clearance with respect to the rotary shaft 11, and the outer rings 25 of the bearings 21 and 22 are press-fit or adhered to the holding member 23 The two bearings may be preloaded by joining them together.

更には、軸受21の内輪26が軸受22に対して離れるように力を作用させる場合には、軸受22の内輪26も軸受21に対して離れるように力を作用させる方が良い。逆に、軸受21の内輪26が軸受22に対して近づくように力を作用させる場合には、軸受22の内輪26も軸受21に対して近づくように力を作用させる方が良い。   Furthermore, in the case where the inner ring 26 of the bearing 21 exerts a force on the bearing 22 to be separated, it is better to exert the force on the bearing 21 so as to separate the bearing 21 as well. Conversely, in the case where the inner ring 26 of the bearing 21 exerts a force to approach the bearing 22, it is better to apply the force so that the inner ring 26 of the bearing 22 also approaches the bearing 21.

なお、本回転電機10を車両動力源等の目的で車両に適用する場合には、予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可能性や、予圧を印加する対象物に掛る重力の方向が変動してしまう可能性がある。その為、本回転電機10を車両に適用する場合には、定位置予圧を採用することが望ましい。   When the rotating electrical machine 10 is applied to a vehicle for the purpose of a vehicle power source or the like, the mechanism for generating the preload may be subjected to vibration having a component in the direction of generation of the preload, or an object to which the preload is applied. There is a possibility that the direction of gravity on an object may change. Therefore, when applying this rotary electric machine 10 to a vehicle, it is desirable to adopt a fixed position preload.

また、中間部45は、環状の内側肩部49aと環状の外側肩部49bを有する。外側肩部49bは、中間部45の径方向において内側肩部49aの外側に位置している。内側肩部49aと外側肩部49bは、中間部45の軸方向において互いに離間している。これにより、中間部45の径方向において、円筒部43と固定部44とは部分的に重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、円筒部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。   The middle portion 45 also has an annular inner shoulder 49a and an annular outer shoulder 49b. The outer shoulder 49 b is located outside the inner shoulder 49 a in the radial direction of the middle portion 45. The inner shoulder 49 a and the outer shoulder 49 b are spaced apart from each other in the axial direction of the middle portion 45. Thus, the cylindrical portion 43 and the fixing portion 44 partially overlap in the radial direction of the intermediate portion 45. That is, the cylindrical portion 43 protrudes axially outward with respect to the proximal end (the lower end in the drawing) of the fixed portion 44. In this configuration, it is possible to support the rotor 40 with respect to the rotating shaft 11 at a position near the center of gravity of the rotor 40, compared to the case where the intermediate portion 45 is provided in a flat plate shape without steps. Forty stable operations can be realized.

上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受ユニット20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受ユニット20の一部と、固定子巻線51のコイルエンド54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。   According to the configuration of the intermediate portion 45 described above, in the rotor 40, the bearing accommodation concave portion 46 which accommodates a part of the bearing unit 20 at a position surrounding the fixing portion 44 in the radial direction and inward of the intermediate portion 45. A coil accommodating recess for accommodating a coil end 54 of a stator winding 51 of the stator 50 described later at a position surrounding the bearing accommodating recess 46 in the radial direction and being on the outer side of the intermediate portion 45 47 are formed. And these each accommodation recessed part 46, 47 is arrange | positioned so that it may adjoin in the radial inside and outside. That is, a part of the bearing unit 20 and the coil end 54 of the stator winding 51 are disposed so as to overlap radially inward and outward. Thereby, in the rotary electric machine 10, shortening of the axial dimension is possible.

中間部45は、回転軸11側から径方向外側に張り出すように設けられている。そして、その中間部45に、軸方向に延び、固定子50の固定子巻線51のコイルエンド54に対する接触を回避する接触回避部が設けられている。中間部45が張出部に相当する。   The intermediate portion 45 is provided so as to project radially outward from the rotary shaft 11 side. The intermediate portion 45 is provided with a contact avoiding portion which extends in the axial direction and prevents the contact of the stator winding 51 of the stator 50 with the coil end 54. The middle portion 45 corresponds to the overhang portion.

コイルエンド54は、径方向の内側又は外側に曲げられることで、そのコイルエンド54の軸方向寸法を小さくすることができ、固定子50の軸長を短縮することが可能である。コイルエンド54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド54が径方向内側に曲げられるとよい。コイルエンド54の反対側のコイルエンドの曲げ方向は任意でよいが、空間的に余裕のある外側に曲げた形状が製造上好ましい。   The coil end 54 can be bent radially inward or outward so that the axial dimension of the coil end 54 can be reduced, and the axial length of the stator 50 can be shortened. The bending direction of the coil end 54 may be in consideration of the assembly with the rotor 40. Assuming that the stator 50 is assembled radially inward of the rotor 40, the coil end 54 may be bent radially inward on the insertion tip side with respect to the rotor 40. Although the bending direction of the coil end on the opposite side of the coil end 54 may be arbitrary, an outwardly bent shape having a space is preferable in terms of manufacture.

また、磁石部としての磁石ユニット42は、円筒部43の径方向内側において、周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット42は、周方向に複数の磁極を有する。ただし、磁石ユニット42の詳細については後述する。   Moreover, the magnet unit 42 as a magnet part is comprised by the some permanent magnet arrange | positioned so that polarity may change alternately along the circumferential direction in the radial direction inner side of the cylindrical part 43. As shown in FIG. Thus, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, the details of the magnet unit 42 will be described later.

固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状(環状)に巻回形成された固定子巻線51と、その径方向内側に配置されたベース部材としての固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石ユニット42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相の巻線を2つ用いることで、固定子巻線51が6相の相巻線として構成されている。   The stator 50 is provided radially inward of the rotor 40. The stator 50 has a stator winding 51 wound in a substantially cylindrical shape (annular shape) and a stator core 52 as a base member disposed radially inward, and the stator winding A line 51 is disposed to face the annular magnet unit 42 across a predetermined air gap. The stator winding 51 is composed of a plurality of phase windings. Each of the phase windings is configured by connecting a plurality of conductive wires arranged in the circumferential direction to each other at a predetermined pitch. In the present embodiment, by using U-phase, V-phase and W-phase three-phase windings and X-phase, Y-phase and Z-phase three-phase windings and using two of these three-phase windings, The stator winding 51 is configured as a six-phase phase winding.

固定子コア52は、軟磁性材である電磁鋼板が積層された積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。電磁鋼板は、例えば鉄に数%程度(例えば3%)の珪素を添加した珪素鋼板である。固定子巻線51が電機子巻線に相当し、固定子コア52が電機子コアに相当する。   The stator core 52 is formed in an annular shape by a laminated steel plate in which electromagnetic steel sheets, which are soft magnetic materials, are laminated, and is assembled inside the stator winding 51 in the radial direction. The electromagnetic steel sheet is, for example, a silicon steel sheet obtained by adding about several percent (for example, 3%) of silicon to iron. The stator winding 51 corresponds to an armature winding, and the stator core 52 corresponds to an armature core.

固定子巻線51は、径方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石ユニット42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド54,55のうち軸受ユニット20の側(図の上側)となるコイルエンド54が、回転子40の磁石ホルダ41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。   The stator winding 51 is a portion overlapping the stator core 52 in the radial direction, and a coil side portion 53 that is radially outward of the stator core 52, and one end side of the stator core 52 in the axial direction and the other. The coil ends 54 and 55 respectively project on the end side. The coil side portion 53 respectively faces the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction. In a state where the stator 50 is disposed inside the rotor 40, the coil end 54, which becomes the side of the bearing unit 20 (the upper side in the figure), of the coil ends 54 and 55 on both axial sides is the magnet holder of the rotor 40 It is accommodated in the coil accommodation recessed part 47 formed of 41. However, the details of the stator 50 will be described later.

インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる複数の電気コンポーネント62とを有している。ユニットベース61は、例えば炭素繊維強化プラスチック(CFRP)により構成されている。ユニットベース61は、ハウジング30の開口33の縁に対して固定されるエンドプレート63と、そのエンドプレート63に一体に設けられ、軸方向に延びるケーシング64とを有している。エンドプレート63は、その中心部に円形の開口65を有しており、開口65の周縁部から起立するようにしてケーシング64が形成されている。   The inverter unit 60 has a unit base 61 fixed to the housing 30 by a fastener such as a bolt, and a plurality of electrical components 62 assembled to the unit base 61. The unit base 61 is made of, for example, a carbon fiber reinforced plastic (CFRP). The unit base 61 has an end plate 63 fixed to the edge of the opening 33 of the housing 30, and an axially extending casing 64 integrally provided on the end plate 63. The end plate 63 has a circular opening 65 at its central portion, and a casing 64 is formed so as to stand up from the peripheral edge of the opening 65.

ケーシング64の外周面には固定子50が組み付けられている。つまり、ケーシング64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。   The stator 50 is assembled to the outer peripheral surface of the casing 64. That is, the outer diameter dimension of the casing 64 is the same as the inner diameter dimension of the stator core 52 or slightly smaller than the inner diameter dimension of the stator core 52. The stator core 52 is assembled to the outside of the casing 64, whereby the stator 50 and the unit base 61 are integrated. Further, when the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 in a state where the stator core 52 is assembled to the casing 64.

なお、固定子コア52は、ユニットベース61に対して接着、焼きばめ、圧入等により組み付けられているとよい。これにより、ユニットベース61側に対する固定子コア52の周方向又は軸方向の位置ずれが抑制される。   The stator core 52 may be assembled to the unit base 61 by bonding, shrink fitting, press fitting, or the like. Thus, positional deviation of the stator core 52 in the circumferential direction or axial direction with respect to the unit base 61 side is suppressed.

また、ケーシング64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。   A radial inner side of the casing 64 is a housing space for housing the electric component 62, and the electric component 62 is disposed in the housing space so as to surround the rotary shaft 11. The casing 64 has a role as a housing space forming part. The electric component 62 is configured to include a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.

なお、ユニットベース61が、固定子50の径方向内側に設けられ、固定子50を保持する固定子ホルダ(電機子ホルダ)に相当する。ハウジング30及びユニットベース61により、回転電機10のモータハウジングが構成されている。このモータハウジングでは、回転子40を挟んで軸方向の一方側においてハウジング30に対して保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61が互いに結合されている。例えば電気自動車である電動車両等においては、その車両等の側にモータハウジングが取り付けられることで、回転電機10が車両等に装着される。   The unit base 61 is provided on the inner side in the radial direction of the stator 50 and corresponds to a stator holder (armature holder) for holding the stator 50. The housing 30 and the unit base 61 constitute a motor housing of the rotary electric machine 10. In this motor housing, the holding member 23 is fixed to the housing 30 on one side of the rotor 40 in the axial direction, and the housing 30 and the unit base 61 are connected to each other on the other side. For example, in an electric vehicle or the like, which is an electric vehicle, the rotating electrical machine 10 is mounted on a vehicle or the like by attaching a motor housing to the side of the vehicle or the like.

ここで、上記図1〜図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。   Here, the configuration of the inverter unit 60 will be further described using FIG. 6 which is an exploded view of the inverter unit 60 in addition to FIGS.

ユニットベース61において、ケーシング64は、筒状部71と、その軸方向において対向する両端の一方(軸受ユニット20側の端部)に設けられた端面72とを有している。筒状部71の軸方向両端部のうち端面72の反対側は、エンドプレート63の開口65を通じて全面的に開放されている。端面72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。孔73には、回転軸11の外周面との間の空隙を封鎖するシール材171が設けられている。シール材171は、例えば樹脂材料よりなる摺動シールであるとよい。   In the unit base 61, the casing 64 has a cylindrical portion 71 and an end face 72 provided on one of the opposite ends (the end on the bearing unit 20 side) opposed in the axial direction. Of the axially opposite end portions of the cylindrical portion 71, the side opposite to the end face 72 is entirely open through the opening 65 of the end plate 63. A circular hole 73 is formed at the center of the end face 72, and the rotary shaft 11 can be inserted through the hole 73. The hole 73 is provided with a sealing material 171 for closing a gap between the hole 73 and the outer peripheral surface of the rotating shaft 11. The sealing material 171 may be, for example, a sliding seal made of a resin material.

ケーシング64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。   The cylindrical portion 71 of the casing 64 serves as a partition that divides between the rotor 40 and the stator 50 disposed radially outward and the electric component 62 disposed radially inward. The rotor 40, the stator 50, and the electric component 62 are respectively arranged side by side radially inward and outward with the portion 71 interposed therebetween.

また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。   Further, the electric component 62 is an electric component constituting an inverter circuit, and has a power running function of rotating the rotor 40 by supplying current to each phase winding of the stator winding 51 in a predetermined order; The generator has a power generation function of inputting a three-phase alternating current flowing in the stator winding 51 with the rotation of the motor, and outputting the same as generated power to the outside. The electrical component 62 may have only one of the power running function and the power generation function. The power generation function is, for example, a regeneration function that outputs the regenerative electric power to the outside when the rotating electrical machine 10 is used as a vehicle power source.

電気コンポーネント62の具体的な構成として、図4に示すように、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。   As a specific configuration of the electrical component 62, as shown in FIG. 4, a hollow cylindrical capacitor module 68 is provided around the rotation shaft 11, and a plurality of capacitor modules 68 are provided on the outer peripheral surface of the capacitor module 68. The semiconductor modules 66 are arranged in the circumferential direction. The capacitor module 68 includes a plurality of smoothing capacitors 68 a connected in parallel with one another. Specifically, the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are stacked, and the cross section has a trapezoidal shape. The capacitor module 68 is configured by arranging twelve capacitors 68 a in a ring shape.

なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。   In the manufacturing process of the capacitor 68a, for example, a long film of a predetermined width formed by laminating a plurality of films is used, the film width direction is a trapezoidal height direction, and the upper and lower bases of the trapezoid alternate. The capacitor film is produced by cutting the long film into an isosceles trapezoidal shape. Then, by attaching an electrode or the like to the capacitor element, the capacitor 68a is manufactured.

半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66を環状に並べて形成された半導体モジュール群66Aが電気コンポーネント62に設けられている。   The semiconductor module 66 includes semiconductor switching elements such as MOSFETs and IGBTs, for example, and is formed in a substantially plate shape. In the present embodiment, since the rotary electric machine 10 is provided with two sets of three-phase windings, and an inverter circuit is provided for each of the three-phase windings, a total of 12 semiconductor modules 66 are formed in a ring. The semiconductor module group 66 </ b> A is provided to the electrical component 62.

半導体モジュール66は、ケーシング64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール群66Aの外周面は筒状部71の内周面に当接し、半導体モジュール群66Aの内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング64を介してエンドプレート63に伝わり、エンドプレート63から放出される。   The semiconductor module 66 is disposed between the cylindrical portion 71 of the casing 64 and the capacitor module 68. The outer peripheral surface of the semiconductor module group 66A is in contact with the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module group 66A is in contact with the outer peripheral surface of the capacitor module 68. In this case, the heat generated in the semiconductor module 66 is transferred to the end plate 63 through the casing 64 and is released from the end plate 63.

半導体モジュール群66Aは、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、半導体モジュール群66Aの径方向外側において円環状に連なるように一体に設けられていてもよい。スペーサ69は、良熱伝導体であり、例えばアルミニウム等の金属、又は放熱ゲルシート等であるとよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。   The semiconductor module group 66A preferably has a spacer 69 between the semiconductor module 66 and the cylindrical portion 71 on the outer peripheral surface side, that is, in the radial direction. In this case, in the capacitor module 68, the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon, while the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 is circular. Is a flat surface, and the outer peripheral surface is a curved surface. The spacers 69 may be integrally provided so as to be continuous in an annular shape on the radially outer side of the semiconductor module group 66A. The spacer 69 is a good heat conductor, and may be, for example, a metal such as aluminum or a heat dissipating gel sheet. In addition, it is also possible to make the cross-sectional shape of the inner peripheral surface of the cylindrical part 71 into the same dodecagon as the capacitor module 68. In this case, it is preferable that the inner and outer peripheral surfaces of the spacer 69 be flat.

また、本実施形態では、ケーシング64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。   Further, in the present embodiment, the cooling water passage 74 for circulating the cooling water is formed in the cylindrical portion 71 of the casing 64, and the heat generated by the semiconductor module 66 is to the cooling water flowing through the cooling water passage 74. It is also released. That is, the casing 64 is provided with a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is annularly formed so as to surround the electric component 62 (the semiconductor module 66 and the capacitor module 68). The semiconductor module 66 is disposed along the inner peripheral surface of the cylindrical portion 71, and the cooling water passage 74 is provided at a position overlapping the semiconductor module 66 in the radial direction and the inside.

筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から電気コンポーネント62の熱(例えば半導体モジュール66の熱)が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。   Since the stator 50 is disposed outside the cylindrical portion 71 and the electric component 62 is disposed inside, the heat of the stator 50 is transmitted to the cylindrical portion 71 from the outside thereof, The heat of the electrical component 62 (for example, the heat of the semiconductor module 66) is transmitted from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled simultaneously, and the heat of the heat generating member of the rotary electric machine 10 can be efficiently released.

更に、固定子巻線51への通電を行うことで回転電機を動作させるインバータ回路の一部、又は全部を構成する半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されている。望ましくは、1つの半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。更に、望ましくは、全ての半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。   Furthermore, at least a portion of the semiconductor module 66 that constitutes a part or all of the inverter circuit that operates the rotating electrical machine by energizing the stator winding 51 is the radial outside of the cylindrical portion 71 of the casing 64 The stator core 52 is disposed in the area surrounded by the stator core 52. Desirably, the whole of one semiconductor module 66 is disposed in the area surrounded by the stator core 52. Furthermore, desirably, all of the semiconductor modules 66 are disposed in the area surrounded by the stator core 52.

また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれた領域内に配置されている。望ましくは、全ての半導体モジュール66の全体がヨーク141に囲まれた領域内に配置されている。   Further, at least a part of the semiconductor module 66 is disposed in the area surrounded by the cooling water passage 74. Desirably, the whole of all the semiconductor modules 66 is disposed in the area surrounded by the yoke 141.

また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68は、その軸方向に対向した二つの端面、すなわち第1端面と第2端面を有している。コンデンサモジュール68の軸受ユニット20に近い第1端面は、ケーシング64の端面72に対向しており、絶縁シート75を挟んだ状態で端面72に重ね合わされている。また、コンデンサモジュール68の開口65に近い第2端面には、配線モジュール76が組み付けられている。   The electrical component 62 also includes an insulating sheet 75 provided on one end surface of the capacitor module 68 in the axial direction and a wiring module 76 provided on the other end surface. In this case, the capacitor module 68 has two end faces opposed in the axial direction, that is, a first end face and a second end face. A first end face close to the bearing unit 20 of the capacitor module 68 is opposed to the end face 72 of the casing 64, and is superimposed on the end face 72 with the insulating sheet 75 interposed therebetween. Further, the wiring module 76 is assembled to the second end face close to the opening 65 of the capacitor module 68.

配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。   The wiring module 76 has a circular plate-like main body 76a made of a synthetic resin material and a plurality of bus bars 76b and 76c embedded therein. The bus bars 76b and 76c allow the semiconductor module 66 and the capacitor to be formed. An electrical connection is made with the module 68. Specifically, the semiconductor module 66 has a connection pin 66a extending from the end face in the axial direction, and the connection pin 66a is connected to the bus bar 76b at the radial outside of the main body 76a. Further, the bus bar 76c extends to the side opposite to the capacitor module 68 at the radially outer side of the main body 76a, and is connected to the wiring member 79 at its tip (see FIG. 2).

上記のとおりコンデンサモジュール68の軸方向に対向する第1端面に絶縁シート75が設けられ、かつコンデンサモジュール68の第2端面に配線モジュール76が設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の第1端面および第2端面から端面72及び筒状部71に至る経路が形成される。すなわち、第1端面から端面72への経路と、第2端面から筒状部71へ至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。   According to the configuration in which the insulating sheet 75 is provided on the first end face of the capacitor module 68 facing in the axial direction as described above and the wiring module 76 is provided on the second end face of the capacitor module 68, the heat radiation path of the capacitor module 68 A path from the first end face and the second end face of the capacitor module 68 to the end face 72 and the cylindrical portion 71 is formed. That is, a path from the first end face to the end face 72 and a path from the second end face to the cylindrical portion 71 are formed. Thus, heat can be dissipated from the end surface portion of the capacitor module 68 other than the outer peripheral surface on which the semiconductor module 66 is provided. That is, not only the radiation in the radial direction but also the radiation in the axial direction is possible.

また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。   Further, since the capacitor module 68 has a hollow cylindrical shape and the rotary shaft 11 is disposed with a predetermined gap interposed in the inner peripheral portion, the heat of the capacitor module 68 can be released also from the hollow portion ing. In this case, the flow of air is generated by the rotation of the rotating shaft 11, so that the cooling effect is enhanced.

配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御部に相当する制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。   A disk-shaped control board 67 is attached to the wiring module 76. The control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed, and on the board is mounted a control device 77 corresponding to a control unit including various ICs and a microcomputer. There is. The control board 67 is fixed to the wiring module 76 by a fixing tool such as a screw. The control board 67 has an insertion hole 67a at its central portion for inserting the rotating shaft 11.

なお、配線モジュール76は、軸方向に互いに対向する、すなわち、その厚み方向において互いに対向する第1面と第2面を有する。第1面は、コンデンサモジュール68に面する。配線モジュール76は、その第2面に、制御基板67を設けている。制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。   The wiring module 76 has a first surface and a second surface facing each other in the axial direction, that is, facing each other in the thickness direction. The first side faces the capacitor module 68. The wiring module 76 is provided with a control board 67 on its second surface. The bus bars 76c of the wiring module 76 extend from one side of the both sides of the control board 67 to the other side. In such a configuration, it is preferable that the control board 67 be provided with a notch for avoiding interference with the bus bar 76c. For example, it is preferable that a part of the outer edge portion of the circular control board 67 be cut away.

上述のとおり、ケーシング64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。   As described above, according to the configuration in which the electric component 62 is accommodated in the space surrounded by the casing 64 and the housing 30, the rotor 40 and the stator 50 are provided in layers on the outside thereof, the inverter circuit is generated. The electromagnetic noise is preferably shielded. That is, in the inverter circuit, switching control in each semiconductor module 66 is performed using PWM control with a predetermined carrier frequency, and it is conceivable that electromagnetic noise may be generated due to the switching control. It can shield suitably by the housing 30, the rotor 40, the stator 50 grade | etc., Of 62 radial direction outer side.

更に、半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置することで、半導体モジュール66と固定子巻線51とが固定子コア52を介さずに配置されている構成に比べて、半導体モジュール66から磁束が発生したとしても、固定子巻線51に影響を与えにくい。また、固定子巻線51から磁束が発生したとしても、半導体モジュール66に影響を与えにくい。なお、半導体モジュール66の全体が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されると更に効果的である。また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれている場合、固定子巻線51や磁石ユニット42からの発熱が半導体モジュール66に届きにくいという効果を得ることができる。   Furthermore, at least a portion of the semiconductor module 66 is disposed in a region surrounded by the stator core 52 disposed radially outward of the cylindrical portion 71 of the casing 64, thereby the semiconductor module 66 and the stator winding Compared with the configuration in which the stator core 51 is disposed without the stator core 52, even if magnetic flux is generated from the semiconductor module 66, the stator winding 51 is less likely to be affected. Further, even if magnetic flux is generated from the stator winding 51, the semiconductor module 66 is unlikely to be affected. It is more effective to dispose the whole of the semiconductor module 66 in a region surrounded by the stator core 52 disposed radially outside of the cylindrical portion 71 of the casing 64. In addition, when at least a part of the semiconductor module 66 is surrounded by the cooling water passage 74, an effect can be obtained that heat generated from the stator winding 51 and the magnet unit 42 does not easily reach the semiconductor module 66.

筒状部71においてエンドプレート63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。   In the cylindrical portion 71, in the vicinity of the end plate 63, a through hole 78 for inserting a wiring member 79 (see FIG. 2) for electrically connecting the stator 50 on the outside and the electric component 62 on the inside is formed. There is. As shown in FIG. 2, the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76 c of the wiring module 76 by pressure bonding, welding or the like. The wiring member 79 is, for example, a bus bar, and it is desirable that the joint surface is crushed flat. The through holes 78 may be provided at one or a plurality of places, and in the present embodiment, the through holes 78 are provided at two places. In the configuration in which through holes 78 are provided at two locations, it is possible to easily connect the winding terminals extending from two sets of three-phase windings with wiring member 79, which is preferable for performing multiphase connection. It has become.

上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転子40の回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、径方向において回転子40の磁石ユニット42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。   As described above, in the housing 30, as shown in FIG. 4, the rotor 40 and the stator 50 are provided in order from the radial outer side, and the inverter unit 60 is provided in the radial direction inner side of the stator 50. Here, when the radius of the inner peripheral surface of the housing 30 is d, the rotor 40 and the stator 50 are disposed radially outside the distance of d × 0.705 from the rotation center of the rotor 40 There is. In this case, of the rotor 40 and the stator 50, the region radially inward from the inner circumferential surface of the radially inner stator 50 (that is, the inner circumferential surface of the stator core 52) is the first region X1 in the radial direction Assuming that the area from the inner circumferential surface of the stator 50 to the housing 30 is a second area X2, the area of the cross section of the first area X1 is larger than the area of the cross section of the second area X2. There is. Further, when the magnet unit 42 of the rotor 40 and the stator winding 51 of the rotor 40 overlap in the radial direction, the volume of the first region X1 is larger than the volume of the second region X2.

なお、回転子40及び固定子50を磁気回路コンポーネントアッセンブリとすると、ハウジング30内において、その磁気回路コンポーネントアッセンブリの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントアッセンブリの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。   When the rotor 40 and the stator 50 are a magnetic circuit component assembly, in the housing 30, the first region X1 radially inward from the inner circumferential surface of the magnetic circuit component assembly in the radial direction is the magnetic circuit component assembly The volume is larger than the second region X2 from the inner circumferential surface of the housing 30 to the housing 30.

次いで、回転子40及び固定子50の構成をより詳しく説明する。   Next, the configurations of the rotor 40 and the stator 50 will be described in more detail.

一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨークから所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。   Generally, as a configuration of a stator in a rotating electrical machine, it is known to provide a plurality of slots in a circumferential direction on a stator core made of laminated steel plates and having an annular shape, and winding a stator winding in the slots. There is. Specifically, the stator core has a plurality of teeth radially extending at predetermined intervals from the yoke, and a slot is formed between the teeth adjacent in the circumferential direction. In the slot, for example, a plurality of layers of conducting wires are accommodated in the radial direction, and the stator winding is configured by the conducting wires.

ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。   However, in the above-described stator structure, when the stator winding is energized, magnetic saturation occurs in the teeth of the stator core as the magnetomotive force of the stator winding increases, which causes rotation of the rotating electric machine. It is conceivable that the torque density is limited. That is, in the stator core, it is considered that magnetic saturation occurs when the rotating magnetic flux generated by energization of the stator winding is concentrated on the teeth.

また、一般的に、回転電機におけるIPM(Interior Permanent Magnet)ロータの構成として、永久磁石がd−q座標系におけるd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。   In general, as a configuration of an IPM (Interior Permanent Magnet) rotor in a rotating electrical machine, one in which permanent magnets are disposed on a d axis in a dq coordinate system and a rotor core is disposed on a q axis is known. In such a case, by exciting the stator winding in the vicinity of the d-axis, an excitation magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. And, it is considered that a wide range of magnetic saturation occurs in the q-axis core portion of the rotor.

図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がA1で制限されることになる。   FIG. 7 is a torque diagram showing a relationship between an ampere turn [AT] indicating a magnetomotive force of a stator winding and a torque density [Nm / L]. The broken line shows the characteristics of a general IPM rotor type rotating electric machine. As shown in FIG. 7, in a general rotating electric machine, magnetic saturation occurs in two places of the teeth portion between the slots and the q-axis core portion by increasing the magnetomotive force in the stator, which causes The increase in torque is limited. Thus, in the general rotating electric machine, the ampere-turn design value is limited to A1.

そこで本実施形態では、磁気飽和に起因する制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPM(Surface Permanent Magnet)ロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石ユニット42において磁石磁路を長くして磁力を高めた極異方構造を採用している。   So, in this embodiment, in order to eliminate the restriction | limiting resulting from magnetic saturation, in the rotary electric machine 10, the structure shown below shall be provided. That is, as a first device, in order to eliminate magnetic saturation occurring in the stator core teeth in the stator, a slotless structure is adopted in the stator 50 and magnetic saturation occurring in the q-axis core portion of the IPM rotor is eliminated. , SPM (Surface Permanent Magnet) rotor is adopted. According to the first device, it is possible to eliminate the two parts where the magnetic saturation occurs, but it is conceivable that the torque in the low current region is reduced (see the dashed line in FIG. 7). Therefore, as a second device, a pole anisotropic structure is adopted in which the magnet magnetic path is lengthened in the magnet unit 42 of the rotor 40 to increase the magnetic force in order to overcome the torque reduction by increasing the magnetic flux of the SPM rotor. ing.

また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の固定子50における径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、磁石ユニット42に対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1〜第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。   Further, as a third device, a flat wire structure in which the radial thickness of the wire in the stator 50 is reduced at the coil side portion 53 of the stator winding 51 is employed to achieve the reduction of torque. Here, it is conceivable that a larger eddy current is generated in the stator winding 51 facing the magnet unit 42 due to the above-described pole anisotropic structure in which the magnetic force is enhanced. However, according to the third device, it is possible to suppress the generation of the eddy current in the radial direction in the stator winding 51 because of the flat thin lead wire structure in the radial direction. As described above, according to the first to third configurations, as shown by a solid line in FIG. 7, a magnet having a high magnetic force is adopted to achieve a significant improvement in torque characteristics, but a magnet having a high magnetic force is expected. The potential for large eddy current generation can also be ameliorated.

さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石ユニットを採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損(渦電流による銅損:eddy current loss)もまた更に抑制することができるのである。   Further, as a fourth device, a magnet unit having a magnetic flux density distribution close to a sine wave is adopted by utilizing a pole anisotropic structure. According to this, it is possible to enhance the torque by increasing the sine wave matching rate by pulse control and the like described later, and also to reduce eddy current loss (copper loss due to eddy current: eddy current loss) Can also be further suppressed.

以下、正弦波整合率について説明する。正弦波整合率は、磁石の表面を磁束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及びピーク値が同じ正弦波との比較から求める事ができる。そして、回転電機の基本波である1次波形の振幅が、実測波形の振幅、即ち基本波に他の高調波成分を加えた振幅に対して、占める割合が正弦波整合率に相当する。正弦波整合率が高くなると、表面磁束密度分布の波形が正弦波形状に近づいていく。そして、正弦波整合率を向上させた磁石を備えた回転電機に対して、インバータから1次の正弦波の電流を供給すると、磁石の表面磁束密度分布の波形が正弦波形状に近い事と相まって、大きなトルクを発生させることができる。なお、表面磁束密度分布は実測以外の方法、例えばマクスウェルの方程式を用いた電磁界解析によって推定しても良い。   The sine wave matching factor will be described below. The sine wave matching rate can be obtained by comparing the measured waveform of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe and the like and the sine wave having the same period and peak value. The ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotary electric machine, to the amplitude of the measured waveform, that is, the amplitude obtained by adding another harmonic component to the fundamental wave corresponds to the sine wave matching ratio. As the sine wave matching rate increases, the waveform of the surface magnetic flux density distribution approaches a sine wave shape. Then, when a primary sine wave current is supplied from the inverter to a rotating electrical machine equipped with a magnet whose sine wave matching rate is improved, the waveform of the surface magnetic flux density distribution of the magnet is close to a sine wave shape. , Can generate a large torque. The surface magnetic flux density distribution may be estimated by a method other than measurement, for example, electromagnetic field analysis using Maxwell's equation.

また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて束ねた素線導体構造としている。これによれば、素線が並列結線されているため、大電流が流せるとともに、扁平導線構造で固定子50の周方向に広がった導線で発生する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線を撚り合わせた構成にすることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。   Further, as a fifth device, the stator winding 51 has a strand conductor structure in which a plurality of strands are gathered and bundled. According to this, since the strands are connected in parallel, a large current can flow, and generation of eddy current generated in the lead which spreads in the circumferential direction of the stator 50 in the flat lead structure is the cross-sectional area of each strand Can be effectively suppressed beyond thinning in the radial direction by the third device. And by making it the structure which twisted the several strand, with respect to the magnetomotive force from a conductor, the eddy current with respect to the magnetic flux which generate | occur | produces with the law of a right-handed screw can be offset with respect to the current conduction direction.

このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。   As described above, when the fourth device and the fifth device are further added, the torque enhancement can be performed while suppressing the eddy current loss due to the high magnetic force while adopting the magnet with the high magnetic force, which is the second device. Can be

以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石ユニット42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、図11のX‐X線に沿った固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石ユニット42における磁石の磁化方向を矢印にて示している。   Below, the slotless structure of the stator 50 mentioned above, the flat conducting wire structure of the stator winding 51, and the pole anisotropic structure of the magnet unit 42 will be individually described. Here, first, the slotless structure of the stator 50 and the flat conductor structure of the stator winding 51 will be described. 8 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. FIG. 10 is a cross-sectional view showing a cross-section of the stator 50 along the line XX in FIG. 11, and FIG. 11 is a cross-sectional view showing a vertical cross-section of the stator 50. As shown in FIG. 12 is a perspective view of the stator winding 51. As shown in FIG. In FIGS. 8 and 9, the magnetization directions of the magnets in the magnet unit 42 are indicated by arrows.

図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、回転子40側となる径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52において、回転子40側の外周面が導線設置部(導体エリア)となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に所定間隔で複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各2つの導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部材57の樹脂材料が入り込む構造となっている。つまり、固定子50において、周方向における各導線群81の間に設けられる導線間部材が、非磁性材料である封止部材57として構成されている。封止部材57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。言い換えれば、各導線群81は、後述するように二つの導線(conductor)82からなり、固定子50の周方向に隣り合う各二つの導線群81の間は、非磁性材のみが占有している。この非磁性材とは、封止部材57以外に空気などの非磁性気体や非磁性液体などをも含む。なお、以下において、封止部材57は導線間部材(conductor-to-conductor member)ともいう。   As shown in FIGS. 8 to 11, the stator core 52 has a cylindrical shape in which a plurality of electromagnetic steel sheets are stacked in the axial direction and has a predetermined thickness in the radial direction, and is on the rotor 40 side. The stator winding 51 is to be assembled radially outward. In the stator core 52, the outer peripheral surface on the side of the rotor 40 is a conductor installation portion (conductor area). The outer peripheral surface of the stator core 52 is in the form of a curved surface without unevenness, and on the outer peripheral surface, a plurality of wire groups 81 are arranged at predetermined intervals in the circumferential direction. The stator core 52 functions as a back yoke that is part of a magnetic circuit for rotating the rotor 40. In this case, teeth (i.e., iron cores) made of a soft magnetic material are not provided between the two lead wire groups 81 adjacent in the circumferential direction (i.e., slotless structure). In the present embodiment, the resin material of the sealing member 57 enters the gaps 56 of the respective lead groups 81. That is, in the stator 50, an inter-lead member provided between the wire groups 81 in the circumferential direction is configured as a sealing member 57 which is a nonmagnetic material. In the state before sealing of the sealing member 57, the wire groups 81 are disposed at predetermined intervals in the circumferential direction on the radially outer side of the stator core 52 with a gap 56 which is an area between the wires. Thus, the stator 50 of the slotless structure is constructed. In other words, each lead wire group 81 is composed of two conductors 82 as will be described later, and only the nonmagnetic material is occupied between each two lead wire groups 81 adjacent in the circumferential direction of the stator 50. There is. The nonmagnetic material includes, in addition to the sealing member 57, a nonmagnetic gas such as air and a nonmagnetic liquid. In the following, the sealing member 57 is also referred to as a conductor-to-conductor member.

なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。   The configuration in which the teeth are provided between the wire groups 81 aligned in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. It can be said that a part of the magnetic circuit, that is, a magnet magnetic path is formed between 81 and 81. In this respect, the configuration in which the teeth are not provided between the conductive wire groups 81 can be said to be a configuration in which the above magnetic circuit is not formed.

図10に示すように、固定子巻線(すなわち電機子巻線)51は、所定の厚みT2(以下、第1寸法とも言う)と幅W2(以下、第2寸法とも言う)を有するように形成されている。厚みT2は、固定子巻線51の径方向において互いに対向する外側面と内側面との間の最短距離である。幅W2は、固定子巻線51の多相(実施例では3相:U相、V相及びW相の3相あるいはX相、Y相及びZ相の3相)の一つとして機能する固定子巻線51の一部分の固定子巻線51の周方向の長さである。具体的には、図10において、周方向に隣り合う2つの導線群81が3相の内の一つである例えばU相として機能する場合、周方向において当該2つの導線群81の端から端までの幅W2である。そして、厚みT2は幅W2より小さくなっている。   As shown in FIG. 10, the stator winding (that is, armature winding) 51 has a predetermined thickness T2 (hereinafter, also referred to as a first dimension) and a width W2 (hereinafter, also referred to as a second dimension). It is formed. The thickness T2 is the shortest distance between the outer surface and the inner surface facing each other in the radial direction of the stator winding 51. The width W2 functions as one of the polyphases of the stator winding 51 (in the embodiment, three phases: U phase, V phase and W phase, or three phases of X phase, Y phase and Z phase). It is a circumferential length of a part of the stator winding 51 of the secondary winding 51. Specifically, in FIG. 10, in the case where two wire groups 81 adjacent in the circumferential direction function as one of the three phases, for example, as a U phase, the two wire groups 81 in the circumferential direction end to end The width is up to W2. The thickness T2 is smaller than the width W2.

なお、厚みT2は、幅W2内に存在する2つの導線群81の合計幅寸法より小さいことが好ましい。また、仮に固定子巻線51(より詳しくは導線82)の断面形状が真円形状や楕円形状、又は多角形形状である場合、固定子50の径方向に沿った導線82の断面のうち、その断面において固定子50の径方向の最大の長さをW12、同断面のうち固定子50の周方向の最大の長さをW11としても良い。   In addition, it is preferable that thickness T2 is smaller than the sum total width dimension of two conducting wire groups 81 which exist in width W2. Further, if the cross-sectional shape of the stator winding 51 (more specifically, the conducting wire 82) is a true circular shape, an elliptical shape, or a polygonal shape, of the cross sections of the conducting wire 82 along the radial direction of the stator 50, The maximum radial length of the stator 50 in the cross section may be W12, and the maximum circumferential length of the stator 50 in the cross section may be W11.

図10及び図11に示すように、固定子巻線51は、封止材(モールド材)としての合成樹脂材からなる封止部材57により封止されている。つまり、固定子巻線51は、固定子コア52と共にモールド材によりモールドされている。なお樹脂は、非磁性体、又は非磁性体の均等物としてBs=0と看做すことができる。   As shown in FIGS. 10 and 11, the stator winding 51 is sealed by a sealing member 57 made of a synthetic resin material as a sealing material (mold material). That is, the stator winding 51 is molded by the molding material together with the stator core 52. In addition, resin can be regarded as Bs = 0 as a nonmagnetic material or equivalent of a nonmagnetic material.

図10の横断面で見れば、封止部材57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部材57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部材57が絶縁部材として機能する。封止部材57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。   As seen in the cross section of FIG. 10, the sealing member 57 is provided with a synthetic resin material filled between the wire groups 81, that is, in the gap 56, and between the wire groups 81 by the sealing member 57. In the configuration, an insulating member is interposed. That is, the sealing member 57 functions as an insulating member in the gap 56. Sealing member 57 includes all the wire groups 81 outside the stator core 52 in the radial direction, that is, in a range in which the radial thickness dimension is larger than the radial thickness dimension of each wire group 81. It is provided.

また、図11の縦断面で見れば、封止部材57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の軸方向に対向する端面の少なくとも一部を含む範囲で封止部材57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。   Further, when viewed in the vertical cross section of FIG. 11, the sealing member 57 is provided in a range including the turn portion 84 of the stator winding 51. A sealing member 57 is provided on the inner side in the radial direction of the stator winding 51 in a range including at least a part of the end face of the stator core 52 facing in the axial direction. In this case, the stator winding 51 is resin-sealed substantially in its entirety except the end of the phase winding of each phase, that is, the connection terminal with the inverter circuit.

封止部材57が固定子コア52の端面を含む範囲で設けられた構成では、封止部材57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部材57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。   In the configuration in which the sealing member 57 is provided in a range including the end face of the stator core 52, the laminated steel plate of the stator core 52 can be pressed axially inward by the sealing member 57. Thereby, the lamination state of each steel plate can be held using sealing member 57. In the present embodiment, although the inner peripheral surface of the stator core 52 is not resin-sealed, instead of this, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed It may be a configuration.

回転電機10が車両動力源として使用される場合には、封止部材57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。   In the case where the rotating electrical machine 10 is used as a vehicle power source, the sealing member 57 is made of a high heat resistant fluororesin, epoxy resin, PPS resin, PEEK resin, LCP resin, silicon resin, PAI resin, PI resin, etc. It is preferable that it is comprised. Further, in view of the linear expansion coefficient from the viewpoint of suppression of cracking due to the expansion difference, it is desirable that the material is the same as the outer coating of the conductive wire of the stator winding 51. That is, a silicone resin whose linear expansion coefficient is generally twice or more that of other resins is desirably excluded. In electric products such as electric vehicles which do not have an engine utilizing combustion, PPO resin, phenol resin, and FRP resin having heat resistance of about 180 ° C. are also candidates. This is not the case in the field where the ambient temperature of the rotating electrical machine can be considered to be less than 100 ° C.

回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。   The torque of the rotating electrical machine 10 is proportional to the magnitude of the magnetic flux. Here, when the stator core has teeth, the maximum amount of magnetic flux at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In that case, the maximum amount of flux at the stator is not limited. Therefore, the configuration is advantageous in increasing the current supplied to the stator winding 51 to increase the torque of the rotating electrical machine 10.

本実施形態では、固定子50においてティースを無くした構造(スロットレス構造)を用いたことにより、固定子50のインダクタンスが低減される。具体的には、複数のティースにより仕切られた各スロットに導線が収容される一般的な回転電機の固定子ではインダクタンスが例えば1mH前後であるのに対し、本実施形態の固定子50ではインダクタンスが5〜60μH程度に低減される。本実施形態では、アウタロータ構造の回転電機10としつつも、固定子50のインダクタンス低減により機械的時定数Tmを下げることが可能となっている。つまり、高トルク化を図りつつ、機械的時定数Tmの低減が可能となっている。なお、イナーシャをJ、インダクタンスをL、トルク定数をKt、逆起電力定数をKeとすると、機械的時定数Tmは、次式により算出される。
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。
In the present embodiment, by using a structure (slotless structure) in which the teeth are eliminated in the stator 50, the inductance of the stator 50 is reduced. Specifically, in the stator of a general rotating electrical machine in which a lead is accommodated in each slot partitioned by a plurality of teeth, the inductance is, for example, around 1 mH, whereas in the stator 50 of the present embodiment, the inductance is It is reduced to about 5 to 60 μH. In the present embodiment, the mechanical time constant Tm can be reduced by reducing the inductance of the stator 50 while using the rotary electric machine 10 having the outer rotor structure. That is, the mechanical time constant Tm can be reduced while achieving high torque. When the inertia is J, the inductance is L, the torque constant is Kt, and the back electromotive force constant is Ke, the mechanical time constant Tm is calculated by the following equation.
Tm = (J × L) / (Kt × Ke)
In this case, it can be confirmed that the mechanical time constant Tm is reduced by the reduction of the inductance L.

固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が固定子コア52の径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。なお、以下において、導線群81のそれぞれ、および導線82のそれぞれを、伝導部材(conductive member)とも言う。   Each group of conducting wires 81 on the radially outer side of the stator core 52 is configured by arranging a plurality of conducting wires 82 having a flat rectangular shape in cross section in the radial direction of the stator core 52. Each conducting wire 82 is arranged in a direction such that "radial dimension <circumferential dimension" in the cross section. Thereby, thickness reduction in the radial direction is achieved in each wire group 81. Moreover, while achieving thickness reduction of radial direction, a conductor area | region extends flatly to the area | region where teeth conventionally existed, and it has a flat conducting wire area | region structure. Thereby, the increase in the calorific value of the conducting wire which is concerned due to the reduction of the cross-sectional area due to the reduction in thickness is suppressed by flattening in the circumferential direction to increase the cross-sectional area of the conductor. Even if a plurality of conducting wires are arranged in the circumferential direction and connected in parallel, the same effect can be obtained although the cross-sectional area reduction of the conductive film occurs although the conductive coating is reduced. In the following, each of the conductor groups 81 and each of the conductors 82 are also referred to as conductive members (conductive members).

スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における固定子巻線51が占める導体領域を、固定子巻線51が存在しない導体非占有領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/導体非占有領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。   Since there is no slot, in the stator winding 51 in the present embodiment, the conductor area occupied by the stator winding 51 in one circumferential direction is designed to be larger than the conductor non-occupied area where the stator winding 51 does not exist. be able to. In the conventional automotive electric rotating machine, it is natural that the conductor area / conductor non-occupied area in one circumferential direction of the stator winding is 1 or less. On the other hand, in the present embodiment, the conductor groups 81 are provided such that the conductor area is equal to the non-conducted area or the conductor area is larger than the non-occupied area. Here, as shown in FIG. 10, when the conducting wire area in which the conducting wire 82 (that is, the linear portion 83 described later) is disposed in the circumferential direction is WA, and the conducting wire area between adjacent conducting wires 82 is WB, The area WA is larger in the circumferential direction than the inter-conductor area WB.

固定子巻線51における導線群81の構成として、その導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。すなわち、導線群81が径方向に2層の導線82よりなり、かつ1磁極内に1相につき周方向に2つの導線群81が設けられる構成では、各導線82の径方向の厚さ寸法をTc、各導線82の周方向の幅寸法をWcとした場合に、「Tc×2<Wc×2」となるように構成されている。なお、他の構成として、導線群81が2層の導線82よりなり、かつ1磁極内に1相につき周方向に1つの導線群81が設けられる構成では、「Tc×2<Wc」の関係となるように構成されるとよい。要するに、固定子巻線51において周方向に所定間隔で配置される導線部(導線群81)は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。   As a configuration of the wire group 81 in the stator winding 51, the thickness dimension in the radial direction of the wire group 81 is smaller than the width dimension in the circumferential direction of one phase in one magnetic pole. That is, in the configuration in which the wire group 81 is composed of two layers of wire 82 in the radial direction and two wire groups 81 are provided in the circumferential direction per one phase in one magnetic pole, the thickness dimension of each wire 82 Tc, when the width dimension of each conducting wire 82 in the circumferential direction is Wc, it is configured to be “Tc × 2 <Wc × 2”. As another configuration, in a configuration in which conductor group 81 is composed of two layers of conductors 82, and one conductor group 81 is provided in the circumferential direction per one phase in one magnetic pole, the relationship of “Tc × 2 <Wc” It should be configured to be In short, in the stator winding 51, the conductor wire portions (conductor wire groups 81) arranged at predetermined intervals in the circumferential direction have a thickness dimension in the radial direction that is greater than a width dimension in the circumferential direction of one phase in one magnetic pole. It is small.

言い換えると、1本1本の各導線82は、径方向の厚さ寸法Tcが周方向の幅寸法Wcよりも小さいとよい。またさらに、径方向に2層の導線82よりなる導線群81の径方向の厚さ寸法(2Tc)、すなわち導線群81の径方向の厚さ寸法(2Tc)が周方向の幅寸法Wcよりも小さいとよい。   In other words, each of the lead wires 82 preferably has a thickness dimension Tc in the radial direction smaller than a width dimension Wc in the circumferential direction. Furthermore, the radial thickness dimension (2Tc) of the conducting wire group 81 consisting of the two layers of conducting wires 82 in the radial direction, that is, the radial thickness dimension (2Tc) of the conducting wire group 81 is greater than the width dimension Wc in the circumferential direction. It is good to be small.

回転電機10のトルクは、導線群81の固定子コア52の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石ユニット42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。   The torque of the rotary electric machine 10 is approximately in inverse proportion to the radial thickness of the stator core 52 of the wire group 81. In this respect, by reducing the thickness of the wire group 81 outside the stator core 52 in the radial direction, the configuration is advantageous in achieving an increase in torque of the rotary electric machine 10. The reason is that the magnetic resistance can be reduced by reducing the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the portion without iron). According to this, it is possible to increase the flux linkage of the stator core 52 by the permanent magnet, and to enhance the torque.

また、導線群81の厚さを薄くしたことにより、導線群81から磁束が漏れても固定子コア52に回収されやすくなり、磁束がトルク向上のために有効に利用されずに外部に漏れることを抑制することができる。つまり、磁束漏れにより磁力が低下することを抑制でき、永久磁石による固定子コア52の鎖交磁束を大きくして、トルクを増強することができる。   Further, by reducing the thickness of the wire group 81, even if the magnetic flux leaks from the wire group 81, it is easily collected by the stator core 52, and the magnetic flux leaks to the outside without being effectively used for improving the torque. Can be suppressed. That is, it is possible to suppress the decrease in the magnetic force due to the magnetic flux leakage, and it is possible to increase the torque by increasing the flux linkage of the stator core 52 by the permanent magnet.

導線82(conductor)は、導体(conductor body)82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。この絶縁被膜82bは、後述する素線86が自己融着被覆線であるならその被膜、又は、素線86の被膜とは別に重ねられた絶縁部材で構成されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。   Conductor 82 is a coated conductor in which the surface of conductor body 82a is covered with insulating coating 82b, and between conductor 82 which mutually overlaps in the radial direction, and between conductor 82 and stator core 52 In each case, insulation is secured. The insulating coating 82b is formed of an insulating member that is stacked separately from the coating of the strand 86 if the strand 86 described later is a self-bonding coated line. In addition, each phase winding configured by the conducting wire 82 is such that the insulating property by the insulating coating 82 b is maintained except for the exposed portion for connection. The exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of star connection. In the conducting wire group 81, the conducting wires 82 adjacent to each other in the radial direction are fixed to each other using a resin fixing or a self-fusion coated wire. Thereby, dielectric breakdown, vibration, and sound due to rubbing between the conducting wires 82 are suppressed.

本実施形態では、導体82aが複数の素線(wire)86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。また、素線86の表面は、ポリイミドの被膜やアミドイミドの被膜からなる、いわゆるエナメル被膜で覆われていることが好ましい。   In the present embodiment, the conductor 82 a is configured as an assembly of a plurality of wires 86. Specifically, as shown in FIG. 13, the conductor 82 a is formed in a twisted thread shape by twisting a plurality of strands 86. In addition, as shown in FIG. 14, the strands 86 are configured as a composite obtained by bundling thin fibrous conductive materials 87. For example, the strand 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fibers, fibers including boron-containing fine fibers in which at least a part of carbon is substituted by boron are used. As carbon-based fine fibers, vapor grown carbon fibers (VGCF) or the like can be used in addition to CNT fibers, but it is preferable to use CNT fibers. The surface of the wire 86 is covered with a polymer insulating layer such as enamel. Further, the surface of the strand 86 is preferably covered with a so-called enamel film made of a polyimide film or an amidimide film.

導線82は、固定子巻線51においてn相の巻線を構成する。そして導線82(すなわち、導体82a)の各々の素線86は、互いに接触状態で隣接している。導線82は、巻線導体が、複数の素線86が撚られて形成される部位を、相内の1か所以上に持つとともに、撚られた素線86間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。言い換えると、隣接する各2つの素線86はその隣接する方向において第1電気抵抗率を有し、素線86の各々はその長さ方向において第2電気抵抗率を有する場合、第1電気抵抗率は第2電気抵抗率より大きい値になっている。なお、導線82が複数の素線86により形成されるとともに、第1電気抵抗率が極めて高い絶縁部材により複数の素線86を覆う素線集合体となっていても良い。また、導線82の導体82aは、撚り合わされた複数の素線86により構成されている。   The conducting wire 82 constitutes an n-phase winding in the stator winding 51. The strands 86 of each of the leads 82 (i.e., the conductors 82a) are adjacent to each other in contact with each other. The conductor 82 has a portion where the winding conductor is formed by twisting a plurality of strands 86 at one or more places in the phase, and the resistance value between the strands 86 which are twisted is the strand 86 itself The wire assembly is larger than the resistance value of. In other words, if each two adjacent strands 86 have a first electrical resistivity in their adjacent direction, and each of the strands 86 has a second electrical resistivity in its length direction, the first electrical resistance The rate is a value larger than the second electrical resistivity. In addition, while the conducting wire 82 is formed of the several strand 86, it may become a strand aggregate | assembly which covers the several strand 86 by the insulation member with very high 1st electrical resistivity. Also, the conductor 82 a of the conducting wire 82 is constituted by a plurality of strands 86 twisted together.

上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。   In the conductor 82a described above, since the plurality of strands 86 are twisted together, generation of eddy current in each strand 86 can be suppressed, and eddy current in the conductor 82a can be reduced. In addition, since the strands 86 are twisted, in one strand 86, portions where the application directions of the magnetic field are reverse to each other are generated, and the back electromotive force is offset. Therefore, the eddy current can be reduced as well. In particular, by forming the strands 86 with the fibrous conductive material 87, it is possible to reduce the number of wires and to significantly increase the number of times of twisting, and it is possible to more preferably reduce the eddy current.

なお、ここでいう素線86同士の絶縁方法は、前述の高分子絶縁膜に限定されず、接触抵抗を利用し撚られた素線86間で電流を流れにくくする方法であってもよい。すなわち撚られた素線86間の抵抗値が、素線86そのものの抵抗値よりも大きい関係になっていれば、抵抗値の差に起因して発生する電位差により、上記効果を得ることができる。たとえば、素線86を作成する製造設備と、回転電機10の固定子50(電機子)を作成する製造設備とを別の非連続の設備として用いることで、移動時間や作業間隔などから素線86が酸化し、接触抵抗を増やすことができ、好適である。   In addition, the insulation method of strands 86 here is not limited to the above-mentioned polymer insulating film, You may be the method of making an electric current hard to flow between strands 86 twisted using contact resistance. That is, if the resistance value between the twisted strands 86 is in a relation larger than the resistance value of the strands 86 themselves, the above effect can be obtained by the potential difference generated due to the difference in the resistance values. . For example, by using the manufacturing equipment for producing the wire 86 and the manufacturing equipment for producing the stator 50 (armature) of the rotary electric machine 10 as separate non-continuous equipment, the wire from the moving time and the work interval etc. 86 is preferable because it can oxidize and increase the contact resistance.

上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば融着層と絶縁層とを備えた自己融着被覆線で被覆された複数の素線86を撚った状態で集合させ、その融着層同士を融着させることで形状を維持している。なお、融着層を備えない素線や自己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成形してもよい。導線82における絶縁被膜82bの厚さを例えば80μm〜100μmとし、一般に使用される導線の被膜厚さ(5〜40μm)よりも厚肉とした場合、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保することができる。   As described above, the conducting wire 82 has a flat rectangular shape in cross section, and is arranged in plural in the radial direction, for example, a plurality of wires covered with a self-fusion coated wire including a fusion layer and an insulating layer The strands of wire 86 are gathered in a twisted state, and their fusion layers are fused to maintain their shape. In addition, in a state in which the strands of the wire without the fusion layer and the strands of the self-fusion-coated wire are twisted, they may be compacted into a desired shape by a synthetic resin or the like. When the thickness of the insulating film 82b in the conducting wire 82 is, for example, 80 μm to 100 μm and thicker than the film thickness (5 to 40 μm) of a commonly used conducting wire, insulation between the conducting wire 82 and the stator core 52 Even without interposing paper or the like, the insulation between the two can be secured.

また、絶縁被膜82bは、素線86の絶縁層よりも高い絶縁性能を有し、相間を絶縁することができるように構成されていることが望ましい。例えば、素線86の高分子絶縁層の厚さを例えば5μm程度にした場合、導線82の絶縁被膜82bの厚さを80μm〜100μm程度にして、相間の絶縁を好適に実施できるようにすることが望ましい。   In addition, it is desirable that the insulating coating 82 b be configured to have insulation performance higher than that of the strands 86 and to insulate between the phases. For example, when the thickness of the polymer insulating layer of the strand 86 is, for example, about 5 μm, the thickness of the insulating coating 82 b of the conducting wire 82 is about 80 μm to 100 μm so that the insulation between the phases can be suitably implemented. Is desirable.

また、導線82は、複数の素線86が撚られることなく束ねられている構成であってもよい。つまり、導線82は、その全長において複数の素線86が撚られている構成、全長のうち一部で複数の素線86が撚られている構成、全長において複数の素線86が撚られることなく束ねられている構成のいずれかであればよい。まとめると、導線部を構成する各導線82は、複数の素線86が束ねられているとともに、束ねられた素線間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。   Moreover, the structure which the wire 82 is bundled without the several strand 86 being twisted may be sufficient. That is, the conductor 82 has a configuration in which a plurality of strands 86 are twisted in the entire length, a configuration in which a plurality of strands 86 are twisted in part of the entire length, and a plurality of strands 86 are twisted in the entire length It may be any of the configurations bundled. In summary, in each of the conducting wires 82 constituting the conducting wire portion, a plurality of strands 86 are bundled, and a strand assembly in which the resistance value between the bundled strands is larger than the resistance of the strand 86 itself It has become.

各導線82は、固定子巻線51の周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石ユニット42に対して径方向に対向する位置に配置されており、磁石ユニット42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。   Each conducting wire 82 is bent and formed so as to be arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 51, whereby a phase winding for each phase is formed as the stator winding 51. . As shown in FIG. 12, in the stator winding 51, the coil side portions 53 are formed by the linear portions 83 linearly extending in the axial direction of each of the conducting wires 82, and both side outside the coil side portions 53 in the axial direction A coil end 54, 55 is formed by the protruding turn portion 84. Each conducting wire 82 is configured as a series of wave-like conducting wires by alternately repeating the straight portions 83 and the turn portions 84. The straight portions 83 are disposed at positions facing the magnet unit 42 in the radial direction, and in-phase straight portions 83 arranged at predetermined intervals on the axially outer side of the magnet unit 42 are It is mutually connected by the turn part 84. As shown in FIG. The straight portion 83 corresponds to the "magnet facing portion".

本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石ユニット42の1極対に対応する間隔で周方向に直線部83が配置され、コイルエンド54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド54と他方のコイルエンド55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。   In the present embodiment, the stator winding 51 is wound in an annular shape by distributed winding. In this case, in the coil side portion 53, linear portions 83 are arranged circumferentially at intervals corresponding to one pole pair of the magnet unit 42 for each phase, and in the coil ends 54 and 55, each linear portion 83 for each phase is They are connected to each other by turn portions 84 formed in a substantially V-shape. The directions of the currents of the straight portions 83 corresponding to one pole pair are opposite to each other. Further, the combination of the pair of straight portions 83 connected by the turn portion 84 is different between one coil end 54 and the other coil end 55, and the connection at the coil ends 54 and 55 is in the circumferential direction. By being repeated, the stator winding 51 is formed in a substantially cylindrical shape.

より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、固定子巻線51の相数をS(実施例の場合は6)、導線82の一相あたりの数をmとすれば、極対ごとに2×S×m=2Sm個の導線82が形成されることになる。本実施形態では、相数Sが6、数mが4であり、8極対(16極)の回転電機であることから、6×4×8=192の導線82が固定子コア52の周方向に配置されている。   More specifically, the stator winding 51 constitutes a winding for each phase using two pairs of conductors 82 for each phase, and one of the three-phase windings (U A phase, a V phase, a W phase) and the other three phase winding (X phase, Y phase, Z phase) are provided in two layers radially inside and outside. In this case, assuming that the number of phases of the stator winding 51 is S (6 in the case of the embodiment) and the number per phase of the conducting wire 82 is m, 2 × S × m = 2Sm conducting wires per pole pair 82 will be formed. In this embodiment, since the number of phases S is 6, the number m is 4, and the rotating electrical machine is an 8-pole pair (16 poles), the conductor 82 of 6 × 4 × 8 = 192 is the periphery of the stator core 52 It is arranged in the direction.

図12に示す固定子巻線51では、コイルサイド部53において、径方向に隣接する2層で直線部83が重ねて配置されるとともに、コイルエンド54,55において、径方向に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、固定子巻線51の端部を除き、ターン部84の向きが互いに逆となっている。   In the stator winding 51 shown in FIG. 12, in the coil side portion 53, the linear portions 83 are disposed so as to overlap in two layers adjacent in the radial direction, and in the coil ends 54 and 55, the linear portions overlapping in the radial direction From 83, the turn portions 84 extend in the circumferential direction in directions opposite to each other in the circumferential direction. That is, in each of the conductive wires 82 adjacent in the radial direction, the direction of the turn portion 84 is opposite to each other except for the end of the stator winding 51.

ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向に隣接する複数層(例えば2層)に重ねて設ける構成としている。図15(a)、図15(b)は、n層目における各導線82の形態を示す図であり、図15(a)には、固定子巻線51の側方から見た導線82の形状を示し、図15(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15(a)、図15(b)では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。   Here, the winding structure of the conducting wire 82 in the stator winding 51 will be specifically described. In the present embodiment, a plurality of conducting wires 82 formed by wave winding are provided so as to be superimposed on a plurality of layers (for example, two layers) adjacent in the radial direction. 15 (a) and 15 (b) are diagrams showing the form of each conducting wire 82 in the n-th layer, and FIG. 15 (a) is a view of the conducting wire 82 seen from the side of the stator winding 51. The shape is shown, and the shape of the conducting wire 82 seen from one axial direction side of the stator winding 51 is shown in FIG. In FIGS. 15 (a) and 15 (b), the positions at which the wire groups 81 are disposed are indicated as D1, D2, D3,. Moreover, for convenience of explanation, only three conducting wires 82 are shown, which are referred to as a first conducting wire 82_A, a second conducting wire 82_B, and a third conducting wire 82_C.

各導線82_A〜82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A〜82_Cでは、いずれも回転子40の軸心を中心とする同一の円上において、固定子巻線51の周方向に隣接して並ぶ7個の直線部83の両端の二つが一つのターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A〜82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A〜82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。   In each of the conducting wires 82 _A to 82 _C, the straight portions 83 are all disposed at the n-th layer position, that is, the same position in the radial direction, and the straight portions 83 separated by 6 positions (3 × m pair) in the circumferential direction It is mutually connected by the turn part 84. As shown in FIG. In other words, in each of the conducting wires 82 _A to 82 _C, both ends of the seven straight portions 83 arranged adjacent to each other in the circumferential direction of the stator winding 51 on the same circle centering on the axial center of the rotor 40. Two are connected to each other by one turn 84. For example, in the first conducting wire 82_A, a pair of straight portions 83 are disposed at D1 and D7, respectively, and the pair of straight portions 83 are connected by an inverted V-shaped turn portion 84. Further, the other conducting wires 82 _B and 82 _C are arranged in the same n-th layer while shifting their circumferential positions one by one. In this case, it is conceivable that the turn portions 84 interfere with each other because the conductors 82_A to 82_C are all disposed in the same layer. Therefore, in the present embodiment, in the turn portion 84 of each of the conducting wires 82_A to 82_C, an interference avoidance portion in which a part thereof is offset in the radial direction is formed.

具体的には、各導線82_A〜82_Cのターン部84は、同一の円(第1の円)上で周方向に延びる部分である1つの傾斜部84aと、傾斜部84aからその同一の円よりも径方向内側(図15(b)において上側)にシフトし、別の円(第2の円)に達する頂部84b、第2の円上で周方向に延びる傾斜部84c及び第1の円から第2の円に戻る戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。   Specifically, the turn portion 84 of each of the conducting wires 82_A to 82_C is one inclined portion 84a which is a portion extending in the circumferential direction on the same circle (first circle) and the same circle from the inclined portion 84a The peak 84b is also shifted radially inward (upper side in FIG. 15B) and reaches another circle (second circle), the inclined portion 84c circumferentially extending on the second circle and the first circle And a return portion 84d returning to the second circle. The top portion 84 b, the sloped portion 84 c, and the return portion 84 d correspond to the interference avoiding portion. The inclined portion 84c may be configured to shift radially outward with respect to the inclined portion 84a.

つまり、各導線82_A〜82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図15(a)では紙面前後方向の位置、図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD7位置に達する構成となっている。   That is, the turn portion 84 of each of the conducting wires 82_A to 82_C has one side inclined portion 84a and the other side inclined portion 84c on both sides of the top portion 84b which is the center position in the circumferential direction. Positions in the radial direction of the inclined portions 84a and 84c (positions in the front and rear direction in FIG. 15A and positions in the vertical direction in FIG. 15B) are different from each other. For example, after the turn portion 84 of the first conductive wire 82_A extends along the circumferential direction starting from the position D1 of the n layer and bent in the radial direction (for example, radially inward) at the top portion 84b which is the center position in the circumferential direction, By bending in the circumferential direction again, it extends along the circumferential direction again, and is bent in the radial direction (for example, the radially outer side) again at the return portion 84d to reach the D7 position of the n layer which is the end point position. There is.

上記構成によれば、導線82_A〜82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A〜82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A〜82_Cが互いに干渉することなく周方向に配置できるようになっている。   According to the above configuration, in the conducting wires 82_A to 82_C, one inclined portion 84a is vertically arranged from the top in the order of the first conducting wire 82_A → the second conducting wire 82_B → the third conducting wire 82_C, and the conducting wire 82_A ~ at the top 84b The upper and lower portions of 82_C are interchanged, and the other inclined portions 84c are arranged vertically in the order of the third conductive wire 82_C, the second conductive wire 82_B, and the first conductive wire 82_A from the top. Therefore, each conducting wire 82_A-82_C can be arrange | positioned in the circumferential direction, without mutually interfering.

ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。   Here, in the configuration in which the plurality of conducting wires 82 are overlapped in the radial direction to form the conducting wire group 81, the turn portion 84 connected to the straight portion 83 inside the radial direction among the linear portions 83 of the plurality of layers; It is preferable that the turn portions 84 connected to the linear portions 83 be disposed more radially apart than the respective linear portions 83. In addition, in the case where the lead wires 82 of multiple layers are bent in the same radial direction at the end of the turn portion 84, that is, near the boundary with the straight portion 83, the insulation properties are due to interference between the lead wires 82 of adjacent layers. It is good to prevent the loss of

例えば図15(a)、図15(b)のD7〜D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲率半径を相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲率半径R1を、径方向外側(n+1層目)の導線82の曲率半径R2よりも小さくする。   For example, in D7 to D9 in FIGS. 15A and 15B, the lead wires 82 overlapping in the radial direction are bent in the radial direction at the return portion 84d of the turn portion 84, respectively. In this case, as shown in FIG. 16, the radius of curvature of the bent portion may be made different between the n-th conductive wire 82 and the n + 1-th conductive wire 82. Specifically, the radius of curvature R1 of the radially inner (n-th layer) conducting wire 82 is made smaller than the radius of curvature R2 of the radially outer (n + 1-th) layer conducting wire 82.

また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。   Further, it is preferable to make the shift amount in the radial direction different between the n-th conductive wire 82 and the n + 1-th conductive wire 82. Specifically, the shift amount S1 of the radially inner (n-th layer) conducting wire 82 is made larger than the shift amount S2 of the radially outer (n + 1-th) conducting wire 82.

上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。   According to the above configuration, even when the radially overlapping wires 82 are bent in the same direction, mutual interference of the wires 82 can be suitably avoided. Thereby, good insulation can be obtained.

次に、回転子40における磁石ユニット42の構造について説明する。本実施形態では、磁石ユニット42が永久磁石からなり、残留磁束密度Br=1.0[T]、固有保磁力Hcj=400[kA/m]以上のものを想定している。要は、本実施形態で用いる永久磁石は、粒状の磁性材料を焼結して成型固化した焼結磁石であり、J−H曲線上の固有保磁力Hcjは400[kA/m]以上であり、かつ残留磁束密度Brは1.0[T]以上である。5000〜10000[AT]が相間励磁により掛かる場合、1極対、すなわちN極とS極の磁気的長さ、言い換えれば、N極とS極間の磁束が流れる経路のうち、磁石内を通る長さが25[mm]の永久磁石を使えば、Hcj=10000[A]となり、減磁をしないことが伺える。   Next, the structure of the magnet unit 42 in the rotor 40 will be described. In the present embodiment, it is assumed that the magnet unit 42 is a permanent magnet, and the residual magnetic flux density Br = 1.0 [T] and the intrinsic coercive force Hcj = 400 [kA / m] or more. The important point is that the permanent magnet used in the present embodiment is a sintered magnet obtained by sintering granular magnetic material and then being solidified, and the intrinsic coercivity Hcj on the JH curve is 400 [kA / m] or more. And residual magnetic flux density Br is 1.0 [T] or more. When 5000 to 10000 [AT] is applied by phase-to-phase excitation, the magnetic lengths of one pole pair, that is, the N pole and the S pole, in other words, the path of the magnetic flux flowing between the N pole and the S pole If a permanent magnet with a length of 25 [mm] is used, then Hcj = 10000 [A], indicating that demagnetization is not performed.

また換言すれば、磁石ユニット42は、飽和磁束密度Jsが1.2[T]以上で、かつ結晶粒径が10[μm]以下であり、配向率をαとした場合にJs×αが1.0[T]以上であるものとなっている。   In other words, when the magnetic unit 42 has a saturation magnetic flux density Js of 1.2 T or more and a crystal grain size of 10 μm or less, and the orientation ratio is α, Js × α is 1 .0 [T] or more.

以下に磁石ユニット42について補足する。磁石ユニット42(磁石)は、2.15[T]≧Js≧1.2[T]であることが特徴である。言い換えれば、磁石ユニット42に用いられる磁石として、NdFe11TiN、Nd2Fe14B、Sm2Fe17N3、L10型結晶を有するFeNi磁石などが挙げられる。なお、通例サマコバと言われるSmCo5や、FePt、Dy2Fe14B、CoPtなどの構成は使うことができない。注意としては、同型の化合物、例えばDy2Fe14BとNd2Fe14Bのように、一般的に、重希土類であるディスプロシウムを利用して、ネオジウムの高いJs特性を少しだけ失いながらも、Dyの持つ高い保磁力を持たせた磁石でも2.15[T]≧Js≧1.2[T]を満たす場合があり、この場合も採用可能である。このような場合は、例えば([Nd1-xDyx]2Fe14B)と呼ぶこととする。更に、異なる組成の2種類以上の磁石、例えば、FeNiプラスSm2Fe17N3というように2種類以上の材料からなる磁石でも、達成が可能であるし、例えば、Js=1.6[T]と、Jsに余裕のあるNd2Fe14Bの磁石に、Js<1[T]の、例えばDy2Fe14Bを少量混ぜ、保磁力を増加させた混合磁石などでも達成が可能である。   The magnet unit 42 will be supplemented below. The magnet unit 42 (magnet) is characterized in that 2.15 [T] J Js T 1.2 [T]. In other words, examples of the magnet used for the magnet unit 42 include NdFe11 TiN, Nd2 Fe14 B, Sm2 Fe17 N3, and an FeNi magnet having an L10 type crystal. It is to be noted that a configuration such as SmCo5, which is generally called Samachoba, FePt, Dy2Fe14B, or CoPt can not be used. Note that the same type of compounds, such as Dy2Fe14B and Nd2Fe14B, generally utilize the heavy rare earth dysprosium to lose some of the high Js properties of neodymium while the high coercivity of Dy has In some cases, even a magnet having the above may satisfy 2.15 [T] s Js 1.2 1.2 [T], and this case can also be adopted. In such a case, for example, it will be called ([Nd1-xDyx] 2Fe14B). Furthermore, two or more types of magnets of different compositions, for example, magnets composed of two or more types of materials such as FeNi plus Sm2Fe17N3, can be achieved, for example, Js = 1.6 [T] and Js This can also be achieved by a mixed magnet or the like in which the coercive force is increased by mixing a small amount of, for example, Dy2Fe14B of Js <1 [T] with a Nd2Fe14B magnet having a surplus, for example.

また、人間の活動範囲外の温度、例えば砂漠の温度を超える60℃以上で動作されるような回転電機、例えば、夏においておけば車中温度が80℃近くなる車両用モータ用途などにおいては、特に温度依存係数の小さい、FeNi、Sm2Fe17N3の成分を含むことが望ましい。これは、人間の活動範囲内である北欧の−40℃近い温度状態から、先述の砂漠温度を超える60℃以上、又はコイルエナメル被膜の耐熱温度180〜240℃程度までのモータ動作において温度依存係数によって大きくモータ特性を異ならせるため、同一のモータドライバでの最適制御などが困難となるためである。前記L10型結晶を有するFeNi、又はSm2Fe17N3などを用いれば、Nd2Fe14Bと比べ、半分以下の温度依存係数を所持しているその特性から、モータドライバの負担を好適に減らすことができる。   In addition, a rotating electrical machine that is operated at a temperature outside the human activity range, for example, 60 ° C or higher exceeding the desert temperature, for example, in a motor for motor vehicle application where the temperature in the vehicle approaches 80 ° C if summer In particular, it is desirable to include the components of FeNi and Sm2Fe17N3 having a small temperature dependence coefficient. This is a temperature-dependent coefficient in motor operation from the temperature condition near -40 ° C of Nordic which is within human activity range to 60 ° C or more exceeding the desert temperature mentioned above, or the heat resistant temperature 180 ° C to 240 ° C of coil enamel film. This is because it is difficult to optimize the control with the same motor driver because the motor characteristics are largely different depending on If FeNi or Sm2Fe17N3 or the like having the L10 type crystal is used, the load on the motor driver can be suitably reduced because of the characteristics having a temperature dependence coefficient which is less than half that of Nd2Fe14B.

加えて、磁石ユニット42は、前記磁石配合を用いて、配向以前の微粉体状態の粒子径の大きさが10μm以下、単磁区粒子径以上としていることを特徴としている。磁石では、粉体の粒子を数百nmオーダまで微細化することにより保磁力が大きくなるため、近年では、できるだけ微細化された粉体が使用されている。ただし、細かくしすぎると、酸化などにより磁石のBH積が落ちてしまうため、単磁区粒子径以上が好ましい。単磁区粒子径までの粒子径であれば、微細化により保磁力が上昇することが知られている。なお、ここで述べてきた粒子径の大きさは、磁石の製造工程でいうところの配向工程の際の微粉体状態の粒子径の大きさである。   In addition, the magnet unit 42 is characterized in that the particle size in the fine powder state before orientation is 10 μm or less and the single magnetic domain particle size or more using the magnet composition. In the magnet, since the coercive force is increased by reducing the size of powder particles to the order of several hundred nm, in recent years, the powder as fine as possible has been used. However, if it is too fine, the BH product of the magnet may be reduced due to oxidation or the like, so a single magnetic domain particle diameter or more is preferable. It is known that if the particle size is up to the single magnetic domain particle size, the coercivity is increased by miniaturization. Incidentally, the size of the particle size described here is the size of the particle size in the fine powder state in the orientation step in the manufacturing process of the magnet.

更に、磁石ユニット42の第1磁石91と第2磁石92の各々は、磁性粉末を高温で焼き固めた、いわゆる焼結により形成された焼結磁石である。この焼結は、磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91および第2磁石92の結晶粒径が10μm以下であり、配向率をαとした場合、Js×αが1.0T(テスラ)以上の条件を満足するよう行われる。また、第1磁石91と第2磁石92の各々は、以下の条件を満足するように焼結されている。そして、その製造過程において配向工程にて配向が行われることにより、等方性磁石の着磁工程による磁力方向の定義とは異なり、配向率(orientation ratio)を持つ。本実施形態の磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91と第2磁石92の配向率αが、Jr≧Js×α≧1.0[T]となるように高い配向率を設定されている。なお、ここで言う配向率αとは、第1磁石91又は第2磁石92の各々において、例えば、磁化容易軸が6つあり、そのうちの5つが同じ方向である方向A10を向き、残りの一つが方向A10に対して90度傾いた方向B10を向いている場合、α=5/6であり、残りの一つが方向A10に対して45度傾いた方向B10を向いている場合には、残りの一つの方向A10を向く成分はcos45°=0.707であるため、α=(5+0.707)/6となる。本実施例では焼結により第1磁石91と第2磁石92を形成しているが、上記条件が満足されれば、第1磁石91と第2磁石92は他の方法により成形してもよい。例えば、MQ3磁石などを形成する方法を採用することができる。   Furthermore, each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a so-called sintered magnet formed by sintering magnetic powder at a high temperature. In this sintering, when the saturation magnetization Js of the magnet unit 42 is 1.2 T or more, the crystal grain size of the first magnet 91 and the second magnet 92 is 10 μm or less, and the orientation ratio is α, Js × α is It is performed to satisfy the condition of 1.0 T (Tesla) or more. Moreover, each of the 1st magnet 91 and the 2nd magnet 92 is sintered so that the following conditions may be satisfied. Then, orientation is performed in the orientation process in the manufacturing process, so that the orientation ratio is obtained unlike the definition of the magnetic force direction in the magnetization process of the isotropic magnet. The saturation magnetization Js of the magnet unit 42 of the present embodiment is as high as 1.2 T or more, and the orientation ratio α of the first magnet 91 and the second magnet 92 is high so that Jr ≧ Js × α ≧ 1.0 [T]. The orientation rate is set. Here, the orientation ratio α referred to here is, for example, six easy magnetization axes in each of the first magnet 91 or the second magnet 92, and the direction A10 in which five of them are the same direction is the other one. When one is in the direction B10 inclined 90 degrees with respect to the direction A10, α = 5/6, and the remaining one is in the direction B10 inclined with 45 degrees with respect to the direction A10, the remaining The component facing in one direction A10 of is cos 45 ° = 0.707, so that α = (5 + 0.707) / 6. Although the first magnet 91 and the second magnet 92 are formed by sintering in the present embodiment, the first magnet 91 and the second magnet 92 may be formed by another method if the above conditions are satisfied. . For example, a method of forming an MQ3 magnet or the like can be employed.

本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。   In this embodiment, since a permanent magnet in which the axis of easy magnetization is controlled by orientation is used, the magnetic circuit length inside the magnet is the magnetic circuit length of a linear orientation magnet which emits 1.0 T or more according to the prior art Compared with, it can be longer. That is, the magnetic circuit length per one pole pair can be achieved with a small amount of magnet, and the reversible demagnetization range is maintained even when exposed to severe high-temperature conditions as compared with the design using a conventional linearly oriented magnet. Can. In addition, the inventor of the present application has found a configuration that can obtain characteristics close to that of a polar anisotropic magnet even when using a prior art magnet.

なお、磁化容易軸は、磁石において磁化されやすい結晶方位のことをいう。磁石における磁化容易軸の向きとは、磁化容易軸の方向が揃っている程度を示す配向率が50%以上となる方向、又は、その磁石の配向の平均となる方向である。   The magnetization easy axis refers to a crystal orientation that is easily magnetized in a magnet. The direction of the magnetization easy axis in the magnet is a direction in which the orientation ratio, which indicates the degree to which the direction of the magnetization easy axis is aligned, is 50% or more, or a direction in which the orientation of the magnet is averaged.

図8及び図9に示すように、磁石ユニット42は、円環状をなしており、磁石ホルダ41の内側(詳しくは円筒部43の径方向内側)に設けられている。磁石ユニット42は、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、固定子巻線51に近い部分においてN極を形成する磁石であり、第2磁石92は、固定子巻線51に近い部分においてS極を形成する磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。   As shown in FIGS. 8 and 9, the magnet unit 42 has an annular shape, and is provided on the inner side of the magnet holder 41 (specifically, on the inner side in the radial direction of the cylindrical portion 43). The magnet unit 42 includes a first magnet 91 and a second magnet 92 which are polar anisotropic magnets and have different polarities. The first magnets 91 and the second magnets 92 are alternately arranged in the circumferential direction. The first magnet 91 is a magnet that forms an N pole in a portion close to the stator winding 51, and the second magnet 92 is a magnet that forms an S pole in a portion close to the stator winding 51. The 1st magnet 91 and the 2nd magnet 92 are permanent magnets which consist of rare earth magnets, such as a neodymium magnet, for example.

各磁石91,92では、図9に示すように、公知のd−q座標系において磁極中心であるd軸(direct-axis)とN極とS極の磁極境界である(言い換えれば、磁束密度が0テスラである)q軸(quadrature-axis)との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が円環状の磁石ユニット42の径方向とされ、q軸側では円環状の磁石ユニット42の磁化方向が周方向とされている。以下、更に詳細に説明する。磁石91,92のそれぞれは、図9に示すように、第1部分250と、磁石ユニット42の周方向において第1部分250の両側に位置する二つの第2部分260とを有する。言い換えれば、第1部分250は、第2部分260よりd軸に近く、第2部分260は、第1部分250よりq軸に近い。そして、第1部分250の磁化容易軸300の方向は、第2部分260の磁化容易軸310の方向よりもd軸に対してより平行となるように磁石ユニット42が構成されている。言い換えれば、第1部分250の磁化容易軸300がd軸となす角度θ11が、第2部分260の磁化容易軸310がq軸となす角度θ12よりも小さくなるように磁石ユニット42が構成されている。   In each of the magnets 91 and 92, as shown in FIG. 9, it is a magnetic pole boundary between the d-axis (direct-axis) which is the magnetic pole center and N and S poles in the known dq coordinate system (in other words, magnetic flux density The magnetization direction extends in a circular arc between the q-axis (quadrature of which is 0 Tesla) and the quadrature-axis. In each of the magnets 91 and 92, the magnetization direction is the radial direction of the annular magnet unit 42 on the d-axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the q-axis side. This will be described in more detail below. Each of the magnets 91 and 92 has a first portion 250 and two second portions 260 located on both sides of the first portion 250 in the circumferential direction of the magnet unit 42, as shown in FIG. In other words, the first portion 250 is closer to the d-axis than the second portion 260, and the second portion 260 is closer to the q-axis than the first portion 250. The magnet unit 42 is configured such that the direction of the magnetization easy axis 300 of the first portion 250 is more parallel to the d axis than the direction of the magnetization easy axis 310 of the second portion 260. In other words, the magnet unit 42 is configured such that the angle θ11 that the magnetization easy axis 300 of the first portion 250 makes with the d axis is smaller than the angle θ12 that the magnetization easy axis 310 of the second part 260 makes with the q axis. There is.

より詳細には、角度θ11は、d軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、d軸と磁化容易軸300とがなす角度である。角度θ12は、q軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、q軸と磁化容易軸310とがなす角度である。なお角度θ11及び角度θ12共に、本実施形態では90°以下である。ここでいう、磁化容易軸300,310のそれぞれは、以下の定義による。磁石91,92のそれぞれの部分において、一つの磁化容易軸が方向A11を向き、もう一つの磁化容易軸が方向B11を向いているとした場合、方向A11と方向B11の成す角度θのコサインの絶対値(|cosθ|)を磁化容易軸300或いは磁化容易軸310とする。   More specifically, the angle θ11 is an angle formed by the d axis and the easy magnetization axis 300 when the direction from the stator 50 (armature) to the magnet unit 42 in the d axis is positive. The angle θ12 is an angle between the q axis and the easy magnetization axis 310 when the direction from the stator 50 (armature) to the magnet unit 42 in the q axis is positive. In the present embodiment, both the angle θ11 and the angle θ12 are 90 ° or less. Here, each of the magnetization easy axes 300 and 310 has the following definition. Assuming that one easy magnetization axis is in the direction A11 and the other easy magnetization axis is in the direction B11 in each portion of the magnets 91 and 92, the cosine of the angle θ formed by the directions A11 and B11 The absolute value (| cos θ |) is taken as the magnetization easy axis 300 or the magnetization easy axis 310.

すなわち、各磁石91,92のそれぞれは、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。   That is, in each of the magnets 91 and 92, the direction of the magnetization easy axis is different between the d-axis side (portion near the d-axis) and the q-axis side (portion near the q-axis). The direction of the easy axis is close to the direction parallel to the d axis, and on the q axis side, the direction of the easy magnetization axis is close to the direction orthogonal to the q axis. An arc-shaped magnet magnetic path is formed in accordance with the direction of the magnetization easy axis. In each of the magnets 91 and 92, the magnetization easy axis may be parallel to the d axis on the d axis side, and the magnetization easy axis may be orthogonal to the q axis on the q axis side.

また、磁石91,92では、各磁石91,92の周面のうち固定子50側(図9の下側)となる固定子側外面と、周方向においてq軸側の端面とが、磁束の流入流出面である磁束作用面となっており、それらの磁束作用面(固定子側外面及びq軸側の端面)を繋ぐように磁石磁路が形成されている。   Further, in the magnets 91 and 92, of the circumferential surfaces of the magnets 91 and 92, the stator side outer surface that is on the stator 50 side (the lower side in FIG. 9) and the end surface on the q axis side in the circumferential direction A magnetic flux path is formed so as to connect the magnetic flux acting surfaces (the outer surface on the stator side and the end surface on the q axis side) of the magnetic flux acting surfaces which are the inflow and outflow surfaces.

磁石ユニット42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることができる。また、本実施形態の磁石ユニット42では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。   In the magnet unit 42, the magnetic flux flows in an arc shape between adjacent N and S poles by the magnets 91 and 92, so the magnet magnetic path is longer than, for example, a radial anisotropic magnet. For this reason, as shown in FIG. 17, the magnetic flux density distribution is close to a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotating electrical machine 10 can be increased. Moreover, in the magnet unit 42 of this embodiment, it can be confirmed that there is a difference in the magnetic flux density distribution as compared with the conventional Halbach-arrayed magnet. In FIG. 17 and FIG. 18, the horizontal axis shows the electrical angle, and the vertical axis shows the magnetic flux density. Further, in FIG. 17 and FIG. 18, 90 ° on the horizontal axis indicates the d axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q axis.

つまり、上記構成の各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現することができる。   That is, according to each magnet 91, 92 of the said structure, the magnet magnetic flux in d axis | shaft is reinforced, and the magnetic flux change around q axis | shaft is suppressed. Thereby, magnets 91 and 92 in which the surface magnetic flux change from the q-axis to the d-axis in each magnetic pole is smooth can be suitably realized.

磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。   The sine wave matching rate of the magnetic flux density distribution may be, for example, 40% or more. In this way, the amount of magnetic flux in the central portion of the waveform can be reliably improved as compared to the case of using a radially oriented magnet or a parallel oriented magnet having a sine wave matching ratio of about 30%. Further, if the sine wave matching ratio is set to 60% or more, the amount of magnetic flux in the central portion of the waveform can be surely improved as compared with the magnetic flux concentration array such as the Halbach array.

図18に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。また、固定子巻線51側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。   In the radial anisotropic magnet shown in FIG. 18, the magnetic flux density changes sharply near the q-axis. As the change in magnetic flux density is steeper, the eddy current generated in the stator winding 51 is increased. In addition, the magnetic flux change on the stator winding 51 side is also sharp. On the other hand, in the present embodiment, the magnetic flux density distribution has a magnetic flux waveform close to a sine wave. Therefore, in the vicinity of the q-axis, the change in magnetic flux density is smaller than the change in magnetic flux density of the radial anisotropic magnet. Thereby, the generation of the eddy current can be suppressed.

磁石ユニット42では、各磁石91,92のd軸付近(すなわち磁極中心)において、固定子50側の磁束作用面280に直交する向きで磁束が生じ、その磁束は、固定子50側の磁束作用面280から離れるほど、d軸から離れるような円弧状をなす。また、磁束作用面に直交する磁束であるほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石ユニット42の磁束作用面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。   In the magnet unit 42, a magnetic flux is generated in the direction orthogonal to the magnetic flux acting surface 280 on the stator 50 side in the vicinity of the d axis of the magnets 91 and 92 (that is, the center of the magnetic pole). The farther away from the surface 280, the more it is arced away from the d-axis. Further, as the magnetic flux is perpendicular to the magnetic flux acting surface, the magnetic flux becomes stronger. In this point, in the rotating electrical machine 10 of the present embodiment, since the wire groups 81 are thinned in the radial direction as described above, the radial center position of the wire groups 81 approaches the magnetic flux acting surface of the magnet unit 42, A strong magnetic flux can be received from the rotor 40 at the stator 50.

また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁束作用面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。   In the stator 50, a cylindrical stator core 52 is provided radially inside the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic flux acting surface of each of the magnets 91 and 92 is attracted to the stator core 52 and circulates while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnet flux can be optimized.

以下に、回転電機10の製造方法として、図5に示す軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60についての組み付け手順について説明する。なお、インバータユニット60は、図6に示すようにユニットベース61と電気コンポーネント62とを有しており、それらユニットベース61及び電気コンポーネント62の組み付け工程を含む各作業工程を説明する。以下の説明では、固定子50及びインバータユニット60よりなる組立品を第1ユニット、軸受ユニット20、ハウジング30及び回転子40よりなる組立品を第2ユニットとしている。   Hereinafter, an assembling procedure of the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 shown in FIG. 5 will be described as a method of manufacturing the rotating electrical machine 10. The inverter unit 60 has a unit base 61 and an electric component 62 as shown in FIG. 6, and each operation process including the assembly process of the unit base 61 and the electric component 62 will be described. In the following description, the assembly consisting of the stator 50 and the inverter unit 60 is taken as a first unit, the assembly consisting of the bearing unit 20, the housing 30 and the rotor 40 as a second unit.

本製造工程は、
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。
This manufacturing process
A first step of mounting the electrical component 62 radially inward of the unit base 61;
A second step of manufacturing the first unit by mounting the unit base 61 radially inward of the stator 50;
A third step of manufacturing the second unit by inserting the fixing portion 44 of the rotor 40 into the bearing unit 20 assembled to the housing 30;
A fourth step of mounting the first unit radially inward of the second unit;
A fifth step of fastening and fixing the housing 30 and the unit base 61;
have. The order of implementation of each of these steps is: first step → second step → third step → fourth step → fifth step.

上記の製造方法によれば、軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60を複数の組立品(サブアセンブリ)として組み立てた後に、それら組立品同士を組み付けるようにしたため、ハンドリングのし易さやユニット毎の検査完結などを実現でき、合理的な組み立てラインの構築が可能となる。したがって、多品種生産にも容易に対応が可能となる。   According to the above manufacturing method, after assembling the bearing unit 20, the housing 30, the rotor 40, the stator 50 and the inverter unit 60 as a plurality of assemblies (sub-assemblies), the assemblies are assembled together, Ease of handling and complete inspection of each unit can be realized, making it possible to construct a rational assembly line. Therefore, it is possible to easily cope with multi-variety production.

第1工程では、ユニットベース61の径方向内側及び電気コンポーネント62の径方向外部の少なくともいずれかに、熱伝導が良好な良熱伝導体を塗布や接着等により付着させておき、その状態で、ユニットベース61に対して電気コンポーネント62を装着するとよい。これにより、半導体モジュール66の発熱をユニットベース61に対して効果的に伝達させることが可能となる。   In the first step, a good thermal conductor having good thermal conductivity is attached to at least one of the radially inner side of the unit base 61 and the radial direction outer side of the electric component 62 by coating, adhesion or the like. The electrical component 62 may be attached to the unit base 61. As a result, the heat generation of the semiconductor module 66 can be effectively transmitted to the unit base 61.

第3工程では、ハウジング30と回転子40との同軸を維持しながら、回転子40の挿入作業を実施するとよい。具体的には、例えばハウジング30の内周面を基準として回転子40の外周面(磁石ホルダ41の外周面)又は回転子40の内周面(磁石ユニット42の内周面)の位置を定める治具を用い、その治具に沿ってハウジング30及び回転子40のいずれかをスライドさせながら、ハウジング30と回転子40との組み付けを実施する。これにより、軸受ユニット20に偏荷重を掛けることなく重量部品を組み付けることが可能となり、軸受ユニット20の信頼性が向上する。   In the third step, the insertion operation of the rotor 40 may be performed while maintaining the coaxial between the housing 30 and the rotor 40. Specifically, for example, the position of the outer peripheral surface of the rotor 40 (the outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (the inner peripheral surface of the magnet unit 42) is determined based on the inner peripheral surface of the housing 30 Assembly of the housing 30 and the rotor 40 is performed using a jig and sliding either the housing 30 or the rotor 40 along the jig. As a result, it becomes possible to assemble heavy parts without applying a partial load to the bearing unit 20, and the reliability of the bearing unit 20 is improved.

第4工程では、第1ユニットと第2ユニットとの同軸を維持しながら、それら両ユニットの組み付けを実施するとよい。具体的には、例えば回転子40の固定部44の内周面を基準としてユニットベース61の内周面の位置を定める治具を用い、その治具に沿って第1ユニット及び第2ユニットのいずれかをスライドさせながら、これら各ユニットの組み付けを実施する。これにより、回転子40と固定子50との極少隙間間での互いの干渉を防止しながら組み付けることが可能となるため、固定子巻線51へのダメージや永久磁石の欠け等、組み付け起因の不良品の撲滅が可能となる。   In the fourth step, the two units may be assembled while maintaining the coaxiality between the first unit and the second unit. Specifically, using, for example, a jig for determining the position of the inner peripheral surface of unit base 61 with reference to the inner peripheral surface of fixing portion 44 of rotor 40, the first unit and the second unit These units are assembled while sliding one of them. As a result, the assembly can be performed while preventing mutual interference between the rotor 40 and the stator 50 in an extremely small gap, so that the assembly winding is caused by damage to the stator winding 51, chipping of the permanent magnet, or the like. It will be possible to eradicate defective products.

上記各工程の順序を、第2工程→第3工程→第4工程→第5工程→第1工程とすることも可能である。この場合、デリケートな電気コンポーネント62を最後に組み付けることになり、組み付け工程内での電気コンポーネント62へのストレスを最小限にとどめることができる。   It is also possible to make the order of the above-mentioned each process 2nd process-3rd process-4th process-5th process-1st process. In this case, the delicate electrical component 62 is finally assembled, and the stress on the electrical component 62 in the assembling process can be minimized.

次に、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、制御装置110による制御処理を示す機能ブロック図である。   Next, the configuration of a control system that controls the rotating electrical machine 10 will be described. FIG. 19 is an electric circuit diagram of a control system of rotary electric machine 10, and FIG. 20 is a functional block diagram showing control processing by control device 110.

図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、電力変換器に相当する第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。   In FIG. 19, two sets of three-phase windings 51a and 51b are shown as the stator winding 51, and the three-phase winding 51a is composed of a U-phase winding, a V-phase winding and a W-phase winding, The phase winding 51b is composed of an X-phase winding, a Y-phase winding and a Z-phase winding. A first inverter 101 and a second inverter 102 corresponding to the power converter are provided for each of the three-phase windings 51a and 51b. The inverters 101 and 102 are configured by full bridge circuits having upper and lower arms equal in number to the number of phases of the phase windings, and the switches (semiconductor switching elements) provided on each arm turn on and off the stator winding 51. The conduction current is adjusted in each phase winding.

各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。   A DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102. The DC power supply 103 is configured of, for example, a battery pack in which a plurality of single cells are connected in series. The switches of the inverters 101 and 102 correspond to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.

制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。   The control device 110 includes a microcomputer including a CPU and various memories, and performs energization control by turning on and off each switch in the inverters 101 and 102 based on various detection information in the rotating electric machine 10 and a request for powering drive and power generation. carry out. The control device 110 corresponds to the control device 77 shown in FIG. The detection information of the rotating electrical machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor The conduction current of each phase detected by is included. Control device 110 generates and outputs operation signals for operating the switches of inverters 101 and 102. The request for power generation is, for example, a request for regenerative drive when the rotating electrical machine 10 is used as a vehicle power source.

第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。   The first inverter 101 is provided with a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases consisting of a U phase, a V phase and a W phase. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103 . One end of each of a U-phase winding, a V-phase winding, and a W-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These respective phase windings are star-connected (Y-connected), and the other ends of the respective phase windings are connected to each other at a neutral point.

第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。   The second inverter 102 has a configuration similar to that of the first inverter 101, and includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases consisting of X phase, Y phase and Z phase. ing. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103 . One end of each of an X-phase winding, a Y-phase winding, and a Z-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These respective phase windings are star-connected (Y-connected), and the other ends of the respective phase windings are connected to each other at a neutral point.

図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。   FIG. 20 shows current feedback control processing for controlling each phase current of U, V and W phases, and current feedback control processing for controlling each phase current of X, Y and Z phases. Here, first, control processing on the U, V, and W phases will be described.

図20において、電流指令値設定部111は、トルク−dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。   In FIG. 20, current command value setting unit 111 uses a torque-dq map, based on a powering torque command value or a power generation torque command value for rotating electric machine 10, or based on electric angular velocity ω obtained by differentiating electric angle θ. , D-axis current command value and q-axis current command value are set. The current command value setting unit 111 is commonly provided on the U, V, W phase side and the X, Y, Z phase side. The power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a vehicle power source.

dq変換部112は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。   The dq conversion unit 112 is orthogonal 2 in which a current detection value (three phase currents) by a current sensor provided for each phase is taken as a d-axis with a direction of an axis of a magnetic field or field direction. It is converted into d-axis current and q-axis current which are components of a three-dimensional rotational coordinate system.

d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。   The d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback controlling the d-axis current to the d-axis current command value. Further, the q-axis current feedback control unit 114 calculates a q-axis command voltage as an operation amount for feedback controlling the q-axis current to the q-axis current command value. Each of these feedback control units 113 and 114 calculates a command voltage using a PI feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.

3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111〜115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。   The three-phase conversion unit 115 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Each of the parts 111 to 115 described above is a feedback control part that performs feedback control of the fundamental wave current according to the dq conversion theory, and the command voltages of the U phase, V phase and W phase are feedback control values.

そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。   Then, the operation signal generation unit 116 generates an operation signal of the first inverter 101 based on the three-phase command voltage using a known triangular wave carrier comparison method. Specifically, the operation signal generation unit 116 switches the upper and lower arms in each phase by PWM control based on a magnitude comparison between a signal obtained by standardizing the three-phase command voltages with the power supply voltage and a carrier signal such as a triangular wave signal. An operation signal (duty signal) is generated.

また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。   In addition, the same configuration is also applied to the X, Y, and Z phases, and the dq conversion unit 122 determines the field direction of the current detection value (three phase currents) by the current sensor provided for each phase. It is converted into a d-axis current and a q-axis current which are components of an orthogonal two-dimensional rotational coordinate system as the d-axis.

d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。   The d-axis current feedback control unit 123 calculates the d-axis command voltage, and the q-axis current feedback control unit 124 calculates the q-axis command voltage. The three-phase conversion unit 125 converts the d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages. Then, the operation signal generation unit 126 generates an operation signal of the second inverter 102 based on the three-phase command voltages. Specifically, the operation signal generation unit 126 switches the upper and lower arms in each phase by PWM control based on magnitude comparison between a signal obtained by standardizing the three-phase command voltage with the power supply voltage and a carrier signal such as a triangular wave signal. An operation signal (duty signal) is generated.

ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。   The driver 117 turns on / off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.

続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。   Subsequently, torque feedback control processing will be described. This process is mainly used for the purpose of increasing the output of the rotary electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 is increased, such as a high rotation area and a high output area. Control device 110 selects and executes one of torque feedback control processing and current feedback control processing based on the operating conditions of rotating electrical machine 10.

図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。   FIG. 21 shows torque feedback control processing corresponding to the U, V, and W phases, and torque feedback control processing corresponding to the X, Y, and Z phases. In FIG. 21, the same components as in FIG. 20 are assigned the same reference numerals and descriptions thereof will be omitted. Here, first, control processing on the U, V, and W phases will be described.

電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。   The voltage amplitude calculation unit 127 is a command value of the magnitude of the voltage vector based on the powering torque command value or the power generation torque command value for the rotary electric machine 10 and the electric angular velocity ω obtained by time-differentiating the electric angle θ. Calculate voltage amplitude command.

トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。   The torque estimation unit 128 a calculates a torque estimated value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. The torque estimation unit 128a may calculate the voltage amplitude command based on the map information in which the d-axis current, the q-axis current, and the voltage amplitude command are related.

トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。   Torque feedback control unit 129a calculates a voltage phase command that is a command value of the phase of the voltage vector, as an operation amount for feedback controlling the torque estimated value to the powering torque command value or the power generation torque command value. The torque feedback control unit 129a calculates a voltage phase command using a PI feedback method based on the power running torque command value or the deviation of the torque estimated value from the power generation torque command value.

操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。   The operation signal generation unit 130 a generates an operation signal of the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and normalizes the calculated three-phase command voltage with the power supply voltage. The switch operation signal of the upper and lower arms in each phase is generated by PWM control based on the magnitude comparison between the signal and the carrier signal such as the triangular wave signal.

ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。   Incidentally, the operation signal generation unit 130a is based on pulse pattern information which is map information in which a voltage amplitude command, a voltage phase command, an electrical angle θ and a switch operation signal are related, a voltage amplitude command, a voltage phase command and an electrical angle θ. The switch operation signal may be generated.

また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。   In addition, the X-, Y-, and Z-phase sides have the same configuration, and the torque estimation unit 128 b determines the X, Y, and Z based on the d-axis current and the q-axis current converted by the dq conversion unit 122. An estimated torque value corresponding to the Z phase is calculated.

トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。   The torque feedback control unit 129 b calculates a voltage phase command as an operation amount for performing feedback control of the torque estimated value to the powering torque command value or the power generation torque command value. The torque feedback control unit 129 b calculates a voltage phase command using a PI feedback method based on the power running torque command value or the deviation of the torque estimated value from the power generation torque command value.

操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。   The operation signal generation unit 130 b generates an operation signal of the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and normalizes the calculated three-phase command voltage with the power supply voltage. The switch operation signal of the upper and lower arms in each phase is generated by PWM control based on the magnitude comparison between the signal and the carrier signal such as the triangular wave signal. The driver 117 turns on / off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.

ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。   Incidentally, the operation signal generation unit 130b is based on pulse pattern information which is map information in which a voltage amplitude command, a voltage phase command, an electrical angle θ and a switch operation signal are related, a voltage amplitude command, a voltage phase command and an electrical angle θ. The switch operation signal may be generated.

ところで、回転電機10においては、軸電流の発生に伴い軸受21,22の電食が生じることが懸念されている。例えば固定子巻線51の通電がスイッチングにより切り替えられる際に、スイッチングタイミングの微小なずれ(スイッチングの不均衡)により磁束の歪みが生じ、それに起因して、回転軸11を支持する軸受21,22において電食が生じることが懸念される。磁束の歪みは固定子50のインダクタンスに応じて生じ、その磁束の歪みにより生じる軸方向の起電圧によって、軸受21,22内での絶縁破壊が起こり電食が進行する。   By the way, in the rotary electric machine 10, there is concern that electrolytic corrosion of the bearings 21 and 22 may occur with the generation of the axial current. For example, when the energization of the stator winding 51 is switched by switching, a slight deviation of switching timing (switching imbalance) causes distortion of the magnetic flux, which causes the bearings 21, 22 to support the rotating shaft 11 There is concern that electrolytic corrosion will occur in The distortion of the magnetic flux occurs according to the inductance of the stator 50, and an axial electromotive voltage generated by the distortion of the magnetic flux causes a dielectric breakdown in the bearings 21 and 22 to cause electrolytic corrosion.

この点本実施形態では、電食対策として、以下に示す3つの対策を講じている。第1の電食対策は、固定子50のコアレス化に伴いインダクタンスを低減したこと、及び磁石ユニット42の磁石磁束をなだらかにしたことによる電食抑制対策である。第2の電食対策は、回転軸を軸受21,22による片持ち構造としたことによる電食抑制対策である。第3の電食対策は、円環状の固定子巻線51を固定子コア52と共にモールド材によりモールドしたことによる電食抑制対策である。以下には、これら各対策の詳細を個々に説明する。   In this respect, in the present embodiment, the following three measures are taken as a measure against galvanic corrosion. The first galvanic corrosion countermeasure is a galvanic corrosion suppression countermeasure by reducing the inductance along with making the stator 50 coreless and making the magnet magnetic flux of the magnet unit 42 smooth. The second countermeasure against electrolytic corrosion is a countermeasure against the electrolytic corrosion due to the rotary shaft having a cantilever structure by the bearings 21 and 22. The third galvanic corrosion countermeasure is a galvanic corrosion suppression countermeasure by molding the annular stator winding 51 together with the stator core 52 with a molding material. The details of each of these measures are individually described below.

まず第1の電食対策では、固定子50において、周方向における各導線群81の間をティースレスとし、各導線群81の間に、ティース(鉄心)の代わりに非磁性材料よりなる封止部材57を設ける構成としている(図10参照)。これにより、固定子50のインダクタンス低減が可能となっている。固定子50におけるインダクタンス低減を図ることで、仮に固定子巻線51の通電時にスイッチングタイミングのずれが生じても、そのスイッチングタイミングのずれに起因する磁束歪みの発生を抑制し、ひいては軸受21,22の電食抑制が可能になっている。なお、d軸のインダクタンスがq軸のインダクタンス以下になっているとよい。   First, in the first countermeasure against electrolytic corrosion, in the stator 50, the gaps between the wire groups 81 in the circumferential direction are made teethless, and between the wire groups 81, a seal made of nonmagnetic material instead of teeth (iron core) A member 57 is provided (see FIG. 10). Thus, the inductance of the stator 50 can be reduced. By reducing the inductance in the stator 50, even if a shift in switching timing occurs when the stator winding 51 is energized, generation of magnetic flux distortion due to the shift in switching timing is suppressed. It is possible to suppress the electrolytic corrosion of The inductance of the d axis may be equal to or less than the inductance of the q axis.

また、磁石91,92において、d軸側においてq軸側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた構成とした(図9参照)。これにより、d軸での磁石磁束が強化され、各磁極においてq軸からd軸にかけての表面磁束変化(磁束の増減)がなだらかになる。そのため、スイッチング不均衡に起因する急激な電圧変化が抑制され、ひいては電食抑制に寄与できる構成となっている。   Further, in the magnets 91 and 92, orientation is made such that the direction of the magnetization easy axis is parallel to the d axis on the d axis side as compared to the q axis side (see FIG. 9). As a result, the magnet magnetic flux in the d-axis is strengthened, and the surface magnetic flux change (increase or decrease of the magnetic flux) from the q-axis to the d-axis in each magnetic pole becomes smooth. Therefore, the rapid voltage change resulting from the switching imbalance is suppressed, and as a result, the configuration can contribute to the electrolytic corrosion suppression.

第2の電食対策では、回転電機10において、各軸受21,22を、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置している(図2参照)。これにより、複数の軸受が軸方向において回転子を挟んで両側にそれぞれ設けられる構成と比べて、電食の影響を軽減できる。つまり、回転子を複数の軸受により両持ち支持する構成では、高周波磁束の発生に伴い回転子、固定子及び各軸受(すなわち、回転子を挟んで軸方向両側の各軸受)を通る閉回路が形成され、軸電流により軸受の電食が懸念される。これに対し、回転子40を複数の軸受21,22により片持ち支持する構成では上記閉回路が形成されず、軸受の電食が抑制される。   In the second countermeasure against electrolytic corrosion, in the rotary electric machine 10, the bearings 21 and 22 are arranged to be biased to one side in the axial direction with respect to the axial center of the rotor 40 (see FIG. 2). Thereby, the influence of the electrolytic corrosion can be reduced as compared with the configuration in which the plurality of bearings are provided on both sides of the rotor in the axial direction. That is, in the configuration in which the rotor is supported on both sides by a plurality of bearings, a closed circuit passing through the rotor, the stator, and each bearing (that is, each bearing on both sides in the axial direction across the rotor) There is concern about the electrolytic corrosion of the bearing due to the axial current. On the other hand, in the configuration in which the rotor 40 is supported in a cantilever manner by the plurality of bearings 21 and 22, the above-mentioned closed circuit is not formed, and the electrolytic corrosion of the bearings is suppressed.

また、回転電機10は、軸受21,22の片側配置のための構成に絡み、以下の構成を有する。磁石ホルダ41において、回転子40の径方向に張り出す中間部45に、軸方向に延びて固定子50に対する接触を回避する接触回避部が設けられている(図2参照)。この場合、磁石ホルダ41を経由して軸電流の閉回路が形成される場合にあっては、閉回路長を長くしてその回路抵抗を大きくすることが可能となる。これにより、軸受21,22の電食の抑制を図ることができる。   In addition, the rotary electric machine 10 has the following configuration in connection with a configuration for one-side arrangement of the bearings 21 and 22. In the magnet holder 41, a contact avoiding portion that extends in the axial direction to avoid contact with the stator 50 is provided in the radially extending intermediate portion 45 of the rotor 40 (see FIG. 2). In this case, when the closed circuit of the axial current is formed via the magnet holder 41, it is possible to increase the closed circuit length and increase the circuit resistance. Thereby, suppression of the electrolytic corrosion of the bearings 21 and 22 can be aimed at.

回転子40を挟んで軸方向の一方側においてハウジング30に対して軸受ユニット20の保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61(固定子ホルダ)が互いに結合されている(図2参照)。本構成によれば、回転軸11の軸方向においてその軸方向の片側に各軸受21,22を偏って配置する構成を好適に実現することができる。また本構成では、ユニットベース61がハウジング30を介して回転軸11に繋がる構成となるため、ユニットベース61を、回転軸11から電気的に離れた位置に配置することができる。なお、ユニットベース61とハウジング30との間に樹脂等の絶縁部材を介在させれば、ユニットベース61と回転軸11とが電気的に一層離れた構成となる。これにより、軸受21,22の電食を適正に抑制することができる。   The holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side of the rotor 40 in the axial direction, and the housing 30 and the unit base 61 (stator holder) are connected to each other on the other side. (See Figure 2). According to this configuration, it is possible to preferably realize a configuration in which the bearings 21 and 22 are disposed on one side in the axial direction in the axial direction of the rotating shaft 11 in a biased manner. Further, in the present configuration, the unit base 61 is connected to the rotating shaft 11 through the housing 30, so that the unit base 61 can be disposed at a position electrically separated from the rotating shaft 11. When an insulating member such as a resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 are electrically separated further. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be suppressed appropriately.

本実施形態の回転電機10では、各軸受21,22の片側配置等により、軸受21,22に作用する軸電圧が低減されている。また、回転子40と固定子50との間の電位差が低減されている。そのため、軸受21,22において導電性グリースを用いなくても、軸受21,22に作用する電位差の低減が可能になっている。導電性グリースは、一般的にカーボンなどの細かい粒子を含むため音鳴りが生じることが考えられる。この点、本実施形態では、軸受21,22において非導電性グリースを用いる構成としている。そのため、軸受21,22において音鳴りが生じる不都合を抑制できる。例えば電気自動車などの電動車両への適用時には回転電機10の音鳴り対策が必要になると考えられるが、その音鳴り対策を好適に実施することが可能となる。   In the rotating electrical machine 10 of the present embodiment, the axial voltage acting on the bearings 21 and 22 is reduced by the arrangement of the bearings 21 and 22 on one side or the like. Also, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, even if the conductive grease is not used in the bearings 21 and 22, the potential difference acting on the bearings 21 and 22 can be reduced. The conductive grease generally contains fine particles such as carbon, and therefore it is considered that noise is generated. In this respect, in the present embodiment, non-conductive grease is used in the bearings 21 and 22. Therefore, it is possible to suppress the occurrence of noise in the bearings 21 and 22. For example, when applied to an electric vehicle such as an electric car, it is considered that measures against the sounding of the rotary electric machine 10 are required, but it is possible to preferably implement the measures against the sounding.

第3の電食対策では、固定子巻線51を固定子コア52と共にモールド材によりモールドすることで、固定子50での固定子巻線51の位置ずれを抑制する構成としている(図11参照)。特に本実施形態の回転電機10では、固定子巻線51における周方向の各導線群81の間に導線間部材(ティース)を有していないため、固定子巻線51における位置ずれ生じる懸念が考えられるが、固定子巻線51を固定子コア52と共にモールドすることにより、固定子巻線51の導線位置にずれが抑制される。したがって、固定子巻線51の位置ずれによる磁束の歪みや、それに起因する軸受21,22の電食の発生を抑制することができる。   In the third countermeasure against electrolytic corrosion, the stator winding 51 and the stator core 52 are molded with a molding material to suppress positional deviation of the stator winding 51 in the stator 50 (see FIG. 11). ). In particular, in the rotating electrical machine 10 of the present embodiment, since there is no inter-lead member (teeth) between the conductor wire groups 81 in the circumferential direction of the stator winding 51, there is a concern that positional deviation in the stator winding 51 may occur. Although conceivable, by molding the stator winding 51 together with the stator core 52, the displacement of the conductor position of the stator winding 51 is suppressed. Therefore, distortion of magnetic flux due to positional deviation of the stator winding 51 and generation of electrolytic corrosion of the bearings 21 and 22 resulting therefrom can be suppressed.

なお、固定子コア52を固定するハウジング部材としてのユニットベース61を、炭素繊維強化プラスチック(CFRP)により構成したため、例えばアルミ等により構成する場合に比べて、ユニットベース61への放電が抑制され、ひいては好適な電食対策が可能となっている。   In addition, since the unit base 61 as a housing member for fixing the stator core 52 is made of carbon fiber reinforced plastic (CFRP), discharge to the unit base 61 is suppressed as compared with, for example, aluminum. As a result, suitable electrolytic corrosion measures are possible.

その他、軸受21,22の電食対策として、外輪25及び内輪26の少なくともいずれかをセラミックス材により構成する、又は、外輪25の外側に絶縁スリーブを設ける等の構成を用いることも可能である。   In addition, as measures against electrolytic corrosion of the bearings 21 and 22, it is also possible to use a configuration in which at least one of the outer ring 25 and the inner ring 26 is made of a ceramic material or an insulating sleeve is provided outside the outer ring 25.

以下に、他の実施形態を第1実施形態との相違点を中心に説明する。   Hereinafter, other embodiments will be described focusing on differences from the first embodiment.

(第2実施形態)
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。
Second Embodiment
In this embodiment, the pole anisotropic structure of the magnet unit 42 in the rotor 40 is changed, and will be described in detail below.

図22及び図23に示すように、磁石ユニット42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット42は、磁化方向(磁化ベクトルの向き)を径方向とする第1磁石131と、磁化方向(磁化ベクトルの向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。   As shown in FIGS. 22 and 23, the magnet unit 42 is configured using a magnet arrangement called a Halbach arrangement. That is, the magnet unit 42 has a first magnet 131 whose radial direction is the magnetization direction (direction of magnetization vector) and a second magnet 132 whose circumferential direction is the magnetization direction (direction of the magnetization vector), The first magnets 131 are disposed at predetermined intervals in the circumferential direction, and the second magnets 132 are disposed at positions between the adjacent first magnets 131 in the circumferential direction. The first magnet 131 and the second magnet 132 are permanent magnets made of, for example, a rare earth magnet such as a neodymium magnet.

第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向に極性が交互となるように配置されている。これら各磁石131,132を囲うように設けられる円筒部43は、軟磁性材料よりなる軟磁性体コアであるとよく、バックコアとして機能する。なお、この第2実施形態の磁石ユニット42も、d−q座標系において、d軸やq軸に対する磁化容易軸の関係は上記第1実施形態と同じである。   The first magnets 131 are spaced apart from each other in the circumferential direction such that poles on the side (radially inner side) facing the stator 50 are alternately N poles and S poles. Further, the second magnets 132 are arranged adjacent to the first magnets 131 so that the polarities alternate in the circumferential direction. The cylindrical portion 43 provided to surround the magnets 131 and 132 may be a soft magnetic core made of a soft magnetic material and functions as a back core. The relationship of the magnetization easy axis with respect to the d axis and the q axis in the dq coordinate system of the magnet unit 42 of the second embodiment is also the same as that of the first embodiment.

また、第1磁石131の径方向外側、すなわち磁石ホルダ41の円筒部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石ユニット42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。   Further, a magnetic body 133 made of a soft magnetic material is disposed radially outside the first magnet 131, that is, on the side of the cylindrical portion 43 of the magnet holder 41. For example, the magnetic body 133 may be made of a magnetic steel sheet, a soft iron, or a dust core material. In this case, the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (in particular, the circumferential length of the outer peripheral portion of the first magnet 131). Moreover, the thickness in the radial direction of the one-piece in the state in which the first magnet 131 and the magnetic body 133 are integrated is the same as the thickness in the radial direction of the second magnet 132. In other words, the thickness of the first magnet 131 in the radial direction is thinner than that of the second magnet 132 by the amount of the magnetic substance 133. The magnets 131 and 132 and the magnetic body 133 are fixed to each other by, for example, an adhesive. In the magnet unit 42, the radially outer side of the first magnet 131 is the opposite side to the stator 50, and the magnetic body 133 is the opposite side to the stator 50 of both sides of the first magnet 131 in the radial direction Provided on the stator side).

磁性体133の外周部には、径方向外側、すなわち磁石ホルダ41の円筒部43の側に突出する凸部としてのキー134が形成されている。また、円筒部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と磁石ホルダ41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、磁石ホルダ41の円筒部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、磁石ホルダ41の円筒部43の内周部にキー134を設けることも可能である。   On the outer peripheral portion of the magnetic body 133, a key 134 is formed as a convex portion protruding radially outward, that is, the cylindrical portion 43 side of the magnet holder 41. Further, on the inner peripheral surface of the cylindrical portion 43, a key groove 135 is formed as a recess for accommodating the key 134 of the magnetic body 133. The protruding shape of the keys 134 and the groove shape of the key grooves 135 are the same, and the key grooves 135 equal in number to the keys 134 are formed corresponding to the keys 134 formed on each magnetic body 133. By the engagement of the key 134 and the key groove 135, positional deviation between the first magnet 131 and the second magnet 132 and the magnet holder 41 in the circumferential direction (rotational direction) is suppressed. The key 134 and the key groove 135 (protrusions and depressions) may be provided on either of the cylindrical portion 43 and the magnetic body 133 of the magnet holder 41, and contrary to the above, on the outer peripheral portion of the magnetic body 133 It is also possible to provide the key groove 135 and to provide the key 134 on the inner peripheral portion of the cylindrical portion 43 of the magnet holder 41.

ここで、磁石ユニット42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石ユニット42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。   Here, in the magnet unit 42, it is possible to increase the magnetic flux density in the first magnet 131 by arranging the first magnet 131 and the second magnet 132 alternately. Therefore, in the magnet unit 42, magnetic flux can be concentrated on one side, and the magnetic flux can be strengthened on the side closer to the stator 50.

また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石ユニット42の磁力を増加させることが可能となっている。本実施形態の磁石ユニット42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。   In addition, by disposing the magnetic body 133 on the radially outer side of the first magnet 131, that is, on the side opposite to the stator, it is possible to suppress partial magnetic saturation on the radially outer side of the first magnet 131 and, consequently, due to the magnetic saturation. It is possible to suppress the demagnetization of the first magnet 131 that is generated. As a result, the magnetic force of the magnet unit 42 can be increased. The magnet unit 42 of the present embodiment has a configuration in which a portion where demagnetization easily occurs in the first magnet 131 is replaced with the magnetic body 133.

図24(a)、図24(b)は、磁石ユニット42における磁束の流れを具体的に示す図であり、図24(a)は、磁石ユニット42において磁性体133を有していない従来構成を用いた場合を示し、図24(b)は、磁石ユニット42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図24(a)、図24(b)では、磁石ホルダ41の円筒部43及び磁石ユニット42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。   24 (a) and 24 (b) are diagrams specifically showing the flow of magnetic flux in the magnet unit 42, and FIG. 24 (a) is a conventional configuration in which the magnetic unit 133 is not included in the magnet unit 42. FIG. 24B shows the case where the configuration of the present embodiment in which the magnetic unit 133 is provided in the magnet unit 42 is used. In FIGS. 24 (a) and 24 (b), the cylindrical portion 43 of the magnet holder 41 and the magnet unit 42 are expanded linearly and shown, and the lower side of the drawing is the stator side and the upper side is the opposite stator. It is on the side.

図24(a)の構成では、第1磁石131の磁束作用面と第2磁石132の側面とが、それぞれ円筒部43の内周面に接触している。また、第2磁石132の磁束作用面が第1磁石131の側面に接触している。この場合、円筒部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、円筒部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、円筒部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。   In the configuration of FIG. 24A, the magnetic flux acting surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the cylindrical portion 43, respectively. Further, the magnetic flux acting surface of the second magnet 132 is in contact with the side surface of the first magnet 131. In this case, a magnetic flux F1 entering the contact surface with the first magnet 131 through the outer path of the second magnet 132 and a magnetic flux F2 of the second magnet 132 substantially parallel to the cylindrical portion 43 A combined magnetic flux with the attracting magnetic flux is generated. Therefore, there is a concern that magnetic saturation partially occurs in the vicinity of the contact surface between the first magnet 131 and the second magnet 132 in the cylindrical portion 43.

これに対し、図24(b)の構成では、第1磁石131の固定子50とは反対側において第1磁石131の磁束作用面と円筒部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、円筒部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。   On the other hand, in the configuration shown in FIG. 24B, the magnetic substance 133 is located between the magnetic flux acting surface of the first magnet 131 and the inner circumferential surface of the cylindrical portion 43 on the opposite side of the first magnet 131 to the stator 50. Since it is provided, the magnetic body 133 allows the passage of magnetic flux. Therefore, magnetic saturation in the cylindrical portion 43 can be suppressed, and resistance to demagnetization is improved.

また、図24(b)の構成では、図24(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。   Moreover, in the configuration of FIG. 24B, unlike in FIG. 24A, F2 that promotes magnetic saturation can be eliminated. Thus, the permeance of the entire magnetic circuit can be effectively improved. By this configuration, the magnetic circuit characteristics can be maintained even under severe high heat conditions.

また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。   Further, compared to the radial magnet in the conventional SPM rotor, the magnet magnetic path passing through the inside of the magnet is longer. Therefore, the magnet permeance is increased, the magnetic force can be increased, and the torque can be increased. Furthermore, the magnetic flux can be concentrated at the center of the d-axis to increase the sine wave matching rate. In particular, the torque can be more effectively enhanced by using a switching IC with a current waveform as a sine wave or a trapezoidal wave or by using a 120-degree conduction switching IC by PWM control.

なお、固定子コア52が電磁鋼板により構成される場合において、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さの1/2、又は1/2よりも大きいとよい。例えば、固定子コア52の径方向厚さは、磁石ユニット42において磁極中心に設けられる第1磁石131の径方向厚さの1/2以上であるとよい。また、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さより小さいとよい。この場合、磁石磁束は約1[T]であり、固定子コア52の飽和磁束密度は2[T]であるため、固定子コア52の径方向厚さを、磁石ユニット42の径方向厚さの1/2以上にすることで、固定子コア52の内周側への磁束漏洩を防ぐことができる。   In the case where the stator core 52 is formed of an electromagnetic steel sheet, the radial thickness of the stator core 52 is preferably larger than 1/2 or 1/2 of the radial thickness of the magnet unit 42. For example, the radial thickness of the stator core 52 may be 1/2 or more of the radial thickness of the first magnet 131 provided at the magnetic pole center of the magnet unit 42. Further, the radial thickness of the stator core 52 may be smaller than the radial thickness of the magnet unit 42. In this case, since the magnet magnetic flux is approximately 1 [T] and the saturation magnetic flux density of the stator core 52 is 2 [T], the radial thickness of the stator core 52 is equal to the radial thickness of the magnet unit 42. The magnetic flux leakage to the inner peripheral side of the stator core 52 can be prevented by setting it to 1/2 or more.

ハルバッハ構造や極異方構造の磁石では、磁路が擬似円弧状になっているため、周方向の磁束を扱う磁石厚みに比例して、その磁束を上昇させることができる。こういった構成においては、固定子コア52に流れる磁束は、周方向の磁束を超えることはないと考えられる。すなわち、磁石の磁束1[T]に対して飽和磁束密度2[T]の鉄系金属を利用した場合、固定子コア52の厚みを磁石厚みの半分以上とすれば、磁気飽和せず好適に小型かつ軽量の回転電機を提供することができる。ここで、磁石磁束に対して固定子50からの反磁界が作用するため、磁石磁束は一般的に0.9[T]以下となる。そのため、固定子コアは磁石の半分の厚みを持てば、その透磁率を好適に高く保つことができる。   In the Halbach structure or pole-anisotropic magnet, the magnetic path has a pseudo arc shape, so that the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction. In such a configuration, it is considered that the magnetic flux flowing to the stator core 52 does not exceed the circumferential magnetic flux. That is, when an iron-based metal having a saturation magnetic flux density of 2 [T] with respect to the magnetic flux of 1 [T] of the magnet is used, magnetic saturation does not occur preferably if the thickness of the stator core 52 is half or more of the magnet thickness. A small and lightweight rotary electric machine can be provided. Here, since the demagnetizing field from the stator 50 acts on the magnet flux, the magnet flux is generally 0.9 T or less. Therefore, if the stator core has half the thickness of the magnet, its magnetic permeability can be suitably kept high.

(第3実施形態)
本実施形態では、上記実施形態における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。図25に示すように、第3実施形態の磁石ユニット1042は、上記実施形態と同様に、固定子50の径方向外側において、固定子50に対向するように配置されている。また、磁石ユニット1042は、上記実施形態と同様に、円筒部43の内周面に固定されている。
Third Embodiment
In the present embodiment, the pole anisotropic structure of the magnet unit 42 in the above embodiment is changed, and will be described in detail below. As shown in FIG. 25, the magnet unit 1042 of the third embodiment is disposed to face the stator 50 at the radially outer side of the stator 50, as in the above embodiment. Moreover, the magnet unit 1042 is being fixed to the inner peripheral surface of the cylindrical part 43 similarly to the said embodiment.

そして、図25及び図26に示すように、第3実施形態の磁石ユニット1042は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット1042は、磁化ベクトルが直線状である第1磁石1010と、磁化ベクトルが直線状であり、かつ、第1磁石1010とは磁化ベクトルの方向が異なる第2磁石1020と、を有する。第1磁石1010の磁化ベクトルは、第2磁石1020の磁化ベクトルに比較して、径方向に近くなるように設けられている。一方、第2磁石1020の磁化ベクトルは、第1磁石1010の磁化ベクトルに比較して、周方向に近くなるように設けられている。   And as shown in FIG.25 and FIG.26, the magnet unit 1042 of 3rd Embodiment is comprised using the magnet arrangement | positioning called a Halbach arrangement | sequence. That is, magnet unit 1042 has a first magnet 1010 whose magnetization vector is linear, and a second magnet 1020 whose magnetization vector is linear and whose direction of magnetization vector is different from that of first magnet 1010. . The magnetization vector of the first magnet 1010 is provided closer to the radial direction than the magnetization vector of the second magnet 1020. On the other hand, the magnetization vector of the second magnet 1020 is provided closer to the circumferential direction than the magnetization vector of the first magnet 1010.

そして、磁石ユニット1042では、周方向に所定間隔で第1磁石1010が配置されるとともに、周方向において隣り合う第1磁石1010の間となる位置に第2磁石1020が配置されている。   In the magnet unit 1042, the first magnets 1010 are disposed at predetermined intervals in the circumferential direction, and the second magnets 1020 are disposed at positions between the adjacent first magnets 1010 in the circumferential direction.

第3実施形態において、第1磁石1010及び第2磁石1020は、回転子40の周方向に沿って円弧状に形成されており、第1磁石1010と第2磁石1020は、周方向端部において互いに当接するように構成されている。すなわち、磁石ユニット1042は、周方向に第1磁石1010と第2磁石1020が交互に隙間なく配置されることにより、回転子40の同心円状(環状)に構成されていることとなる。   In the third embodiment, the first magnet 1010 and the second magnet 1020 are formed in an arc shape along the circumferential direction of the rotor 40, and the first magnet 1010 and the second magnet 1020 are at the circumferential end. They are configured to abut each other. That is, the magnet unit 1042 is configured to be concentric (annular) of the rotor 40 by alternately arranging the first magnet 1010 and the second magnet 1020 in the circumferential direction without gaps.

また、磁極中心であるd軸は、円弧状である第1磁石1010の周方向中央となっているまた、磁極境界であるq軸は、円弧状である第2磁石1020の周方向中央となっている。   The d-axis at the center of the magnetic pole is the circumferential center of the first magnet 1010 in the arc shape, and the q-axis at the magnetic pole boundary is the circumferential center of the second magnet 1020 in the arc shape. ing.

ここで、第1磁石1010及び第2磁石1020の磁化ベクトルについて説明する。まず、磁化ベクトルの向きについて説明する。周方向において隣り合う第1磁石1010は、磁化ベクトルの向きが異なっており、具体的には逆向きとなっている。第3実施形態において、第1磁石1010のうち、反固定子側から固定子側(径方向内側)へ向かう磁化ベクトルを有するものを第1A磁石1011と示し、固定子側から反固定子側(径方向外側)へ向かう磁化ベクトルを有するものを第1B磁石1012と示す場合がある。   Here, the magnetization vectors of the first magnet 1010 and the second magnet 1020 will be described. First, the direction of the magnetization vector will be described. The directions of the magnetization vectors of the adjacent first magnets 1010 in the circumferential direction are different, and specifically, are opposite to each other. In the third embodiment, among the first magnets 1010, one having a magnetization vector directed from the opposite stator side toward the stator side (radially inward) is referred to as a first A magnet 1011 and the opposite stator side from the stator side A magnet having a magnetization vector directed radially outward) may be indicated as a first B magnet 1012.

同様に、周方向において隣り合う第2磁石1020は、磁化ベクトルの向きが異なっており、具体的には逆向きとなっている。なお、第3実施形態において、第2磁石1020の磁化ベクトルは、いずれも第1B磁石1012の側から第1A磁石1011の側へ向かうようになっている。第3実施形態において、第2磁石1020のうち、図26において反時計回りの向きとなる磁化ベクトルを有するものを第2A磁石1021と示し、時計回りの向きとなる磁化ベクトルを有するものを第2B磁石1022と示す場合がある。   Similarly, the directions of the magnetization vectors of the second magnets 1020 adjacent to each other in the circumferential direction are different, and specifically, are opposite to each other. In the third embodiment, the magnetization vectors of the second magnets 1020 are all directed from the first B magnet 1012 side to the first A magnet 1011 side. In the third embodiment, among the second magnets 1020, one having a magnetization vector in the counterclockwise direction in FIG. 26 is indicated as the second A magnet 1021, and one having the magnetization vector in the clockwise direction is the second B. It may be indicated as a magnet 1022.

次に、第1磁石1010及び第2磁石1020の磁化ベクトルの方向について詳しく説明する。第1A磁石1011の磁化ベクトルは、周方向においていずれの箇所においても径方向に沿うように複数構成されている。つまり、第1A磁石1011には、回転子40の軸心を中心として、径方向に沿って放射状に複数の磁化ベクトルが設けられている。すなわち、第1A磁石1011は、回転子40の軸心を中心とするラジアル配向となっている。したがって、磁極中心であるd軸において第1A磁石1011の磁化ベクトルは、d軸に平行となる一方、d軸から離れるほど、第1A磁石1011の磁化ベクトルは、d軸側に傾くこととなる。   Next, the directions of the magnetization vectors of the first magnet 1010 and the second magnet 1020 will be described in detail. A plurality of magnetization vectors of the first A magnet 1011 are arranged along the radial direction at any location in the circumferential direction. That is, in the first A magnet 1011, a plurality of magnetization vectors are provided radially along the radial direction centering on the axial center of the rotor 40. That is, the first A magnet 1011 has a radial orientation centered on the axis of the rotor 40. Therefore, the magnetization vector of the first A magnet 1011 is parallel to the d axis at the d axis which is the magnetic pole center, while the magnetization vector of the first A magnet 1011 is inclined to the d axis side as it goes away from the d axis.

同様に、第1B磁石1012の磁化ベクトルは、周方向においていずれの箇所においても径方向に沿うように複数構成されている。つまり、第1B磁石1012には、回転子40の軸心を中心として、径方向に沿って放射状に複数の磁化ベクトルが設けられている。すなわち、第1B磁石1012は、回転子40の軸心を中心とするラジアル配向となっている。したがって、磁極中心であるd軸において第1B磁石1012の磁化ベクトルは、d軸に平行となる一方、d軸から離れるほど、第1B磁石1012の磁化ベクトルは、d軸から離れる方向に傾くこととなる。   Similarly, a plurality of magnetization vectors of the 1B magnet 1012 are configured to be along the radial direction at any point in the circumferential direction. That is, in the first B magnet 1012, a plurality of magnetization vectors are provided radially along the radial direction centering on the axial center of the rotor 40. That is, the first B magnet 1012 has a radial orientation about the axial center of the rotor 40. Therefore, the magnetization vector of the first B magnet 1012 is parallel to the d axis at the d axis which is the magnetic pole center, while the magnetization vector of the first B magnet 1012 is inclined in the direction away from the d axis as it goes away from the d axis. Become.

第2磁石1020の磁化ベクトルは、q軸に直交する方向に沿って複数設けられている。つまり、第2磁石1020は、q軸に直交する方向に平行となるパラレル配向となっている。よって、第1磁石1010に対して当接する当接面1023において直交せずに、傾くこととなる。具体的には、q軸から当接面1023までの角度θ101だけ傾くこととなる。この場合、磁化ベクトルは、第1A磁石1011に対する第2磁石1020の当接面1023の垂線に対して、反固定子側(径方向外側)に角度θ101だけ傾くこととなる。一方、磁化ベクトルは、第1B磁石1012に対する第2磁石1020の当接面1024において、固定子側(径方向内側)に傾くこととなる。   A plurality of magnetization vectors of the second magnet 1020 are provided along the direction orthogonal to the q-axis. That is, the second magnets 1020 have a parallel orientation parallel to the direction orthogonal to the q-axis. Therefore, the first magnet 1010 is inclined without being orthogonal to the contact surface 1023 in contact with the first magnet 1010. Specifically, it is inclined by an angle θ101 from the q axis to the contact surface 1023. In this case, the magnetization vector is inclined by an angle θ 101 on the side opposite to the stator (outward in the radial direction) with respect to the perpendicular to the contact surface 1023 of the second magnet 1020 with respect to the first A magnet 1011. On the other hand, the magnetization vector is inclined toward the stator (inward in the radial direction) at the contact surface 1024 of the second magnet 1020 with respect to the first B magnet 1012.

なお、磁化ベクトルの設定方法について詳しく説明する。第1磁石1010では、磁化容易軸が径方向に沿うように配向され、その磁化容易軸に沿って磁石磁路が形成されている。磁石磁路が形成される場合、第1A磁石1011では、磁化ベクトル(磁化の方向又は着磁の方向)が径方向内側(固定子側)に向かうように着磁される。一方、第1B磁石1012では、磁化ベクトル(磁化の方向)が径方向外側(反固定子側)に向かうように着磁される。   The method of setting the magnetization vector will be described in detail. In the first magnet 1010, the magnetization easy axis is oriented along the radial direction, and a magnet magnetic path is formed along the magnetization easy axis. When the magnet magnetic path is formed, the first A magnet 1011 is magnetized such that the magnetization vector (the direction of magnetization or the direction of magnetization) is radially inward (toward the stator). On the other hand, in the first B magnet 1012, the magnetization vector (direction of magnetization) is magnetized so as to be directed radially outward (anti-stator side).

また、第2磁石1020では、磁化容易軸がq軸に直交する方向に沿うように配向され、その磁化容易軸に沿って磁石磁路が形成されている。磁石磁路が形成される場合、第2A磁石1021では、磁化ベクトルが反時計回りに向かうように(つまり、第1A磁石1011側に向くように)着磁される。一方、第2B磁石1022では、磁化ベクトルが時計回りに向かうように(つまり、第1A磁石1011側に向くように)着磁される。   In the second magnet 1020, the easy magnetization axis is oriented along the direction orthogonal to the q axis, and a magnet magnetic path is formed along the easy magnetization axis. When the magnet magnetic path is formed, the magnetization vector of the second A magnet 1021 is magnetized in a counterclockwise direction (that is, in the direction of the first A magnet 1011). On the other hand, in the second B magnet 1022, the magnetization vector is magnetized so as to be directed clockwise (that is, to face the first A magnet 1011 side).

ここで、複数の磁化ベクトルがd軸に沿って平行に形成されている磁石を第1磁石2010とし、複数の磁化ベクトルがq軸に直交する方向に沿って平行に形成されている磁石を第2磁石2020とした磁石ユニット2042を比較例として、図27に示す。なお、第1磁石2010の磁化ベクトル以外(例えば、形状や配置)は、磁石ユニット1042と同一であるとする。   Here, a magnet in which a plurality of magnetization vectors are formed in parallel along the d axis is referred to as a first magnet 2010, and a magnet in which a plurality of magnetization vectors are formed in parallel along a direction orthogonal to the q axis is selected. A magnet unit 2042 having two magnets 2020 is shown in FIG. 27 as a comparative example. In addition, it is assumed that other than the magnetization vector (for example, the shape and the arrangement) of the first magnet 2010 is the same as the magnet unit 1042.

この比較例において、第1磁石2010の周方向端部における磁化ベクトルは、径方向に対して第2磁石側(周方向外側)に角度θ102ずつ傾くようになる。この比較例における第1磁石2010を直線状に展開して図28(a)に示す。図28(a)に示すように、第1磁石2010の周方向端部における磁化ベクトルは、周方向端部に近づくほど、第2磁石側(周方向外側)に傾く。このため、d軸側に磁束が集まりにくくなり、図29の破線に示すように、磁束密度分布の正弦波整合率が低くなる。   In this comparative example, the magnetization vector at the circumferential end of the first magnet 2010 is inclined to the second magnet side (the circumferential outer side) with respect to the radial direction by an angle θ 102. The first magnet 2010 in this comparative example is developed linearly and is shown in FIG. As shown in FIG. 28A, the magnetization vector at the circumferential end of the first magnet 2010 is inclined toward the second magnet (outward in the circumferential direction) as it approaches the circumferential end. For this reason, it becomes difficult for magnetic flux to gather on the d-axis side, and as shown by the broken line in FIG. 29, the sine wave matching rate of the magnetic flux density distribution becomes low.

一方、第3実施形態における磁石ユニット1042において、第1磁石1010の周方向端部における磁化ベクトルは、径方向に対して平行となっている。第3実施形態における第1A磁石1011を直線状に展開して図28(b)に示す。図28(b)に示すように、第1A磁石1011において、周方向のいずれの箇所であっても、磁化ベクトルは、径方向に平行となっている。このため、比較例と比較して、d軸側に磁束が集まりやすくなり、図29の実線に示すように、比較例に対して、磁束密度分布の正弦波整合率が高くなる。   On the other hand, in the magnet unit 1042 in the third embodiment, the magnetization vector at the circumferential end of the first magnet 1010 is parallel to the radial direction. The 1st A magnet 1011 in 3rd Embodiment is expand | deployed linearly, and it shows in FIG.28 (b). As shown in FIG. 28B, in the first A magnet 1011, the magnetization vector is parallel to the radial direction, regardless of where in the circumferential direction. Therefore, the magnetic flux is easily collected on the d-axis side as compared with the comparative example, and as shown by the solid line in FIG. 29, the sine wave matching ratio of the magnetic flux density distribution becomes higher than that of the comparative example.

第3実施形態によれば、以下の優れた効果を有する。   According to the third embodiment, the following excellent effects are obtained.

第1磁石1010は、周方向に所定間隔で配置されるとともに、第2磁石1020は、周方向において隣り合う第1磁石1010の間となる位置に配置される。このため、第1磁石1010において、比較例(図27)に示すように、d軸に沿った直線状の磁化ベクトル(磁化の方向)を形成する場合(パラレル配向にする場合)、磁束密度がd軸側に集まりにくくなる。つまり、比較例では、第1磁石1010の周方向端部に近づくほど、磁化ベクトルが周方向外側に傾くこととなり、磁束がd軸側に集まりにくくなる。特にアウタロータ構造の回転電機10のように、回転子40が、固定子50に対して径方向内側に配置されるとその傾向が顕著となる。また、磁極数が少なく、回転子40の径が小さいほど、その傾向が顕著となる。つまり、よりd軸側に集まりにくくなる。   The first magnets 1010 are disposed at predetermined intervals in the circumferential direction, and the second magnets 1020 are disposed at positions between the adjacent first magnets 1010 in the circumferential direction. Therefore, in the first magnet 1010, as shown in the comparative example (FIG. 27), when forming a linear magnetization vector (direction of magnetization) along the d axis (in the case of parallel orientation), the magnetic flux density is It becomes difficult to gather on the d axis side. That is, in the comparative example, as the end in the circumferential direction of the first magnet 1010 is approached, the magnetization vector is inclined outward in the circumferential direction, and the magnetic flux is less likely to be collected on the d-axis side. In particular, when the rotor 40 is disposed radially inward of the stator 50 as in the case of the rotary electric machine 10 having the outer rotor structure, the tendency is remarkable. In addition, the smaller the number of magnetic poles and the smaller the diameter of the rotor 40, the more pronounced the tendency. That is, it becomes more difficult to gather on the d-axis side.

そこで、第1磁石1010における磁化ベクトルを、回転子40の径方向に沿うようにした(ラジアル配向にした)。これにより、磁化ベクトルが直線状である第1磁石1010及び第2磁石1020を使用するにもかかわらず、磁束密度がd軸側に集まりやすくなり、表面磁束密度分布を正弦波状に近づかせることができる。よって、トルクリプルやコギングトルクを抑制することができる。また、渦電流の発生を抑制し、渦電流損を抑制することができる。   Therefore, the magnetization vector in the first magnet 1010 was made to be along the radial direction of the rotor 40 (in a radial orientation). As a result, although the first magnet 1010 and the second magnet 1020 whose magnetization vectors are linear are used, the magnetic flux density tends to be concentrated on the d-axis side, and the surface magnetic flux density distribution can be made to approach a sine wave. it can. Therefore, torque ripple and cogging torque can be suppressed. Moreover, generation | occurrence | production of an eddy current can be suppressed and an eddy current loss can be suppressed.

(第4実施形態)
第4実施形態では、第3実施形態における第1磁石の磁化ベクトルを変更しており、以下に詳しく説明する。なお、第3実施形態と同様の構成は、説明を省略する。
Fourth Embodiment
In the fourth embodiment, the magnetization vector of the first magnet in the third embodiment is changed, which will be described in detail below. The same configuration as that of the third embodiment will not be described.

図30に示すように、第4実施形態における第1磁石3010の磁化ベクトルは、d軸側(すなわち、周方向中央側)に近づくほど径方向に対して平行に近くなる一方、q軸側(すなわち、周方向端部側)に近づくほど径方向に対してd軸側(周方向中央側)に傾くように構成されている。つまり、径方向に対する磁化ベクトルのなす角度θ103がq軸側に近くづくほど大きくなるように構成されている。また、d軸において磁化ベクトルは、径方向に平行となるように構成されている。   As shown in FIG. 30, while the magnetization vector of the first magnet 3010 in the fourth embodiment becomes closer to the radial direction as it approaches the d-axis side (that is, the circumferential center side), the q-axis side (the That is, it is configured to be inclined toward the d-axis side (central side in the circumferential direction) with respect to the radial direction as it approaches the circumferential end portion). That is, the angle θ103 between the magnetization vectors with respect to the radial direction is configured to be larger as it approaches the q-axis side. Further, the magnetization vector is configured to be parallel to the radial direction on the d axis.

第1磁石3010のうち、周方向に隣り合う第1A磁石3011と第1B磁石3012とは、磁化ベクトルの向きが正反対となることを除いて、磁化ベクトルの方向や、径方向に対する傾き方(角度など)は、同様である。   In the first magnet 3010, the first A magnet 3011 and the first B magnet 3012 adjacent in the circumferential direction are inclined in the direction of the magnetization vector or in the radial direction (angle (angle), except that the magnetization vectors have opposite directions. Etc.) are similar.

磁化ベクトルの設定方法について詳しく説明する。第1磁石3010では、磁化容易軸がd軸側に近づくほど径方向に対して平行に近くなるように配向する一方、q軸側に近づくほど径方向に対してd軸側に傾くように配向されている。そして、その磁化容易軸に沿って磁石磁路が形成されている。磁石磁路が形成される場合、第1A磁石3011では、磁化ベクトルが径方向内側(固定子側)に向かうように着磁される。一方、第1B磁石3012では、磁化ベクトルが径方向外側(反固定子側)に向かうように着磁される。   The method of setting the magnetization vector will be described in detail. In the first magnet 3010, the magnetization easy axis is oriented so as to be parallel to the radial direction as it approaches the d axis side, while it is oriented so as to be inclined to the d axis side with respect to the radial direction as it approaches the q axis side It is done. And a magnet magnetic path is formed along the magnetization easy axis. When the magnet magnetic path is formed, in the first A magnet 3011, the magnetization vector is magnetized so as to be directed radially inward (toward the stator). On the other hand, in the first B magnet 3012, the magnetization vector is magnetized so as to be directed radially outward (to the side opposite to the stator).

第3実施形態における磁石ユニット3042において、第1磁石3010の周方向端部に近づくほど、その磁化ベクトルは、径方向に対してd軸側に傾くようになっている。第3実施形態における第1A磁石3011を直線状に展開して図31に示す。このため、第3実施形態の磁石ユニット1042や図27に示す比較例に比較して、d軸側に磁束が集まりやすくなり、磁束密度分布の正弦波整合率が高くなる。よって、トルクリプルやコギングトルクを抑制することができる。また、渦電流の発生を抑制し、渦電流損を抑制することができる。   In the magnet unit 3042 in the third embodiment, the magnetization vector is inclined toward the d-axis with respect to the radial direction as it approaches the circumferential end of the first magnet 3010. The 1st A magnet 3011 in 3rd Embodiment is expand | deployed linearly, and it shows in FIG. For this reason, in comparison with the magnet unit 1042 of the third embodiment and the comparative example shown in FIG. 27, the magnetic flux is easily collected on the d-axis side, and the sine wave matching rate of the magnetic flux density distribution becomes high. Therefore, torque ripple and cogging torque can be suppressed. Moreover, generation | occurrence | production of an eddy current can be suppressed and an eddy current loss can be suppressed.

(第5実施形態)
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。第5実施形態の磁石ユニット4042は、上記実施形態と同様に、固定子50の径方向外側において、固定子50に対向するように配置されている。また、磁石ユニット4042は、上記実施形態と同様に、円筒部43の内周面に固定されている。
Fifth Embodiment
In this embodiment, the pole anisotropic structure of the magnet unit 42 in the rotor 40 is changed, and will be described in detail below. The magnet unit 4042 of the fifth embodiment is disposed to face the stator 50 at the radially outer side of the stator 50, as in the above embodiment. Moreover, the magnet unit 4042 is being fixed to the inner peripheral surface of the cylindrical part 43 similarly to the said embodiment.

図32に示すように、磁石ユニット4042は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット4042は、磁化ベクトルが直線状である第1磁石4010と、磁化ベクトルが直線状であり、かつ、第1磁石4010とは磁化ベクトルの方向が異なる第2磁石4020を有する。第1磁石4010の磁化ベクトルは、第2磁石4020の磁化ベクトルに比較して、径方向に近くなるように設けられている。一方、第2磁石4020の磁化ベクトルは、第1磁石4010の磁化ベクトルに比較して、周方向に近くなるように設けられている。   As shown in FIG. 32, the magnet unit 4042 is configured using a magnet arrangement called a Halbach arrangement. That is, magnet unit 4042 has a first magnet 4010 whose magnetization vector is linear, and a second magnet 4020 whose magnetization vector is linear and whose direction of magnetization vector is different from that of first magnet 4010. The magnetization vector of the first magnet 4010 is provided closer to the radial direction than the magnetization vector of the second magnet 4020. On the other hand, the magnetization vector of the second magnet 4020 is provided closer to the circumferential direction than the magnetization vector of the first magnet 4010.

そして、磁石ユニット4042では、周方向に所定間隔で第1磁石4010が配置されるとともに、周方向において隣り合う第1磁石4010の間となる位置に第2磁石4020が配置されている。   In the magnet unit 4042, the first magnets 4010 are disposed at predetermined intervals in the circumferential direction, and the second magnets 4020 are disposed at positions between the adjacent first magnets 4010 in the circumferential direction.

第5実施形態において、第1磁石4010及び第2磁石4020は、回転子40の周方向に沿って円弧状に形成されており、第1磁石4010と第2磁石4020は、周方向端部において互いに当接するように構成されている。すなわち、磁石ユニット4042は、周方向に第1磁石4010と第2磁石4020が交互に隙間なく配置されることにより、回転子40の同心円状(環状)に構成されていることとなる。   In the fifth embodiment, the first magnet 4010 and the second magnet 4020 are formed in an arc shape along the circumferential direction of the rotor 40, and the first magnet 4010 and the second magnet 4020 are provided at circumferential end portions. They are configured to abut each other. That is, the magnet unit 4042 is configured to be concentric (annular) of the rotor 40 by alternately arranging the first magnet 4010 and the second magnet 4020 in the circumferential direction without gaps.

また、磁極中心であるd軸は、円弧状である第1磁石4010の周方向中央となっているまた、磁極境界であるq軸は、円弧状である第2磁石4020の周方向中央となっている。   The d-axis, which is the center of the magnetic pole, is the circumferential center of the first magnet 4010, which is arc-shaped. The q-axis, which is the boundary of the magnetic pole, is the circumferential center of the second magnet 4020, which is arc-shaped. ing.

ここで、第1磁石4010及び第2磁石4020の磁化ベクトルについて説明する。まず、磁化ベクトルの向きについて説明する。周方向において隣り合う第1磁石4010は、磁化ベクトルの向きが異なっており、具体的には逆向きとなっている。第5実施形態において、第1磁石4010のうち、反固定子側から固定子側(径方向内側)へ向かう磁化ベクトルを有するものを第1A磁石4011と示し、固定子側から反固定子側(径方向外側)へ向かう磁化ベクトルを有するものを第1B磁石4012と示す場合がある。   Here, the magnetization vectors of the first magnet 4010 and the second magnet 4020 will be described. First, the direction of the magnetization vector will be described. The directions of the magnetization vectors of the first magnets 4010 adjacent to each other in the circumferential direction are different, and specifically, are opposite to each other. In the fifth embodiment, among the first magnets 4010, the one having a magnetization vector directed from the opposite stator side toward the stator side (radially inward) is referred to as a first A magnet 4011. A magnet having a magnetization vector directed radially outward) may be shown as a first B magnet 4012.

同様に、周方向において隣り合う第2磁石4020は、磁化ベクトルの向きが異なっており、具体的には逆向きとなっている。なお、第5実施形態において、第2磁石4020の磁化ベクトルは、いずれも第1B磁石4012の側から第1A磁石4011の側へ向かうようになっている。第5実施形態において、第2磁石4020のうち、図32において反時計回りの向きとなる磁化ベクトルを有するものを第2A磁石4021と示し、時計回りの向きとなる磁化ベクトルを有するものを第2B磁石4022と示す場合がある。   Similarly, the directions of the magnetization vectors of the second magnets 4020 adjacent to each other in the circumferential direction are different, and specifically, are opposite to each other. In the fifth embodiment, the magnetization vectors of the second magnets 4020 are all directed from the first B magnet 4012 side to the first A magnet 4011 side. In the fifth embodiment, among the second magnets 4020, one having a magnetization vector in the counterclockwise direction in FIG. 32 is indicated as the second A magnet 4021, and one having the magnetization vector in the clockwise direction is the second B. It may be indicated as a magnet 4022.

次に、第1磁石4010及び第2磁石4020の磁化ベクトルの方向について詳しく説明する。第1A磁石4011では、d軸の方向に沿って複数の磁化ベクトルが、平行となるように構成されている。第1B磁石4012の磁化ベクトルも同様である。   Next, the directions of the magnetization vectors of the first magnet 4010 and the second magnet 4020 will be described in detail. In the first A magnet 4011, a plurality of magnetization vectors are configured to be parallel along the direction of the d axis. The same applies to the magnetization vector of the first B magnet 4012.

第2磁石4020では、磁極境界となるq軸に直交する方向に対して固定子側に傾く磁化ベクトルが、複数構成されている。つまり、第2磁石4020は、パラレル配向となっており、q軸に直交する方向に対して、固定子側に所定角度θ103だけ傾くように複数の磁化ベクトルが平行に設けられている。   In the second magnet 4020, a plurality of magnetization vectors are configured to be inclined toward the stator with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary. That is, the second magnets 4020 have a parallel orientation, and a plurality of magnetization vectors are provided in parallel so as to be inclined toward the stator by a predetermined angle θ103 with respect to the direction orthogonal to the q-axis.

そして、磁化ベクトルがq軸に直交する方向に対して傾く所定角度θ103は、q軸から当接面4023までの角度θ101以上の角度であることが望ましい。なお、当接面4023は、第1A磁石4011の周方向端部に当接する第2磁石4020の当接面(周方向端部における端面)である。この所定角度θ103を、q軸から当接面4023までの角度θ101以上にすれば、第2磁石4020の磁化ベクトルが当接面4023に対して、直交、又は固定子側に傾くように交差することとなる。図32において、所定角度θ103は、角度θ101と一致させており、第2磁石4020の磁化ベクトルが当接面4023に対して、直交するようにしている。   The predetermined angle θ 103 at which the magnetization vector is inclined with respect to the direction orthogonal to the q axis is preferably an angle equal to or larger than the angle θ 101 from the q axis to the contact surface 4023. Note that the contact surface 4023 is a contact surface (end surface at the circumferential end) of the second magnet 4020 that contacts the circumferential end of the first A magnet 4011. If this predetermined angle θ103 is equal to or greater than the angle θ101 from the q axis to the contact surface 4023, the magnetization vector of the second magnet 4020 intersects the contact surface 4023 so as to be orthogonal or inclined toward the stator. It will be. In FIG. 32, the predetermined angle θ103 matches the angle θ101 so that the magnetization vector of the second magnet 4020 is orthogonal to the contact surface 4023.

磁化ベクトルの設定方法について詳しく説明する。第2磁石4020では、磁化容易軸がq軸に直交する方向に対して固定子側に所定角度θ103だけ傾くように配向されており、その磁化容易軸に沿って磁石磁路が形成されている。また、磁石磁路が形成される場合、第2A磁石4021では、磁化ベクトルが反時計回りに向かうように着磁される。一方、第2B磁石4022では、磁化ベクトルが時計回りに向かうように着磁される。   The method of setting the magnetization vector will be described in detail. In the second magnet 4020, the easy magnetization axis is oriented to be inclined by a predetermined angle θ 103 toward the stator with respect to the direction orthogonal to the q axis, and a magnet magnetic path is formed along the easy magnetization axis . In addition, when the magnet magnetic path is formed, the magnetization vector is magnetized in the counterclockwise direction in the second A magnet 4021. On the other hand, in the second B magnet 4022, the magnetization vector is magnetized in a clockwise direction.

ここで、第5実施形態の磁石ユニット4042と、比較例として図27に示した磁石ユニット2042と、を比較する。比較例において、第2磁石2020の周方向端部における磁化ベクトルは、図28(a)に示すように、当接面2023において直交せずに、当接面2023の垂線に対して反固定子側に角度θ101だけ傾くこととなる。このため、d軸側に磁束が集まりにくくなり、磁束密度分布の正弦波整合率が低くなる。この傾向は、磁極数が小さいほど、また、磁石ユニット2042の径が小さいほど(曲率が大きいほど)、顕著となる。   Here, the magnet unit 4042 of the fifth embodiment is compared with the magnet unit 2042 shown in FIG. 27 as a comparative example. In the comparative example, as shown in FIG. 28A, the magnetization vector at the circumferential end of the second magnet 2020 is not orthogonal to the perpendicular surface of the contact surface 2023 and is opposed to the vertical line of the contact surface 2023. It is inclined to the side by an angle θ101. Therefore, the magnetic flux is less likely to be collected on the d-axis side, and the sine wave matching rate of the magnetic flux density distribution is lowered. This tendency becomes remarkable as the number of magnetic poles decreases and as the diameter of the magnet unit 2042 decreases (as the curvature increases).

一方、第5実施形態における磁石ユニット4042において、第2磁石4020の周方向端部における磁化ベクトルは、当接面4023に対して、直交、若しくは当接面2023の垂線に対して固定子側に傾くように交差する。第5実施形態における第2磁石4020を直線状に展開して図33に示す。このため、比較例と比較して、d軸側に磁束が集まりやすくなり、磁束密度分布の正弦波整合率が高くなる。よって、トルクリプルやコギングトルクを抑制することができる。また、渦電流の発生を抑制し、渦電流損を抑制することができる。   On the other hand, in the magnet unit 4042 in the fifth embodiment, the magnetization vector at the circumferential end of the second magnet 4020 is orthogonal to the contact surface 4023 or on the stator side with respect to the perpendicular to the contact surface 2023. Cross to tilt. The second magnet 4020 in the fifth embodiment is expanded in a straight line and is shown in FIG. For this reason, compared with the comparative example, the magnetic flux is easily collected on the d-axis side, and the sine wave matching rate of the magnetic flux density distribution becomes high. Therefore, torque ripple and cogging torque can be suppressed. Moreover, generation | occurrence | production of an eddy current can be suppressed and an eddy current loss can be suppressed.

なお、第5実施形態を第3実施形態又は第4実施形態と組み合わせてもよい。例えば、図34に示すように、第5実施形態の第2磁石4020と、第3実施形態の第1磁石1010を組み合わせて、磁石ユニット42を構成してもよい。   The fifth embodiment may be combined with the third embodiment or the fourth embodiment. For example, as shown in FIG. 34, the magnet unit 42 may be configured by combining the second magnet 4020 of the fifth embodiment and the first magnet 1010 of the third embodiment.

(第6実施形態)
第6実施形態では、第5実施形態における第2磁石の磁化ベクトルを変更しており、以下に詳しく説明する。なお、第5実施形態と同様の構成は、説明を省略する。
Sixth Embodiment
In the sixth embodiment, the magnetization vector of the second magnet in the fifth embodiment is changed, which will be described in detail below. The same configuration as that of the fifth embodiment will not be described.

図35に示すように、第6実施形態における第2磁石5020は、ラジアル配向されており、反固定子側(反電機子側、径方向外側)に設定される中心点Oを中心として放射状に複数の磁化ベクトルが形成されている。中心点Oは、第1A磁石4011よりも第1B磁石4012の側に設定される。第6実施形態では、第2磁石5020の角のうち、反固定子側であって、かつ、第1B磁石4012の側の角が、中心点Oとして設定され、当該中心点Oを中心として放射状に複数の磁化ベクトルが形成されている。   As shown in FIG. 35, the second magnets 5020 in the sixth embodiment are radially oriented, and radially about a center point O set on the side opposite to the stator (opposite to the armature, radially outward). A plurality of magnetization vectors are formed. The center point O is set closer to the first B magnet 4012 than the first A magnet 4011 is. In the sixth embodiment, among the corners of the second magnet 5020, the corner on the side opposite to the stator and on the side of the first B magnet 4012 is set as the center point O, and the center point O radially A plurality of magnetization vectors are formed in.

なお、磁化ベクトルの設定方法について詳しく説明する。第2磁石5020では、磁化容易軸が中心点Oを中心として、放射状に配向されており、その磁化容易軸に沿って磁石磁路が形成されている。   The method of setting the magnetization vector will be described in detail. In the second magnet 5020, the magnetization easy axis is radially oriented about the center point O, and a magnet magnetic path is formed along the magnetization easy axis.

第6実施形態における磁石ユニット5042において、中心点Oから、第2磁石5020の角P100に向かう磁化ベクトルは、q軸に直交する方向に対して固定子側(径方向内側)に傾く。第2磁石5020の角P100は、第1A磁石4011の側であって、かつ固定子側の角である。これにより、中心点Oから、第2磁石5020の角P100までの磁石磁路を長くすることができる。このため、減磁しにくく、磁束がd軸側に集まりやすくなり、磁束密度分布の正弦波整合率が高くすることができる。よって、トルクリプルやコギングトルクを抑制することができる。また、渦電流の発生を抑制し、渦電流損を抑制することができる。   In the magnet unit 5042 in the sixth embodiment, the magnetization vector from the center point O toward the angle P100 of the second magnet 5020 is inclined toward the stator (inward in the radial direction) with respect to the direction orthogonal to the q axis. An angle P100 of the second magnet 5020 is an angle on the side of the first A magnet 4011 and on the stator side. Thereby, the magnet magnetic path from the center point O to the angle P100 of the second magnet 5020 can be lengthened. Therefore, it is difficult to demagnetize, the magnetic flux is easily collected on the d-axis side, and the sine wave matching rate of the magnetic flux density distribution can be increased. Therefore, torque ripple and cogging torque can be suppressed. Moreover, generation | occurrence | production of an eddy current can be suppressed and an eddy current loss can be suppressed.

なお、第6実施形態を第3実施形態又は第4実施形態と組み合わせてもよい。つまり、第6実施形態に示す第2磁石5020と、第3実施形態に示す第1磁石1010又は第4実施形態に示す第1磁石2010とを有する磁石ユニットを採用してもよい。   The sixth embodiment may be combined with the third embodiment or the fourth embodiment. That is, a magnet unit having the second magnet 5020 shown in the sixth embodiment and the first magnet 1010 shown in the third embodiment or the first magnet 2010 shown in the fourth embodiment may be employed.

以下に、上述した構成の一部を変更した変形例について説明する。   Below, the modification which changed a part of structure mentioned above is demonstrated.

(変形例1)
上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図36に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。
(Modification 1)
In the above embodiment, the outer peripheral surface of the stator core 52 has a curved surface without unevenness, and the plurality of wire groups 81 are arranged side by side at predetermined intervals on the outer peripheral surface. For example, as shown in FIG. 36, the stator core 52 has an annular yoke 141 provided on the opposite side (lower side in the figure) of the stator winding 51 in the radial direction to the rotor 40; A protrusion 142 extends from the yoke 141 so as to project between the linear portions 83 adjacent in the circumferential direction. The protrusions 142 are provided on the radially outer side of the yoke 141, that is, on the side of the rotor 40 at predetermined intervals. The conductor groups 81 of the stator winding 51 are engaged with the projections 142 in the circumferential direction, and are arranged in the circumferential direction while using the projections 142 as positioning portions for the conductor groups 81. In addition, the projection part 142 corresponds to "a member between conducting wires".

突起部142は、ヨーク141からの径方向の厚さ寸法、言い換えれば、図36に示すように、ヨーク141の径方向において、直線部83のヨーク141に隣接する内側面320から突起部142の頂点までの距離Wが、径方向内外の複数層の直線部83のうち、ヨーク141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。言い換えれば、固定子巻線51(固定子コア52)の径方向における導線群81(伝導部材)の寸法(厚み)T1(導線82の厚みの2倍、言い換えれば、導線群81の固定子コア52に接する面320と、導線群81の回転子40に向いた面330との最短距離)の4分の3の範囲は非磁性部材(封止部材57)が占有していればよい。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。例えば、突起部142は、周方向において各導線群81の間の所定数ごとに等間隔で設けられているとよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。   The protrusion 142 has a thickness dimension in the radial direction from the yoke 141, in other words, as shown in FIG. 36, in the radial direction of the yoke 141, from the inner side surface 320 adjacent to the yoke 141 of the straight portion 83 The distance W to the apex is smaller than half (H1 in the figure) of the thickness dimension in the radial direction of the linear portion 83 adjacent to the yoke 141 in the radial direction among the plurality of linear portions 83 inside and outside the radial direction It is a structure. In other words, the dimension (thickness) T1 (the thickness) of the conductive wire group 81 (conductive member) in the radial direction of the stator winding 51 (the stator core 52), in other words, the stator core of the conductive wire group 81 The nonmagnetic member (sealing member 57) may occupy a range of three quarters of the surface 320 in contact with the surface 52 and the shortest distance between the surface 330 of the conductor group 81 facing the rotor 40). Due to such thickness limitation of the protrusion 142, the protrusion 142 does not function as teeth between the wire groups 81 (that is, the straight portions 83) adjacent in the circumferential direction, and magnetic paths are not formed by the teeth. . The protrusions 142 may not be all provided between the wire groups 81 aligned in the circumferential direction, and may be provided between at least one pair of wire groups 81 adjacent in the circumferential direction. For example, the protrusions 142 may be provided at equal intervals for each predetermined number between the wire groups 81 in the circumferential direction. The shape of the protrusion 142 may be any shape such as a rectangular shape or an arc shape.

また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。   Further, on the outer peripheral surface of the stator core 52, the linear portion 83 may be provided in a single layer. Therefore, in a broad sense, the thickness dimension in the radial direction from the yoke 141 in the protrusion 142 may be smaller than 1⁄2 of the thickness dimension in the radial direction of the straight portion 83.

なお、回転軸11の軸心を中心とし、かつヨーク141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。   Assuming that a virtual circle is centered on the axis of the rotary shaft 11 and passes through the radial center position of the straight portion 83 adjacent to the yoke 141 in the radial direction, the projection 142 is within the range of the virtual circle. It is preferable that the shape which protrudes from the yoke 141, in other words, the shape which does not protrude in the radial direction outer side (that is, the rotor 40 side) than the virtual circle.

上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体82aの断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。   According to the above configuration, the thickness of the protrusion 142 in the radial direction is limited, and the protrusion 142 does not function as teeth between the adjacent linear portions 83 in the circumferential direction. As compared with the case where is provided, adjacent linear parts 83 can be brought closer. Thereby, the cross-sectional area of the conductor 82a can be enlarged, and the heat generation which accompanies the energization of the stator winding 51 can be reduced. In such a configuration, the absence of the teeth makes it possible to eliminate the magnetic saturation, and it is possible to increase the current flow to the stator winding 51. In this case, an increase in the amount of heat generation can be suitably coped with as the current flows. Further, in the stator winding 51, since the turn portion 84 is shifted in the radial direction and has an interference avoiding portion for avoiding interference with other turn portions 84, the different turn portions 84 are separated in the radial direction. It can be arranged. Thereby, the heat dissipation can be improved also in the turn portion 84. As described above, the heat dissipation performance of the stator 50 can be optimized.

また、固定子コア52のヨーク141と、回転子40の磁石ユニット42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図36のH1に縛られるものではない。具体的には、ヨーク141と磁石ユニット42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図36のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク141に隣接していない直線部83、すなわちヨーク141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。   If the yoke 141 of the stator core 52 and the magnet units 42 of the rotor 40 (ie, the magnets 91 and 92) are separated by a predetermined distance or more, the thickness dimension of the projection 142 in the radial direction is as shown in FIG. Not tied to H1. Specifically, as long as the yoke 141 and the magnet unit 42 are separated by 2 mm or more, the thickness dimension of the protrusion 142 in the radial direction may be H1 or more in FIG. For example, when the radial thickness dimension of the linear portion 83 exceeds 2 mm, and the lead wire group 81 is constituted by the two layers of the lead 82 inside and outside the radial direction, the straight portion 83 not adjacent to the yoke 141, That is, the projecting portion 142 may be provided in a range from the yoke 141 to a half position of the second-layer conductive wire 82. In this case, if the radial thickness dimension of the projection 142 is “H1 × 3/2”, the effect can be obtained to some extent by enlarging the cross-sectional area of the conductor in the wire group 81.

また、固定子コア52は、図37に示す構成であってもよい。なお、図37では、封止部材57を省略しているが、封止部材57が設けられていてもよい。図37では、便宜上、磁石ユニット42及び固定子コア52を直線状に展開して示している。   Stator core 52 may have a configuration shown in FIG. Although the sealing member 57 is omitted in FIG. 37, the sealing member 57 may be provided. In FIG. 37, for convenience, the magnet unit 42 and the stator core 52 are linearly expanded and shown.

図37の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、導線間部材としての突起部142を有している。固定子50は、固定子巻線51が通電されると、磁石ユニット42の磁極の一つ(N極、またはS極)とともに磁気的に機能し、固定子50の周方向に延びる一部分350を有する。この部分350の固定子50の周方向への長さをWnとすると、この長さ範囲Wnに存在する突起部142の合計の幅(すなわち、固定子50の周方向への合計の寸法)をWtとし、突起部142の飽和磁束密度をBs、磁石ユニット42の1極分の周方向の幅寸法をWm、磁石ユニット42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。
In the configuration of FIG. 37, the stator 50 has a projection 142 as an inter-wire member between the circumferentially adjacent wires 82 (i.e., the straight portions 83). The stator 50 magnetically functions with one of the magnetic poles (N or S pole) of the magnet unit 42 when the stator winding 51 is energized, and a circumferentially extending portion 350 of the stator 50 is formed. Have. Assuming that the length in the circumferential direction of the stator 50 of this portion 350 is Wn, the total width of the protrusions 142 present in the length range Wn (ie, the total dimension in the circumferential direction of the stator 50) Assuming that Wt is the saturation magnetic flux density of the projection 142, Bs is the width dimension of the magnet unit 42 in the circumferential direction, and Br is the residual magnetic flux density of the magnet unit 42, the projection 142 is
Wt × Bs ≦ Wm × Br (1)
It is comprised by the magnetic material which becomes.

なお、範囲Wnは、周方向に隣接する複数の導線群81であって、励磁時期が重複する複数の導線群81を含むように設定される。その際、範囲Wnを設定する際の基準(境界)として、導線群81の間隙56の中心を設定することが好ましい。例えば、図37に例示する構成の場合、周方向においてN極の磁極中心からの距離が最も短いものから順番に、4番目までの導線群81が、当該複数の導線群81に相当する。そして、当該4つの導線群81を含むように範囲Wnが設定される。その際、範囲Wnの端(起点と終点)が間隙56の中心とされている。   The range Wn is set so as to include a plurality of conductor groups 81 adjacent in the circumferential direction, the plurality of conductor groups 81 having overlapping excitation timings. At that time, it is preferable to set the center of the gap 56 of the wire group 81 as a reference (boundary) when setting the range Wn. For example, in the case of the configuration illustrated in FIG. 37, the fourth lead wire group 81 corresponds to the plurality of lead wire groups 81 in order from the shortest distance from the magnetic pole center of the N pole in the circumferential direction. Then, the range Wn is set to include the four lead wire groups 81. At this time, the end (start and end points) of the range Wn is the center of the gap 56.

図37において、範囲Wnの両端には、それぞれ突起部142が半分ずつ含まれていることから、範囲Wnには、合計4つ分の突起部142が含まれている。したがって、突起部142の幅(すなわち、固定子50の周方向における突起部142の寸法、言い換えれば、隣接する導線群81の間隔)をAとすると、範囲Wnに含まれる突起部142の合計の幅は、Wt=1/2A+A+A+A+1/2A=4Aとなる。   In FIG. 37, since the protrusions 142 are respectively included in half at both ends of the range Wn, a total of four protrusions 142 are included in the range Wn. Therefore, assuming that the width of the protrusion 142 (that is, the dimension of the protrusion 142 in the circumferential direction of the stator 50, in other words, the distance between adjacent wire groups 81) is A, the total of the protrusions 142 included in the range Wn The width is Wt = 1 / 2A + A + A + A + 1 / 2A = 4A.

詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石ユニット42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「相数×Q」個となっている。ここでQとは、1相の導線82のうち固定子コア52と接する数である。なお、導線82が回転子40の径方向に積層された導線群81である場合には、1相の導線群81の内周側の導線82の数であるともいえる。この場合、固定子巻線51の3相巻線が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の合計幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「励磁される相数×Q×A=2×2×A」となる。   Specifically, in the present embodiment, the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of the projecting portions 142 with respect to one pole of the magnet unit 42, ie, each The number of gaps 56 between the wire groups 81 is “number of phases × Q”. Here, Q is the number of the one-phase conducting wire 82 in contact with the stator core 52. In addition, when the conducting wire 82 is the conducting wire group 81 laminated | stacked on the radial direction of the rotor 40, it can be said that it is the number of the conducting wire 82 of the inner peripheral side of the conducting wire group 81 of 1 phase. In this case, when the three-phase winding of the stator winding 51 is energized in each phase in a predetermined order, the projections 142 for two phases are excited in one pole. Therefore, the total width dimension Wt in the circumferential direction of the protrusions 142 excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is the width in the circumferential direction of the protrusions 142 (that is, the gap 56). Assuming that the dimension is A, “the number of phases to be excited × Q × A = 2 × 2 × A”.

そして、こうして合計幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、合計幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。また、余裕を考えて、合計幅寸法Wtを、1磁極における突起部142の周方向の幅寸法としてもよい。具体的には、磁石ユニット42の1極に対する突起部142の数が「相数×Q」であることから、1磁極における突起部142の周方向の幅寸法(合計幅寸法Wt)を、「相数×Q×A=3×2×A=6A」としてもよい。   Then, after the total width dimension Wt is thus defined, in the stator core 52, the protrusion 142 is configured as a magnetic material that satisfies the relationship of the above (1). The total width dimension Wt is also a circumferential dimension of a portion where the relative permeability can be larger than 1 in one pole. Also, in consideration of the margin, the total width dimension Wt may be the width dimension in the circumferential direction of the protrusion 142 in one magnetic pole. Specifically, since the number of protrusions 142 with respect to one pole of the magnet unit 42 is “number of phases × Q”, the circumferential width dimension (total width dimension Wt) of the protrusions 142 in one magnetic pole is The number of phases x Q x A = 3 x 2 x A = 6 A "may be used.

なお、ここでいう分布巻とは、磁極の1極対周期(N極とS極)で、固定子巻線51の一極対があるものである。ここでいう固定子巻線51の一極対は、電流が互いに逆方向に流れ、ターン部84で電気的に接続された2つの直線部83とターン部84からなる。上記条件みたすものであれば、短節巻(Short Pitch Winding)であっても、全節巻(Full Pitch Winding)の分布巻の均等物とみなす。   The term "distributed winding" as used herein means one pole pair period (N pole and S pole) of the magnetic pole, and one pole pair of the stator winding 51. A single pole pair of the stator winding 51 mentioned here is composed of two straight portions 83 and a turn portion 84 electrically connected by the current flow in opposite directions. As long as the above conditions are satisfied, even Short Pitch Winding is regarded as equivalent to the distributed pitch of Full Pitch Winding.

次に、集中巻の場合の例を示す。ここでいう集中巻とは、磁極の1極対の幅と、固定子巻線51の一極対の幅とが異なるものである。集中巻の一例としては、1つの磁極対に対して導線群81が3つ、2つの磁極対に対して導線群81が3つ、4つの磁極対に対して導線群81が9つ、5つの磁極対に対して導線群81が9つのような関係であるものが挙げられる。   Next, an example in the case of concentrated winding is shown. The concentrated winding referred to here is one in which the width of one pole pair of the magnetic pole is different from the width of one pole pair of the stator winding 51. As an example of concentrated winding, three lead groups 81 for one pole pair, three lead groups 81 for two pole pairs, nine lead groups 81 for four pole pairs There is a case where the wire group 81 has a relationship such as nine for one magnetic pole pair.

ここで、固定子巻線51を集中巻とする場合には、固定子巻線51の3相巻線が所定順序で通電されると、2相分の固定子巻線51が励磁される。その結果、2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×2」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、上記で示した集中巻の場合は、同一相の導線群81に囲まれた領域において、固定子50の周方向にある突起部142の幅の総和をAとする。また、集中巻におけるWmは「磁石ユニット42のエアギャップに対向する面の全周」×「相数」÷「導線群81の分散数」に相当する。   Here, when the stator winding 51 is concentrated, when the three-phase windings of the stator winding 51 are energized in a predetermined order, the stator winding 51 for two phases is excited. As a result, the projections 142 for two phases are excited. Therefore, the circumferential width dimension Wt of the protrusion 142 excited by the energization of the stator winding 51 in the range of one pole of the magnet unit 42 is “A × 2”. Then, after the width dimension Wt is defined in this way, the protrusion 142 is configured as a magnetic material that satisfies the relationship of the above (1). In the case of the concentrated winding described above, the sum of the widths of the protrusions 142 in the circumferential direction of the stator 50 is A in a region surrounded by the wire groups 81 of the same phase. Further, Wm in concentrated winding corresponds to “the entire circumference of the surface of the magnet unit 42 facing the air gap” × “number of phases” ÷ “dispersion number of the wire groups 81”.

ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。   Incidentally, Bd = 1.0 strong [T] for magnets with a BH product of 20 [MGOe (kJ / m ^ 3)] such as neodymium magnets, samarium cobalt magnets, and ferrite magnets, Br = 2.0 strong for iron ]. Therefore, as the high output motor, in the stator core 52, the protrusion 142 may be a magnetic material that satisfies the relationship of Wt <1/2 × Wm.

また、後述するように導線82が外層被膜182を備える場合には、導線82同士の外層被膜182が接触するように、導線82を固定子コア52の周方向に配置しても良い。この場合は、Wtは、0又は接触する両導線82の外層被膜182の厚さ、と看做すことができる。   Further, as described later, when the lead 82 includes the outer coating 182, the lead 82 may be disposed in the circumferential direction of the stator core 52 such that the outer coating 182 of the leads 82 is in contact with each other. In this case, Wt can be regarded as zero or the thickness of the outer layer coating 182 of both the leads 82 in contact.

図36や図37の構成では、回転子40側の磁石磁束に対して不相応に小さい導線間部材(突起部142)を有する構成となっている。なお、回転子40は、インダクタンスが低くかつ平坦な表面磁石型ロータであり、磁気抵抗的に突極性を有していないものとなっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。   36 and 37, the inter-conductor member (protrusion 142) is undesirably small with respect to the magnet flux on the rotor 40 side. The rotor 40 is a surface magnet type rotor having a low inductance and a flat surface, and has no saliency in terms of magnetic resistance. In such a configuration, the inductance of the stator 50 can be reduced, and the generation of magnetic flux distortion due to the shift in the switching timing of the stator winding 51 is suppressed, which in turn suppresses the electrolytic corrosion of the bearings 21 and 22. .

(変形例2)
上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。図38では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。
(Modification 2)
It is also possible to adopt the following configuration as the stator 50 using the inter-conductor member satisfying the relationship of the above-mentioned formula (1). In FIG. 38, on the outer peripheral surface side (upper surface side in the drawing) of the stator core 52, a toothed portion 143 is provided as an inter-conductor member. The toothed portions 143 are provided at predetermined intervals in the circumferential direction so as to protrude from the yoke 141, and have the same thickness dimension as the wire group 81 in the radial direction. The side surfaces of the teeth 143 are in contact with the leads 82 of the lead group 81. However, there may be a gap between the teeth 143 and the wires 82.

歯状部143は、周方向における幅寸法に制限が付与されており、磁石量に対して不相応に細い極歯(ステータティース)を備えるものとなっている。かかる構成により、歯状部143は、1.8T以上で磁石磁束により確実に飽和し、パーミアンスの低下によりインダクタンスを下げることができる。   The toothed portion 143 is limited in width in the circumferential direction, and is provided with pole teeth (stator teeth) which are undesirably thin with respect to the amount of magnet. With such a configuration, the toothed portion 143 is surely saturated by the magnetic flux of the magnet at 1.8 T or more, and the inductance can be reduced by the reduction of the permeance.

ここで、磁石ユニット42において、固定子側における磁束作用面の1極あたりの表面積をSm、磁石ユニット42の残留磁束密度をBrとすると、磁石ユニット側の磁束は、例えば「Sm×Br」となる。また、各歯状部143における回転子側の表面積をSt、導線82の一相あたりの数をmとし、固定子巻線51の通電により1極内において2相分の歯状部143が励磁されるとすると、固定子側の磁束は、例えば「St×m×2×Bs」となる。この場合、
St×m×2×Bs<Sm×Br …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。
Here, in the magnet unit 42, assuming that the surface area per pole of the magnetic flux acting surface on the stator side is Sm and the residual flux density of the magnet unit 42 is Br, the magnetic flux on the magnet unit side is, for example, “Sm × Br”. Become. Further, the surface area on the rotor side in each toothed portion 143 is St, the number per phase of the conducting wire 82 is m, and by energizing the stator winding 51, the toothed portions 143 for two phases in one pole are excited If so, the magnetic flux on the stator side is, for example, “St × m × 2 × Bs”. in this case,
St × m × 2 × Bs <Sm × Br (2)
The inductance is reduced by limiting the dimension of the toothed portion 143 so that the following relationship is established.

なお、磁石ユニット42と歯状部143とで軸方向の寸法が同一である場合、磁石ユニット42の1極分の周方向の幅寸法をWm、歯状部143の周方向の幅寸法をWstとすると、上記式(2)は、式(3)のように置き換えられる。
Wst×m×2×Bs<Wm×Br …(3)
より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。
When the dimensions in the axial direction of the magnet unit 42 and that of the toothed portion 143 are the same, the circumferential width of one pole of the magnet unit 42 is Wm, and the width of the toothed portion 143 in the circumferential direction is Wst. Then, the equation (2) is replaced by the equation (3).
Wst × m × 2 × Bs <Wm × Br (3)
More specifically, assuming that, for example, Bs = 2T and Br = 1T, and m = 2, the above equation (3) has a relationship of “Wst <Wm / 8”. In this case, by setting the width dimension Wst of the toothed portion 143 smaller than 1/8 of the width dimension Wm of one pole of the magnet unit 42, the inductance is reduced. If the number m is 1, then the width dimension Wst of the toothed portion 143 may be smaller than 1⁄4 of the width dimension Wm of one pole of the magnet unit 42.

なお、上記式(3)において、「Wst×m×2」は、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される歯状部143の周方向の幅寸法に相当する。   In the above equation (3), “Wst × m × 2” is the width dimension in the circumferential direction of the toothed portion 143 excited by energization of the stator winding 51 in the range of one pole of the magnet unit 42. Equivalent to.

図38の構成では、上述した図36,図37の構成と同様に、回転子40側の磁石磁束に対して不相応に小さい導線間部材(歯状部143)を有する構成となっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。   In the configuration of FIG. 38, similarly to the configurations of FIG. 36 and FIG. 37 described above, the inter-conductor member (tooth portion 143) is undesirably small with respect to the magnet magnetic flux on the rotor 40 side. In such a configuration, the inductance of the stator 50 can be reduced, and the generation of magnetic flux distortion due to the shift in the switching timing of the stator winding 51 is suppressed, which in turn suppresses the electrolytic corrosion of the bearings 21 and 22. .

(変形例3)
上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図39に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。
(Modification 3)
In the above embodiment, the sealing member 57 covering the stator winding 51 is in a range including all the wire groups 81 at the radial outer side of the stator core 52, that is, the thickness dimension in the radial direction is the diameter of each wire group 81 Although provided in the range which becomes larger than the thickness dimension of the direction, this may be changed. For example, as shown in FIG. 39, the sealing member 57 is provided so that a part of the conducting wire 82 protrudes. More specifically, the sealing member 57 is provided in a state in which a part of the conducting wire 82 which is the most radially outward in the conducting wire group 81 is exposed radially outward, that is, the stator 50 side. In this case, the radial thickness dimension of the sealing member 57 may be the same as or smaller than the radial thickness dimension of each wire group 81.

(変形例4)
図40に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。
(Modification 4)
As shown in FIG. 40, in the stator 50, each wire group 81 may not be sealed by the sealing member 57. That is, the sealing member 57 covering the stator winding 51 is not used. In this case, no inter-conductor member is provided between the wire groups 81 aligned in the circumferential direction, and there is a gap. In short, the inter-conductor member is not provided between the conductor groups 81 aligned in the circumferential direction. Note that air may be regarded as a nonmagnetic substance or a nonmagnetic substance equivalent as Bs = 0, and the air may be disposed in this air gap.

(変形例5)
固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。
(Modification 5)
When the inter-lead member in the stator 50 is made of a nonmagnetic material, it is possible to use a material other than resin as the nonmagnetic material. For example, a metallic nonmagnetic material may be used such as using SUS304 which is an austenitic stainless steel.

(変形例6)
固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。
(Modification 6)
The stator 50 may not have the stator core 52. In this case, the stator 50 is configured by the stator winding 51 shown in FIG. In the stator 50 not having the stator core 52, the stator winding 51 may be sealed with a sealing material. Alternatively, instead of the stator core 52 made of a soft magnetic material, the stator 50 may be configured to include an annular winding holding portion made of a nonmagnetic material such as a synthetic resin.

(変形例7)
上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、図41に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。
(Modification 7)
In the first embodiment, although the plurality of magnets 91 and 92 arranged in the circumferential direction are used as the magnet unit 42 of the rotor 40, this is changed to an annular permanent magnet as the magnet unit 42. It is good also as composition using a magnet. Specifically, as shown in FIG. 41, an annular magnet 95 is fixed to the inside in the radial direction of the cylindrical portion 43 of the magnet holder 41. The annular magnet 95 is provided with a plurality of magnetic poles of alternating polarity in the circumferential direction, and a magnet is integrally formed on both the d axis and the q axis. In the annular magnet 95, an arc-shaped magnet magnetic path is formed such that the direction of orientation in the d axis of each magnetic pole is radial and the direction of orientation in the q axis between the magnetic poles is circumferential.

なお、環状磁石95では、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされていればよい。   In the ring magnet 95, the easy magnetization axis is parallel to the d axis or near parallel to the d axis in the part near the d axis, and in the part near the q axis, the easy magnetization axis is orthogonal to the q axis or q It suffices that the orientation is performed so as to form an arc-shaped magnet magnetic path having a direction close to orthogonal.

(変形例8)
本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。
(Modification 8)
In this modification, a part of the control method of the control device 110 is changed. In this modification, differences from the configuration described in the first embodiment will be mainly described.

まず、図42を用いて、図20に示した操作信号生成部116,126及び図21に示した操作信号生成部130a,130b内の処理について説明する。なお、各操作信号生成部116,126,130a,130bにおける処理は基本的には同様である。このため、以下では、操作信号生成部116の処理を例にして説明する。   First, processing in the operation signal generation units 116 and 126 shown in FIG. 20 and the operation signal generation units 130a and 130b shown in FIG. 21 will be described using FIG. The processes in the operation signal generation units 116, 126, 130a, and 130b are basically the same. Therefore, in the following, the process of the operation signal generation unit 116 will be described as an example.

操作信号生成部116は、キャリア生成部116aと、U,V,W相比較器116bU,116bV,116bWとを備えている。本実施形態において、キャリア生成部116aは、キャリア信号SigCとして三角波信号を生成して出力する。   The operation signal generation unit 116 includes a carrier generation unit 116 a and U, V, W phase comparators 116 b U, 116 b V, and 116 b W. In the present embodiment, the carrier generation unit 116 a generates and outputs a triangular wave signal as the carrier signal SigC.

U,V,W相比較器116bU,116bV,116bWには、キャリア生成部116aより生成されたキャリア信号SigCと、3相変換部115により算出されたU,V,W相指令電圧とが入力される。U,V,W相指令電圧は、例えば正弦波状の波形であり、電気角で位相が120°ずつずれている。   Carrier signal SigC generated by carrier generation unit 116a and U, V, W-phase command voltage calculated by three-phase conversion unit 115 are input to U, V, W-phase comparators 116bU, 116bV, 116bW. Ru. The U, V, and W phase command voltages are, for example, sinusoidal waveforms, and their phases are shifted by 120 ° in electrical angle.

U,V,W相比較器116bU,116bV,116bWは、U,V,W相指令電圧とキャリア信号SigCとの大小比較に基づくPWM(PWM:pulse width modulation)制御により、第1インバータ101におけるU,V,W相の上アーム及び下アームの各スイッチSp,Snの操作信号を生成する。具体的には、操作信号生成部116は、U,V,W相指令電圧を電源電圧で規格化した信号と、キャリア信号との大小比較に基づくPWM制御により、U,V,W相の各スイッチSp,Snの操作信号を生成する。ドライバ117は、操作信号生成部116により生成された操作信号に基づいて、第1インバータ101におけるU,V,W相の各スイッチSp,Snをオンオフさせる。   U, V, W phase comparators 116bU, 116bV, 116bW are controlled by the PWM (pulse width modulation) control based on the magnitude comparison between the U, V, W phase command voltages and the carrier signal SigC. An operation signal of each switch Sp, Sn of the upper arm and the lower arm of the H, V, W phases is generated. Specifically, the operation signal generation unit 116 performs U, V, and W phases by PWM control based on magnitude comparison between a signal obtained by standardizing the U, V, and W phase command voltages with the power supply voltage, and a carrier signal. An operation signal of the switches Sp and Sn is generated. The driver 117 turns on / off the switches Sp and Sn of the U, V, and W phases in the first inverter 101 based on the operation signal generated by the operation signal generation unit 116.

制御装置110は、キャリア信号SigCのキャリア周波数fc、すなわち各スイッチSp,Snのスイッチング周波数を変更する処理を行う。キャリア周波数fcは、回転電機10の低トルク領域又は高回転領域において高く設定され、回転電機10の高トルク領域において低く設定される。この設定は、各相巻線に流れる電流の制御性の低下を抑制するためになされる。   The control device 110 performs processing of changing the carrier frequency fc of the carrier signal SigC, that is, the switching frequency of each switch Sp and Sn. The carrier frequency fc is set high in the low torque region or high rotation region of the rotary electric machine 10 and is set low in the high torque region of the rotary electric machine 10. This setting is made to suppress a decrease in controllability of the current flowing in each phase winding.

つまり、固定子50のコアレス化に伴い、固定子50におけるインダクタンスの低減を図ることができる。ここで、インダクタンスが低くなると、回転電機10の電気的時定数が小さくなる。その結果、各相巻線に流れる電流のリップルが増加して巻線に流れる電流の制御性が低下し、電流制御が発散する懸念がある。この制御性低下の影響は、巻線に流れる電流(例えば、電流の実効値)が高電流領域に含まれる場合よりも低電流領域に含まれる場合に顕著となり得る。この問題に対処すべく、本変形例において、制御装置110はキャリア周波数fcを変更する。   That is, as the stator 50 is made coreless, the inductance in the stator 50 can be reduced. Here, when the inductance decreases, the electrical time constant of the rotary electric machine 10 decreases. As a result, the ripples of the current flowing in each phase winding increase, the controllability of the current flowing in the winding decreases, and there is a concern that current control may diverge. The influence of the decrease in controllability may be significant when the current (e.g., the effective value of the current) flowing through the winding is included in the low current region as compared to the case where the current is included in the high current region. In order to cope with this problem, in the present modification, control device 110 changes carrier frequency fc.

図43を用いて、キャリア周波数fcを変更する処理について説明する。この処理は、操作信号生成部116の処理として、制御装置110により、例えば所定の制御周期で繰り返し実行される。   The process of changing the carrier frequency fc will be described with reference to FIG. This process is repeatedly performed by the control device 110, for example, in a predetermined control cycle, as the process of the operation signal generation unit 116.

ステップS10では、各相の巻線51aに流れる電流が低電流領域に含まれているか否かを判定する。この処理は、回転電機10の現在のトルクが低トルク領域であることを判定するための処理である。低電流領域に含まれているか否かの判定手法としては、例えば、以下の第1,第2の方法が挙げられる。   In step S10, it is determined whether the current flowing through the winding 51a of each phase is included in the low current region. This process is a process for determining that the current torque of the rotary electric machine 10 is in the low torque region. As a method of determining whether or not included in the low current region, for example, the following first and second methods may be mentioned.

<第1の方法>
dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。
<First method>
Based on the d-axis current and the q-axis current converted by the dq conversion unit 112, a torque estimated value of the rotary electric machine 10 is calculated. Then, if it is determined that the calculated torque estimated value is less than the torque threshold, it is determined that the current flowing through the winding 51a is included in the low current region, and it is determined that the torque estimated value is equal to or greater than the torque threshold. , And determined to be included in the high current region. Here, the torque threshold may be set to, for example, one half of the starting torque (also referred to as restraining torque) of the rotary electric machine 10.

<第2の方法>
角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。
<Second method>
If it is determined that the rotation angle of the rotor 40 detected by the angle detector is equal to or greater than the speed threshold, it is determined that the current flowing through the winding 51a is included in the low current region, that is, the high rotation region. Here, the speed threshold may be set to, for example, a rotational speed when the maximum torque of the rotary electric machine 10 is the torque threshold.

ステップS10において否定判定した場合には、高電流領域であると判定し、ステップS11に進む。ステップS11では、キャリア周波数fcを第1周波数fLに設定する。   When negative determination is carried out in step S10, it determines with it being a high electric current area | region, and progresses to step S11. In step S11, the carrier frequency fc is set to the first frequency fL.

ステップS10において肯定判定した場合には、ステップS12に進み、キャリア周波数fcを、第1周波数fLよりも高い第2周波数fHに設定する。   When an affirmative determination is made in step S10, the process proceeds to step S12, and the carrier frequency fc is set to a second frequency fH higher than the first frequency fL.

以上説明した本変形例によれば、各相巻線に流れる電流が高電流領域に含まれる場合よりも低電流領域に含まれる場合においてキャリア周波数fcが高く設定される。このため、低電流領域において、スイッチSp,Snのスイッチング周波数を高くすることができ、電流リップルの増加を抑制することができる。これにより、電流制御性の低下を抑制することができる。   According to this modification described above, the carrier frequency fc is set higher in the case where the current flowing in each phase winding is included in the low current region than in the case where the current is included in the high current region. Therefore, in the low current region, the switching frequency of the switches Sp and Sn can be increased, and an increase in current ripple can be suppressed. Thereby, the decrease in current controllability can be suppressed.

一方、各相巻線に流れる電流が高電流領域に含まれる場合、低電流領域に含まれる場合よりもキャリア周波数fcが低く設定される。高電流領域においては、低電流領域よりも巻線に流れる電流の振幅が大きいため、インダクタンスが低くなったことに起因する電流リップルの増加が、電流制御性に及ぼす影響が小さい。このため、高電流領域においては、低電流領域よりもキャリア周波数fcを低く設定することができ、各インバータ101,102のスイッチング損失を低減することができる。   On the other hand, when the current flowing in each phase winding is included in the high current region, the carrier frequency fc is set lower than that in the low current region. In the high current region, since the amplitude of the current flowing through the winding is larger than that in the low current region, the increase in current ripple due to the decrease in inductance has little influence on the current controllability. Therefore, in the high current region, the carrier frequency fc can be set lower than in the low current region, and the switching loss of each of the inverters 101 and 102 can be reduced.

本変形例においては、以下に示す形態の実施が可能である。   In this modification, implementation of the form shown below is possible.

・キャリア周波数fcが第1周波数fLに設定されている場合において、図43のステップS10において肯定判定されたとき、キャリア周波数fcを、第1周波数fLから第2周波数fHに向かって徐変させてもよい。   In the case where the carrier frequency fc is set to the first frequency fL, the carrier frequency fc is gradually changed from the first frequency fL toward the second frequency fH when an affirmative determination is made in step S10 of FIG. It is also good.

また、キャリア周波数fcが第2周波数fHに設定されている場合において、ステップS10において否定判定されたとき、キャリア周波数fcを、第2周波数fHから第1周波数fLに向かって徐変させてもよい。   When the carrier frequency fc is set to the second frequency fH, the carrier frequency fc may be gradually changed from the second frequency fH to the first frequency fL when the negative determination is made in step S10. .

・PWM制御に代えて、空間ベクトル変調(SVM:space vector modulation)制御によりスイッチの操作信号が生成されてもよい。この場合であっても、上述したスイッチング周波数の変更を適用することができる。   -Instead of PWM control, operation signal of the switch may be generated by space vector modulation (SVM) control. Even in this case, the change of the switching frequency described above can be applied.

(変形例9)
上記各実施形態では、導線群81を構成する各相2対ずつの導線が、図44(a)に示すように並列接続されていた。図44(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、図44(a)に示す構成に代えて、図44(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。
(Modification 9)
In each of the above-described embodiments, two pairs of conductors in each phase constituting the conductor group 81 are connected in parallel as shown in FIG. FIG. 44 (a) is a diagram showing electrical connection of first and second conductors 88a and 88b which are two pairs of conductors. Here, instead of the configuration shown in FIG. 44 (a), as shown in FIG. 44 (b), the first and second conducting wires 88a and 88b may be connected in series.

また、3対以上の多層導線が径方向に積層配置されていてもよい。図45に、4対の導線である第1〜第4導線88a〜88dが積層配置されている構成を示す。第1〜第4導線88a〜88dは、固定子コア52に近い方から、第1,第2,第3,第4導線88a,88b,88c,88dの順に径方向に並んで配置されている。   Also, three or more pairs of multi-layered conducting wires may be stacked in the radial direction. FIG. 45 shows a configuration in which four pairs of first to fourth conducting wires 88 a to 88 d are stacked. The first to fourth conducting wires 88a to 88d are arranged in the radial direction of the first, second, third, and fourth conducting wires 88a, 88b, 88c, 88d from the side closer to the stator core 52. .

ここで、図44(c)に示すように、第3,第4導線88c,88dが並列接続されるとともに、この並列接続体の一端に第1導線88aが接続され、他端に第2導線88bが接続されていてもよい。並列接続にすると、その並列接続された導線の電流密度を低下させることができ、通電時の発熱を抑制できる。そのため、冷却水通路74が形成されたハウジング(ユニットベース61)に筒状の固定子巻線を組み付ける構成において、並列接続されていない第1,第2導線88a,88bがユニットベース61に当接する固定子コア52側に配置され、並列接続された第3,第4導線88c,88dが反固定子コア側に配置されている構成とする。これにより、多層導線構造における各導線88a〜88dの冷却性能を均等化することができる。   Here, as shown in FIG. 44 (c), the third and fourth conducting wires 88c and 88d are connected in parallel, and the first conducting wire 88a is connected to one end of the parallel connection body, and the second conducting wire is connected to the other end. 88b may be connected. The parallel connection can reduce the current density of the parallel connected leads, and can suppress the heat generation at the time of energization. Therefore, in the configuration in which the cylindrical stator winding is assembled to the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conducting wires 88a and 88b not connected in parallel abut on the unit base 61 The third and fourth conducting wires 88c and 88d disposed on the stator core 52 side and connected in parallel are disposed on the side opposite to the stator core. Thereby, the cooling performance of each conducting wire 88a-88d in a multilayer conducting wire structure can be equalized.

なお、第1〜第4導線88a〜88dからなる導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとされていればよい。   In addition, the thickness dimension of the radial direction of the conducting wire group 81 which consists of 1st-4th conducting wire 88a-88d should just be made smaller than the width dimension of the circumferential direction for 1 phase in 1 magnetic pole.

(変形例10)
回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。図46は、回転子40及び固定子50の横断面図であり、図47は、図46に示す回転子40及び固定子50の一部を拡大して示す図である。
(Modification 10)
The rotary electric machine 10 may have an inner rotor structure (inner structure). In this case, for example, in the housing 30, the stator 50 may be provided radially outside, and the rotor 40 may be provided radially inside. In addition, it is preferable that the inverter unit 60 be provided on one side or both sides of both axial ends of the stator 50 and the rotor 40. 46 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 47 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.

インナロータ構造を前提とする図46及び図47の構成は、アウタロータ構造を前提とする図8及び図9の構成に対して、回転子40及び固定子50が径方向内外で逆になっていることを除いて、同様の構成となっている。簡単に説明すると、固定子50は、扁平導線構造の固定子巻線51と、ティースを持たない固定子コア52とを有している。固定子巻線51は、固定子コア52の径方向内側に組み付けられている。固定子コア52は、アウタロータ構造の場合と同様に、以下のいずれかの構成を有する。
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
46 and 47 premised on the inner rotor structure is that the rotor 40 and the stator 50 are reversed in the radial direction inside and outside with respect to the configurations of FIGS. 8 and 9 premised on the outer rotor structure. Except for the same configuration. Briefly described, the stator 50 has a stator winding 51 of flat wire structure and a stator core 52 without teeth. The stator winding 51 is assembled on the radially inner side of the stator core 52. The stator core 52 has one of the following configurations, as in the case of the outer rotor structure.
(A) In the stator 50, an inter-conductor member is provided between the conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the conductor member in one magnetic pole is Wt, saturation of the conductor members Assuming that the magnetic flux density is Bs, the circumferential width dimension of the magnet unit in one magnetic pole is Wm, and the residual magnetic flux density of the magnet unit is Br, a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is used.
(B) In the stator 50, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a nonmagnetic material is used as the inter-conductor member.
(C) In the stator 50, no inter-conductor member is provided between the conductor portions in the circumferential direction.

また、磁石ユニット42の各磁石91,92についても同様である。つまり、磁石ユニット42は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた磁石91,92を用いて構成されている。各磁石91,92における磁化方向等の詳細は既述のとおりである。磁石ユニット42において環状磁石95(図41参照)を用いることも可能である。   The same applies to the magnets 91 and 92 of the magnet unit 42. That is, in the magnet unit 42, the magnets 91 and 92 are oriented such that the direction of the magnetization easy axis is parallel to the d axis on the d axis side, which is the magnetic pole center, as compared to the q axis side that is the magnetic pole boundary. It is configured using The details of the magnetization direction and the like in each of the magnets 91 and 92 are as described above. It is also possible to use an annular magnet 95 (see FIG. 41) in the magnet unit 42.

図48は、インナロータ型とした場合における回転電機10の縦断面図であり、これは既述の図2に対応する図面である。図2の構成との相違点を簡単に説明する。図48において、ハウジング30の内側には、環状の固定子50が固定され、その固定子50の内側には、所定のエアギャップを挟んで回転子40が回転可能に設けられている。図2と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されており、これにより、回転子40が片持ち支持されている。また、回転子40の磁石ホルダ41の内側に、インバータユニット60が設けられている。   FIG. 48 is a longitudinal sectional view of the rotary electric machine 10 in the case of the inner rotor type, which corresponds to FIG. 2 described above. The differences from the configuration of FIG. 2 will be briefly described. In FIG. 48, an annular stator 50 is fixed to the inside of the housing 30, and the rotor 40 is rotatably provided on the inside of the stator 50 with a predetermined air gap therebetween. Similarly to FIG. 2, each of the bearings 21 and 22 is disposed on one side in the axial direction with respect to the axial center of the rotor 40, whereby the rotor 40 is supported in a cantilever manner. There is. Further, an inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.

図49には、インナロータ構造の回転電機10として別の構成を示す。図49において、ハウジング30には、軸受21,22により回転軸11が回転可能に支持されており、その回転軸11に対して回転子40が固定されている。図2等に示す構成と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。回転子40は、磁石ホルダ41と磁石ユニット42とを有している。   FIG. 49 shows another configuration as the rotary electric machine 10 of the inner rotor structure. In FIG. 49, the rotary shaft 11 is rotatably supported by the bearings 21 and 22 in the housing 30, and the rotor 40 is fixed to the rotary shaft 11. As in the configuration shown in FIG. 2 and the like, the bearings 21 and 22 are disposed offset to one side in the axial direction with respect to the axial center of the rotor 40. The rotor 40 has a magnet holder 41 and a magnet unit 42.

図49の回転電機10では、図48の回転電機10との相違点として、回転子40の径方向内側にインバータユニット60が設けられていない構成となっている。磁石ホルダ41は、磁石ユニット42の径方向内側となる位置で回転軸11に連結されている。また、固定子50は、固定子巻線51と固定子コア52とを有しており、ハウジング30に対して取り付けられている。   In the rotating electrical machine 10 of FIG. 49, as a difference from the rotating electrical machine 10 of FIG. 48, the inverter unit 60 is not provided inside the rotor 40 in the radial direction. The magnet holder 41 is connected to the rotating shaft 11 at a position that is radially inward of the magnet unit 42. The stator 50 also has a stator winding 51 and a stator core 52 and is attached to the housing 30.

(変形例11)
インナロータ構造の回転電機として別の構成を以下に説明する。図50は、回転電機200の分解斜視図であり、図51は、回転電機200の側面断面図である。なおここでは、図50及び図51の状態を基準に上下方向を示すこととしている。
(Modification 11)
Another configuration will be described below as a rotating electric machine having an inner rotor structure. FIG. 50 is an exploded perspective view of rotary electric machine 200, and FIG. 51 is a side sectional view of rotary electric machine 200. Here, it is assumed that the vertical direction is shown based on the states of FIGS. 50 and 51.

図50及び図51に示すように、回転電機200は、環状の固定子コア201及び多相の固定子巻線202を有する固定子203と、固定子コア201の内側に回転自在に配設される回転子204とを備えている。固定子203が電機子に相当し、回転子204が界磁子に相当する。固定子コア201は、多数の珪素鋼板が積層されて構成されており、その固定子コア201に対して固定子巻線202が取り付けられている。図示は省略するが、回転子204は、回転子コアと、磁石ユニットとして複数の永久磁石とを有している。回転子コアには、円周方向に等間隔で複数の磁石挿入孔が設けられている。磁石挿入孔のそれぞれには、隣接する磁極毎に交互に磁化方向が変わるように磁化された永久磁石が装着されている。なお、磁石ユニットの永久磁石は、図23で説明したようなハルバッハ配列又はそれに類する構成を有するものであるとよい。又は、磁石ユニットの永久磁石は、図9や図41で説明したような磁極中心であるd軸と磁極境界であるq軸との間において配向方向(磁化方向)が円弧状に延びている極異方性の特性を備えるものであるとよい。   As shown in FIGS. 50 and 51, the rotary electric machine 200 is rotatably disposed inside the stator core 201 and a stator 203 having an annular stator core 201 and a multiphase stator winding 202. And a rotor 204. The stator 203 corresponds to an armature, and the rotor 204 corresponds to a field element. The stator core 201 is configured by laminating a large number of silicon steel plates, and the stator winding 202 is attached to the stator core 201. Although illustration is omitted, the rotor 204 has a rotor core and a plurality of permanent magnets as a magnet unit. The rotor core is provided with a plurality of magnet insertion holes at equal intervals in the circumferential direction. In each of the magnet insertion holes, permanent magnets magnetized so as to alternately change the magnetization direction for each adjacent magnetic pole are attached. The permanent magnets of the magnet unit may have a Halbach arrangement as described in FIG. 23 or a similar configuration. Alternatively, the permanent magnet of the magnet unit is a pole whose orientation direction (magnetization direction) extends in an arc between the d axis which is the pole center and the q axis which is the pole boundary as described in FIG. 9 and FIG. It is preferable to have anisotropic characteristics.

ここで、固定子203は、以下のいずれかの構成であるとよい。
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。
Here, the stator 203 may have any one of the following configurations.
(A) In the stator 203, an inter-conductor member is provided between the conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the conductor member in one magnetic pole is Wt, saturation of the conductor members Assuming that the magnetic flux density is Bs, the circumferential width dimension of the magnet unit in one magnetic pole is Wm, and the residual magnetic flux density of the magnet unit is Br, a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is used.
(B) In the stator 203, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a nonmagnetic material is used as the inter-conductor member.
(C) In the stator 203, an inter-conductor member is not provided between the conductor portions in the circumferential direction.

また、回転子204において、磁石ユニットは、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた複数の磁石を用いて構成されている。   Further, in the rotor 204, the magnet unit is oriented such that the direction of the magnetization easy axis is parallel to the d axis on the d axis side, which is the pole center, as compared to the q axis side, which is the pole boundary. It is configured using a plurality of magnets.

回転電機200の軸方向の一端側には、環状のインバータケース211が設けられている。インバータケース211は、ケース下面が固定子コア201の上面に接するように配置されている。インバータケース211内には、インバータ回路を構成する複数のパワーモジュール212と、半導体スイッチング素子のスイッチング動作により生じる電圧・電流の脈動(リップル)を抑制する平滑コンデンサ213と、制御部を有する制御基板214と、相電流を検出する電流センサ215と、回転子204の回転数センサであるレゾルバステータ216とが設けられている。パワーモジュール212は、半導体スイッチング素子であるIGBTやダイオードを有している。   An annular inverter case 211 is provided on one end side in the axial direction of the rotary electric machine 200. The inverter case 211 is arranged such that the lower surface of the case is in contact with the upper surface of the stator core 201. In the inverter case 211, a plurality of power modules 212 constituting an inverter circuit, a smoothing capacitor 213 for suppressing ripples of voltage and current generated by switching operation of the semiconductor switching element, and a control board 214 having a control unit , A current sensor 215 for detecting a phase current, and a resolver stator 216 which is a rotational speed sensor of the rotor 204. The power module 212 has an IGBT or a diode which is a semiconductor switching element.

インバータケース211の周縁には、車両に搭載されるバッテリの直流回路と接続されるパワーコネクタ217と、回転電機200側と車両側制御装置との間で各種信号の受け渡しに用いられる信号コネクタ218とが設けられている。インバータケース211はトップカバー219で覆われている。車載バッテリからの直流電力は、パワーコネクタ217を介して入力され、パワーモジュール212のスイッチングにより交流に変換されて各相の固定子巻線202に送られる。   At the periphery of the inverter case 211, a power connector 217 connected to a DC circuit of a battery mounted on a vehicle, and a signal connector 218 used for delivery of various signals between the rotating electric machine 200 side and the vehicle side control device Is provided. The inverter case 211 is covered by a top cover 219. The direct current power from the on-vehicle battery is inputted through the power connector 217, converted into alternating current by switching of the power module 212, and sent to the stator winding 202 of each phase.

固定子コア201の軸方向両側のうちインバータケース211の反対側には、回転子204の回転軸を回転可能に保持する軸受ユニット221と、その軸受ユニット221を収容する環状のリアケース222とが設けられている。軸受ユニット221は、例えば2つ一組の軸受を有しており、回転子204の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。ただし、軸受ユニット221における複数の軸受を固定子コア201の軸方向両側に分散させて設け、それら各軸受により回転軸を両持ち支持する構成であってもよい。リアケース222が車両のギアケースや変速機などの取付部にボルト締結して固定されることで、回転電機200が車両側に取り付けられるようになっている。   A bearing unit 221 rotatably holding the rotation shaft of the rotor 204 and an annular rear case 222 accommodating the bearing unit 221 are provided on the opposite side of the axial direction of the stator core 201 on the opposite side of the inverter case 211. It is provided. The bearing unit 221 has, for example, a pair of bearings, and is disposed so as to be biased to one side in the axial direction with respect to the axial center of the rotor 204. However, a plurality of bearings in the bearing unit 221 may be dispersedly provided on both sides in the axial direction of the stator core 201, and the rotary shaft may be supported on both sides by the respective bearings. The rotating electrical machine 200 is mounted on the vehicle side by fixing the rear case 222 to a mounting portion such as a gear case or a transmission of the vehicle.

インバータケース211内には、冷媒を流すための冷却流路211aが形成されている。冷却流路211aは、インバータケース211の下面から環状に凹設された空間を固定子コア201の上面で閉塞して形成されている。冷却流路211aは、固定子巻線202のコイルエンドを囲むように形成されている。冷却流路211a内には、パワーモジュール212のモジュールケース212aが挿入されている。リアケース222にも、固定子巻線202のコイルエンドを囲むように冷却流路222aが形成されている。冷却流路222aは、リアケース222の上面から環状に凹設された空間を固定子コア201の下面で閉塞して形成されている。   In the inverter case 211, a cooling channel 211a for flowing the refrigerant is formed. The cooling flow passage 211 a is formed by closing the space recessed in an annular shape from the lower surface of the inverter case 211 with the upper surface of the stator core 201. The cooling channel 211 a is formed to surround the coil end of the stator winding 202. A module case 212a of the power module 212 is inserted into the cooling flow passage 211a. A cooling channel 222 a is formed in the rear case 222 so as to surround the coil end of the stator winding 202. The cooling flow path 222 a is formed by closing a space, which is recessed annularly from the upper surface of the rear case 222, with the lower surface of the stator core 201.

(変形例12)
これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。図52に、回転電機子形の回転電機230の構成を示す。
(Modification 12)
So far, the configuration embodied in the rotating field type rotating electrical machine has been described, but it is also possible to change this and to embody the rotating armature type rotating electrical machine. FIG. 52 shows the configuration of a rotary armature type rotary electric machine 230. As shown in FIG.

図52の回転電機230において、ハウジング231a,231bにはそれぞれ軸受232が固定され、その軸受232により回転軸233が回転自在に支持されている。軸受232は、例えば多孔質金属に油を含ませてなる含油軸受である。回転軸233には、電機子としての回転子234が固定されている。回転子234は、回転子コア235とその外周部に固定された多相の回転子巻線236とを有している。回転子234において、回転子コア235はスロットレス構造を有し、回転子巻線236は扁平導線構造を有している。つまり、回転子巻線236は、1相ごとの領域が径方向よりも周方向に長い扁平構造となっている。   In the rotary electric machine 230 of FIG. 52, bearings 232 are fixed to the housings 231a and 231b, respectively, and the rotary shaft 233 is rotatably supported by the bearings 232. The bearing 232 is, for example, an oil-impregnated bearing formed by including oil in a porous metal. A rotor 234 as an armature is fixed to the rotating shaft 233. The rotor 234 has a rotor core 235 and a polyphase rotor winding 236 fixed to the outer periphery thereof. In the rotor 234, the rotor core 235 has a slotless structure, and the rotor winding 236 has a flat wire structure. That is, the rotor winding 236 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.

また、回転子234の径方向外側には、界磁子としての固定子237が設けられている。固定子237は、ハウジング231aに固定された固定子コア238と、その固定子コア238の内周側に固定された磁石ユニット239とを有している。磁石ユニット239は、周方向に極性が交互となる複数の磁極を含む構成となっており、既述した磁石ユニット42等と同様に、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。磁石ユニット239は、配向が行われた焼結ネオジム磁石を有しており、その固有保磁力は400[kA/m]以上、かつ残留磁束密度は1.0[T]以上となっている。   In addition, a stator 237 as a field element is provided radially outside the rotor 234. The stator 237 has a stator core 238 fixed to the housing 231 a and a magnet unit 239 fixed to the inner peripheral side of the stator core 238. The magnet unit 239 is configured to include a plurality of magnetic poles of alternating polarity in the circumferential direction, and the pole boundary q on the d axis side, which is the center of the magnetic pole, as in the magnet unit 42 described above. It is configured to be oriented such that the direction of the magnetization easy axis is parallel to the d axis as compared to the side of the axis. The magnet unit 239 has a sintered neodymium magnet oriented, and has an intrinsic coercive force of 400 kA / m or more and a residual magnetic flux density of 1.0 T or more.

本例の回転電機230は、2極3コイルのブラシ付コアレスモータであり、回転子巻線236は3つに分割され、磁石ユニット239は2極である。ブラシ付きモータの極数とコイル数は、2:3、4:10、4:21などその用途に応じて様々である。   The rotating electrical machine 230 of this example is a coreless motor with a brush of 2 poles and 3 coils, the rotor winding 236 is divided into three, and the magnet unit 239 is 2 poles. The number of poles and the number of coils of the brushed motor vary depending on the application, such as 2: 3, 4:10, 4:21.

回転軸233にはコミュテータ241が固定されており、その径方向外側には複数のブラシ242が配置されている。コミュテータ241は、回転軸233に埋め込まれた導線243を介して回転子巻線236に電気接続されている。これらコミュテータ241、ブラシ242、導線243を通じて、回転子巻線236に対する直流電流の流入及び流出が行われる。コミュテータ241は、回転子巻線236の相数に応じて周方向に適宜分割されて構成されている。なお、ブラシ242は、そのまま電気配線を介して蓄電池などの直流電源に接続されていてもよいし、端子台などを介して直流電源に接続されていてもよい。   A commutator 241 is fixed to the rotation shaft 233, and a plurality of brushes 242 are disposed radially outside thereof. The commutator 241 is electrically connected to the rotor winding 236 via the lead wire 243 embedded in the rotating shaft 233. The inflow and outflow of DC current to and from the rotor winding 236 are performed through the commutator 241, the brush 242, and the lead wire 243. The commutator 241 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding 236. The brush 242 may be connected as it is to a DC power supply such as a storage battery via an electrical wiring, or may be connected to a DC power supply via a terminal block or the like.

回転軸233には、軸受232とコミュテータ241との間に、シール材としての樹脂ワッシャ244が設けられている。樹脂ワッシャ244により、含油軸受である軸受232からしみ出た油がコミュテータ241側に流れ出ることが抑制される。   The rotating shaft 233 is provided with a resin washer 244 as a sealing material between the bearing 232 and the commutator 241. The resin washer 244 prevents the oil that has leaked out from the bearing 232, which is an oil-impregnated bearing, from flowing out to the commutator 241 side.

(変形例13)
回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。
(Modification 13)
In the stator winding 51 of the rotary electric machine 10, each lead 82 may be configured to have a plurality of insulating coatings on the inside and the outside. For example, a plurality of conductive wires (wires) with an insulating coating may be bundled into one and covered with an outer layer coating to constitute the conductive wire 82. In this case, the insulation coating of the strands constitutes the inner insulation coating, and the outer coating constitutes the outer insulation coating. Furthermore, in particular, it is preferable that the insulation ability of the outer insulation film among the plurality of insulation films in the conducting wire 82 be higher than that of the inner insulation film. Specifically, the thickness of the outer insulating film is made thicker than the thickness of the inner insulating film. For example, the thickness of the outer insulating film is 100 μm, and the thickness of the inner insulating film is 40 μm. Alternatively, a material having a dielectric constant lower than that of the inner insulating film may be used as the outer insulating film. At least one of these may be applied. In addition, it is good for a wire to be comprised as an aggregate | assembly of several electroconductive materials.

上記のとおり導線82における最外層の絶縁を強くすることにより、高電圧の車両用システムに用いる場合に好適なものとなる。また、気圧の低い高地などでも、回転電機10の適正な駆動が可能となる。   As described above, by strengthening the insulation of the outermost layer of the conducting wire 82, it is suitable for use in a high voltage vehicle system. In addition, even at high altitudes where the air pressure is low, etc., appropriate driving of the rotary electric machine 10 is possible.

(変形例14)
内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を図53に示す。
(Modification 14)
In the conducting wire 82 having a plurality of insulating coatings on the inside and outside, at least one of the coefficient of linear expansion (coefficient of linear expansion) and the bonding strength may be different between the outer insulating coating and the inner insulating coating. The structure of the conducting wire 82 in this modification is shown in FIG.

図53において、導線82は、複数(図では4本)の素線181と、その複数の素線181を囲む例えば樹脂製の外層被膜182(外側絶縁被膜)と、外層被膜182内において各素線181の周りに充填された中間層183(中間絶縁被膜)とを有している。素線181は、銅材よりなる導電部181aと、絶縁材料よりなる導体被膜181b(内側絶縁被膜)とを有している。固定子巻線として見れば、外層被膜182により相間が絶縁される。なお、素線181が、複数の導電材の集合体として構成されているとよい。   In FIG. 53, the conducting wire 82 includes a plurality of (four in the drawing) strands 181, an outer layer coating 182 (outer insulating coating) made of resin, for example, surrounding the plurality of strands 181, and each element in the outer layer coating 182. And an intermediate layer 183 (intermediate insulating film) filled around the line 181. The strands of wire 181 have a conductive portion 181a made of a copper material and a conductive film 181b (inner insulating film) made of an insulating material. When viewed as a stator winding, the outer layer coating 182 insulates the phases. In addition, it is good for the strand 181 to be comprised as an aggregate | assembly of several electroconductive materials.

中間層183は、素線181の導体被膜181bよりも高い線膨張率を有し、かつ外層被膜182よりも低い線膨張率を有している。つまり、導線82では、外側ほど線膨張率が高くなっている。一般的に、外層被膜182では導体被膜181bよりも線膨張係数が高いが、それらの間にその中間の線膨張率を有する中間層183を設けることにより、その中間層183がクッション材として機能し、外層側及び内層側での同時割れを防ぐことができる。   The intermediate layer 183 has a coefficient of linear expansion higher than that of the conductor film 181 b of the wire 181 and has a coefficient of linear expansion lower than that of the outer film 182. That is, in the conducting wire 82, the linear expansion coefficient is higher toward the outside. Generally, the outer layer film 182 has a linear expansion coefficient higher than that of the conductor film 181b, but the intermediate layer 183 functions as a cushioning material by providing an intermediate layer 183 having an intermediate linear expansion coefficient therebetween. It is possible to prevent simultaneous cracking on the outer layer side and the inner layer side.

また、導線82では、素線181において導電部181aと導体被膜181bとが接着されるとともに、導体被膜181bと中間層183、中間層183と外層被膜182がそれぞれ接着されており、それら各接着部分では、導線82の外側ほど、接着強さが弱くなっている。つまり、導電部181a及び導体被膜181bの接着強さは、導体被膜181b及び中間層183の接着強さ、中間層183及び外層被膜182の接着強さよりも弱くなっている。また、導体被膜181b及び中間層183の接着強さと、中間層183及び外層被膜182の接着強さとを比較すると、後者の方(外側の方)が弱いか、又は同等であるとよい。なお、各被膜同士の接着強さの大きさは、例えば2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能である。上記のごとく導線82の接着強さが設定されていることで、発熱又は冷却による内外温度差が生じても、内層側及び外層側で共に割れが生じること(共割れ)を抑制することができる。   In the conducting wire 82, the conductive portion 181a and the conductor coating 181b are adhered to each other in the strand 181, and the conductor coating 181b and the intermediate layer 183, and the intermediate layer 183 and the outer layer coating 182 are adhered to each other. Then, the bonding strength is weaker toward the outside of the conducting wire 82. That is, the adhesive strength of the conductive portion 181 a and the conductive film 181 b is weaker than the adhesive strength of the conductive film 181 b and the intermediate layer 183 and the adhesive strength of the intermediate layer 183 and the outer film 182. Further, comparing the adhesive strength of the conductor film 181 b and the intermediate layer 183 with the adhesive strength of the intermediate layer 183 and the outer layer film 182, it is preferable that the latter (outer side) is weaker or equal. In addition, the magnitude | size of the adhesive strength of each film can be grasped | ascertained by the tensile strength etc. which are required, for example, when peeling off the film of 2 layers. By setting the adhesive strength of the conducting wire 82 as described above, it is possible to suppress the occurrence of cracking (co-cracking) on both the inner layer side and the outer layer side even if a temperature difference between the inside and the outside occurs due to heat generation or cooling. .

ここで、回転電機の発熱、温度変化は、主に素線181の導電部181aから発熱される銅損と、鉄心内から発せられる鉄損として生じるが、それら2種類の損失は、導線82内の導電部181a、又は導線82の外部より伝わるものであり、中間層183に発熱源があるわけではない。この場合、中間層183が両方に対してクッションとなり得る接着力を持つことで、その同時割れを防ぐことができる。したがって、車両用途など、高耐圧又は温度変化の大きい分野での使用に際しても、好適なる使用が可能となる。   Here, the heat generation and temperature change of the rotary electric machine occur mainly as a copper loss generated from the conductive portion 181a of the wire 181 and an iron loss generated from the inside of the iron core. In the intermediate layer 183, there is no heat generation source. In this case, the simultaneous cracking can be prevented by the adhesive force that the intermediate layer 183 can serve as a cushion for both. Therefore, suitable use is possible also when used in fields with high withstand voltage or large temperature change, such as vehicle applications.

以下に補足する。素線181は、例えばエナメル線であってもよく、かかる場合にはPA、PI、PAI等の樹脂被膜層(導体被膜181b)を有する。また、素線181より外側の外層被膜182は、同様のPA、PI、PAI等よりなり、かつ厚みが厚いものであることが望ましい。これにより、線膨張率差による被膜の破壊が抑えられる。なお、外層被膜182としては、PA、PI、PAI等の前記材料を厚くして対応するものとは別に、PPS、PEEK、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPといった、誘電率がPI、PAIよりも小さいものを使うことも回転機の導体密度を高めるためには望ましい。これらの樹脂であれば、導体被膜181b同等のPI,PAI被膜よりも薄いか、導体被膜181bと同等の厚みであっても、その絶縁能力を高くすることができ、これにより導電部の占有率を高めることが可能となる。一般的には、上記樹脂は、誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。当然、成形状態や、混ぜ物によって、その誘電率を悪くする例も存在する。中でも、PPS、PEEKは、その線膨張係数がエナメル被膜より一般的には大きいが、他樹脂よりも小さいため、第2層の外層被膜として適するのである。   The following supplements. The wire 181 may be, for example, an enameled wire, and in such a case, has a resin film layer (conductor film 181b) such as PA, PI, PAI or the like. Further, it is desirable that the outer layer film 182 outside the strands of wire 181 be made of the same PA, PI, PAI or the like and be thick. Thereby, the destruction of the film due to the difference in linear expansion coefficient can be suppressed. The outer layer film 182 has a dielectric constant such as PPS, PEEK, fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, LCP, etc., apart from those corresponding to the above-mentioned materials such as PA, PI, PAI, etc. by thickening. Using smaller ones than PI and PAI is also desirable to increase the conductor density of the rotating machine. With these resins, even if they are thinner than the PI, PAI coatings equivalent to the conductor coating 181b, or have a thickness equivalent to that of the conductor coating 181b, their insulating ability can be increased, and thereby the occupancy of the conductive portion It is possible to raise In general, the above-mentioned resin has a better insulation than the insulation coating of enameled wire. Naturally, there are also cases where the dielectric constant is deteriorated by the molding condition or the mixture. Among them, PPS and PEEK are suitable as the outer layer coating of the second layer because their linear expansion coefficient is generally larger than that of the enamel coating but smaller than that of other resins.

また、素線181の外側における2種類の被膜(中間絶縁被膜、外側絶縁被膜)と素線181のエナメル被膜との接着強さは、素線181における銅線とエナメル被膜との間の接着強さよりも弱いことが望ましい。これにより、エナメル被膜と前記2種類の被膜とが一度に破壊される現象が抑制される。   In addition, the adhesion strength between the two types of coatings (intermediate insulating coating and outer insulating coating) on the outside of the wire 181 and the enamel coating of the wire 181 is the adhesion strength between the copper wire and the enamel coating on the wire 181 It is desirable to be weaker than This suppresses the phenomenon that the enamel coating and the two types of coatings are destroyed at one time.

固定子に水冷構造、液冷構造、空冷構造が付加されている場合には、基本的に、外層被膜182から先に熱応力や衝撃応力が掛かると考えられる。しかし、素線181の絶縁層と、前記2種類の被膜とが違う樹脂の場合でも、その被膜を接着しない部位を設けることにより、前記熱応力や衝撃応力を低減することができる。すなわち、素線(エナメル線)と空隙を設け、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPを配置することで前記絶縁構造がなされる。この場合、エポキシなどからなる低誘電率で、かつ低線膨張係数からなる接着材を用いて、外層被膜と内層被膜とを接着することが望ましい。こうすることで、機械的強度だけでなく、導電部の振動による揺れなどによる摩擦による被膜破壊、または線膨張係数差による外層被膜の破壊を抑えることができる。   In the case where a water-cooled structure, a liquid-cooled structure, and an air-cooled structure are added to the stator, basically, it is considered that thermal stress or impact stress is applied first from the outer layer film 182. However, even in the case where the insulating layer of the strand 181 and the two types of films are different from each other, the thermal stress and the impact stress can be reduced by providing a portion where the films are not adhered. That is, the insulation structure is achieved by providing a wire (enamel wire) and an air gap and arranging fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP. In this case, it is desirable to bond the outer layer coating and the inner layer coating using an adhesive having a low dielectric constant and a low linear expansion coefficient, such as epoxy. In this way, it is possible to suppress not only the mechanical strength but also the breakage of the coating due to friction due to the vibration of the conductive part or the like, or the breakage of the outer layer coating due to the difference in linear expansion coefficient.

上記構成の導線82に対しての、機械的強度、固定等を担う、一般的には固定子巻線周りの最終工程となる最外層固定としては、エポキシ、PPS、PEEK、LCPなどの成形性が良く、誘電率、線膨張係数といった性質がエナメル被膜と近い性質をもった樹脂が好ましい。   The outermost layer fixing, which is generally the final step around the stator winding, responsible for mechanical strength, fixing, etc., to the lead wire 82 of the above configuration, and the formability of epoxy, PPS, PEEK, LCP, etc. It is preferable to use a resin having properties close to that of the enamel coating, such as dielectric constant and linear expansion coefficient.

一般的には、ウレタン、シリコンによる樹脂ポッティングが通例なされるが、前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差があり、樹脂をせん断し得る熱応力を発生する。そのため、厳しい絶縁規定が国際的に用いられる60V以上の用途には不適である。この点、エポキシ、PPS、PEEK、LCPなどにより射出成型等により容易に作られる最終絶縁工程によれば、上述の各要件を達成することが可能である。   In general, resin potting by urethane or silicon is usually performed, but in the resin, the linear expansion coefficient is nearly doubled compared with other resins, and a thermal stress which can shear the resin is generated. Therefore, it is unsuitable for the use of 60V or more where strict insulation regulations are used internationally. In this respect, according to the final insulation process which is easily produced by injection molding or the like by epoxy, PPS, PEEK, LCP or the like, it is possible to achieve the above-mentioned respective requirements.

上記以外の変形例を以下に列記する。   Modifications other than the above are listed below.

・磁石ユニット42のうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。具体的には、例えば、図4に示す磁石ユニット42(具体的には、第1,第2磁石91,92)のうち径方向内側の面と、回転子40の軸心との径方向における距離DMが50mm以上とされていてもよい。   The distance DM in the radial direction between the surface on the armature side in the radial direction of the magnet unit 42 and the axial center of the rotor may be 50 mm or more. Specifically, for example, in the radial direction between the radially inner surface of the magnet unit 42 (specifically, the first and second magnets 91 and 92) shown in FIG. 4 and the axial center of the rotor 40, for example The distance DM may be 50 mm or more.

スロットレス構造の回転電機としては、その出力が数十Wから数百W級の模型用などに使用される小規模なものが知られている。そして、一般的には10kWを超すような工業用の大型の回転電機でスロットレス構造が採用された事例を本願発明者は把握していない。その理由について本願発明者は検討した。   As a rotary electric machine of a slotless structure, the small-scale thing whose output is used for models for dozens of watts to hundreds of watts is known. The inventor of the present invention does not grasp an example in which a slotless structure is adopted for a large industrial electric rotating machine which generally exceeds 10 kW. The inventor examined the reason.

近年主流の回転電機は、次の4種類に大別される。それら回転電機とは、ブラシ付きモータ、カゴ型誘導モータ、永久磁石式同期モータ及びリラクタンスモータである。   In recent years, the mainstream electric rotating machines are roughly classified into the following four types. The rotary electric machines are a brushed motor, a cage type induction motor, a permanent magnet synchronous motor and a reluctance motor.

ブラシ付きモータには、ブラシを介して励磁電流が供給される。このため、大型機のブラシ付きモータの場合、ブラシが大型化したり、メンテナンスが煩雑になったりしたりする。これにより、半導体技術の目覚ましい発達に伴い、誘導モータ等のブラシレスモータに置換されてきた経緯がある。一方、小型モータの世界では、低い慣性及び経済性の利点から、コアレスモータも多数世の中に供給されている。   An excitation current is supplied to the brushed motor via the brush. Therefore, in the case of a large-sized brushed motor, the size of the brush may be increased, and maintenance may be complicated. As a result, with the remarkable development of semiconductor technology, there is a history of being replaced by a brushless motor such as an induction motor. On the other hand, in the small motor world, coreless motors are also supplied to many people because of the advantages of low inertia and economy.

カゴ型誘導モータでは、1次側の固定子巻線で発生させる磁界を2次側の回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を形成することにより、トルクを発生させる原理である。このため、機器の小型高効率の観点からすれば、固定子側及び回転子側ともに鉄心をなくすことは必ずしも得策であるとは言えない。   In the cage type induction motor, the magnetic field generated by the stator winding on the primary side is received by the iron core of the rotor on the secondary side, and the induction current is flowed intensively to the cage conductor to form a reaction magnetic field. The principle is to generate torque. For this reason, it is not always a good idea to eliminate the iron core on both the stator side and the rotor side from the viewpoint of the small size and high efficiency of the device.

リラクタンスモータは、当に鉄心のリラクタンス変化を活用するモータであり、原理的に鉄心をなくすことは望ましくない。   The reluctance motor is a motor that takes advantage of the reluctance change of the iron core, and in principle it is not desirable to eliminate the iron core.

永久磁石式同期モータでは、近年IPM(つまり埋め込み磁石型回転子)が主流であり、特に大型機においては、特殊事情がない限りIPMである場合が多い。   In permanent magnet type synchronous motors, IPMs (that is, embedded magnet type rotors) have been mainstream in recent years, and particularly in large machines, they are often IPMs unless there is special circumstances.

IPMは、磁石トルク及びリラクタンストルクを併せ持つ特性を有しており、インバータ制御により、それらトルクの割合が適時調整されながら運転される。このため、IPMは小型で制御性に優れるモータである。   The IPM has a characteristic having both a magnet torque and a reluctance torque, and is operated while the ratio of the torque is adjusted appropriately by the inverter control. For this reason, the IPM is a small motor with excellent controllability.

本願発明者の分析により、磁石トルク及びリラクタンストルクを発生する回転子表面のトルクを、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DM、すなわち、一般的なインナロータの固定子鉄心の半径を横軸にとって描くと図54に示すものとなる。   According to the analysis of the inventor of the present invention, the torque of the rotor surface which generates the magnet torque and the reluctance torque is the distance DM in the radial direction between the surface on the armature side in the radial direction of the magnet unit and the shaft center of the rotor, When the radius of the stator core of a general inner rotor is drawn on the horizontal axis, it becomes as shown in FIG.

磁石トルクは、下式(eq1)に示すように、永久磁石の発生する磁界強度によりそのポテンシャルが決定されるのに対し、リラクタンストルクは、下式(eq2)に示すように、インダクタンス、特にq軸インダクタンスの大きさがそのポテンシャルを決定する。   The magnet torque is determined by the magnetic field strength generated by the permanent magnet as shown in the following equation (eq1), while the reluctance torque is an inductance, in particular q, as shown in the following equation (eq2). The magnitude of the axial inductance determines its potential.

磁石トルク=k・Ψ・Iq ・・・・・・・(eq1)
リラクタンストルク=k・(Lq−Ld)・Iq・Id ・・・・・(eq2)
ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。
Magnet torque = k · Ψ · Iq ·············· (eq 1)
Reluctance torque = k · (Lq−Ld) · Iq · Id (eq. 2)
Here, DM was used to compare the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding. The magnetic field strength emitted by the permanent magnet, that is, the amount of magnetic flux Ψ, is proportional to the total area of the permanent magnet on the surface facing the stator. If it is a cylindrical rotor, it will become the surface area of a cylinder. Strictly speaking, since the north pole and the south pole are present, they are proportional to the occupied area of half of the cylindrical surface. The surface area of the cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the cylinder length is constant, it is proportional to the radius of the cylinder.

一方、巻線のインダクタンスLqは、鉄心形状に依存はするものの感度は低く、むしろ固定子巻線の巻数の2乗に比例するため、巻数の依存性が高い。なお、μを磁気回路の透磁率、Nを巻数、Sを磁気回路の断面積、δを磁気回路の有効長さとする場合、インダクタンスL=μ・N^2×S/δである。巻線の巻数は、巻線スペースの大きさに依存するため、円筒型モータであれば、固定子の巻線スペース、すなわちスロット面積に依存することになる。図55に示すように、スロット面積は、スロットの形状が略四角形であるため、周方向の長さ寸法a及び径方向の長さ寸法bとの積a×bに比例する。   On the other hand, although the inductance Lq of the winding is dependent on the core shape, the sensitivity is low, and rather, it is proportional to the square of the number of turns of the stator winding, so the number of turns is highly dependent. When μ is the magnetic permeability of the magnetic circuit, N is the number of turns, S is the cross-sectional area of the magnetic circuit, and δ is the effective length of the magnetic circuit, the inductance L = μ · N ^ 2 × S / δ. Since the number of turns of the winding depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in FIG. 55, the slot area is proportional to the product a × b of the length dimension a in the circumferential direction and the length dimension b in the radial direction because the shape of the slot is substantially square.

スロットの周方向の長さ寸法は、円筒の直径が大きいほど大きくなるため、円筒の直径に比例する。スロットの径方向の長さ寸法は、当に円筒の直径に比例する。つまり、スロット面積は、円筒の直径の2乗に比例する。また、上式(eq2)からも分かる通り、リラクタンストルクは、固定子電流の2乗に比例するため、いかに大電流を流せるかで回転電機の性能が決まり、その性能は固定子のスロット面積に依存する。以上より、円筒の長さが一定なら、リラクタンストルクは円筒の直径の2乗に比例する。このことを踏まえ、磁石トルク及びリラクタンストルクとDMとの関係性をプロットした図が図54である。   The circumferential length dimension of the slot is proportional to the diameter of the cylinder, as it increases as the diameter of the cylinder increases. The radial dimension of the slot is proportional to the diameter of the cylinder. That is, the slot area is proportional to the square of the diameter of the cylinder. Also, as can be seen from the above equation (eq2), since the reluctance torque is proportional to the square of the stator current, the performance of the rotating electrical machine is determined by how large a current can flow, the performance being the slot area of the stator Dependent. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. Based on this, FIG. 54 is a diagram in which the relationship between the magnet torque and the reluctance torque and DM is plotted.

図54に示すように、磁石トルクはDMに対して直線的に増加し、リラクタンストルクはDMに対して2次関数的に増加する。DMが比較的小さい場合は磁石トルクが支配的であり、固定子鉄心半径が大きくなるに連れてリラクタンストルクが支配的であることがわかる。本願発明者は、図54における磁石トルク及びリラクタンストルクの交点が、所定の条件下において、おおよそ固定子鉄心半径=50mmの近傍であるとの結論に至った。つまり、固定子鉄心半径が50mmを十分に超えるような10kW級のモータでは、リラクタンストルクを活用することが現在の主流であるため鉄心を無くすことは困難であり、このことが大型機の分野においてスロットレス構造が採用されない理由の1つであると推定される。   As shown in FIG. 54, the magnet torque increases linearly with DM, and the reluctance torque increases quadratically with DM. It can be seen that the magnet torque is dominant when DM is relatively small, and the reluctance torque is dominant as the stator core radius increases. The inventor of the present application has concluded that the intersection point of the magnet torque and the reluctance torque in FIG. 54 is approximately in the vicinity of the stator core radius = 50 mm under predetermined conditions. In other words, with motors of 10 kW class where the stator core radius sufficiently exceeds 50 mm, it is difficult to eliminate the iron core because it is the current mainstream to utilize reluctance torque, which is a problem in the field of large machines It is presumed to be one of the reasons why the slotless structure is not adopted.

固定子に鉄心が使用される回転電機の場合、鉄心の磁気飽和が常に課題となる。特にラジアルギャップ型の回転電機では、回転軸の縦断面形状は1磁極当たり扇型となり、機器内周側程磁路幅が狭くなりスロットを形成するティース部分の内周側寸法が回転電機の性能限界を決める。いかに高性能な永久磁石を使おうとも、この部分で磁気飽和が発生すると、永久磁石の性能を十分にひきだすことができない。この部分で磁気飽和を発生させないためには、内周径を大きく設計することになり結果的に機器の大型化に至ってしまうのである。   In the case of a rotating electrical machine in which an iron core is used for the stator, magnetic saturation of the iron core is always a problem. In particular, in the radial gap type rotating electrical machine, the longitudinal cross-sectional shape of the rotating shaft is fan-shaped per magnetic pole, and the width of the magnetic path narrows toward the device inner circumferential side, and the inner circumferential dimension of the teeth forming the slot is the performance of the rotating electrical machine Determine the limit. No matter how high performance permanent magnets are used, if magnetic saturation occurs in this part, the performance of the permanent magnets can not be fully utilized. In order not to generate magnetic saturation in this portion, the inner diameter is designed to be large, and as a result, the size of the device is increased.

例えば、分布巻の回転電機では、3相巻線であれば、1磁極あたり3つ乃至6つのティースで分担して磁束を流すのだが、周方向前方のティースに磁束が集中しがちであるため、3つ乃至6つのティースに均等に磁束が流れるわけではない。この場合、一部(例えば1つ又は2つ)のティースに集中的に磁束が流れながら、回転子の回転に伴って磁気飽和するティースも周方向に移動してゆく。これがスロットリップルを生む要因にもなる。   For example, in a distributed winding rotating electric machine, in the case of a three-phase winding, three to six teeth per magnetic pole share magnetic flux, but magnetic flux tends to concentrate on teeth in the circumferential direction. The magnetic flux does not flow evenly to three to six teeth. In this case, while the magnetic flux flows intensively to some (for example, one or two) teeth, the teeth that are magnetically saturated along with the rotation of the rotor also move in the circumferential direction. This also causes slot ripple.

以上から、DMが50mm以上となるスロットレス構造の回転電機において、磁気飽和を解消するために、ティースを廃止したい。しかし、ティースが廃止されると、回転子及び固定子における磁気回路の磁気抵抗が増加し、回転電機のトルクが低下してしまう。磁気抵抗増加の理由としては、例えば、回転子と固定子との間のエアギャップが大きくなることがある。このため、上述したDMが50mm以上となるスロットレス構造の回転電機において、トルクを増強することについて改善の余地がある。したがって、上述したDMが50mm以上となるスロットレス構造の回転電機に、上述したトルクを増強できる構成を適用するメリットが大きい。   From the above, it is desirable to eliminate teeth in order to eliminate magnetic saturation in a slotless rotary electric machine in which DM is 50 mm or more. However, if the teeth are abolished, the reluctance of the magnetic circuit in the rotor and the stator increases, and the torque of the rotating electrical machine decreases. The reason for the increase in reluctance is, for example, an increase in the air gap between the rotor and the stator. For this reason, there is room for improvement in increasing torque in a slotless structure rotary electric machine in which the above-mentioned DM is 50 mm or more. Therefore, the advantage of applying the configuration that can increase the torque described above is great for a slotless structure rotating electrical machine in which the above-described DM is 50 mm or more.

なお、アウタロータ構造の回転電機に限らず、インナロータ構造の回転電機についても、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。   In addition, not only the rotating electric machine having the outer rotor structure but also the rotating electric machine having the inner rotor structure, the distance DM in the radial direction between the surface on the armature side in the radial direction of the magnet unit and the shaft center of the rotor is 50 mm or more It may be

・回転電機10の固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。   In the stator winding 51 of the rotary electric machine 10, the linear portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction. Moreover, when arranging the linear part 83 in multiple layers inside and outside in the radial direction, the number of layers may be arbitrary, and three layers, four layers, five layers, six layers or the like may be provided.

・例えば図2の構成では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受ユニット20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。   For example, in the configuration of FIG. 2, the rotary shaft 11 is provided so as to protrude in both the one end side and the other end side of the rotary electric machine 10 in the axial direction. It is also good. In this case, the rotary shaft 11 may be provided so as to extend axially outward with a portion cantilevered by the bearing unit 20 as an end. In this configuration, since the rotary shaft 11 does not protrude inside the inverter unit 60, the internal space of the inverter unit 60, specifically, the internal space of the cylindrical portion 71 can be used more widely.

・上記構成の回転電機10では、軸受21,22において非導電性グリースを用いる構成としたが、これを変更し、軸受21,22において導電性グリースを用いる構成としてもよい。例えば、金属粒子やカーボン粒子等が含まれた導電性グリースを用いる構成とする。   In the rotary electric machine 10 configured as described above, non-conductive grease is used in the bearings 21 and 22. However, this may be changed to use conductive grease in the bearings 21 and 22. For example, a conductive grease containing metal particles, carbon particles and the like is used.

・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。   -As the structure which supports the rotating shaft 11 rotatably, it is good also as a structure which provides a bearing in two places of the axial direction one end side of the rotor 40, and the other end side. In this case, in the configuration of FIG. 1, bearings may be provided at two positions on one end side and the other end side of the inverter unit 60.

・上記構成の回転電機10では、回転子40において磁石ホルダ41の中間部45が内側肩部49aと感情の外側肩部49bを有する構成としたが、これらの肩部49a,49bを無くし、平坦な面を有する構成としてもよい。   In the rotary electric machine 10 configured as described above, in the rotor 40, the middle portion 45 of the magnet holder 41 has the inner shoulder 49a and the outer shoulder 49b of emotion, but these shoulders 49a and 49b are eliminated and the flat It is good also as composition which has an aspect.

・上記構成の回転電機10では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。   In the rotating electrical machine 10 configured as described above, the conductor 82a is configured as an assembly of a plurality of strands 86 in the conducting wire 82 of the stator winding 51, but this is changed to use a rectangular conducting wire having a rectangular cross section as the conducting wire 82 It is good also as composition. Further, as the conducting wire 82, a round conducting wire having a circular cross section or an elliptical cross section may be used.

・上記構成の回転電機10では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。   In the rotating electrical machine 10 configured as described above, the inverter unit 60 is provided inside the stator 50 in the radial direction, but instead of this, the inverter unit 60 may not be provided inside the stator 50 in the radial direction. . In this case, it is possible to use an inner area which is radially inward of the stator 50 as a space. Moreover, it is possible to arrange components different from the inverter unit 60 in the internal area.

・上記構成の回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。   In the rotary electric machine 10 configured as described above, the housing 30 may not be provided. In this case, for example, the rotor 40, the stator 50, and the like may be held at parts of the wheel and other vehicle components.

・上記第5実施形態において、第1A磁石4011と第1B磁石4012との間に配置される第2磁石を、磁化ベクトルの方向が異なる複数の磁石により構成してもよい。例えば、図56に示すように、第2A磁石4021のうち第1A磁石4011の側の磁石(以下、第2A磁石4025と示す)では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、固定子側に傾くように構成されている。第2A磁石4025において、磁化ベクトルがq軸に直交する方向に対して傾く所定角度θ105は、q軸から当接面4023までの角度θ101以上の角度であることが望ましい。当接面4023は、第1A磁石4011の周方向端部に当接する第2磁石4020の端面のことである。   In the fifth embodiment, the second magnet disposed between the first A magnet 4011 and the first B magnet 4012 may be configured of a plurality of magnets having different magnetization vector directions. For example, as shown in FIG. 56, in the magnet on the side of the first A magnet 4011 of the second A magnet 4021 (hereinafter referred to as the second A magnet 4025), the magnetization vector is in the direction orthogonal to the q axis that becomes the magnetic pole boundary. On the other hand, it is configured to be inclined to the stator side. In the second A magnet 4025, the predetermined angle θ 105 at which the magnetization vector is inclined with respect to the direction orthogonal to the q axis is preferably an angle equal to or larger than the angle θ 101 from the q axis to the contact surface 4023. The contact surface 4023 is an end surface of the second magnet 4020 that contacts the circumferential end of the first A magnet 4011.

また、第2A磁石4021のうち第1B磁石4012の側の磁石(以下、第2A磁石4026と示す)では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、反固定子側に傾くように構成されている。第2A磁石4026において、磁化ベクトルがq軸に直交する方向に対して傾く所定角度θ106は、q軸から当接面4024までの角度θ107以上の角度であることが望ましい。当接面4024は、第1B磁石4012の周方向端部に当接する第2磁石4020の端面のことである。なお、第2B磁石4022も同様にしてもよい。以上により、第2磁石4020において、磁石磁路を円弧状に近づき、磁石磁路を長くすることができる。これにより、減磁しにくくなる。   In the magnet on the side of the 1B magnet 4012 among the 2A magnet 4021 (hereinafter referred to as the 2A magnet 4026), the magnetization vector is opposite to the stator side with respect to the direction orthogonal to the q axis which becomes the magnetic pole boundary. It is configured to lean on. In the second A magnet 4026, the predetermined angle θ106 at which the magnetization vector is inclined with respect to the direction orthogonal to the q axis is preferably an angle equal to or larger than the angle θ107 from the q axis to the contact surface 4024. The contact surface 4024 is an end face of the second magnet 4020 that contacts the circumferential end of the first B magnet 4012. The second B magnet 4022 may be the same. As described above, in the second magnet 4020, it is possible to make the magnet magnetic path approach an arc and lengthen the magnet magnetic path. This makes it difficult to demagnetize.

・上記第3〜第6実施形態において、第1磁石又は第2磁石のうちいずれかの径方向における厚さ寸法を薄くして、第2実施形態と同様に、磁石の反固定子側に磁性体を配置してもよい。例えば、図57に示すように、第3実施形態において第1磁石1010の反固定子側(径方向外側)に磁性体133を設けてもよい。これにより、磁気飽和を抑制し、減磁しにくくなり、また、トルクを増加させることが可能となる。なお、磁性体は、円筒部43と一体形成されていてもよい。これにより、第1磁石及び第2磁石を好適に回り止めすることが可能となる。   In the third to sixth embodiments, the thickness dimension in the radial direction of either the first magnet or the second magnet is reduced to make the magnet opposite to the stator in the same manner as the second embodiment. You may arrange the body. For example, as shown in FIG. 57, in the third embodiment, the magnetic body 133 may be provided on the side opposite to the stator (radially outside) of the first magnet 1010. As a result, it is possible to suppress the magnetic saturation, to make it difficult to demagnetize, and to increase the torque. The magnetic body may be formed integrally with the cylindrical portion 43. Thus, the first magnet and the second magnet can be suitably prevented from rotating.

この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。   The disclosure in this specification is not limited to the illustrated embodiments. The disclosure includes the illustrated embodiments and variations based on them by those skilled in the art. For example, the disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure can have additional parts that can be added to the embodiments. The disclosure includes those in which parts and / or elements of the embodiments have been omitted. The disclosure includes replacements or combinations of parts and / or elements between one embodiment and another embodiment. The disclosed technical scope is not limited to the description of the embodiments. It is to be understood that the technical scopes disclosed herein are indicated by the description of the scope of the claims, and further include all modifications within the meaning and scope equivalent to the descriptions of the scope of the claims.

10…回転電機、40…回転子(界磁子)、42,1042,3042,4042,5042…磁石ユニット(磁石部)、50…固定子(電機子)、51…固定子巻線(電機子巻線)、57…封止部材(導線間部材)、81…導線群(導線部)、82…導線(導線部)、86…素線、142…突起部(導線間部材)、143…歯状部(導線間部材)、1010,3010,4010…第1磁石、1020,3020,4020,5020…第2磁石。   DESCRIPTION OF SYMBOLS 10 ... Rotating electric machine, 40 ... Rotor (field element), 42, 1042, 3402, 4042, 5042 ... Magnet unit (magnet part), 50 ... Stator (armature), 51 ... Stator winding (armature) Wires, 57: Sealing member (inter-conductor member) 81: Conductor group (conductor portion) 82: Conductor wire (conductor portion) 86: conductor wire 142: projection (inter-conductor member) 143 -Like part (inter-conductor member), 1010, 3010, 4010 ... first magnet, 1020, 3020, 4020, 5020 ... second magnet.

Claims (11)

周方向に極性が交互となる複数の磁極を含む磁石部(1042,3042)を有する界磁子(40)と、多相の電機子巻線(51)を有する電機子(50)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
前記磁石部は、直線状の磁化ベクトルを有する複数の第1磁石(1010,3010)と、直線状の磁化ベクトルを有する複数の第2磁石(1020)とを有しており、
複数の前記第1磁石は、前記周方向に所定間隔で配置されるとともに、複数の前記第2磁石は、前記周方向において隣り合う前記第1磁石の間となる位置に配置されており、
前記第1磁石における磁化ベクトルは、前記回転子の径方向、又は前記径方向よりも磁極中心となるd軸側に傾く方向に沿っており、
前記第2磁石における磁化ベクトルは、前記第1磁石の磁化ベクトルに比較して、周方向に近くなっている回転電機。
A field element (40) having a magnet portion (1042, 3042) including a plurality of magnetic poles of alternating polarity in the circumferential direction; and an armature (50) having a multiphase armature winding (51) In a rotating electrical machine (10) comprising the field element and the armature as a rotor,
The magnet unit includes a plurality of first magnets (1010, 3010) having a linear magnetization vector, and a plurality of second magnets (1020) having a linear magnetization vector,
The plurality of first magnets are disposed at predetermined intervals in the circumferential direction, and the plurality of second magnets are disposed at positions between the adjacent first magnets in the circumferential direction,
The magnetization vector in the first magnet is along the direction which is inclined to the radial direction of the rotor or the d-axis side which is the center of the magnetic pole than the radial direction,
A rotating electrical machine in which a magnetization vector in the second magnet is closer to a circumferential direction than a magnetization vector of the first magnet.
前記第2磁石における磁化ベクトルは、磁極境界となるq軸に直交する方向に対して、電機子側に傾いている請求項1に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the magnetization vector of the second magnet is inclined toward the armature with respect to a direction orthogonal to the q-axis serving as a magnetic pole boundary. 周方向に極性が交互となる複数の磁極を含む磁石部(4042,5042)を有する界磁子(40)と、多相の電機子巻線(51)を有する電機子(50)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
前記磁石部は、直線状の磁化ベクトルを有する複数の第1磁石(4010)と、直線状の磁化ベクトルを有する複数の第2磁石(4020)とを有しており、
複数の前記第1磁石は、前記周方向に所定間隔で配置されるとともに、複数の前記第2磁石は、前記周方向において隣り合う前記第1磁石の間となる位置に配置されており、
前記第2磁石における磁化ベクトルは、磁極境界となるq軸に直交する方向に対して、電機子側に傾いており、
前記第1磁石における磁化ベクトルは、前記第2磁石の磁化ベクトルに比較して、径方向に近くなっている回転電機。
A field element (40) having a magnet portion (4042, 5042) including a plurality of magnetic poles of alternating polarity in the circumferential direction; and an armature (50) having a polyphase armature winding (51) In a rotating electrical machine (10) comprising the field element and the armature as a rotor,
The magnet unit includes a plurality of first magnets (4010) having a linear magnetization vector and a plurality of second magnets (4020) having a linear magnetization vector,
The plurality of first magnets are disposed at predetermined intervals in the circumferential direction, and the plurality of second magnets are disposed at positions between the adjacent first magnets in the circumferential direction,
The magnetization vector in the second magnet is inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary,
A rotating electrical machine in which a magnetization vector in the first magnet is closer to a radial direction than a magnetization vector of the second magnet.
前記第1磁石には、磁化ベクトルが反電機子側から電機子側へ向かう方向となる第1A磁石(4011)と、磁化ベクトルが電機子側から反電機子側へ向かう方向となる第1B磁石(4012)と、があり、前記第1A磁石と前記第1B磁石とは周方向において交互に配置されており、
前記第2磁石には、反電機子側に設定される中心点を中心として放射状に複数の磁化ベクトルが形成されており、
前記中心点は、前記第1A磁石よりも前記第1B磁石側に設定される請求項1〜3のうちいずれか1項に記載の回転電機。
The first magnet includes a first A magnet (4011) in which the magnetization vector is directed from the opposite armature side to the armature side, and a first B magnet in which the magnetization vector is directed from the armature side to the opposite armature (4012), and the first A magnet and the first B magnet are alternately arranged in the circumferential direction,
In the second magnet, a plurality of magnetization vectors are formed radially about a central point set on the opposite side of the armature,
The rotating electrical machine according to any one of claims 1 to 3, wherein the center point is set closer to the first B magnet than the first A magnet.
前記第1磁石には、磁化ベクトルが反電機子側から電機子側へ向かう方向となる第1A磁石(4011)と、磁化ベクトルが電機子側から反電機子側へ向かう方向となる第1B磁石(4012)と、があり、前記第1A磁石と前記第1B磁石とは周方向において交互に配置されており、
周方向において隣り合う第1磁石の間に配置される前記第2磁石は、磁化ベクトルが異なる複数の磁石により構成されており、
前記第2磁石のうち前記第1A磁石側の部分(4025)では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、電機子側に傾くように構成されている一方、
前記第2磁石のうち前記第1B磁石側の部分(4026)では、磁化ベクトルが、磁極境界となるq軸に直交する方向に対して、反電機子側に傾くように構成されている請求項1〜3のうちいずれか1項に記載の回転電機。
The first magnet includes a first A magnet (4011) in which the magnetization vector is directed from the opposite armature side to the armature side, and a first B magnet in which the magnetization vector is directed from the armature side to the opposite armature (4012), and the first A magnet and the first B magnet are alternately arranged in the circumferential direction,
The second magnets disposed between the adjacent first magnets in the circumferential direction are composed of a plurality of magnets having different magnetization vectors,
In the portion (4025) on the side of the first A magnet of the second magnet, the magnetization vector is configured to be inclined toward the armature with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary;
In the portion (4026) on the side of the first B magnet of the second magnet, the magnetization vector is configured to be inclined to the opposite armature side with respect to the direction orthogonal to the q-axis serving as the magnetic pole boundary. The rotary electric machine according to any one of 1 to 3.
前記第1磁石の磁化ベクトルは複数形成されており、第1磁石の磁化ベクトルは、d軸から離れるほど、d軸に対して傾く角度が大きくなる請求項1〜5のうちいずれか1項に記載の回転電機。   The magnetization vector of the said 1st magnet is formed in multiple numbers, and the magnetization vector of the 1st magnet becomes large [tilt angle] with respect to d axis, so that it leaves | separates from d axis. Electrical rotating machine described. 前記界磁子は、前記電機子に対して径方向内側に配置される請求項1〜6のうちいずれか1項に記載の回転電機。   The rotary electric machine according to any one of claims 1 to 6, wherein the field element is disposed radially inward with respect to the armature. 前記磁石部は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である請求項1〜7のうちいずれか1項に記載の回転電機。   The rotating electrical machine according to any one of claims 1 to 7, wherein the magnet unit has an intrinsic coercive force of 400 kA / m or more and a residual magnetic flux density of 1.0 T or more. . 前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さい請求項1〜8のうちいずれか1項に記載の回転電機。
The armature winding has conducting wire portions (81, 82) arranged at predetermined intervals in the circumferential direction at a position facing the field element,
The rotary electric machine according to any one of claims 1 to 8, wherein a thickness dimension in a radial direction of the conductor portion is smaller than a width dimension in a circumferential direction of one phase in one magnetic pole.
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記電機子において、
周方向における前記各導線部の間に導線間部材(57,142,143)を設け、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、1磁極における前記磁石部の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料、若しくは非磁性材料を用いる構成か、
又は周方向における前記各導線部の間に導線間部材を設けていない構成となっている請求項1〜9のうちいずれか1項に記載の回転電機。
The armature winding has conducting wire portions (81, 82) arranged at predetermined intervals in the circumferential direction at a position facing the field element,
In the armature,
An inter-conductor member (57, 142, 143) is provided between the conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width dimension of the inter-conductor member in one magnetic pole is Wt, the inter-conductor member A magnetic material having a relationship of Wt × Bs ≦ Wm × Br, where Bs is a saturation magnetic flux density, Wm is a width of the circumferential direction of the magnet portion in one magnetic pole, and Br is a residual magnetic flux density of the magnet portion. Or a configuration using a nonmagnetic material,
The rotary electric machine according to any one of claims 1 to 9, wherein no inter-lead member is provided between the lead portions in the circumferential direction.
前記電機子巻線は、前記界磁子に対向する位置で周方向に所定間隔で配置される導線部(81,82)を有し、
前記導線部を構成する各導線は、複数の素線(86)が束ねられているとともに、束ねられた素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体となっている請求項1〜10のうちいずれか1項に記載の回転電機。
The armature winding has conducting wire portions (81, 82) arranged at predetermined intervals in the circumferential direction at a position facing the field element,
Each of the conductive wires constituting the conductive wire portion is a bundle of a plurality of strands (86) and is a bundle of strands whose resistance value between the bundled strands is larger than the resistance of the strands themselves. The rotary electric machine according to any one of claims 1 to 10.
JP2018166446A 2017-12-28 2018-09-05 Rotating machine Active JP7031539B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/048248 WO2019131908A1 (en) 2017-12-28 2018-12-27 Rotary electric machine
DE112018006717.3T DE112018006717T5 (en) 2017-12-28 2018-12-27 Rotating electric machine
CN201880083908.XA CN111566904B (en) 2017-12-28 2018-12-27 Rotary electric machine
US16/915,116 US11664693B2 (en) 2017-12-28 2020-06-29 Rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017255080 2017-12-28
JP2017255080 2017-12-28

Publications (2)

Publication Number Publication Date
JP2019122237A true JP2019122237A (en) 2019-07-22
JP7031539B2 JP7031539B2 (en) 2022-03-08

Family

ID=67305589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166446A Active JP7031539B2 (en) 2017-12-28 2018-09-05 Rotating machine

Country Status (1)

Country Link
JP (1) JP7031539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090819A1 (en) * 2019-11-07 2021-05-14 株式会社デンソー Dynamo-electric machine
WO2022168708A1 (en) * 2021-02-03 2022-08-11 株式会社デンソー Field magneton

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (en) * 2001-05-29 2002-12-06 Hitachi Ltd Rotating electric machine comprising permanent magnet rotor
JP2005065385A (en) * 2003-08-08 2005-03-10 Toyota Motor Corp Permanent magnet type motor
JP2015142484A (en) * 2014-01-30 2015-08-03 Ntn株式会社 Surface magnet type rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (en) * 2001-05-29 2002-12-06 Hitachi Ltd Rotating electric machine comprising permanent magnet rotor
JP2005065385A (en) * 2003-08-08 2005-03-10 Toyota Motor Corp Permanent magnet type motor
JP2015142484A (en) * 2014-01-30 2015-08-03 Ntn株式会社 Surface magnet type rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090819A1 (en) * 2019-11-07 2021-05-14 株式会社デンソー Dynamo-electric machine
JP2021078220A (en) * 2019-11-07 2021-05-20 株式会社デンソー Rotary electric machine
JP7211340B2 (en) 2019-11-07 2023-01-24 株式会社デンソー Rotating electric machine
WO2022168708A1 (en) * 2021-02-03 2022-08-11 株式会社デンソー Field magneton
JP7468712B2 (en) 2021-02-03 2024-04-16 株式会社デンソー Field magnet

Also Published As

Publication number Publication date
JP7031539B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6525095B1 (en) Electric rotating machine
JP2019122241A (en) Rotary electric machine
JP2019122229A (en) Rotary electric machine
JP2019122242A (en) Rotary electric machine
JP2019122233A (en) Rotary electric machine system
JP2019122249A (en) Rotary electric machine
JP2019122223A (en) Rotary electric machine
JP2019122236A (en) Rotary electric machine
WO2019017496A1 (en) Rotating electrical machine
JP2019122234A (en) Rotary electric machine
JP2019122245A (en) Rotary electric machine
WO2019131910A1 (en) Rotating electrical machine
JP2019122225A (en) Rotary electric machine
WO2019131912A1 (en) Rotating electric machine system
WO2019131913A1 (en) Rotating electrical machine
JP2019122237A (en) Rotary electric machine
JP2019122231A (en) Rotary electric machine
JP2019122246A (en) Rotary electric machine
JP2019122227A (en) Rotary electric machine
JP2019122230A (en) Rotary electric machine
WO2019131909A1 (en) Rotary electric machine
WO2019131911A1 (en) Rotating electrical machine
JP2019122232A (en) Rotary electric machine
WO2019131908A1 (en) Rotary electric machine
JP2019122228A (en) Rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R151 Written notification of patent or utility model registration

Ref document number: 7031539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151