JP2019121136A - 情報処理装置、情報処理システムおよび情報処理方法 - Google Patents

情報処理装置、情報処理システムおよび情報処理方法 Download PDF

Info

Publication number
JP2019121136A
JP2019121136A JP2017255093A JP2017255093A JP2019121136A JP 2019121136 A JP2019121136 A JP 2019121136A JP 2017255093 A JP2017255093 A JP 2017255093A JP 2017255093 A JP2017255093 A JP 2017255093A JP 2019121136 A JP2019121136 A JP 2019121136A
Authority
JP
Japan
Prior art keywords
worker
work
work target
area
dimensional model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017255093A
Other languages
English (en)
Other versions
JP7017689B2 (ja
Inventor
山 姜
Sang Jiang
山 姜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017255093A priority Critical patent/JP7017689B2/ja
Priority to US16/214,393 priority patent/US11238653B2/en
Publication of JP2019121136A publication Critical patent/JP2019121136A/ja
Application granted granted Critical
Publication of JP7017689B2 publication Critical patent/JP7017689B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Processing Or Creating Images (AREA)
  • User Interface Of Digital Computer (AREA)
  • General Factory Administration (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Abstract

【課題】画像情報を表示させる作業対象の3次元位置を精度よく特定する。【解決手段】記憶部1aは、作業現場2の環境を再現した3次元モデル2aを示す3次元モデルデータ2bを記憶する。演算部1bは、作業現場2に存在する作業者3の向きD1の検出結果に基づいて、3次元モデル2aから作業対象4が存在する部分領域5aを特定し、部分領域5aの幾何形状、または部分領域5aの色情報の少なくとも一方に基づいて、部分領域5aから作業対象4に対応する部分領域5bを特定し、3次元モデル2aが形成された座標空間における部分領域5bの3次元座標を、作業現場2を撮像した画像上に作業対象4の位置に応じて画像情報を表示するための位置情報として記憶部1aに登録する。【選択図】図1

Description

本発明は、情報処理装置、情報処理システムおよび情報処理方法に関する。
現実空間を撮影した画像上の所定位置に仮想的な画像を重畳して表示する拡張現実感(Augmented Reality,AR)技術が知られている。このAR技術は、例えば、工場などの作業空間において、作業内容や注意点などを示す画像情報をカメラ画像上に重畳表示することによって作業者の作業を支援する、といった用途で普及しつつある。
このような技術の一例として、作業者がヘッドマウントディスプレイ(HMD)とヘッドマウントカメラ(HMC)を保持するとともに、HMCによって撮影された画像を基に生成された作業現場のパノラマ画像をオペレータが視認するようにした遠隔協調作業支援システムが提案されている。このシステムでは、オペレータがパノラマ画像上に指示入力を行うと、作業者に対する指示情報がHMDに送信される。HMDの画面には、カメラ画像が表示されるとともに、カメラ画像上の指示入力に応じた位置に指示情報がAR画像として重畳表示される。
また、関連技術の一例として、HMDに備えられた深度センサの検出結果に基づき、HMDに表示されたカメラ画像上の作業対象物の位置に、この作業対象物を示す3次元モデルを表示させるようにしたシステムが提案されている。
特開2016−167688号公報 特開2015−125641号公報
ところで、カメラ画像上の作業対象に対応する位置に、作業支援のための画像情報を重畳表示させるためには、作業対象ごとに、作業現場の環境を再現した3次元モデルの座標空間における位置(3次元座標)を、あらかじめ設定しておく必要がある。このような設定作業を人手によって行うと、その作業は繁雑であり、作業効率が低いという問題がある。そこで、このような設定作業を自動化することが考えられるが、その場合、作業対象の位置を正確に特定することが難しいという問題がある。
1つの側面では、本発明は、画像情報を表示させる作業対象の3次元位置を精度よく特定可能な情報処理装置、情報処理システムおよび情報処理方法を提供することを目的とする。
1つの案では、記憶部と演算部とを有する次のような情報処理装置が提供される。記憶部は、作業現場の環境を再現した3次元モデルを示すデータを記憶する。演算部は、作業現場に存在する作業者の向きの検出結果に基づいて、3次元モデルから作業対象が存在する第1の部分領域を特定し、第1の部分領域の幾何形状、または第1の部分領域の色情報の少なくとも一方に基づいて、第1の部分領域から作業対象に対応する第2の部分領域を特定し、3次元モデルが形成された座標空間における第2の部分領域の3次元座標を、作業現場を撮像した画像上に作業対象の位置に応じて画像情報を表示するための位置情報として記憶部に登録する。
また、1つの案では、作業現場に存在する作業者の向きを検出する検出装置と、上記の情報処理装置とを含む情報処理システムが提供される。
さらに、1つの案では、上記の情報処理装置と同様の処理をコンピュータが実行する情報処理方法が提供される。
1態様によれば、画像情報を表示させる作業対象の3次元位置を精度よく特定できる。
第1の実施の形態に係る情報処理装置の構成例および処理例を示す図である。 本作業フェーズで用いられる装置の構成例を示す図である。 作業支援を実現するための処理について説明するための図である。 カメラ画像におけるARコンテンツの表示例を示す図である。 オーサリング作業フェーズで用いられる装置の構成例を示す図である。 作業支援装置による作業対象箇所の特定処理の概要について説明するための図である。 オーサリング作業フェーズで用いられる各装置のハードウェア構成例を示す図である。 作業者端末および作業支援装置が備える処理機能の構成例を示すブロック図である。 作業者端末で実行される処理の手順を示すフローチャートの例である。 SLAM処理部231の内部構成例を示す図である。 作業支援装置で実行される処理の手順を示すフローチャートの例である。 停留状態の判定処理手順を示すフローチャートの例である。 停留状態の判定例を示す図である。 指差し方向ベクトルの算出手順を示すフローチャートの例である。 手および円筒の3次元モデルの例を示す図である。 ベクトルに基づく作業対象領域の推定処理例を示す図である。 作業対象箇所の特定処理手順を示すフローチャートの例である。 平面領域の抽出処理手順を示すフローチャートの例である。 領域の絞り込み処理手順を示すフローチャートの例である。 平面の抽出および領域絞り込みの処理例を示す図である。 色情報に基づく切り出し処理手順を示すフローチャートの例である。 平面抽出および色情報に基づく切り出しによる作業対象箇所の特定処理例を示す図である。
以下、本発明の実施の形態について図面を参照して説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る情報処理装置の構成例および処理例を示す図である。
第1の実施の形態に係る情報処理装置1は、例えば、次のような作業支援システムで用いる情報を作成するための装置である。この作業支援システムは、作業現場で作業する作業者に対して、その作業を支援するための情報を画像情報として提供するためのシステムである。具体的には、作業者には、作業対象を含む領域を撮影した画像をリアルタイムに視認できる環境が与えられる。そして、その画像上に、作業支援のための画像情報がAR技術を用いて重畳表示される。
このような作業支援システムでは、画像情報が表示される作業対象の3次元座標が、あらかじめ登録される。本実施の形態に係る情報処理装置1は、このような作業対象を自動的に特定し、特定された作業対象の3次元座標を登録する。
図1に示すように、本実施の形態では、作業対象の登録のために、作業現場2において作業者3に実際に作業させる。そして、作業者3の動きが検出され、その検出結果と、作業現場2の環境を再現した3次元モデル2aのデータ(3次元モデルデータ2b)とに基づいて、3次元モデル2aから作業対象が特定される。作業者3の動きとしては、少なくとも作業者3の向きが検出される。以下の説明では、作業現場2に作業対象4が存在するものとして説明する。
情報処理装置1は、記憶部1aと演算部1bを有する。記憶部1aは、例えば、RAM(Random Access Memory)やHDD(Hard Disk Drive)など、情報処理装置1が備える記憶装置の記憶領域として実現される。演算部1bは、例えば、情報処理装置1が備えるプロセッサとして実現される。
記憶部1aには、前述した3次元モデルデータ2bに加えて、3次元座標5cが記憶される。3次元モデルデータ2bは、例えば、あらかじめ作成されて記憶部1aに格納される。また、例えば、作業者3がその視線方向を撮影するカメラを保持していて、カメラの画像を基に作業者3の向きが検出される場合には、作業者3の向きの検出とともに3次元モデル2aが作成され、3次元モデルデータ2bが記憶部1aに格納されてもよい。3次元座標5cは、演算部1bによって特定されて記憶部1aに登録される。
演算部1bは、次のような処理を実行する。
演算部1bは、作業者3の向きD1の検出結果に基づいて、3次元モデル2aから作業対象4が存在する部分領域5a(第1の部分領域)を特定する(ステップS1)。図1では、3次元モデル2aにおいて網掛けを付して示した領域が、部分領域5aとして特定されている。
ここで、作業者3の向きD1の検出方法は、特に限定されるものではない。例えば、作業者3の向きD1は、作業現場2に固定的に配置されたカメラなどのセンサによって検出されてもよいし、あるいは、前述のように作業者3が保持するカメラの画像を基に検出されてもよい。
また、作業者3の向きD1の検出結果は、例えば、3次元モデル2aが形成された3次元座標空間上の向きD1aに変換され、ステップS1では、変換後の向きD1aに基づいて部分領域5aが特定される。ただし、例えば、上記のように、作業者3が保持するカメラの画像を基に作業者3の向きの検出と3次元モデル2aの作成とが行われる場合には、このような変換が不要な場合もある。
また、作業者3の向きD1としては、作業者3の注目方向(視線の方向)が検出されることが望ましい。さらに、例えば、作業者3が作業対象4を確認するための指差し動作を行う場合がある。このような指差し動作が検出された場合、作業者3の向きD1と、指差し方向とに基づいて、部分領域5aが特定されてもよい。
次に、演算部1bは、特定された部分領域5aの幾何形状、または部分領域5aの色情報の少なくとも一方に基づいて、部分領域5aから作業対象4に対応する部分領域5b(第2の部分領域)を特定する(ステップS2)。例えば、部分領域5aにおける平面領域の大きさや、平面領域と作業者3との距離、部分領域5aにおける色別の領域の大きさなどに基づいて、部分領域5bが特定される。
そして、演算部1bは、3次元モデル2aが形成された3次元座標空間における部分領域5bの3次元座標5cを、記憶部1aに登録する(ステップS3)。図1では、部分領域5aのうち実線で示した領域が、部分領域5bとして特定されている。この3次元座標5cは、作業現場2を撮影した画像上に作業対象4の位置に応じて画像情報を表示するための位置情報であり、例えば、前述した作業支援システムにおいて使用される。なお、3次元座標5cとしては、例えば、特定された部分領域5bの中心部分(例えば重心)の座標が登録される。
以上の演算部1bの処理では、ステップS1の特定処理により、3次元モデル2aの中から、作業対象4に対応する領域が存在する可能性の高い領域が絞り込まれる。この処理が作業者3の向きD1の検出結果に基づいて行われることで、作業対象4に対応する領域が存在する領域が正確に特定される。そして、ステップS2の特定処理において、特定された部分領域5aから、部分領域5aの幾何形状または色情報に基づいて、作業対象4に対応する領域がより詳細に特定される。これにより、作業対象4に対応する領域を自動的に特定して、その3次元座標5cを効率よく登録できるとともに、3次元座標5cを高精度に特定できる。
〔第2の実施の形態〕
次に、第2の実施の形態に係る作業支援システムについて説明する。
第2の実施の形態に係る作業支援システムは、作業現場で作業する作業者に対して、その作業を支援するための情報を画像情報として提供するためのシステムである。具体的には、作業者には、作業対象箇所を含む領域を撮影した画像をリアルタイムに視認できる環境が与えられる。そして、その画像上に、作業支援のための画像情報がAR技術を用いて重畳表示される。
以下、重畳表示される画像情報を、「ARコンテンツ」と記載する。ARコンテンツとしては、例えば、作業内容、作業の注意事項などのテキスト情報が、作業対象箇所を指し示す画像などとともに表示される。これにより、例えば、作業者の作業の正確性を高める、習熟度の低い作業者でも容易かつ正確に作業できる、といったメリットが得られる。
作業者が画像を視認するための環境は、次のようにして実現される。例えば、ディスプレイを備えるとともに、ディスプレイの背面側にカメラを備える携帯型端末を、作業者が携帯する。作業者がディスプレイを視認しながら作業対象箇所にカメラを向けると、ディスプレイ上に作業対象箇所を含む領域の画像が表示されるとともに、その画像上にARコンテンツが重畳表示される。また、別の例として、カメラとディスプレイとを備えるヘッドマウントユニットが、作業者の頭部に装着されてもよい。
また、作業支援システムは、作業支援装置を含む。作業支援装置は、作業現場の環境を示す3次元モデルと、カメラによって撮影された画像とに基づいて、画像におけるARコンテンツの表示位置を算出し、制御する。作業支援装置は、このような制御を実現するために、ARコンテンツと、それに対応する作業対象箇所の3次元座標とが登録されたARコンテンツデータベースを備える。このようなARコンテンツデータベースが参照されることで、ARコンテンツを、画像に写っている作業対象箇所の位置に正確に合わせて表示させることができる。
ARコンテンツデータベースには、作業現場における複数の作業対象箇所について、それぞれ作業対象箇所の3次元座標とARコンテンツとが登録される。したがって、上記のようなARコンテンツを用いた作業支援を実現するためには、事前にARコンテンツを作成してARコンテンツデータベースに登録するオーサリング作業が行われる。
以下の説明では、ARコンテンツを用いた作業支援が行われる作業フェーズを、「本作業フェーズ」と記載する。また、本作業フェーズで参照されるARコンテンツデータベースを構築するための事前作業フェーズを、「オーサリング作業フェーズ」と記載する。
ここでは、まず、作業支援システムに含まれる装置のうち、本作業フェーズで用いられる装置の構成について説明し、その後に、オーサリング作業フェーズで用いられる装置の構成について説明する。
図2は、本作業フェーズで用いられる装置の構成例を示す図である。図2に示すように、本作業フェーズでは、作業支援装置100、作業者端末200bおよびヘッドマウントユニット300bが用いられる。作業支援装置100と作業者端末200bとは、例えば、ネットワークを介して通信可能になっている。また、作業者端末200bとヘッドマウントユニット300bとは、例えば、近距離無線通信によって通信可能になっている。
作業者402は、作業者端末200bを携帯するとともに、ヘッドマウントユニット300bを頭部に装着した状態で、作業を行う。ヘッドマウントユニット300bは、カメラ311、深度センサ312およびディスプレイ313を備える。
カメラ311は、作業者402の視線とほぼ同じ方向の領域を撮影する。深度センサ312は、カメラ311の撮影領域について、カメラ311からの出力画像の画素ごとに深度(距離)を計測する。深度センサ312は、例えば、赤外線照射装置と赤外線受光装置とを備え、TOF(Time Of Flight)方式などによって画素ごとの深度を計測する。このようなヘッドマウントユニット300bからは、例えば、カメラ311によって得られたカラー画像の画像データと、深度センサ312によって得られた深度データとを含むRGB−D(Red Green Blue-Depth)データが出力される。ディスプレイ313は、いわゆるヘッドマウントディスプレイであり、作業者402が作業を行いながら画像を視認することを可能にする。
ここで、図3は、作業支援を実現するための処理について説明するための図である。まず、図3を用いて、本作業フェーズにおける作業支援装置100および作業者端末200bの処理例について説明する。
作業者端末200bは、ヘッドマウントユニット300bから、カメラ311によって撮影された画像(以下、「カメラ画像」と記載する)の画像データと、深度センサ312によって検出された深度データとを受信し、これらを作業支援装置100に送信する(ステップS21)。また、作業者端末200bは、受信した画像データをヘッドマウントユニット300bに送信して、この画像データに基づくカメラ画像をディスプレイ313に表示させる。
作業支援装置100は、作業者端末200bから受信した画像データと深度データに基づいて、カメラ311の位置姿勢を推定する(ステップS22)。推定されるカメラ311の位置は、作業者402の位置(例えば、作業者402の目の位置)を示し、推定されるカメラ311の姿勢は、作業者402の視線の方向を示す。カメラ311の位置姿勢の推定では、例えば、事前に作成された作業現場の3次元モデルが参照される。この3次元モデルとしては、オーサリング作業フェーズで作成されたものが使用されてもよい。
また、作業支援装置100は、ARコンテンツデータベース(DB)101を保持している。前述のように、ARコンテンツデータベース101には、複数の作業対象箇所について、それぞれ作業対象箇所の3次元座標とARコンテンツとが登録されている。
作業支援装置100は、受信した画像データに基づくカメラ画像の撮影領域に作業対象箇所が含まれる場合に、その作業対象箇所に対応するARコンテンツをARコンテンツデータベース101から特定する。そして、作業支援装置100は、特定されたARコンテンツのカメラ画像における表示位置を算出する(ステップS23)。
ARコンテンツの特定処理では、作業支援装置100は、例えば、推定されたカメラ311の位置姿勢と、ARコンテンツデータベース101に登録された各作業対象箇所の3次元座標とに基づいて、カメラ画像の撮影領域に含まれる作業対象箇所を自動的に特定する。あるいは、作業支援装置100のオペレータが、カメラ画像を表示させた画面を視認し、カメラ画像に作業対象箇所が写り込んだときに対応するARコンテンツをARコンテンツデータベース101から選択してもよい。さらに別の例としては、各作業対象箇所に対応するマーカが作業対象箇所付近にあらかじめ設置されていてもよい。この場合、作業支援装置100は、例えば、カメラ画像からマーカを検出すると、そのマーカ内に記述された識別情報を読み取り、読み取られた識別情報に基づいてARコンテンツをARコンテンツデータベース101から特定する。
また、カメラ画像におけるARコンテンツの表示位置は、例えば、ARコンテンツに対応付けられた3次元座標と、推定されたカメラ311の位置姿勢と、3次元モデルを示す情報(3次元マップ)とに基づいて算出される。このとき、カメラ画像におけるARコンテンツの表示角度も算出されてもよい。
作業支援装置100は、特定されたARコンテンツの表示位置を、ARコンテンツのデータとともに作業者端末200bに送信する。作業者端末200bは、受信した表示位置の情報に基づいて、ディスプレイ313に表示させているカメラ画像上に、ARコンテンツを重畳表示させる(ステップS24)。これにより、例えば、カメラ画像に写っている作業対象箇所を正確に指し示す状態で、ARコンテンツが表示される。
図4は、カメラ画像におけるARコンテンツの表示例を示す図である。図4に例示する画像320では、作業対象箇所としてレバー321が写っており、レバー321に対応するARコンテンツ322が重畳表示されている。この例では、ARコンテンツデータベース101には、作業対象箇所の3次元座標としレバー321の中心部321aの座標が登録されており、ARコンテンツ322は、中心部321aを指し示す形態の画像として表示されている。このようなARコンテンツをカメラ画像上に重畳表示させることで、作業者402の作業を支援することができる。
次に、図3を用いて、オーサリング作業フェーズについて説明する。オーサリング作業フェーズでは、例えば、次のような処理が実行される。
まず、作業現場の3次元形状を再現した3次元モデルが作成される(ステップS11)。この作業では、3次元モデル上に設定された多数の特徴点の3次元座標が登録された3次元マップが作成される。次に、3次元モデルの座標空間における各作業対象箇所の位置が特定される(ステップS12)。次に、各作業対象箇所に対応するARコンテンツが作成され、作成されたARコンテンツと、それに対応する作業対象箇所の3次元モデルにおける3次元座標とが、ARコンテンツデータベース101に登録される(ステップS13)。
これらの処理のうち、特に、ステップS12の作業対象箇所の特定処理を、オペレータの操作にしたがって実行しようとすると、大きな手間がかかり、また、その特定を正確にできない可能性もある。例えば、作業者に保持されたカメラの画像をオペレータが視認しながら、画像の中に写った作業対象箇所をオペレータが判別し、その位置情報を登録する方法が考えられる。しかし、この方法では、作業対象となる設備やデバイスをオペレータが正確に判別し、作業対象箇所を示す位置をオペレータが正確に指定する必要がある。作業対象箇所の判別のためには、オペレータに高度の知識が必要となる。また、作業対象箇所の形状や色、さらには画像撮影時における作業者の立ち位置や向きによっては、オペレータが作業対象箇所を正確に判別したり、その位置を正確に指定することが困難になる可能性がある。
本実施の形態では、オーサリング作業のために作業者に作業現場で実際に作業してもらう。このとき、作業者に作業者端末200aを携帯させ、作業者の動きを示す各種の検出値を作業者端末200aに収集させ、それらの検出値を作業支援装置100に送信させる。そして、それらの検出値を基に、作業支援装置100においてARコンテンツデータベース101の構築処理を実行させる。この構築処理においては、上記のステップS12の処理が自動化される。これにより、オーサリング作業を大幅に効率化し、その作業の正確性を向上させることができる。
より具体的には、図3に示したオーサリング作業フェーズにおける処理のうち、ステップS11の処理が作業者端末200aに実行され、ステップS12,S13の処理が作業支援装置100に実行される。ステップS11では、作業者端末200aは、図2に示したカメラ311および深度センサ312と同様のカメラおよび深度センサを用いて、SLAM(Simultaneous Localization and Mapping)処理により、カメラの位置姿勢を推定するとともに、作業現場に対応する3次元モデルを作成する。この処理では、作業者の作業の進捗に伴ってリアルタイムに3次元モデルが作成されるので、作成作業を効率化でき、作成作業時間を短縮できる。
また、ステップS12では、作業支援装置100は、作成された3次元モデルや、作業者端末200aでの検出値に基づく作業者の位置や作業者の視線の推定結果を用いて、作業対象箇所の3次元座標を自動的に特定する。この処理では、最終的に作業対象箇所としてARコンテンツデータベース101に登録される場所の候補が特定されてもよい。このステップS12の処理が自動化されることで、オーサリング作業を大幅に効率化し、その作業の正確性を向上させることができる。
最後に、ステップS13では、作業支援装置100のオペレータの操作によって、特定された作業対象箇所に対応するARコンテンツが作成される。この処理では、例えば、作業者とオペレータとの間で音声が授受され、オペレータは作業者と会話しながら、作業内容や注意事項など、ARコンテンツに記載するテキスト情報を入力することができる。
なお、このようなステップS12,S13の処理は、作業支援装置100とは別の、オーサリング専用の装置において実行されてもよい。
図5は、オーサリング作業フェーズで用いられる装置の構成例を示す図である。オーサリング作業フェーズでは、前述の作業支援装置100および作業者端末200aに加えて、図5に示すヘッドマウントユニット300aが用いられる。なお、作業支援装置100と作業者端末200aとは、例えば、ネットワークを介して通信可能になっている。また、作業者端末200aとヘッドマウントユニット300aとは、例えば、近距離無線通信によって通信可能になっている。
作業者401は、作業者端末200aを携帯するとともに、ヘッドマウントユニット300aを頭部に装着した状態で、作業現場400において実際の作業を行う。ヘッドマウントユニット300aは、カメラ301、深度センサ302および音声入出力装置303を備える。
カメラ301は、作業者401の視線とほぼ同じ方向の領域を撮影する。深度センサ302は、カメラ301の撮影領域について、カメラ301からの出力画像の画素ごとに深度を計測する。このようなヘッドマウントユニット300aからは、例えば、カメラ301によって得られたカラー画像の画像データと、深度センサ302によって得られた深度データとを含むRGB−Dデータが出力される。
作業者端末200aは、ヘッドマウントユニット300aから受信した画像データと深度データとに基づいて、SLAM処理を実行して、作業現場400の3次元形状を再現した3次元モデルを作成するとともに、カメラ301の位置姿勢を推定する。作業者端末200aは、作成された3次元モデルを示す3次元マップのデータや、推定された位置姿勢のデータを、カメラ画像の画像データと深度データとともに作業支援装置100に送信する。
音声入出力装置303は、マイクロフォンとスピーカとを備え、作業者401が発する音声を収音するとともに、音声を作業者401に対して伝達する。後述するように、音声入出力装置303によって収音された音声のデータは、作業者端末200aを介して作業支援装置100に送信され、これにより作業者401の音声が作業支援装置100のオペレータに伝達される。また、オペレータの音声のデータは、作業支援装置100から作業者端末200aを介して音声入出力装置303に送信され、これによりオペレータの音声が作業者401に伝達される。
また、作業者端末200aは、作業者401の移動状態を検出するためのセンサとして、ジャイロセンサ201と加速度センサ202を備える。作業者端末200aは、これらのセンサによる検出値を作業支援装置100に送信する。
作業支援装置100の処理については、次の図6を用いて説明する。
図6は、作業支援装置による作業対象箇所の特定処理の概要について説明するための図である。図6(A)は、作業現場における作業対象箇所の位置の例を示し、図6(B)は、作業者の動きと作業対象箇所の特定処理との関係について示す。
図6(A)では例として、作業現場400に3つの作業対象箇所411,412,413が存在するケースを示す。作業者401は、点線矢印421に示すように、作業現場400に進入して作業現場400の中を移動し、作業対象箇所411,412,413のそれぞれに対してあらかじめ決められた作業を行う。この場合、オーサリング作業では、作業対象箇所411,412,413のそれぞれについての3次元座標がARコンテンツデータベース101に登録される。
作業支援装置100は、作業者端末200aから受信した情報に基づいて、次のような処理を実行する。まず、作業支援装置100は、ジャイロセンサ201と加速度センサ202による検出結果に基づいて、作業者401の移動状態を監視する。そして、作業支援装置100は、移動状態の監視結果に基づいて、作業者401がある作業対象箇所に対して作業する領域(作業領域)に到達したことを判定する。作業を行う際、作業者401の位置はほとんど移動しないと考えられる。そこで、作業支援装置100は、移動状態の監視結果に基づき、作業者401が停留したと判定された場合に、作業者が作業領域に到達したと判定する。
図6(B)では例として、作業対象箇所411に対して作業するための作業領域422に、作業者401が到達したと判定されたものとする。すると、作業支援装置100は、作業者401の注目方向に基づいて、3次元モデル上の作業対象領域423を推定する。注目方向とは、例えば、作業者401の視線の方向であり、図6(B)は、作業者401の視線を矢印424によって表している。
作業対象領域423は、作業対象箇所411を包含する3次元領域として推定される。より具体的には、作業対象領域423は、3次元モデル上の特徴点のうち、作業対象箇所411を包含する3次元領域に含まれる特徴点群として推定される。したがって、作業対象領域423の推定により、3次元モデル上の特徴点の中から、作業対象箇所411の近傍に存在すると推定される特徴点が絞り込まれる。
また、例えば、作業者401が作業対象箇所411に対する指差し動作を行っていることを検出した場合、作業対象領域423は、作業者401の注目方向に加えて、指差し方向に基づいて推定されてもよい。図6(B)では、作業者401の指差し方向を矢印425によって表している。
次に、作業支援装置100は、作業対象領域423に含まれる3次元モデルの幾何形状や色情報に基づいて、作業対象箇所411の形状を切り出し、作業対象箇所411の3次元座標(例えば、重心の座標)を特定する。以上の処理により、作業対象箇所411の3次元空間上の位置が自動的に特定される。
次に、作業者端末200aおよび作業支援装置100について、詳細に説明する。
まず、図7は、オーサリング作業フェーズで用いられる各装置のハードウェア構成例を示す図である。
作業者端末200aは、例えば、CPU(Central Processing Unit)211、RAM212、フラッシュメモリ213、ネットワークインタフェース(I/F)214、通信インタフェース(I/F)215およびセンサユニット216を備える。
CPU211は、プログラムにしたがって、作業者端末200a全体を統括的に制御する。CPU211は、例えば、1または複数のプロセッサを備える。
RAM212は、作業者端末200aの主記憶装置として使用される。RAM212には、CPU211に実行させるOS(Operating System)プログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、RAM212には、CPU211による処理に必要な各種データが格納される。
フラッシュメモリ213は、作業者端末200aの補助記憶装置として使用される。フラッシュメモリ213には、OSプログラム、アプリケーションプログラム、および各種データが格納される。なお、補助記憶装置としては、HDDなどの他の種類の不揮発性記憶装置を使用することもできる。
ネットワークインタフェース214は、ネットワークを介して、作業支援装置100との間でデータを送受信する。
通信インタフェース215は、例えば、近距離無線通信を行うためのインタフェース装置であり、ヘッドマウントユニット300aとの間で無線通信によりデータを送受信する。近距離無線通信方式としては、Bluetooth(登録商標)などの方式を使用可能である。
センサユニット216には、前述したジャイロセンサ201と加速度センサ202が内蔵されている。これらの各センサによる検出値は、CPU211に送信される。
ヘッドマウントユニット300aは、前述したカメラ301、深度センサ302および音声入出力装置303に加えて、通信インタフェース(I/F)304を備える。通信インタフェース304は、作業者端末200aの通信インタフェース215との間で無線通信によりデータを送受信する。
作業支援装置100は、例えば、CPU111、RAM112、HDD113、グラフィックインタフェース(I/F)114、入力インタフェース(I/F)115、読み取り装置116およびネットワークインタフェース(I/F)117を有する。
CPU111は、プログラムにしたがって、作業支援装置100全体を統括的に制御する。CPU111は、例えば、1または複数のプロセッサを備える。
RAM112は、作業支援装置100の主記憶装置として使用される。RAM112には、CPU111に実行させるOSプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、RAM112には、CPU111による処理に必要な各種データが格納される。
HDD113は、作業支援装置100の補助記憶装置として使用される。HDD113には、OSプログラム、アプリケーションプログラム、および各種データが格納される。なお、補助記憶装置としては、SSD(Solid State Drive)などの他の種類の不揮発性記憶装置を使用することもできる。
グラフィックインタフェース114には、ディスプレイ114aが接続されている。グラフィックインタフェース114は、CPU111からの命令にしたがって、画像をディスプレイ114aに表示させる。ディスプレイ114aとしては、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイなどがある。
入力インタフェース115には、入力装置115aが接続されている。入力インタフェース115は、入力装置115aから出力される信号をCPU111に送信する。入力装置115aとしては、キーボードやポインティングデバイスなどがある。ポインティングデバイスとしては、マウス、タッチパネル、タブレット、タッチパッド、トラックボールなどがある。
読み取り装置116には、可搬型記録媒体116aが脱着される。読み取り装置116は、可搬型記録媒体116aに記録されたデータを読み取ってCPU111に送信する。可搬型記録媒体116aとしては、光ディスク、光磁気ディスク、半導体メモリなどがある。
ネットワークインタフェース117は、ネットワークを介して、作業者端末200aとの間でデータを送受信する。
図8は、作業者端末および作業支援装置が備える処理機能の構成例を示すブロック図である。
作業者端末200aは、記憶部220、SLAM処理部231、音声処理部232および送受信処理部233を有する。なお、記憶部220は、例えば、RAM212、フラッシュメモリ213などの作業者端末200aが備える記憶装置の記憶領域として実現される。SLAM処理部231、音声処理部232および送受信処理部233の処理は、例えば、CPU211が所定のアプリケーションプログラムを実行することで実現される。
記憶部220には、3次元マップ221が記憶される。3次元マップ221には、作業現場の3次元形状を再現した3次元モデルを示すデータが登録される。具体的には、3次元マップ221には、3次元モデルに含まれる特徴点ごとに、3次元座標、特徴量および色情報(RGB情報)が登録される。
SLAM処理部231は、カメラ301から出力された画像データと、深度センサ302から出力された深度データと、3次元マップ221とに基づいて、SLAM処理を実行する。SLAM処理により、作業現場についての3次元モデルが作成されるとともに、カメラ301の位置姿勢が推定される。SLAM処理部231は、新たな特徴点を抽出すると、その特徴点についてのデータを3次元マップ221に追加的に登録していく。
音声処理部232は、音声入出力装置303によって収音された、作業者の音声のデータを、送受信処理部233に供給する。また、音声処理部232は、送受信処理部233から入力された、オペレータの音声のデータを、音声入出力装置303に出力して、オペレータの音声を出力させる。
送受信処理部233は、SLAM処理部231から入力されたデータを作業支援装置100に送信する。具体的には、カメラ画像の画像データ、3次元マップ221に対して新たに登録された特徴点についてのデータ、推定されたカメラ301の位置姿勢、および、センサユニット216内の各センサによる検出データが、作業支援装置100に送信される。また、送受信処理部233は、音声処理部232から入力された、作業者の音声のデータも、作業支援装置100に送信する。さらに、送受信処理部233は、作業支援装置100から受信した、オペレータの音声のデータを、音声処理部232に出力する。
一方、作業支援装置100は、記憶部120、送受信処理部131、画像・音声処理部132、停留状態判定部133、作業対象領域推定部134、作業対象箇所特定部135およびARコンテンツ作成処理部136を有する。
なお、記憶部120は、例えば、RAM112、HDD113などの作業支援装置100が備える記憶装置の記憶領域として実現される。送受信処理部131、画像・音声処理部132、停留状態判定部133、作業対象領域推定部134、作業対象箇所特定部135およびARコンテンツ作成処理部136の処理は、例えば、CPU111が所定のアプリケーションプログラムを実行することで実現される。
記憶部120には、ARコンテンツデータベース101と3次元マップ102が記憶される。3次元マップ102には、作業者端末200a内の3次元マップ221と同じデータが登録される。
送受信処理部131は、作業者端末200aの送受信処理部233から送信されたデータを受信する。送受信処理部131は、作業者端末200aから受信した特徴点のデータを、3次元マップ102に登録する。これにより、3次元マップ102の登録内容が3次元マップ221の登録内容と同一になる。また、送受信処理部131は、作業者端末200aから受信した画像データと音声データを、画像・音声処理部132に出力する。さらに、送受信処理部131は、画像・音声処理部132から入力された、オペレータの音声のデータを、作業者端末200aに送信する。
画像・音声処理部132は、送受信処理部131から入力された画像データをディスプレイ114aに出力して、カメラ画像を表示させる。また、画像・音声処理部132は、送受信処理部131から入力された音声データを音声入出力装置115bに出力して、作業者の音声を出力させる。さらに、画像・音声処理部132は、音声入出力装置115bによって収音されたオペレータの音声のデータを、送受信処理部131に出力する。
停留状態判定部133は、センサユニット216内の各センサによる検出データを、送受信処理部131から取得する。停留状態判定部133は、これらの検出データに基づいて、作業者が停留状態になったかを判定する。停留状態とは、作業者の位置がほとんど移動しない状態である。作業者が停留状態であるとき、作業者は、ある作業対象箇所に対する作業を行うための作業領域に到達していると判断される。
作業対象領域推定部134は、作業者が停留状態になっている期間でのカメラ301の位置姿勢に基づいて、作業者の注目方向ベクトルを算出する。また、作業対象領域推定部134は、3次元マップ102に登録された、注目方向の近傍に存在する特徴点群のデータに基づき、作業者が指差し動作を行ったことを検出した場合には、指差し方向ベクトルを算出する。作業対象領域推定部134は、これらのベクトルを平均した平均ベクトルを求め、作業者を起点として平均ベクトルの方向に沿った直線と、3次元マップ102に基づく3次元モデルとの干渉チェックを行うことで、作業対象領域を推定する。
作業対象箇所特定部135は、推定された作業対象領域における3次元モデルの幾何形状や色情報に基づいて、作業対象となる物体(設備や装置)の3次元モデルを特定し、特定結果に基づいて作業対象箇所の3次元座標を特定する。作業対象箇所特定部135は、特定された作業対象箇所の3次元座標を、ARコンテンツデータベース101に登録する。
ARコンテンツ作成処理部136は、オペレータの操作にしたがって、特定された作業対象箇所のそれぞれについて、表示させるARコンテンツを作成し、作業対象箇所に対応付けてARコンテンツデータベース101に登録する。
次に、作業者端末200aの処理について説明する。
図9は、作業者端末で実行される処理の手順を示すフローチャートの例である。作業者端末200aでは、1フレーム分のカメラ画像の画像データが深度データとともに入力されるたびに、図9の処理が実行される。
[ステップS101]SLAM処理部231は、カメラ画像の画像データと、深度データと、3次元マップ221とに基づいて、SLAM処理を実行する。SLAM処理により、作業現場についての3次元モデルが作成されるとともに、カメラ301の位置姿勢が推定される。SLAM処理部231は、新たな特徴点が抽出された場合、その特徴点についての3次元座標、特徴量および色情報を、3次元マップ221に追加する。
[ステップS102]送受信処理部233は、カメラ画像の画像データと、推定されたカメラ301の位置姿勢とをSLAM処理部231から取得し、これらを作業支援装置100に送信する。また、送受信処理部233は、ステップS101で新たな特徴点が抽出された場合、その特徴点に対応するデータを3次元マップ221から取得して、作業支援装置100に送信する。さらに、送受信処理部233は、センサユニット216内のジャイロセンサ201と加速度センサ202から検出データを取得し、これらの検出データを作業支援装置100に送信する。
図10は、SLAM処理部231の内部構成例を示す図である。この図10を用いて、図9のステップS101の処理について説明する。
SLAM処理部231は、例えば、特徴点検出部231a、マッチング部231b、位置姿勢推定部231cおよびマップ登録部231dを備える。
特徴点検出部231aは、入力されたカメラ画像から特徴点を複数抽出する。
マッチング部231bは、抽出された各特徴点と、3次元マップ221に登録された特徴点とのマッチング処理を実行する。なお、このマッチング処理では、例えば、カメラ画像と複数のキーフレームとの間で特徴点のマッチング処理が実行されてもよい。キーフレームとは、過去にカメラ301の位置姿勢の推定に成功したカメラ画像の中から、撮影時刻の差が所定時間以上であるといった条件に基づいて選択された画像である。
位置姿勢推定部231cは、マッチング処理の結果に基づいて、カメラ301の位置姿勢を推定する。なお、位置姿勢のデータは送受信処理部233に出力される。カメラ301の位置は、作業者の位置(具体的には、作業者の視点の位置)を近似的に示し、カメラ301の姿勢は、作業者の向き(具体的には、作業者の注目方向)を近似的に示す。
マップ登録部231dは、カメラ画像から抽出された特徴点のうち、3次元マップ221に登録されていない新たな特徴点についてのデータを、3次元マップ221に追加的に登録する。特徴点についてのデータとしては、例えば、3次元座標、特徴量、色情報が登録される。
なお、本実施の形態では上記のように、作業者が携帯するセンサデバイス(カメラ301、深度センサ302)を用いて、作業者の位置や注目方向が推定される。しかし、作業者の位置や注目方向は、他の方法によって検出されてもよい。例えば、作業現場に対応する3次元マップが事前に用意されている場合には、作業現場に1組以上のカメラおよび深度センサが固定的に設置されてもよい。そして、これらのセンサデバイスによる検出データと、事前に用意された3次元マップとに基づいて、作業者の位置や注目方向が推定されてもよい。
次に、作業支援装置100の処理について説明する。
図11は、作業支援装置で実行される処理の手順を示すフローチャートの例である。
[ステップS111]停留状態判定部133は、センサユニット216による検出データを送受信処理部131から取得し、この検出データに基づいて、作業者が停留状態かを判定する。停留状態であると判定された場合、停留状態判定部133は、ステップS112の処理を実行する。一方、停留状態でないと判定された場合、停留状態判定部133は、センサユニット216による次の検出データを送受信処理部131が受信するのを待機し、次の検出データが受信されると、その検出データに基づいてステップS111の処理を再度実行する。
[ステップS112]作業対象領域推定部134は、カメラ301の位置姿勢を送受信処理部131から取得し、この位置姿勢に基づいて、作業者の注目方向を示す注目方向ベクトルを算出する。また、作業対象領域推定部134は、3次元マップ102に登録された特徴点群の中から、作業者の注目方向(視線の方向)の近傍に存在する特徴点群のデータを抽出する。作業対象領域推定部134は、抽出された特徴点群のデータに基づいて、作業者が作業対象箇所に対する指差し動作を行っているかを判定する。指差し動作を行っていると判定された場合、作業対象領域推定部134は、指差し方向を示す指差し方向ベクトルを算出する。
[ステップS113]作業対象領域推定部134は、算出された注目方向ベクトルと指差し方向ベクトルとの平均ベクトルを算出する。作業対象領域推定部134は、作業者を起点として平均ベクトルの方向に沿った直線と、3次元マップ102に基づく3次元モデルとの干渉チェックを行うことで、作業対象領域を推定する。
[ステップS114]作業対象箇所特定部135は、推定された作業対象領域における3次元モデルの幾何形状や色情報に基づいて、作業対象となる設備や装置の3次元モデルを特定し、特定結果に基づいて作業対象箇所の3次元座標を特定する。作業対象箇所特定部135は、特定された作業対象箇所の3次元座標を、ARコンテンツデータベース101に登録する。
[ステップS115]ARコンテンツ作成処理部136は、作業支援装置100のオペレータの操作にしたがって、特定された作業対象箇所に表示させるARコンテンツを作成する。例えば、オペレータは、ARコンテンツによって表示させる作業内容や注意事項のテキスト情報を入力する。このとき、オペレータは、作業者との会話を通じて入力内容を考えることができるので、本作業フェーズで作業する作業者にとって有用な情報を入力することができる。また、例えば、オペレータは、入力されたテキスト情報をどのような形態で表示させるかを、あらかじめ用意された表示形態の中から選択する。
ARコンテンツ作成処理部136は、オペレータによる登録操作に応じて、このようにして作成されたARコンテンツを、ステップS114で登録された作業対象箇所の3次元座標に対応付けてARコンテンツデータベース101に登録する。
次に、図12、図13を用いて、ステップS111での停留状態の判定処理について説明する。
図12は、停留状態の判定処理手順を示すフローチャートの例である。停留状態判定部133は、送受信処理部131が作業者端末200aからセンサユニット216による検出データを受信するたびに、図12の処理を実行する。
[ステップS121]作業対象領域推定部134は、送受信処理部131によって受信された、センサユニット216による検出データを取得する。具体的には、作業対象領域推定部134は、ジャイロセンサ201によって検出されたジャイロデータ(例えば、角速度データ)と、加速度センサ202によって検出された加速度データとを取得する。
[ステップS122]作業対象領域推定部134は、取得されたジャイロデータと加速度データのそれぞれについて、ハイパスフィルタを用いてAC(Alternating Current)成分を分離する。
[ステップS123]作業対象領域推定部134は、ジャイロデータと加速度データのそれぞれについて、直近に算出されたT個のAC成分を取得する。ここで取得されるAC成分には、ステップS122で分離されたAC成分も含まれる。作業対象領域推定部134は、ジャイロデータおよび加速度データのそれぞれについて、取得されたT個のAC成分を用いてSMA(Signal Magnitude Area)を算出する。
例えば、3軸の加速度データのAC成分を用いたSMAは、次の式(1)にしたがって算出される。なお、iは、T個のAC成分のそれぞれに順に付与される番号を示し、x(i),y(i),z(i)は、i番目のAC成分のデータについてのx軸成分、y軸成分、z軸成分をそれぞれ示す。
SMA=Σ(|x(i)|+|y(i)|+|z(i)|)/T ・・・(1)
[ステップS124]作業対象領域推定部134は、算出されたSMAを所定の閾値と比較する。ここでは、ジャイロデータと加速度データのそれぞれに対して個別に閾値TH1,TH2が設定される。ジャイロデータに基づくSMAが閾値TH1以下であり、かつ、加速度データに基づくSMAが閾値TH2以下である場合、作業対象領域推定部134は、ステップS125の処理を実行する。一方、上記条件を満たさない場合、作業対象領域推定部134は、ステップS126の処理を実行する。
[ステップS125]作業対象領域推定部134は、作業者が停留状態であると判定する。
[ステップS126]作業対象領域推定部134は、作業者が移動状態である(停留状態でない)と判定する。
前述した図11の処理では、ステップS111において、上記のステップS125,S126の判定結果が用いられる。作業対象箇所に対する作業を行っているとき、作業者の立ち位置はほとんど移動しないと考えられる。そこで、図11の処理では、作業者が停留状態であるとき、作業者が作業領域に位置して作業中であると判断され、このような状態でのみステップS112以降の処理、すなわち、作業対象箇所を特定するための処理が実行される。これにより、作業対象箇所を精度よく特定できるようになる。また、作業中でない状態では作業対象箇所の特定処理の実行が停止されるので、作業支援装置100の処理負荷を軽減できる。
図13は、停留状態の判定例を示す図である。図13では例として、加速度センサ202による3軸の加速度データに基づいて停留状態が判定されるものとする。図13において、グラフ133aは、加速度データの遷移を示し、グラフ133bは、SMAの遷移を示す。この図13の例では、SMAと閾値THとが比較されることで、期間T1,T3で移動状態と判定され、期間T2で停留状態と判定されている。
なお、上記のように、本実施の形態では、作業者の移動状態を検出するためのセンサデバイスの一例として、ジャイロセンサ201と加速度センサ202を用いたが、これらのセンサに限定されるものではない。例えば、SLAM処理部231によって推定されるカメラ301の位置に基づいて、作業者の移動状態が検出されてもよい。
次に、図11のステップS112,S113に示した作業対象領域推定部134の処理について説明する。
ステップS112において、作業対象領域推定部134は、作業者の注目方向を示す注目方向ベクトルを算出する。また、作業対象領域推定部134は、作業者が作業対象箇所に対する指差し動作を行っている場合、その指差し方向を示す指差し方向ベクトルを算出する。
注目方向ベクトルと指差し方向ベクトルは、例えば、大きさが同一のベクトル(例えば、単位ベクトル)として算出される。また、注目方向ベクトルの方向は、送受信処理部131が作業者端末200aから受信したカメラ301の姿勢の方向として算出される。一方、指差し方向ベクトルは、次の図14、図15に示すような処理によって算出される。
図14は、指差し方向ベクトルの算出手順を示すフローチャートの例である。また、図15は、手および円筒の3次元モデルの例を示す図である。
[ステップS131]作業対象領域推定部134は、3次元マップ102から、作業者の注目方向(視線の方向)に存在する特徴点群のデータを取得する。この処理では、作業対象領域推定部134は、例えば、カメラ301の位置姿勢と、あらかじめ求められたカメラ301のカメラパラメータとに基づいて、カメラ画像に写り込んでいる特徴点群のデータを3次元マップ102から取得する。
[ステップS132]作業対象領域推定部134は、ステップS131で取得された特徴点群と、あらかじめ用意された手の3次元モデルとのマッチングを行う。手の3次元モデルとしては、例えば、図15に示す3次元モデル431のように、腕から手の先までの形状を示すモデルが使用される。また、マッチング処理としては、例えば、ICP(Iterative Closet Points)アルゴリズムを用いることができる。
[ステップS133]作業対象領域推定部134は、マッチングに成功した場合、すなわち、指差し動作が検出された場合には、ステップS134の処理を実行し、マッチングに失敗した場合、指差し方向のベクトル算出処理を終了する。
[ステップS134]作業対象領域推定部134は、マッチングの結果から、腕部(肘から手の先までの領域)を特定する。
[ステップS135]作業対象領域推定部134は、特定された腕部の3次元形状を、図15に例示するような円筒形状モデル432によって近似する。
[ステップS136]作業対象領域推定部134は、近似された円筒形状モデル432の軸と同一の方向を有し、あらかじめ決められた大きさ(注目方向ベクトルと同じ大きさ)を有する指差し方向ベクトルを算出する。図15では、円筒形状モデル432の軸の方向、すなわち指差し方向ベクトルの方向を、矢印433によって表している。
図16は、ベクトルに基づく作業対象領域の推定処理例を示す図である。この図16を用いて、図11のステップS113の処理例について説明する。
作業対象領域推定部134は、注目方向ベクトルV1と指差し方向ベクトルV2とを平均した平均ベクトルV3を算出する。また、作業対象領域推定部134は、作業者の目の位置と、作業者の指先の位置との中間点P1を算出する。なお、目の位置は、カメラ301の位置として特定され、指先の位置は、図14の処理でマッチングに成功した手の3次元モデルから特定される。
作業対象領域推定部134は、中間点P1を起点とし、平均ベクトルV3の方向に延びる直線L1を設定する。ただし、指差し動作が検出されていない場合には、作業者の目の位置を起点とし、注目方向ベクトルV1の方向に延びる直線が、直線L1として設定される。そして、作業対象領域推定部134は、設定された直線L1と、3次元マップ221に登録された3次元モデルの特徴点群とが交差する交点P2を特定し、交点P2を中心とした一定の3次元領域を、作業対象領域として設定する。図16の例では、交点P2を中心として3軸方向にそれぞれ一定距離の位置に内接する立方体441が、作業対象領域として設定されている。
設定された作業対象領域に含まれる、3次元モデルの特徴点群442が、図11のステップS114において作業対象箇所特定部135によって利用される。すなわち、上記処理により、作業対象箇所を特定するために利用される3次元モデルのデータが、3次元マップ102の中から絞り込まれる。
なお、図11では、作業者が停留状態となった直後のタイミングでのみ、注目方向ベクトルと指差し方向ベクトルとが算出された。しかし、停留状態と判定されている期間内の複数のタイミングにおいて、それぞれベクトルの算出が行われてもよい。例えば、停留期間内で画像データおよびカメラ301の位置姿勢が入力されるたびに、注目方向ベクトルが算出され、各注目方向ベクトルと1つの指差し方向ベクトルとの平均により平均ベクトルが算出されてもよい。
次に、図11のステップS114に示した作業対象箇所特定部135の処理について説明する。
図17は、作業対象箇所の特定処理手順を示すフローチャートの例である。
[ステップS141]作業対象箇所特定部135は、3次元マップ102から、作業対象領域推定部134によって特定された作業対象領域に含まれる特徴点群のデータを、処理対象として取得する。
[ステップS142]作業対象箇所特定部135は、取得された特徴点群の3次元座標に基づいて、3次元モデル上の平面領域を抽出する。
[ステップS143]作業対象箇所特定部135は、抽出された平面領域の中から、所定の条件に合致しない平面領域を選択し、その平面領域を示す特徴点群のデータを処理対象から(すなわち、ステップS141で取得された特徴点群から)削除する。この処理では、作業対象領域に含まれる3次元モデルから、作業対象箇所を含まないと推定される平面領域を削除して、作業対象箇所の特定するための領域を絞り込む。例えば、一定の大きさ以上の平面領域は作業対象箇所でないと判断されて、その平面領域が作業対象箇所を特定するための領域から除外される。
[ステップS144]作業対象箇所特定部135は、処理対象の特徴点群のデータに基づいて、作業対象箇所の近似形状を特定する。例えば、作業対象箇所の近似形状は、処理対象の特徴点群に基づく3次元モデルから、色情報に基づき、特徴的な色が存在する部分を切り出すことで特定される。また、作業対象箇所の形状を示す3次元モデルがあらかじめ用意されている場合には、処理対象の特徴点群と用意された3次元モデルとのマッチングにより、作業対象箇所の近似形状が特定されてもよい。
[ステップS145]作業対象箇所特定部135は、特定された近似形状における重心の3次元座標を、作業対象箇所の3次元座標としてARコンテンツデータベース101に登録する。
図18は、平面領域の抽出処理手順を示すフローチャートの例である。この図18を用いて、図17のステップS142における平面抽出処理の例について説明する。
[ステップS151]作業対象箇所特定部135は、処理対象の特徴点群のデータに基づき、作業対象領域からノーマルベクトルとエッジを抽出する。
[ステップS152]作業対象箇所特定部135は、ノーマルベクトルとエッジの抽出結果に基づいてピクセルセグメンテーションを行い、作業対象領域から小領域を1つ抽出する。
[ステップS153]作業対象箇所特定部135は、抽出された小領域に含まれる画素数(ここでは、特徴点の数)が、所定の閾値αより大きいかを判定する。作業対象箇所特定部135は、画素数が閾値αより大きい場合、ステップS154の処理を実行し、画素数が閾値α以下の場合、ステップS157の処理を実行する。
[ステップS154]作業対象箇所特定部135は、抽出された小領域に含まれる特徴点群のデータに基づき、RANSAC(Random Sample Consensus)によって平面モデルを推定する。
[ステップS155]作業対象箇所特定部135は、推定された平面モデルに含まれる特徴点群を示すインライアの数が、所定の閾値βより大きいかを判定する。作業対象箇所特定部135は、インライアの数が閾値βより大きい場合、ステップS156の処理を実行し、インライアの数が閾値β以下の場合、ステップS157の処理を実行する。
[ステップS156]作業対象箇所特定部135は、推定された平面モデルを調整し、平面の境界線を抽出する。このステップS156の処理が実行された場合には、ステップS152で抽出された小領域から平面領域が抽出されたことになる。
[ステップS157]作業対象箇所特定部135は、作業対象領域の全体についてステップS152〜S156の処理が完了したかを判定する。作業対象箇所特定部135は、未実行の領域がある場合、処理をステップS152に進めて、未実行の領域についてステップS152以降の処理を実行する。一方、作業対象箇所特定部135は、領域全体について処理が完了した場合、平面抽出処理を終了する。
なお、以上の図18の処理では、作業対象領域に含まれる特徴点群のデータを用いて平面抽出処理が実行されたが、他の例として、深度センサ302によって検出された、カメラ画像の画素ごとの深度データを用いて平面抽出処理が実行されてもよい。
図19は、領域の絞り込み処理手順を示すフローチャートの例である。この図19を用いて、図17のステップS143における領域の絞り込み処理の例について説明する。図19では例として、抽出された平面領域の大きさ、および、各平面領域と作業者の位置(カメラ301の位置)との距離に基づいて、作業対象箇所を含む可能性のある平面領域が探索される。そして、そのような平面領域が見つかった場合には、それ以外の平面領域が、作業対象箇所を特定するための領域から除外される。
[ステップS161]作業対象箇所特定部135は、図18の処理によって抽出された各平面領域と、作業者との距離、すなわちカメラ301との距離を算出する。作業対象箇所特定部135は、抽出された平面領域を作業者との距離が近い順にソートする。
[ステップS162]作業対象箇所特定部135は、抽出された平面領域を1つ選択する。ここでは、ステップS162の処理が実行されるたびに、ソートされた順序にしたがって先頭から1つ平面領域が選択される。作業対象箇所特定部135は、選択された平面領域の面積を算出する。
[ステップS163]作業対象箇所特定部135は、算出された面積が所定の閾値以内かを判定する。作業対象箇所特定部135は、面積が閾値以内の場合、ステップS166の処理を実行し、面積が閾値を超える場合、ステップS164の処理を実行する。なお、このステップS163では、他の例として、選択された平面領域の縦横のそれぞれの大きさがそれぞれ所定の閾値以内かが判定されてもよい。
[ステップS164]作業対象箇所特定部135は、図18の処理によって抽出されたすべての平面領域について処理対象として選択済みかを判定する。作業対象箇所特定部135は、未選択の平面領域がある場合、処理をステップS162に進め、未選択の平面領域の中から1つを選択する。一方、作業対象箇所特定部135は、すべての平面領域について選択済みの場合、ステップS165の処理を実行する。
[ステップS165]このケースでは、抽出されたすべての平面領域の面積が閾値より大きく、作業対象箇所を含まない可能性が高いと判定される。そのため、作業対象箇所特定部135は、作業対象領域に含まれる3次元モデルから、推定されたすべての平面領域を削除する。これにより、作業対象箇所特定の処理対象となる特徴点群のデータが絞り込まれる。
[ステップS166]作業対象箇所特定部135は、ステップS162で選択された平面領域を、作業対象箇所を含む可能性のある領域として特定する。この場合、作業対象箇所特定部135は、図18の処理によって抽出された平面領域の中から、ステップS162で選択された平面領域以外の他の平面領域を削除対象として選択し、作業対象領域に含まれる3次元モデルから、削除対象の平面領域を削除する。これにより、作業対象箇所特定の処理対象となる特徴点群のデータが絞り込まれる。
以上の図19の処理によれば、抽出された平面領域の中から、面積が閾値以下であり、かつ、作業者の位置に最も近い平面領域が、作業対象箇所を含む可能性のある領域として作業対象領域に残され、その他の平面領域が作業対象領域から削除される。
図20は、平面の抽出および領域絞り込みの処理例を示す図である。図20の例では、カメラ画像451において、構造物452,453の3次元モデルが写っているものとする。そして、構造物452から平面領域452aが抽出され、構造物453から平面領域453aが抽出されたとする。さらに、例えば、図19の処理によって、作業対象箇所を含む可能性のある領域として平面領域452aが選択されたとする。
この場合、平面領域453aは、構造物452の背景領域の可能性があると推定されて、作業対象領域から削除される。一方、平面領域452aが検出された構造物452は、その大きさが小さく、かつ、作業者側に突出していると推定されることから、作業対象箇所を含む可能性があると判断される。
次に、図17のステップS144の処理例について説明する。前述のように、ステップS144では、処理対象の特徴点群のデータに基づいて、作業対象箇所の近似形状が特定される。この処理では、例えば、色情報に基づく切り出し処理が実行される。
図21は、色情報に基づく切り出し処理手順を示すフローチャートの例である。
[ステップS171]作業対象箇所特定部135は、処理対象の各特徴点についての3次元座標と色情報とを、3次元マップ102から取得する。
[ステップS172]作業対象箇所特定部135は、色ごとの画素数(特徴点数)をカウントし、そのカウント結果に基づいて同色の領域(特徴点群)を抽出する。
[ステップS173]作業対象箇所特定部135は、抽出された同色領域の中から、背景として除去が必要な領域があるかを判定する。例えば、特徴点全体の数に対する大きさの(特徴点数)の割合が一定以上の同色領域が、除去が必要な領域と判定される。作業対象箇所特定部135は、除去が必要な領域がある場合、ステップS174の処理を実行し、除去が必要な領域がない場合、ステップS175の処理を実行する。
[ステップS174]作業対象箇所特定部135は、除去が必要と判定された同色領域、すなわち背景領域に含まれる特徴点を、処理対象から除外する。これにより、作業対象領域に含まれる3次元モデルから背景領域が除去される。
[ステップS175]作業対象箇所特定部135は、作業者の位置と向き(すなわち、カメラ301の位置姿勢)に基づいて、同色領域の中から最も大きい領域を特定する。例えば、作業対象箇所特定部135は、同色領域のそれぞれについて、作業者の位置から見た場合の面積を算出し、算出された面積が最も大きい同色領域を特定する。作業対象箇所特定部135は、特定された同色領域を、作業対象箇所の近似形状として3次元モデルから切り出す。
以上の図21の処理によれば、同色領域のうち、ある程度大きい領域については、背景領域と推定されて作業対象箇所に含まれる3次元モデルから除去される。そして、残りの同色領域の中から最も大きい同色領域が、特徴的な色の領域であり、作業対象箇所を含むと推定される領域として特定される。
作業対象箇所特定部135は、以上のようにして特定された同色領域に含まれる3次元モデルを、作業対象箇所の近似形状として特定する。そして、図17のステップS145において、作業対象箇所特定部135は、特定された近似形状における重心の3次元座標を、作業対象箇所の3次元座標としてARコンテンツデータベース101に登録する。
図22は、平面抽出および色情報に基づく切り出しによる作業対象箇所の特定処理例を示す図である。作業対象箇所は、実際には3次元形状として特定されるが、図22では便宜的に、カメラ画像461の撮影方向を基準として作業対象箇所の特定処理について説明する。
図22の例では、図19に示した平面抽出処理により、平面領域462,463が抽出されている。また、これらのうち、平面領域462が作業対象箇所を含む可能性のある領域として特定される一方、平面領域463は、作業対象領域に含まれる3次元モデルから削除される。
次に、平面領域463が削除された作業対象領域に含まれる各特徴点について、図21に示した色情報に基づく切り出し処理が実行され、同色領域464が特定される。その結果、3次元モデルから同色領域464に対応する3次元形状465が、作業対象箇所の近似形状として特定され、この3次元形状465の重心465aの3次元座標が、作業対象箇所の3次元座標としてARコンテンツデータベース101に登録される。
なお、上記の図22の処理では、作業対象箇所を含む可能性の低い領域を除去することのみを目的として、平面抽出処理が実行されていた。しかし、他の例として、作業対象箇所を含む可能性の高い領域を絞り込むことを目的として、平面抽出処理が実行されてもよい。例えば、図22において、色情報に基づく切り出し処理が、平面領域462に含まれる特徴点群の色情報だけを用いて実行されてもよい。
また、作業対象箇所の近似形状の特定処理では、前述のように、あらかじめ用意された、作業対象箇所の形状を示す3次元モデルを用いたマッチング処理が行われてもよい。この場合、例えば、作業対象箇所に含まれる3次元モデル全体からマッチングが行われてもよいし、図22の右上に示したカメラ画像461のように、背景の平面領域が除去された領域からマッチングが行われてもよい。さらに、3次元モデルを用いたマッチングと、色情報に基づく切り出しとが併用されてもよい。この場合、例えば、それぞれの処理によって作業対象箇所として特定された領域の重複部分が、作業対象箇所の近似形状として最終的に特定される。
以上のように、作業対象箇所特定部135は、作業対象領域における3次元モデルの幾何形状や色情報などに基づいて、作業対象となる設備や装置の3次元モデルの領域を特定できる。ここで、作業対象領域推定部134により、作業者の注目方向や指差し方向に基づいて作業対象領域が絞り込まれ、作業対象箇所特定部135は、このような作業対象領域に含まれる3次元モデルのみから作業対象箇所を探索する。これにより、作業対象箇所特定部135は、作業対象箇所を精度よく特定できる。
なお、以上説明した第2の実施の形態に係る作業支援システムは、次のように変形することができる。例えば、作業支援装置100の処理機能の一部を、作業者端末200aが備えてもよい。一例として、停留状態判定部133の処理機能を作業者端末200aが備えてもよい。この場合、作業者端末200aにおいて、センサユニット216の検出データに基づいて停留状態か否かが判定される。そして、停留状態であると判定されている期間において、作業者端末200aからカメラ301の位置姿勢が作業支援装置100に送信される。これにより、センサユニット216の検出データとカメラ301の位置姿勢とを作業支援装置100に常時送信しなくてよくなり、ネットワークの通信負荷を軽減できる。
また、作業者端末200aの処理機能の一部を、作業支援装置100が備えてもよい。例えば、SLAM処理部231の処理機能を作業支援装置100が備えてもよい。この場合、作業者端末200aから画像データと深度データとが作業支援装置100に送信され、作業支援装置100においてSLAM処理が実行される。
なお、上記の各実施の形態に示した装置(例えば、情報処理装置1、作業支援装置100、作業者端末200a,200b)の処理機能は、コンピュータによって実現することができる。その場合、各装置が有すべき機能の処理内容を記述したプログラムが提供され、そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、磁気記憶装置、光ディスク、光磁気記録媒体、半導体メモリなどがある。磁気記憶装置には、ハードディスク装置(HDD)、フレキシブルディスク(FD)、磁気テープなどがある。光ディスクには、CD(Compact Disc)、DVD(Digital Versatile Disc)、ブルーレイディスク(BD)などがある。光磁気記録媒体には、MO(Magneto-Optical disk)などがある。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD、CDなどの可搬型記録媒体が販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムまたはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムにしたがった処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムにしたがった処理を実行することもできる。また、コンピュータは、ネットワークを介して接続されたサーバコンピュータからプログラムが転送されるごとに、逐次、受け取ったプログラムにしたがった処理を実行することもできる。
1 情報処理装置
1a 記憶部
1b 演算部
2 作業現場
2a 3次元モデル
2b 3次元モデルデータ
3 作業者
4 作業対象
5a,5b 部分領域
5c 3次元座標
D1,D1a 向き
S1〜S3 ステップ

Claims (13)

  1. 作業現場の環境を再現した3次元モデルを示すデータを記憶する記憶部と、
    前記作業現場に存在する作業者の向きの検出結果に基づいて、前記3次元モデルから作業対象が存在する第1の部分領域を特定し、前記第1の部分領域の幾何形状、または前記第1の部分領域の色情報の少なくとも一方に基づいて、前記第1の部分領域から前記作業対象に対応する第2の部分領域を特定し、前記3次元モデルが形成された座標空間における前記第2の部分領域の3次元座標を、前記作業現場を撮像した画像上に前記作業対象の位置に応じて画像情報を表示するための位置情報として前記記憶部に登録する演算部と、
    を有する情報処理装置。
  2. 前記演算部は、さらに、前記作業者の位置の検出結果に基づいて、前記作業者が移動しているかを判定し、
    前記第1の部分領域の特定は、前記作業者が移動していないと判定された場合に実行される、
    請求項1記載の情報処理装置。
  3. 前記作業者が指差し動作を行った場合、前記第1の部分領域は、前記作業者の向きと、前記指差し動作における指差し方向とに基づいて特定される、
    請求項1または2記載の情報処理装置。
  4. 前記第1の部分領域は、前記作業者を起点とした前記作業者の向きと、前記3次元モデルとが交差する位置に基づいて特定される、
    請求項1乃至3のいずれか1項に記載の情報処理装置。
  5. 前記第2の部分領域は、前記第1の部分領域から検出された平面領域の大きさ、および、前記平面領域と前記作業者との距離に基づいて特定される、
    請求項1乃至4のいずれか1項に記載の情報処理装置。
  6. 前記第2の部分領域は、前記第1の部分領域における色別の領域の大きさに基づいて特定される、
    請求項1乃至5のいずれか1項に記載の情報処理装置。
  7. 前記第2の部分領域は、前記作業対象をモデル化した他の3次元モデルと、前記第1の部分領域とのマッチング処理によって特定される、
    請求項1乃至6のいずれか1項に記載の情報処理装置。
  8. 前記作業者の向きは、前記作業者が保持し、前記作業現場を撮像する撮像装置による撮像画像に基づいて検出される、
    請求項1乃至7のいずれか1項に記載の情報処理装置。
  9. 前記撮像画像に基づいて、前記作業者の向きが検出されるとともに、前記3次元モデルが作成される、
    請求項8記載の情報処理装置。
  10. 作業現場に存在する作業者の向きを検出する検出装置と、
    前記作業現場の環境を再現した3次元モデルを示すデータを記憶する記憶部、および、
    前記作業者の向きの検出結果に基づいて、前記3次元モデルから作業対象が存在する第1の部分領域を特定し、前記第1の部分領域の幾何形状、または前記第1の部分領域の色情報の少なくとも一方に基づいて、前記第1の部分領域から前記作業対象に対応する第2の部分領域を特定し、前記3次元モデルが形成された座標空間における前記第2の部分領域の3次元座標を、前記作業現場を撮像した画像上に前記作業対象の位置に応じて画像情報を表示するための位置情報として前記記憶部に登録する演算部、
    を有する情報処理装置と、
    を含む情報処理システム。
  11. 前記検出装置は、前記作業者が保持し、前記作業現場を撮像する撮像装置による撮像画像に基づいて、前記作業者の向きを検出する、
    請求項10記載の情報処理システム。
  12. 前記検出装置は、前記撮像画像に基づいて、前記作業者の向きの検出処理と、前記3次元モデルの形成処理とを実行し、前記作業者の向きの検出結果と形成された前記3次元モデルのデータとを前記情報処理装置に送信する、
    請求項11記載の情報処理システム。
  13. コンピュータが、
    作業現場に存在する作業者の向きの検出結果に基づいて、前記作業現場の環境を再現した3次元モデルから作業対象が存在する第1の部分領域を特定し、
    前記第1の部分領域の幾何形状、または前記第1の部分領域の色情報の少なくとも一方に基づいて、前記第1の部分領域から前記作業対象に対応する第2の部分領域を特定し、
    前記3次元モデルが形成された座標空間における前記第2の部分領域の3次元座標を、前記作業現場を撮像した画像上に前記作業対象の位置に応じて画像情報を表示するための位置情報として記憶部に登録する、
    情報処理方法。
JP2017255093A 2017-12-29 2017-12-29 情報処理装置、情報処理システムおよび情報処理方法 Active JP7017689B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017255093A JP7017689B2 (ja) 2017-12-29 2017-12-29 情報処理装置、情報処理システムおよび情報処理方法
US16/214,393 US11238653B2 (en) 2017-12-29 2018-12-10 Information processing device, information processing system, and non-transitory computer-readable storage medium for storing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017255093A JP7017689B2 (ja) 2017-12-29 2017-12-29 情報処理装置、情報処理システムおよび情報処理方法

Publications (2)

Publication Number Publication Date
JP2019121136A true JP2019121136A (ja) 2019-07-22
JP7017689B2 JP7017689B2 (ja) 2022-02-09

Family

ID=67057733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017255093A Active JP7017689B2 (ja) 2017-12-29 2017-12-29 情報処理装置、情報処理システムおよび情報処理方法

Country Status (2)

Country Link
US (1) US11238653B2 (ja)
JP (1) JP7017689B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049281A1 (ja) * 2019-09-12 2021-03-18 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、ヘッドマウントディスプレイ、および空間情報取得方法
JP2021071885A (ja) * 2019-10-30 2021-05-06 富士通株式会社 領域切り出し方法および領域切り出しプログラム
WO2021181448A1 (ja) * 2020-03-09 2021-09-16 オリンパス株式会社 面推定方法、面推定装置、および記録媒体
WO2023054661A1 (ja) * 2021-10-01 2023-04-06 株式会社日立製作所 注視位置分析システム及び注視位置分析方法
WO2023100743A1 (ja) * 2021-12-03 2023-06-08 株式会社日立製作所 作業支援システム、作業対象特定装置および方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005091A (ja) * 2016-07-06 2018-01-11 富士通株式会社 表示制御プログラム、表示制御方法および表示制御装置
US11741620B1 (en) * 2020-01-24 2023-08-29 Apple Inc. Plane detection using depth sensor and semantic information
CN115114139A (zh) * 2021-03-17 2022-09-27 华为技术有限公司 异常检测方法及装置
JP2024042545A (ja) * 2022-09-15 2024-03-28 株式会社日立製作所 作業支援システム、および作業支援方法
JP2024073077A (ja) * 2022-11-17 2024-05-29 ソニーセミコンダクタソリューションズ株式会社 情報処理装置および情報処理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168798A (ja) * 2011-02-15 2012-09-06 Sony Corp 情報処理装置、オーサリング方法及びプログラム
JP2014526174A (ja) * 2011-07-01 2014-10-02 インテル コーポレイション モバイル拡張現実システム
JP2015026138A (ja) * 2013-07-24 2015-02-05 富士通株式会社 情報処理装置、位置指定方法および位置指定プログラム
WO2015107665A1 (ja) * 2014-01-17 2015-07-23 株式会社日立製作所 作業支援用データ作成プログラム
WO2015173882A1 (ja) * 2014-05-13 2015-11-19 株式会社日立製作所 コンテンツ生成方法および管理装置
JP2015228050A (ja) * 2014-05-30 2015-12-17 ソニー株式会社 情報処理装置および情報処理方法
JP2016004292A (ja) * 2014-06-13 2016-01-12 富士通株式会社 端末装置、情報処理システム、及び表示制御プログラム
JP2016017757A (ja) * 2014-07-04 2016-02-01 Kddi株式会社 情報登録装置及び情報継続登録装置並びに方法及びプログラム
JP2017068601A (ja) * 2015-09-30 2017-04-06 Kddi株式会社 Ar情報表示装置
JP2017146759A (ja) * 2016-02-17 2017-08-24 株式会社菊池製作所 重畳画像表示システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005018385A (ja) 2003-06-26 2005-01-20 Mitsubishi Electric Corp 作業情報提供装置
US8564534B2 (en) * 2009-10-07 2013-10-22 Microsoft Corporation Human tracking system
US9113050B2 (en) * 2011-01-13 2015-08-18 The Boeing Company Augmented collaboration system
US9218063B2 (en) * 2011-08-24 2015-12-22 Apple Inc. Sessionless pointing user interface
JP6141108B2 (ja) * 2013-06-07 2017-06-07 キヤノン株式会社 情報処理装置およびその方法
JP2015125641A (ja) 2013-12-26 2015-07-06 キヤノンマーケティングジャパン株式会社 情報処理装置、その制御方法、及びプログラム
US9965895B1 (en) * 2014-03-20 2018-05-08 A9.Com, Inc. Augmented reality Camera Lucida
US9696798B2 (en) * 2014-04-09 2017-07-04 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Eye gaze direction indicator
JP6540108B2 (ja) 2015-03-09 2019-07-10 富士通株式会社 画像生成方法、システム、装置、及び端末
JP6110893B2 (ja) * 2015-06-12 2017-04-05 株式会社コロプラ 仮想空間位置指定方法、プログラム、プログラムを記録した記録媒体、および、装置
US10249084B2 (en) * 2016-06-10 2019-04-02 Microsoft Technology Licensing, Llc Tap event location with a selection apparatus
US10140773B2 (en) * 2017-02-01 2018-11-27 Accenture Global Solutions Limited Rendering virtual objects in 3D environments
US10824293B2 (en) * 2017-05-08 2020-11-03 International Business Machines Corporation Finger direction based holographic object interaction from a distance
US10319150B1 (en) * 2017-05-15 2019-06-11 A9.Com, Inc. Object preview in a mixed reality environment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168798A (ja) * 2011-02-15 2012-09-06 Sony Corp 情報処理装置、オーサリング方法及びプログラム
JP2014526174A (ja) * 2011-07-01 2014-10-02 インテル コーポレイション モバイル拡張現実システム
JP2015026138A (ja) * 2013-07-24 2015-02-05 富士通株式会社 情報処理装置、位置指定方法および位置指定プログラム
WO2015107665A1 (ja) * 2014-01-17 2015-07-23 株式会社日立製作所 作業支援用データ作成プログラム
WO2015173882A1 (ja) * 2014-05-13 2015-11-19 株式会社日立製作所 コンテンツ生成方法および管理装置
JP2015228050A (ja) * 2014-05-30 2015-12-17 ソニー株式会社 情報処理装置および情報処理方法
JP2016004292A (ja) * 2014-06-13 2016-01-12 富士通株式会社 端末装置、情報処理システム、及び表示制御プログラム
JP2016017757A (ja) * 2014-07-04 2016-02-01 Kddi株式会社 情報登録装置及び情報継続登録装置並びに方法及びプログラム
JP2017068601A (ja) * 2015-09-30 2017-04-06 Kddi株式会社 Ar情報表示装置
JP2017146759A (ja) * 2016-02-17 2017-08-24 株式会社菊池製作所 重畳画像表示システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049281A1 (ja) * 2019-09-12 2021-03-18 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、ヘッドマウントディスプレイ、および空間情報取得方法
US11847784B2 (en) 2019-09-12 2023-12-19 Sony Interactive Entertainment Inc. Image processing apparatus, head-mounted display, and method for acquiring space information
JP7446320B2 (ja) 2019-09-12 2024-03-08 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置、ヘッドマウントディスプレイ、および空間情報取得方法
JP2021071885A (ja) * 2019-10-30 2021-05-06 富士通株式会社 領域切り出し方法および領域切り出しプログラム
JP7327083B2 (ja) 2019-10-30 2023-08-16 富士通株式会社 領域切り出し方法および領域切り出しプログラム
WO2021181448A1 (ja) * 2020-03-09 2021-09-16 オリンパス株式会社 面推定方法、面推定装置、および記録媒体
WO2023054661A1 (ja) * 2021-10-01 2023-04-06 株式会社日立製作所 注視位置分析システム及び注視位置分析方法
WO2023100743A1 (ja) * 2021-12-03 2023-06-08 株式会社日立製作所 作業支援システム、作業対象特定装置および方法

Also Published As

Publication number Publication date
US20190206135A1 (en) 2019-07-04
JP7017689B2 (ja) 2022-02-09
US11238653B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP7017689B2 (ja) 情報処理装置、情報処理システムおよび情報処理方法
CN111325796B (zh) 用于确定视觉设备的位姿的方法和装置
US11481982B2 (en) In situ creation of planar natural feature targets
JP5950973B2 (ja) フレームを選択する方法、装置、及びシステム
EP2915140B1 (en) Fast initialization for monocular visual slam
CN108805917B (zh) 空间定位的方法、介质、装置和计算设备
JP6348574B2 (ja) 総体的カメラ移動およびパノラマカメラ移動を使用した単眼視覚slam
EP3008695B1 (en) Robust tracking using point and line features
WO2020005635A1 (en) Object-based localization
US20190026922A1 (en) Markerless augmented reality (ar) system
US20190026948A1 (en) Markerless augmented reality (ar) system
US11094079B2 (en) Determining a pose of an object from RGB-D images
US10861185B2 (en) Information processing apparatus and method of controlling the same
WO2022237048A1 (zh) 位姿获取方法、装置、电子设备、存储介质及程序
WO2017003825A1 (en) Hypotheses line mapping and verification for 3d maps
McClean An Augmented Reality System for Urban Environments using a Planar Building Fa cade Model
KR102618069B1 (ko) 지상조사 로봇의 점군 자료와 시각정보를 이용한 실내건물 재난정보 분석 방법 및 장치
KR102542363B1 (ko) 3차원 공간에서 객체를 인식하는 방법
JP2024077816A (ja) 情報処理方法、情報処理装置およびプログラム
WO2019023076A1 (en) AUGMENTED REALITY SYSTEM (RA) WITHOUT MARKER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220110

R150 Certificate of patent or registration of utility model

Ref document number: 7017689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150