JP2019118897A - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP2019118897A
JP2019118897A JP2018001770A JP2018001770A JP2019118897A JP 2019118897 A JP2019118897 A JP 2019118897A JP 2018001770 A JP2018001770 A JP 2018001770A JP 2018001770 A JP2018001770 A JP 2018001770A JP 2019118897 A JP2019118897 A JP 2019118897A
Authority
JP
Japan
Prior art keywords
air
electrode
charging unit
discharge electrode
electrostatic precipitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018001770A
Other languages
Japanese (ja)
Inventor
大野 学
Manabu Ono
学 大野
崇 中澤
Takashi Nakazawa
崇 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Printing Korea Co Ltd
Original Assignee
HP Printing Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HP Printing Korea Co Ltd filed Critical HP Printing Korea Co Ltd
Priority to JP2018001770A priority Critical patent/JP2019118897A/en
Priority to PCT/KR2018/011916 priority patent/WO2019139223A1/en
Publication of JP2019118897A publication Critical patent/JP2019118897A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/53Liquid, or liquid-film, electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

To provide an electrostatic precipitator efficiently collecting floating fine particles existing in air and suppressing performance deterioration due to the conduction deterioration of a discharge electrode and ozone generation.SOLUTION: In an electrostatic precipitator comprising a charge part 110 charging floating fine particles in air, a steam generating part 120 supplying steam to the charge part 110 and a dust collection part 130 being disposed at the downstream side of the charge part 110 in a ventilation direction and collecting the charged floating fine particles at the charge part 110, the supply rate of steam supplied from the steam generating part 120 to the charge part 110 is 0.20-0.50 mg/min per 1 cmof the cross sectional area of an air duct passing the electrode part of the charge part 110.SELECTED DRAWING: Figure 1

Description

本発明は、空気中に浮遊する浮遊微粒子を捕集する電気集塵装置に関する。   The present invention relates to an electrostatic precipitator that collects suspended particles suspended in air.

電気集塵装置は、空気清浄機やエアコンディショナなどの電気製品などに装着され、空気中の浮遊微粒子などの汚染物質を集塵することによって、空気を浄化する装置である。
一般に、このような電気集塵装置は、放電により浮遊微粒子を帯電させる「帯電部」と、帯電させた浮遊微粒子を集塵する「集塵部」とを備えた二段式であり、プラス極性またはマイナス極性の高電圧が印加された「放電電極」と、接地された「対向電極」との間にコロナ放電を発生させる為に数kVの高電圧が印加される。そして、帯電部に導入された空気中の浮遊微粒子は、コロナ放電の発生によってプラス極性またはマイナス極性に帯電された後、更に空気の流動に沿って移送され、集塵部で捕集される。
浮遊微粒子を電気集塵装置に導入する為の気流を発生させる「気流発生部」には、軸流送風機が広く用いられているが、気流そのものがプロペラファンの影響で旋回流となる為、浮遊微粒子の移送速度にばらつきを生じている。移送速度が速い浮遊微粒子は、集塵部での捕集が困難になるばかりか、帯電部での帯電付与も不利になるので、捕集効率は相乗的に低下する。特に、単位時間当たりの空気処理量(以下、単に「空気処理量」と称す)が多くなった場合、上記のような傾向が顕著なものとなり、電気集塵装置の集塵能力が急激に低下するといった問題が発生する。
このような問題に対し、気体の流速差に対応可能な第一と第二の帯電セルを備えた帯電部と、高電圧が印加された捕集電極で構成された捕集部からなる電気集塵装置に関する提案がなされている(特許文献1)。
このような第一と第二の帯電セルを帯電器に備えた電気集塵装置は、空気処理量が多い場合であっても、非常に優れた集塵能力を示すことが可能であるが、電気集塵装置の小型化やオゾン発生の抑制といった点に改良の余地を残していた。
一方、鋸歯形状や針形状の電極先端を通風方向に対して交差させると共に、前記電極先端部分を隣接する他の電極先端部分と互い違いに配置させた薄型帯電器を備えた電気集塵装置に関する提案がなされている(特許文献2)。
このような薄型帯電器を備えた電気集塵装置は、帯電部の小型化やオゾン発生の抑制を改善しつつ、優れた集塵能力を発揮することが出来る。しかしながら、鋸歯形状や針形状を有する放電電極は、通電量や通電時間に応じて、先端部分が減耗したり、酸化物からなる不導体層を生成する等の「通電劣化」が進行する。その為、一定間隔に配置した電極先端部分のコロナ放電の状態が経時で変化するので、結果的に、電気集塵装置の集塵能力の低下やオゾン発生量の増加を招くといった潜在的な問題を有していた。
The electrostatic precipitator is a device that is attached to an electrical product such as an air cleaner or an air conditioner, and purifies air by collecting contaminants such as suspended particles in the air.
In general, such an electrostatic precipitator is a two-stage type including a "charging portion" for charging floating particles by discharge and a "dust collecting portion" for collecting charged floating particles, and has a positive polarity. Alternatively, a high voltage of several kilovolts is applied to generate a corona discharge between the "discharge electrode" to which a high voltage of negative polarity is applied and the "counter electrode" grounded. The floating fine particles in the air introduced into the charging unit are charged to positive or negative polarity due to the occurrence of corona discharge, and are further transported along the flow of air and collected by the dust collection unit.
Although an axial flow fan is widely used for the “air flow generation unit” that generates an air flow for introducing floating particles into the electrostatic precipitator, the air flow itself is a swirling flow under the influence of a propeller fan, so floating There is a variation in the transfer speed of the particles. The floating fine particles having a high transfer speed not only make the collection in the dust collection part difficult but also the charge application in the charging part to be disadvantageous, so the collection efficiency decreases synergistically. In particular, when the amount of processed air per unit time (hereinafter simply referred to as "the amount of processed air") increases, the above tendency becomes remarkable, and the dust collection capacity of the electrostatic precipitator falls sharply. Problems occur.
To solve such a problem, an electricity collector comprising a charging unit provided with first and second charged cells capable of coping with the flow velocity difference of gas and a collecting unit constituted by a collecting electrode to which a high voltage is applied. A proposal regarding a dust device has been made (Patent Document 1).
Although the electrostatic precipitator equipped with such first and second charging cells in the charger can exhibit extremely excellent dust collection ability even when the amount of air treated is large, There is room for improvement in terms of downsizing of the electrostatic precipitator and suppression of ozone generation.
On the other hand, a proposal regarding an electrostatic precipitator equipped with a thin charger in which a sawtooth-shaped or needle-shaped electrode tip crosses the ventilation direction and the electrode tip portion is alternately arranged with other adjacent electrode tip portions (Patent Document 2).
The electrostatic precipitator equipped with such a thin charger can exhibit excellent dust collection performance while improving the miniaturization of the charging portion and the suppression of ozone generation. However, in the discharge electrode having a sawtooth shape or a needle shape, “electricity deterioration” proceeds such that the tip portion is worn down or a nonconductive layer made of oxide is generated depending on the amount of current or time of electric current. Therefore, since the state of corona discharge at the electrode tip portion arranged at a constant interval changes with time, as a result, there is a potential problem that the dust collecting ability of the electrostatic precipitator decreases and ozone generation amount increases. Had.

ところで、イオン風を用いた送風装置に関連して、イオン発生量が放電電極の消耗に影響されにくい放電電極に関する提案がなされており、例えば、先端の曲率半径が板厚以上となるように丸めた突起を有する放電電極に関する提案がなされている(特許文献3)。
しかしながら、同提案の場合、定電圧条件下(−5kV)における放電電極の先端形状がイオン発生比率に及ぼす影響については検討されているが、オゾンの発生量や通電劣化に伴う電極性能の低下については考慮されていない。また、イオン発生比率の改善にも検討の余地を残している。
一方、厚み方向から見たときに円弧状となっている突起を有する放電電極によって、イオン風発生時のオゾン発生量を低減する為の提案もなされている(特許文献4)。
この場合、厚み方向に丸みをもたせた放電極にマイナス極性の高電圧を印加し、定電流条件下(0.15mA)で放電させた時、通算放電時間に対するオゾン発生量が抑制されたとしている。しかしながら、同提案の実施例に示されている通り、放電開始から100時間以内にオゾン発生量が大幅に増加している。この傾向は、突起部先端の曲率半径が小さい程、顕著であって、通電劣化の影響を強く示唆するものと考えられる。本発明者等が検討したところ、複数の突起部を有する放電電極は、其々の突起部の通電劣化状態が異なる場合が多く、十分に機能しているものと機能していないものが混在していることが判明した。このような放電電極を電気集塵装置の帯電部に流用した場合には、通算放電時間の経過と共に、放電電極への通電量やオゾン発生量が安定していても浮遊微粒子の帯電付与にムラを生じ、捕集効率の低下を招く可能性が高い。
すなわち、放電電極の先端形状を特定するだけでは、放電電極の通電劣化の抑制やイオン発生量の安定化、更にはオゾン発生量の抑制といった諸課題を高いレベルで解決することが出来ない。
By the way, in connection with a blower using ion wind, a proposal regarding a discharge electrode in which the amount of generated ions is not easily affected by the consumption of the discharge electrode has been proposed, for example, rounding so that the curvature radius of the tip is equal to or more than the plate thickness. The proposal regarding the discharge electrode which has a protrusion is made | formed (patent document 3).
However, in the case of the same proposal, although the influence of the tip shape of the discharge electrode under the constant voltage condition (-5 kV) on the ion generation ratio has been studied, the reduction of the electrode performance due to the generation amount of ozone and current deterioration. Is not considered. In addition, there is room for consideration in improving the ion generation ratio.
On the other hand, a proposal has also been made to reduce the amount of ozone generation at the time of ion wind generation by a discharge electrode having a projection that is arc-shaped when viewed from the thickness direction (Patent Document 4).
In this case, when a high voltage of negative polarity is applied to the discharge electrode rounded in the thickness direction and discharged under constant current conditions (0.15 mA), the ozone generation amount with respect to the total discharge time is suppressed. . However, as shown in the example of the same proposal, the amount of ozone generation is significantly increased within 100 hours from the start of discharge. This tendency is more remarkable as the radius of curvature of the tip of the projection is smaller, and it is considered that the influence of the current deterioration is strongly suggested. As examined by the present inventors, the discharge electrodes having a plurality of projections often differ in the state of energization deterioration of the respective projections, and the ones that are functioning well and the ones that are not functioning are mixed. It turned out that it was. When such a discharge electrode is diverted to the charging portion of the electrostatic precipitator, the electrification of the suspended particles is uneven even if the amount of energization to the discharge electrode and the amount of ozone generation are stable with the passage of the total discharge time. Are likely to cause a decrease in collection efficiency.
That is, merely specifying the tip shape of the discharge electrode can not solve various problems such as suppression of current flow deterioration of the discharge electrode, stabilization of the amount of generated ions, and suppression of the amount of generated ozone at a high level.

ところで、櫛状の放電電極と白金浸漬ハニカム状セラミックスの対向電極を備えた電子式空気清浄装置の提案がなされている(特許文献5)。
この場合、櫛状電極とハニカム状の対向電極により、小型化と集塵効率の両立を実現しているが、処理出来る空気の量は、櫛状電極とハニカム状の対向電極間で発生するイオン風に依存する。したがって、多量の空気を処理する場合には、電極間に高電圧を印加する必要を生じ、オゾンの発生や放電電極の短寿命化を招くといった問題点を有していた。
By the way, there has been proposed an electronic air cleaning device provided with a comb-like discharge electrode and a counter electrode of platinum-immersed honeycomb-like ceramic (Patent Document 5).
In this case, although both size reduction and dust collection efficiency are realized by the comb-like electrode and the honeycomb-like counter electrode, the amount of air that can be treated is the ions generated between the comb-like electrode and the honeycomb-like counter electrode It depends on the wind. Therefore, in the case of treating a large amount of air, it is necessary to apply a high voltage between the electrodes, which causes the generation of ozone and the shortening of the life of the discharge electrode.

他方、電気集塵装置の捕集部を小型化/簡素化する為に、高電圧が印加された捕集電極に代わって、浮遊微粒子を捕集する為の気体フィルタに関し、様々な提案がなされている。
例えば、浮遊微粒子を捕集する為に、HEPAフィルタやULPAフィルタといった専用のフィルタが用いられるが、これらのフィルタは、浮遊微粒子の除去には効果がある反面、圧力損失が非常に高く、送風装置等の付帯装置が必然的に大きくなる。
これに対して、気流中の浮遊微粒子を静電気により吸着除去することを目的として、エアフィルタにエレクトレット化処理を施すことが知られている。例えば、特定の繊維幅とフィルム厚を有するスプリット繊維からなるエレクトレットフィルタが提案されている(特許文献6)。
また、エレクトレット化された高分子フィルムを連続的に折り曲げまたは折り畳み、これを、多数の連続空隙を構成するように積層することで得られるエレクトレットフィルタが提案されている(特許文献7)。
これ等の気体フィルタは、圧力損失を非常に低く抑えることが出来る反面、「慣性衝突」や「さえぎり効果」による捕集能力は小さくなる為、浮遊微粒子の捕捉は、主に「拡散」や「静電吸着」によってなされる。したがって、HEPAフィルタやULPAフィルタと比較して、小型の送風機によって多量の空気を処理することが可能であるが、捕集効率は大幅に劣る。特に、浮遊微粒子の通過速度が速い場合や帯電状態が弱い場合には、浮遊微粒子の捕集効率は極めて低くなる。このように、気体フィルタの高性能化には、低圧力損失と高捕集効率を両立させる必要がある。
On the other hand, in order to miniaturize / simplify the collection portion of the electrostatic precipitator, various proposals have been made regarding a gas filter for collecting suspended particles instead of the collection electrode to which a high voltage is applied. ing.
For example, in order to collect suspended particulates, dedicated filters such as HEPA filter and ULPA filter are used. Although these filters are effective in removing suspended particulates, their pressure loss is very high, and they are used as blowers. Etc. will inevitably become large.
On the other hand, it is known to subject an air filter to an electretization treatment for the purpose of adsorbing and removing suspended particles in an air flow by static electricity. For example, electret filters comprising split fibers having a specific fiber width and a film thickness have been proposed (Patent Document 6).
Further, there has been proposed an electret filter obtained by continuously bending or folding an electretized polymer film and laminating the same so as to form a large number of continuous voids (Patent Document 7).
While these gas filters can suppress pressure loss very low, the trapping ability of “inertial collision” and “shuttering effect” is reduced, so trapping of suspended particles is mainly performed by “diffusion” and “ "Electrostatic adsorption" is done. Therefore, although it is possible to process a large amount of air with a small fan as compared with the HEPA filter or the ULPA filter, the collection efficiency is significantly inferior. In particular, when the passing speed of the floating particles is high or the charging state is weak, the collection efficiency of the floating particles becomes extremely low. As described above, in order to improve the performance of the gas filter, it is necessary to simultaneously achieve low pressure loss and high collection efficiency.

特開2011−92932号公報JP, 2011-92932, A 特開2017−13041号公報JP, 2017-13041, A 特開2000−277235号公報JP, 2000-277235, A 特開2010−151116号公報JP, 2010-151116, A 特開昭63−59963号公報Japanese Patent Application Laid-Open No. 63-59963 特開平6−254320号公報JP-A-6-254320 特開昭56−10312号公報Japanese Patent Application Laid-Open No. 56-10312

本発明は、上記事情に鑑みてなされたものであって、空気中に存在する浮遊微粒子の捕集効率と空気処理量のバランスに優れた小型の電気集塵装置を提供することを課題とする。
更に、本発明は、放電電極の通電劣化による性能低下やオゾン発生が抑制された電気集塵装置を提供することを課題とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small-sized electrostatic precipitator excellent in the balance between the collection efficiency of suspended fine particles present in the air and the amount of processed air. .
Furthermore, this invention makes it a subject to provide the electrostatic precipitator by which the performance fall by energization degradation of a discharge electrode and ozone generation were suppressed.

本発明者等が検討したところ、帯電部の放電電極の通電劣化は、オゾンの発生を加速させるだけではなく、浮遊微粒子の捕集効率に影響を与えており、特に、平板状の対向電極を配置した帯電部を備えた電気集塵装置では、その傾向が顕在化することが判明した。すなわち、前記対向電極によって、前記帯電部の通風部分が区画される為、前記放電電極の一部分が放電劣化しただけでも、浮遊微粒子が帯電付与されないまま通過してしまい、捕集効率の低下を招いていたのである。
本発明の電気集塵装置は、このような知見に基づいてなされたものであって、以下の構成を有する。
すなわち、本発明は、少なくとも、空気中の浮遊微粒子を帯電させる「帯電部」と、前記帯電部に水蒸気を供給する「水蒸気発生部」と、前記帯電部の通風方向の下流側に配置され、前記帯電部にて帯電させた前記浮遊微粒子を集める「集塵部」を備える電気集塵装置であって、前記水蒸気発生部から前記帯電部に供給される水蒸気の供給速度が、前記帯電部の電極部分を通過する風路の断面積1cm当たりに対して、0.20〜0.50mg/分であることを特徴とする。
帯電部の通風方向の上流側に水蒸気発生部を設け、気流中に水蒸気を蒸散させることで、帯電部に特定の速度で水蒸気を供給し、帯電部から発生するオゾンの発生量を大幅に抑制しながら、放電電極の通電劣化を抑制することが出来る。
The inventors of the present invention have found that the current flow deterioration of the discharge electrode of the charging portion not only accelerates the generation of ozone but also affects the collection efficiency of the floating fine particles, and in particular, the flat counter electrode In the electrostatic precipitator provided with the arranged charging portion, it was found that the tendency becomes apparent. That is, since the ventilation portion of the charging portion is divided by the counter electrode, even if a portion of the discharge electrode is deteriorated due to discharge, the floating fine particles pass without being charged and the collection efficiency is lowered. It was
The electrostatic precipitator of the present invention is made based on such knowledge, and has the following configuration.
That is, according to the present invention, at least a "charging unit" for charging suspended particles in the air, a "steam generating unit" for supplying water vapor to the charging unit, and a downstream side of the charging unit in the ventilation direction. An electrostatic precipitator comprising a "dust collecting portion" for collecting the floating fine particles charged in the charging portion, wherein a supply speed of the water vapor supplied from the water vapor generating portion to the charging portion corresponds to that of the charging portion. It is characterized in that it is 0.20 to 0.50 mg / min per 1 cm 2 of the cross sectional area of the air passage passing through the electrode part.
A water vapor generation unit is provided on the upstream side of the charging unit in the ventilation direction, and water vapor is evaporated in the air flow to supply water vapor to the charging unit at a specific speed, and significantly reduce the amount of ozone generated from the charging unit. Thus, it is possible to suppress the current flow deterioration of the discharge electrode.

更に、本発明の電気集塵装置は、前記帯電部が、少なくとも、高電圧電源によって高電圧が印加される「放電電極」と、接地された平板状の「対向電極」からなり、前記放電電極は、放電の為の複数の「突起部分」を間隔P(mm)(以下、単に「突起間隔P」と称す)で備えると共に、前記対向電極は、前記放電電極の両側面に間隔G(mm)(以下、「電極間隔G」と称す)を保って平行に配置されており、前記突起間隔Pと前記電極間隔Gが、0.5≦P/G≦1.5の関係を満たすことが好ましい。
前記放電電極と対向電極の形状を利用することによって、帯電部の開口部を区画すると共に、電極間隔Gと突起間隔Pとの関係を特定することによって、帯電部を通過する空気中の浮遊微粒子への帯電付与を均一且つ効率的に行うことが出来る。また、帯電部に供給される水蒸気も効率良く作用する。
Further, in the electrostatic precipitator according to the present invention, the charging unit includes at least a "discharge electrode" to which a high voltage is applied by a high voltage power supply, and a flat plate-like "counter electrode" grounded. Is provided with a plurality of "protruding portions" for discharging at intervals P (mm) (hereinafter simply referred to as "protrusion intervals P"), and the counter electrodes are spaced at intervals G (mm) on both side surfaces of the discharge electrodes. ) (Hereinafter, referred to as “electrode spacing G”) are disposed in parallel, and the projection spacing P and the electrode spacing G satisfy the relationship of 0.5 ≦ P / G ≦ 1.5. preferable.
By using the shapes of the discharge electrode and the counter electrode, it is possible to partition the opening of the charging portion and to identify the relationship between the electrode spacing G and the projection spacing P, thereby enabling suspended particles in the air passing through the charging portion. Charging can be performed uniformly and efficiently. Further, the water vapor supplied to the charging unit also works efficiently.

ところで、本発明の電気集塵装置は、前記集塵部が、エレクトレット処理を施したシート状またはフィルム状の高分子材料からなるエアフィルタ濾材を備えており、前記高分子材料の水に対する接触角が75°以上であって、前記エアフィルタ濾材の厚みが3mm以上で、風速0.2m/秒における圧力損失が60Pa以下であることが好ましい。
これによって、水蒸気発生部から供給された水蒸気の影響を最小限に止めることが出来るので、集塵効率を低下させることなく放電電極の通電劣化の抑制することが出来る。また、捕集部の薄型化や簡素化によるコストダウンにも貢献することが出来る。
By the way, the electrostatic precipitator according to the present invention is characterized in that the dust collection unit includes an air filter medium made of a sheet-like or film-like polymer material subjected to electret treatment, and the contact angle of the polymer material with water. The thickness of the air filter medium is preferably 3 mm or more, and the pressure loss at a wind speed of 0.2 m / sec is preferably 60 Pa or less.
By this, the influence of the water vapor supplied from the water vapor generating portion can be minimized, so that the current-carrying deterioration of the discharge electrode can be suppressed without reducing the dust collection efficiency. Moreover, it can contribute also to the cost reduction by thickness reduction and simplification of a collection part.

更に、本発明の電気集塵装置は、前記エアフィルタ濾材が、少なくとも、高分子シートを積層して形成された管状通風路を有する構造物(以下、単に「管状通風路からなる構造物」と称す)であって、前記エアフィルタ濾材の通風方向と直交する面に占める前記管状通風路の開口部分が60面積%以上であり、前記管状通風路の開口径d(mm)と風路長L(mm)が、0.025≦d/L≦0.2の関係を満たすことが好ましい。
エアフィルタ濾材を管状通風路からなる構造物とすることで、空気処理量と浮遊微粒子の捕集効率を高いレベルで両立することが出来る。また、水蒸気発生部から供給された水蒸気の凝結を防止することが出来るので、管状通風路を構成する高分子シートのエレクトレット処理の効果低下を抑制することが出来る。また、捕集部や気流発生部の小型化にも貢献することが出来る。
Furthermore, in the electrostatic precipitator according to the present invention, the air filter medium at least includes a tubular air passage formed by laminating polymer sheets (hereinafter simply referred to as “a structure comprising a tubular air passage”) 60% or more of the opening portion of the tubular air passage occupied in the plane orthogonal to the air flow direction of the air filter medium, and the opening diameter d (mm) of the tubular air passage and the air passage length L It is preferable that (mm) satisfy the relationship of 0.025 ≦ d / L ≦ 0.2.
By making the air filter medium into a structure comprising a tubular air passage, it is possible to achieve both the air throughput and the collection efficiency of suspended particles at a high level. In addition, since condensation of the water vapor supplied from the water vapor generating portion can be prevented, it is possible to suppress the decrease in the effect of the electret treatment of the polymer sheet constituting the tubular air passage. Moreover, it can contribute also to size reduction of a collection part and an airflow generation part.

また、上記とは別に、本発明の電気集塵装置は、前記エアフィルタ濾材として、高分子フィルムをスプリット状に加工したフィルムスプリット繊維を50質量%以上含有する不織布(以下、単に「フィルムスプリット不織布」と称す)であって、前記フィルムスプリット繊維の繊維幅w(mm)と繊維厚k(mm)とが、2≦w/k≦5の関係を満たすことが好ましい。
前記エアフィルタ濾材を不織布とすることで、水蒸気発生部から供給された水蒸気による圧力損失の増加を低く抑えながら、水蒸気発生部から供給された水蒸気雰囲気下でのエレクトレット処理の効果低下を抑制し、効率良く浮遊微粒子を捕集することが出来るばかりか、捕集部の薄型化にも貢献することが出来る。
In addition to the above, in the electric dust collector of the present invention, a non-woven fabric containing 50 mass% or more of film split fibers obtained by processing a polymer film into splits as the air filter medium (hereinafter simply referred to as “film split non-woven fabric It is preferable that the fiber width w (mm) of the film split fiber and the fiber thickness k (mm) satisfy the relationship of 2 ≦ w / k ≦ 5.
By making the air filter medium a non-woven fabric, it is possible to suppress the decrease in the effect of electret treatment in the water vapor atmosphere supplied from the water vapor generation part while suppressing an increase in pressure loss due to the water vapor supplied from the water vapor generation part. Not only can floating particulates be collected efficiently, but it can also contribute to thinning of the collection portion.

本発明によれば、空気中に存在する浮遊微粒子の捕集効率と空気処理量のバランスに優れた小型の電気集塵装置を提供することが出来る。更に、帯電部の放電電極の通電劣化による性能低下やオゾンの発生が使用開始時から抑制されている電気集塵装置を提供することが出来る。   According to the present invention, it is possible to provide a small-sized electrostatic precipitator excellent in the balance between the collection efficiency of the floating fine particles present in the air and the amount of processed air. Furthermore, it is possible to provide an electrostatic precipitator in which performance deterioration due to current flow deterioration of the discharge electrode of the charging portion and generation of ozone are suppressed from the start of use.

本発明の実施形態に係る電気集塵装置の構成を示す概略断面図Schematic sectional drawing which shows the structure of the electrostatic precipitator which concerns on embodiment of this invention 電気集塵装置の帯電部の主要部分の斜視図(a)と分解斜視図(b)A perspective view (a) and an exploded perspective view (b) of the main part of the charging unit of the electrostatic precipitator 帯電部に配置される放電電極の外観説明図External appearance explanatory drawing of the discharge electrode arrange | positioned at a charging part 放電電極の通電劣化による捕集効率への影響の説明する為の電極の部分拡大正面図(a)と放電電極のコロナ放電の様子(b)Partially enlarged front view of the electrode (a) and the state of corona discharge of the discharge electrode (b) in order to explain the influence of collection deterioration of the discharge electrode on collection efficiency 管状通風路を有する構造物として用いられるハニカム構造体(a)とコルゲート構造体(b)の外観説明図と断面図External appearance explanatory drawing and sectional view of honeycomb structure (a) and corrugated structure (b) used as a structure having a tubular air passage. フィルムスプリット不織布の構造(スプリット繊維の向き)を説明するための概念図Conceptual diagram for explaining the structure (direction of split fiber) of the film split nonwoven fabric 各実施例と比較例の設定条件と試験結果をまとめた表Table that summarizes the setting conditions and test results of each example and comparative example

以下、本発明の実施形態について例示的に説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状及びそれ等の相対配置等は、本発明が適応される装置の構成や各種条件等により適宜変更されるべきものであり、本発明の範囲を以下に記載する実施形態に限定する趣旨のものではない。尚、図面の説明において、同一または同等の要素には、同一符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be exemplarily described. However, the dimensions, materials, shapes and relative positions of components described in this embodiment should be suitably changed according to the configuration of the apparatus to which the present invention is applied and various conditions. The scope of the present invention is not intended to be limited to the embodiments described below. In the description of the drawings, the same or equivalent elements will be denoted by the same reference symbols, without redundant description.

図1(a)は、本発明の実施形態に係る電気集塵装置の主要部分100の概略構成の一例を示す断面図である。通風の方向は矢印方向(図示)であって、主要部分100は、空気中の浮遊微粒子を帯電させる帯電部110を中心にして、帯電部110に水蒸気を供給する水蒸気発生部120を通風方向の上流側に、また、帯電部110にて帯電させた浮遊微粒子を捕集する集塵部130を通風方向の下流側に配置する。主要部分100は、ダクト内部の気流中に設置、若しくはダクトを介して接続して使用され、吸気方向から移動してきた浮遊微粒子に帯電部110で帯電付与した後、集塵部130で捕集する。また、主要部分100は、気流中に設置して用いるだけでなく、必要に応じて、気流発生部140を接続して、主要部分100への空気導入量を増減して使用することも出来る。例えば、主要部分100を家電や事務機の内部に設置した場合、電気集塵ユニットとして、機外に排出される空気中の浮遊微粒子を除去することが出来る。また、主要部分100に、気流発生部140として、プロペラファンを備えた軸流送風機を接続した場合、自立型の室内電気集塵機とすることが出来る(図1(b)参照)。   Fig.1 (a) is sectional drawing which shows an example of schematic structure of the main part 100 of the electrostatic precipitator based on embodiment of this invention. The direction of air flow is the direction of the arrow (shown), and the main portion 100 focuses on the water vapor generating portion 120 for supplying water vapor to the charging portion 110 around the charging portion 110 that charges suspended particles in air. On the upstream side, a dust collection unit 130 for collecting floating fine particles charged by the charging unit 110 is disposed on the downstream side in the ventilation direction. The main portion 100 is installed in the air flow inside the duct or is used by being connected via the duct, and after charged by the charging unit 110, floating particulates moved from the intake direction are collected by the dust collection unit 130 . Further, the main portion 100 can be used not only by being installed in the air flow, but also by connecting the air flow generation unit 140 as necessary to increase or decrease the air introduction amount to the main portion 100. For example, when the main part 100 is installed inside a home appliance or an office machine, it is possible to remove suspended particles in the air discharged to the outside of the machine as an electric dust collection unit. In addition, when an axial-flow fan equipped with a propeller fan is connected as the air flow generation unit 140 to the main portion 100, a self-supporting indoor electrostatic precipitator can be obtained (see FIG. 1 (b)).

図2は、帯電部110の主要部分の斜視図(a)と分解斜視図(b)である。帯電部110は、少なくとも、高電圧電源(不図示)によって高電圧が印加される放電電極111と接地された平板状の対向電極112とを備えており、対向電極112は、放電電極111の両側面に間隔G(mm)を保って平行に配置され、電極ケース113に設置される。
帯電部110の開口部は、平板状の対向電極112によって、電極間隔Gの2倍の長さ(G×2)毎に区画される。その結果、気流中の浮遊微粒子に対し、万遍なく帯電付与を行うことが出来る。電極間隔Gは、2〜15mmの範囲で設定されることが好ましい。電極間隔Gが2mm未満の場合には、放電電極111や対向電極112の厚みの影響が無視出来なくなり、帯電部110の開口部を十分に確保するのが困難となる。また、15mmを超える場合には、帯電部110の開口部を平板状の対向電極112で区画する効果が消失するばかりか、不要に高い電圧を印加する必要が生じたり、電極の通電劣化の影響が著しくなる。電極間隔Gを上記範囲内に設定する為に対向電極112の枚数を調整することによって、帯電部110の開口部は適切に区分され、浮遊粒子への帯電付与に貢献することが出来る。
FIG. 2 is a perspective view (a) and an exploded perspective view (b) of the main part of the charging unit 110. The charging unit 110 includes at least a discharge electrode 111 to which a high voltage is applied by a high voltage power supply (not shown) and a flat counter electrode 112 grounded, and the counter electrode 112 is disposed on both sides of the discharge electrode 111. The electrodes are arranged in parallel with a gap G (mm) maintained on the surface and installed in the electrode case 113.
The opening of the charging unit 110 is divided by a flat counter electrode 112 into a length (G × 2) twice as long as the electrode gap G. As a result, it is possible to uniformly charge the suspended particles in the air flow. The electrode gap G is preferably set in the range of 2 to 15 mm. When the electrode gap G is less than 2 mm, the influence of the thickness of the discharge electrode 111 or the counter electrode 112 can not be ignored, and it becomes difficult to secure the opening of the charging portion 110 sufficiently. Further, when it exceeds 15 mm, not only the effect of dividing the opening of the charging portion 110 by the flat counter electrode 112 disappears, but it becomes necessary to apply an unnecessarily high voltage, and the influence of the current deterioration of the electrode Becomes noticeable. By adjusting the number of counter electrodes 112 in order to set the electrode gap G within the above range, the opening of the charging unit 110 can be appropriately divided, which can contribute to the charging of the floating particles.

放電電極は、放電の為の複数の「突起部分」を間隔P(mm)で備えると共に、突起間隔Pと、電極間隔G(mm)とが、0.5≦P/G≦1.5の関係を満たすように設定することが好ましい。P/G値が0.5未満の場合には、浮遊微粒子の捕集状態を良好に維持するための電極間通電量の制御範囲が狭くなる。また、1.5を超える場合には、浮遊微粒子への均一な帯電付与が困難となり、捕集効率の低下等を引き起こす。   The discharge electrode is provided with a plurality of "protrusion portions" for discharge at an interval P (mm), and the projection interval P and the electrode interval G (mm) are 0.5 ≦ P / G ≦ 1.5. It is preferable to set so as to satisfy the relationship. When the P / G value is less than 0.5, the control range of the inter-electrode electrification amount for maintaining the collection state of the floating particulates favorably becomes narrow. If it exceeds 1.5, it will be difficult to uniformly charge the floating fine particles, causing a decrease in collection efficiency and the like.

前記突起部分は、例えば、鋸歯形状や針形状に加工されたものが使用される。図3は、鋸歯形状の突起部分を備えた放電電極111の外観説明図であって、放電電極111は、平板状の「ベース部分」に、高さhの鋸歯状の突起部分を間隔Pで備えている。
放電電極111のベース部分には、高圧電源(不図示)から所定の電圧が印加され、突起部分の先端(以下、「電極先端部」と称す)にコロナを形成し、気流中の浮遊微粒子に対して帯電付与を行う。浮遊微粒子への帯電付与の程度は、放電電極と対向電極間の通電量(以下、単に「電極間通電量」と称す)で制御することが出来る。
For example, one having a saw-tooth shape or a needle shape is used as the projection portion. FIG. 3 is an explanatory view of the appearance of the discharge electrode 111 having a sawtooth-shaped protrusion, and the discharge electrode 111 is a flat plate-shaped “base portion”, and the sawtooth-shaped protrusion of height h is spaced by P Have.
A predetermined voltage is applied to the base portion of the discharge electrode 111 from a high voltage power supply (not shown), and a corona is formed at the tip of the projection (hereinafter referred to as "electrode tip") to form suspended particles in the air flow. Charge is applied to it. The degree of electrification to the floating fine particles can be controlled by the amount of electric conduction between the discharge electrode and the counter electrode (hereinafter simply referred to as "the amount of electric conduction between the electrodes").

気流中の浮遊微粒子に対して帯電付与がなされる際、電極先端部では、丸みを帯びながら減耗すると共に、電極先端部の構成材料の酸化や気流中に混在する化学物質の付着による高抵抗化が進行する。このような「通電劣化」が進行すると、初期のコロナ形成を維持する為には、より大きな印加電圧が必要となる。また、電極先端部の形状は、オゾン発生量に大きく関与しており、例えば、鋸歯形状の放電電極の場合、電極先端部の先端曲率半径Rが、電極板の厚みの半分の長さを超えるとオゾン発生量が倍加する。したがって、電極先端部の形状は、通電劣化が進行しても電極の先端曲率半径Rが、電極板の厚みの半分の長さを超えないように勘案し、電極先端部や突起部分全体の形状を設計する。   When charged particles are given to airborne particulates in the air flow, the electrode tip is worn away while being rounded, and oxidation of constituent materials of the electrode tip and resistance increase by adhesion of chemical substances mixed in the air flow Progress. When such “current degradation” progresses, a larger applied voltage is required to maintain the initial corona formation. The shape of the tip of the electrode greatly contributes to the amount of ozone generation, and for example, in the case of a sawtooth discharge electrode, the tip radius of curvature R of the tip of the electrode exceeds half the thickness of the electrode plate And ozone generation amount doubled. Therefore, the shape of the tip of the electrode is taken into consideration so that the radius of curvature of the tip R of the electrode does not exceed half the thickness of the electrode plate even if the current deterioration progresses, Design.

放電電極の通電劣化の程度は、電極間通電量や通電時間、電極の構成材料中の不純物量や加工状態、化学物質の付着頻度等の影響を受ける為、電極先端部毎に異なることが多い。
上記のような突起部分を備えた放電電極は、平板上のベース部分を介して複数の突起部分を備えている為、周囲に比べて通電劣化が進行した突起部分が発生すると、その部分への通電量が減り、部分的にコロナ形成が不安定な区画が発生する(図4の(a)と(b)参照)。帯電部の開口部は、平板状の対向電極によって区画されるので、通電劣化が進行した突起部分が存在する区画を通過する浮遊微粒子には、十分な帯電付与がなされず、結果として、集塵効率の低下を招く。しかしながら、本発明では、帯電部110には水蒸気発生部120から水蒸気が供給されている為、オゾンの発生を抑制するだけではなく、通電劣化の進行を抑制し、集塵効率の低下を防ぐことが出来る。
The degree of energization deterioration of the discharge electrode is often influenced by the tip of the electrode because it is influenced by the amount of electricity supplied between the electrodes, the time of energization, the amount of impurities in the constituent material of the electrode, processing conditions, adhesion frequency of chemical substances, etc. .
Since the discharge electrode provided with the above-mentioned projection part is provided with a plurality of projection parts via the base part on a flat plate, when the projection part to which current degradation has progressed compared with the surroundings is generated, The amount of electrification decreases, and a section where corona formation is unstable partially occurs (see (a) and (b) in FIG. 4). Since the opening of the charging portion is divided by the flat counter electrode, the floating fine particles passing through the section where the protrusion portion where the current deterioration has progressed are not sufficiently charged, and as a result, dust collection is performed. It causes a decrease in efficiency. However, in the present invention, since the water vapor is supplied from the water vapor generation unit 120 to the charging unit 110, not only the generation of ozone is suppressed, but also the progress of the current deterioration is suppressed to prevent the reduction of the dust collection efficiency. Can do.

本実施形態の電気集塵装置は、帯電部110に水蒸気を供給する水蒸気発生部120を設け、帯電部110に水蒸気を供給することによって、帯電部110から発生するオゾンの発生量を大幅に抑制しながら、放電電極111の通電劣化を抑制することが出来る。特に、放電電極111にプラス極性の高電圧を印加する場合、オゾンの発生量を極めて少なくすることが出来る。   The electrostatic precipitator according to the present embodiment includes the water vapor generation unit 120 that supplies water vapor to the charging unit 110, and supplies the water vapor to the charging unit 110, thereby significantly suppressing the amount of ozone generated from the charging unit 110. At the same time, the current supply deterioration of the discharge electrode 111 can be suppressed. In particular, when a high voltage of positive polarity is applied to the discharge electrode 111, the generation amount of ozone can be extremely reduced.

水蒸気発生部120に適応可能な加湿装置121としては、例えば、スチーム式、超音波式、気化式(ヒーターレス式)、ハイブリッド式等の小型加湿器を適応することが出来る。他方、家電や事務機の内部に設置した場合、それらの装置内に存在する水蒸気発生源を利用することも可能である。例えば、電子写真方式を用いるプリンター内に設置する場合には、プリント用紙中に含有されている水分を、プリンター内の加熱定着装置を用いて蒸散させ、帯電部に水蒸気を供給する。これによって、電気集塵装置専用の水蒸気発生源が不要になるばかりか、給水も不要になり、装置全体の小型化とユーザビリティの向上に寄与することが出来る。
水蒸気発生部120から帯電部110に供給される水蒸気の供給速度は、帯電部110の電極部分を通過する風路の断面積1cm当たりに対して、0.20〜0.50mg/分とすることが好ましい。水蒸気の供給速度が0.20mg未満の場合、水蒸気の供給効果が十分でなく、0.50mg/分を超えた場合、集塵部130の過湿(結露の発生による目詰まりの発生等)による捕集効率の低下を招く。
本発明において、水蒸気の供給速度は、加湿装置に投入された水の蒸散量を加湿装置の稼働時間とで除して得られた値を、更に帯電部の電極部分を通過する風路の断面積で除した値で定義される。
As the humidifying device 121 that can be applied to the water vapor generation unit 120, for example, a small-sized humidifier such as a steam type, an ultrasonic type, a vaporization type (heaterless type), or a hybrid type can be applied. On the other hand, when installed inside a home appliance or an office machine, it is also possible to use the water vapor source existing in those devices. For example, when installed in a printer using an electrophotographic method, the water contained in the printing paper is evaporated using the heating fixing device in the printer, and water vapor is supplied to the charging unit. As a result, not only the water vapor generation source dedicated to the electrostatic precipitator becomes unnecessary, but also the water supply becomes unnecessary, which can contribute to downsizing of the entire apparatus and improvement of usability.
The supply rate of water vapor supplied from the water vapor generation unit 120 to the charging unit 110 is 0.20 to 0.50 mg / minute per 1 cm 2 of the cross-sectional area of the air passage passing through the electrode portion of the charging unit 110. Is preferred. If the supply rate of water vapor is less than 0.20 mg, the effect of supplying water vapor is not sufficient, and if it exceeds 0.50 mg / min, it may be caused by excessive moisture in dust collection unit 130 (such as clogging due to dew condensation). This leads to a decrease in collection efficiency.
In the present invention, the supply rate of water vapor is a cut off of the air passage passing through the electrode portion of the charging unit, a value obtained by dividing the amount of transpiration of water introduced into the humidifier by the operation time of the humidifier. It is defined by the value divided by the area.

帯電部110に供給された水蒸気の大部分は、気流と共に集塵部130に到達するが、集塵部130には、エレクトレット処理を施したシート状またはフィルム状の高分子材料からなるエアフィルタ濾材を用いている為、水蒸気による影響を最小化し、捕集効率や空気処理量の低下を防止することが出来る。特に、エレクトレット処理を施した高分子材料の水に対する接触角が75°以上であって、エアフィルタ濾材の濾材厚が3mm以上で、風速0.2m/秒における圧力損失が60Pa以下となるように加工したエアフィルタ濾材が好ましく用いられる。   Most of the water vapor supplied to the charging unit 110 reaches the dust collection unit 130 with the air flow, but the dust collection unit 130 is an air filter medium made of a sheet-like or film-like polymer material subjected to electret processing. Therefore, it is possible to minimize the influence of water vapor and to prevent a drop in the collection efficiency and the amount of air treated. In particular, the contact angle of the polymer material subjected to the electret treatment to water is 75 ° or more, the thickness of the air filter medium is 3 mm or more, and the pressure loss at a wind speed of 0.2 m / sec is 60 Pa or less A processed air filter medium is preferably used.

エレクトレット処理とは、加熱溶融した高分子材料または高分子材料の中間体に高電圧を印加しながら、固化させることによって、高分子材料内に帯電を保持させた構造を持たせることで、高分子材料を半永久的に帯電した状態にすることが出来るものである。
エレクトレット処理が施されている高分子シートや高分子フィルムは、水蒸気発生部120から蒸散される水蒸気によって加湿しても、気流下で乾燥させるだけで帯電した状態に復元する。また、イソプロピルアルコール等の難溶性の有機溶剤に浸漬した場合には、高分子材料内に構築された帯電を保持する為の構造のみを変化させることが可能であり、エレクトレット処理を無効化することが出来る。
エレクトレット処理を施した高分子シートや高分子フィルムの帯電状態は、例えば、SIMCO社製の静電気測定器(FMX−004)やBRUKER社製のケルビンプローブフォース顕微鏡(Dimension Edge)等によって確認することが可能である。
In the electret treatment, a polymer is made to have a structure in which charge is held by applying a high voltage to a polymer material or an intermediate of a polymer material while heating and solidifying the polymer material. It is possible to make the material semi-permanently charged.
Even if the polymer sheet or the polymer film subjected to the electret treatment is humidified by the steam transpiration from the steam generation unit 120, the polymer sheet or the polymer film is restored to the charged state only by drying under an air stream. In addition, when immersed in a sparingly soluble organic solvent such as isopropyl alcohol, it is possible to change only the structure for maintaining the charge built up in the polymer material, and to invalidate the electret treatment. Can do.
The charged state of the polymer sheet or polymer film subjected to the electret treatment may be confirmed, for example, by a static electricity measuring instrument (FMX-004) manufactured by SIMCO, a Kelvin probe force microscope (Dimension Edge) manufactured by BRUKER, etc. It is possible.

エレクトレット処理を施すのに適した材料として、電気を通し難い熱可塑性樹脂(アクリル樹脂、ポリエチレン樹脂、ABS樹脂等)や熱硬化性樹脂(ポリエステル樹脂、エポキシ樹脂等)を挙げることが出来る。しかしながら、集塵部130は、帯電部110に供給された水蒸気の影響を受けることから、エアフィルタ濾材に用いられる高分子材料としては、エレクトレット処理の効果を減退させない為に、水に対する親和性が低いものが好ましく、具体的には水に対する接触角が75°以上の高分子材料から選択される。特に、水に対する接触角が80°以上の高分子材料は、高分子材料の表面に水粒子が付着しても通気によって速やかに乾燥させることができ、元の状態に戻すことが出来るので好ましい。このような高分子材料として、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデン、フッ化樹脂、シリコーン樹脂等を挙げることが出来、これ等を単独または混合して用いることが出来る。また、帯電保持量を高める為に、高分子材料内に空孔を設けたり、荷電制御剤を含有させることが好ましい。荷電制御剤としては、例えば、サリチル酸、ナフトエ酸、ダイカルボン酸などのカルボン酸の金属化合物;スルホン酸基又はカルボン酸基を側鎖に持つ高分子型化合物;ホウ素化合物;尿素化合物;ケイ素化合物;カリークスアレーン等の負帯電性荷電制御剤や、四級アンモニウム塩;該四級アンモニウム塩を側鎖に有する高分子型化合物;グアニジン化合物;イミダゾール化合物アジン化合物等の正帯電性荷電制御剤から適宜選択することが出来る。
前記エレクトレット処理を施した高分子材料が、高分子シートや高分子フィルム等に加工されたものがエアフィルタ濾材に適応される。この時、エアフィルタ濾材の濾材厚が3mm以上で、風速0.2m/秒における圧力損失が60Pa以下となるように調整することによって、エレクトレット処理を利用した静電捕集と透湿性を両立することが出来る。エアフィルタ濾材の濾材厚が3mm未満の場合、十分な捕集効率が得られず、また、圧力損失が60Paを超える場合には、水蒸気の結露や処理風量の低下といった問題が発生する可能性がある。
Examples of materials suitable for electret treatment include thermoplastic resins (such as acrylic resins, polyethylene resins, and ABS resins) which are difficult to pass electricity, and thermosetting resins (such as polyester resins and epoxy resins). However, since the dust collection unit 130 is affected by the water vapor supplied to the charging unit 110, as the polymer material used for the air filter medium, the affinity for water is not reduced because the effect of the electret treatment is not diminished. The low one is preferable, and specifically, it is selected from polymeric materials having a contact angle to water of 75 ° or more. In particular, a polymeric material having a contact angle to water of 80 ° or more is preferable because even if water particles adhere to the surface of the polymeric material, they can be rapidly dried by aeration and can be returned to the original state. Examples of such polymer materials include polypropylene, polyethylene, polyvinylidene fluoride, fluorinated resin, silicone resin and the like, and these can be used alone or in combination. Further, in order to increase the amount of charge retention, it is preferable to provide pores in the polymer material or to contain a charge control agent. Examples of the charge control agent include metal compounds of carboxylic acids such as salicylic acid, naphthoic acid and dicarboxylic acid; polymer type compounds having a sulfonic acid group or a carboxylic acid group in a side chain; boron compounds; urea compounds; silicon compounds; Negatively chargeable charge control agents such as calixarene, quaternary ammonium salts; polymer type compounds having the quaternary ammonium salts in the side chain; guanidine compounds; positively chargeable charge control agents such as imidazole compounds azine compounds etc. You can choose.
What the polymer material which gave the said electret process was processed into a polymer sheet, a polymer film, etc. is applied to an air filter filter medium. At this time, by adjusting the thickness of the air filter to be 3 mm or more and the pressure loss at a wind speed of 0.2 m / sec to be 60 Pa or less, both electrostatic collection and moisture permeability using electret processing can be achieved. I can do it. If the thickness of the air filter medium is less than 3 mm, sufficient collection efficiency can not be obtained, and if the pressure loss exceeds 60 Pa, problems such as condensation of water vapor and reduction in the volume of treated air may occur. is there.

エアフィルタ濾材として、エレクトレット処理を施した高分子シートを用いる場合には、例えば、高分子シートを積層し、管状通風路を有する構造物に加工して用いることが好ましい。
本発明に好適な管状通風路からなる構造物としては、例えば、図5に示すようなハニカム構造体やコルゲート構造体等を適応することが出来る。集塵部130に管状通風路を有する構造物を用いることで、電気集塵装置内の気流が、上記管状通風路を有する構造物によって均一に振り分けられて整流されるので、帯電部110における浮遊微粒子への帯電付与がより好ましい状態となる。その結果、放電電極が通電劣化しても、浮遊微粒子の捕集効率への影響を最小化することが出来る。また、エレクトレット処理を施した高分子シートを用いる為、帯電部と捕集部の両方に高電圧を印加する二段方式の静電捕集装置と比較して、非常に簡素な構成で気流中の浮遊微粒子を静電捕集することが出来る。
上記管状通風路を有する構造物は、公知の方法で製造することが可能であり、例えば、ハニカム構造体を製造する場合は、エレクトレット処理を施した高分子シートの両面に、接着剤を線状に塗布して積層することでブロック状とする。ブロック状になった高分子シートを接着剤の塗布方向に直交する方向に断裁し、それを上下方向に展張することでハニカム構造体を得ることが出来る。この時、線状に塗布される接着剤の塗布幅や塗布間隔、更には展張の程度を変えることで、任意の開口径dを得ることが出来る。一方、コルゲート構造体を製造する場合には、コルゲータを用いて製造することが可能であり、エレクトレット処理を施した高分子シートをコルゲート状に成形しながら、その頂上部を別に用意したエレクトレット処理を施した高分子シートに貼り合せて片面段ボール状とする。この片面段ボールを積層して貼り合せた後、断裁することでコルゲート構造体を製造することが出来る。この時、高分子シートをコルゲート状に成形する際に、形状や成形条件を調整することで、任意の開口径dを得ることが出来る。尚、何れの場合においても、高分子シートの貼り合せには、接着剤に替えて溶着も可能である。また、接着直前にエレクトレット処理を施すことも可能である。
When using the polymer sheet which gave the electret process as an air filter material, it is preferable to laminate | stack a polymer sheet, for example, and process and use it as a structure which has a tubular ventilation path.
As a structure composed of a tubular air passage suitable for the present invention, for example, a honeycomb structure or a corrugated structure as shown in FIG. 5 can be applied. By using a structure having a tubular air passage in the dust collection unit 130, the air flow in the electrostatic precipitator is uniformly distributed and rectified by the structure having the tubular air passage, and therefore, floating in the charging unit 110 The charging of the fine particles is more preferable. As a result, even if the discharge electrode is current-deteriorated, the influence on the collection efficiency of the floating particulates can be minimized. In addition, since a polymer sheet subjected to electret treatment is used, it has a very simple configuration and is in the air stream compared to a two-stage electrostatic collection device that applies a high voltage to both the charging unit and the collection unit. It is possible to electrostatically collect suspended particles of
The structure having the above-mentioned tubular air passage can be manufactured by a known method. For example, in the case of manufacturing a honeycomb structure, an adhesive is linearly formed on both sides of the electret-treated polymer sheet. It is made into a block shape by applying and laminating on. A honeycomb structure can be obtained by cutting the block-like polymer sheet in a direction orthogonal to the application direction of the adhesive and stretching it in the vertical direction. At this time, an arbitrary opening diameter d can be obtained by changing the application width and application interval of the adhesive applied linearly, and the degree of expansion. On the other hand, when manufacturing a corrugated structure, it is possible to manufacture using a corrugator, and while forming the electret-treated polymer sheet in a corrugate shape, the electret treatment in which the top is separately prepared It is bonded to the applied polymer sheet to make a single-sided cardboard. The corrugated structure can be manufactured by cutting the single-faced cardboard after laminating and bonding. At this time, when forming the polymer sheet into a corrugated shape, an arbitrary opening diameter d can be obtained by adjusting the shape and molding conditions. In any case, welding may be performed instead of the adhesive for bonding of the polymer sheet. It is also possible to perform electret treatment immediately before bonding.

上記管状通風路からなる構造物は、エアフィルタ濾材の通風方向と直交する面に占める管状通風路の開口部分が60面積%以上であり、管状通風路の開口径d(mm)と風路長L(mm)が(図5参照)、0.025≦d/L≦0.2の関係を満たすことが好ましく、これによって、空気処理量と浮遊微粒子の捕集効率を高いレベルで両立することが出来る。また、上記管状通風路を有する構造物の開口径dは、0.5〜5mmであることが好ましい。開口径dが0.5mm未満の場合には圧力損失が大きくなり、空気処理量を増やすことが困難になる。また、開口径dが5mmを超える場合には空気中の浮遊微粒子が管状通風路を形成する高分子シートに接近する機会が減少する為、捕集効率が低下する。
また、上記管状通風路を有する構造物の通風路の長さLは、安定した捕集効率を維持する為に3mm以上にすることが好ましく、更に好ましくは5〜50mmであって、長さLが5mm未満の場合には、集塵部130の寿命が短くなり、交換頻度が高くなる。また、長さLが50mmを超える場合には、加湿装置121によって供給された水蒸気が冷却され、結露する可能性がある。
上記管状通風路を有する構造物の通風路の長さLは、開口径dに対して、L>dの関係を満たすように設定される。L≦dの場合、空気中の浮遊微粒子が上記管状通風路中に拡散し、静電吸着されるのが困難である為、十分な捕集効率が得られない。
In the structure comprising the tubular air passage, the opening portion of the tubular air passage occupied in the plane orthogonal to the air flow direction of the air filter medium is 60 area% or more, and the opening diameter d (mm) of the tubular air passage and the air passage length It is preferable that L (mm) satisfy the relationship of 0.025 ≦ d / L ≦ 0.2 (see FIG. 5), thereby making the air throughput and the collection efficiency of suspended particles compatible at a high level Can do. Further, the opening diameter d of the structure having the tubular air passage is preferably 0.5 to 5 mm. When the opening diameter d is less than 0.5 mm, the pressure loss is large, and it becomes difficult to increase the air throughput. In addition, when the opening diameter d exceeds 5 mm, the opportunity for floating particles in the air to approach the polymer sheet forming the tubular air passage decreases, so the collection efficiency decreases.
The length L of the air passage of the structure having the tubular air passage is preferably 3 mm or more, more preferably 5 to 50 mm, in order to maintain stable collection efficiency, and the length L Is less than 5 mm, the life of the dust collection unit 130 is shortened, and the replacement frequency is increased. Moreover, when the length L exceeds 50 mm, the water vapor supplied by the humidifying device 121 is cooled, and there is a possibility that dew condensation occurs.
The length L of the air passage of the structure having the tubular air passage is set to satisfy the relationship of L> d with respect to the opening diameter d. When L ≦ d, it is difficult for suspended particulates in the air to diffuse into the tubular air passage and to be electrostatically adsorbed, so that sufficient collection efficiency can not be obtained.

上記管状通風路を有する構造物の通風路を構成する高分子シート厚t(mm)は、0.1〜1.5mmであるものが好ましい。高分子シート厚tが0.1mm未満の場合には、管状通風路を構成する為の強度に欠けると共に、エレクトレット処理を施すのが困難となる。また、1.5mmを超える場合には、受風面に占める管状通風路の開口部分の比率が小さくなるので、捕集能力が低下する。
本発明において、上記管状通風路を有する構造物を構成する高分子シート厚tと開口径dは、管状通風路の垂直断面の拡大写真を撮影して決定することが出来る(図5参照)。具体的には、管状通風路の垂直断面の拡大写真をパソコン等に取り込み、画像計測ソフトを用いて計測する方法や、前記拡大写真をプリントアウトした後に、計測器を用いて直接計測する方法等によって、無作為に抽出した20箇所以上の厚みと開口径をそれぞれ平均することによってシート厚tと開口径dを決定することが出来る。尚、本発明において、管状通風路の開口径dは、管状通風路の内壁に内接する円の直径で定義される。
It is preferable that the polymer sheet thickness t (mm) which comprises the ventilation path of the structure which has the said tubular ventilation path is 0.1-1.5 mm. When the polymer sheet thickness t is less than 0.1 mm, the strength for forming the tubular air passage is lacking, and it becomes difficult to apply the electret treatment. Also, if it exceeds 1.5 mm, the ratio of the opening of the tubular air passage to the wind receiving surface becomes small, so that the collecting ability is lowered.
In the present invention, the thickness t of the polymer sheet and the opening diameter d constituting the structure having the tubular air passage can be determined by taking an enlarged photograph of the vertical cross section of the tubular air passage (see FIG. 5). Specifically, a magnified picture of the vertical cross section of the tubular air duct is taken into a personal computer etc. and measured using image measurement software, or a method of measuring directly after printing out the magnified picture using a measuring instrument, etc. Thus, the sheet thickness t and the opening diameter d can be determined by respectively averaging the thickness and the opening diameter of 20 or more places randomly extracted. In the present invention, the opening diameter d of the tubular air passage is defined by the diameter of a circle inscribed in the inner wall of the tubular air passage.

ところで、開口径dは、放電電極111と平板状の対向電極112との間隔Gに対して、d/G=0.05〜1を満足するように選択され、組み合わされることが好ましい。d/Gが0.05未満の場合には、浮遊微粒子への帯電付与が不足するので、捕集能力が低下する。また、d/Gが1を超える場合には、平板状の対向電極で区画された空間に対する管状通風路の本数が少なくなる為、放電電極111の通電劣化の影響が発生し易い。   The opening diameter d is preferably selected and combined so as to satisfy d / G = 0.05 to 1 with respect to the distance G between the discharge electrode 111 and the flat counter electrode 112. When d / G is less than 0.05, the charging ability to the floating fine particles is insufficient, and the collecting ability is reduced. In addition, when d / G exceeds 1, the number of tubular ventilation paths with respect to the space partitioned by the flat counter electrode decreases, and therefore, the influence of energization deterioration of the discharge electrode 111 tends to occur.

本実施形態の電気集塵装置の集塵部130に上記管状通風路を有する構造物を適応した場合、上記管状通風路を有する構造物の通風路の長さLを、上記管状通風路を有する構造物に導入される空気の通風速度V(m/秒)に対して、L/(V×1,000)≧0.005の関係を満足するように設定することによって、十分な空気処理量を確保することが可能である。例えば、集塵部130の受風面の面積を100cmとした場合、1分間に750L〜1立米程度の空気を処理することが可能となる。
尚、管状通風路を有する構造物に導入される空気の通風速度V(m/秒)は、受風面の面風速で決定され、例えば、携帯型風速計(クリモマスターmodel 6501−00、プローブ;6543−21、日本カノマックス社製)等で計測することが出来る。
When a structure having the above-mentioned tubular air passage is applied to the dust collecting portion 130 of the electrostatic precipitator of this embodiment, the length L of the air passage of the structure having the above-mentioned tubular air passage is the above-mentioned tubular air passage. Sufficient air throughput by setting to satisfy the relationship of L / (V × 1,000) ≧ 0.005 with respect to the ventilation velocity V (m / sec) of air introduced into the structure It is possible to secure For example, when the area of the wind receiving surface of the dust collection unit 130 is 100 cm 2 , it is possible to process air of about 750 liters to 1 square meter per minute.
The air flow velocity V (m / sec) of air introduced into the structure having a tubular air passage is determined by the surface air velocity of the wind receiving surface, and, for example, a portable anemometer (Crimomaster model 6501-00, probe 6543-21 (manufactured by Nippon Kanomax Co., Ltd.) or the like.

他方、エアフィルタ濾材として、エレクトレット処理を施した高分子フィルムを用いる場合には、例えば、高分子フィルムをスプリット繊維とした後、フィルムスプリット不織布に加工して用いることが好ましい。エアフィルタ濾材を不織布とすることで、水蒸気発生部から供給された水蒸気による圧力損失の増加を低く抑えながら、効率良く浮遊微粒子を捕集することが出来るばかりか、集塵部の薄型化にも貢献することが出来る。   On the other hand, when using the polymer film which gave the electret process as an air filter material, after using a polymer film as a split fiber, for example, it is preferable to process and use it as a film split nonwoven fabric. By making the air filter medium a non-woven fabric, it is possible not only to capture the floating particles efficiently while suppressing the increase in pressure loss due to water vapor supplied from the water vapor generation part, but also to make the dust collection part thinner. You can contribute.

本発明に好適なフィルムスプリット不織布としては、例えば、図6(a)に示すように、フィルムスプリット繊維の一部が、導入される空気の通過を妨げ難い方向に配置されているウェブを適応することが出来る。集塵部130にこのようなフィルムスプリット不織布を用いることで、水蒸気発生部120から供給された水蒸気の影響を最小化することが出来る。
一般的に、フィルムスプリット繊維は、原材料となる高分子フィルムを開繊カッター等で微細に切れ目を入れる等によって製造するので、フィルム幅(以下、「繊維幅w」と称す)がフィルム厚(以下、「繊維厚k」と称す)よりも大きくなり易い。また、高分子フィルムにエレクトレット処理を施した場合、フィルム面の表裏で分極する為、このようなフィルムスプリット繊維を積層してウェブ形成すると、繊維のフィルム面が不織布の表面に平行に配列され易く、空気の通過を妨げ易くなる(図6(b)参照)。更に、隣り合った分極面同士がお互いの静電気力を打ち消し合う傾向がある為、水蒸気発生部120から供給された水蒸気によってエレクトレット処理の効果低下を招いたり、最悪の場合には結露を生じる可能性がある。
しかしながら、本発明のエアフィルタ濾材に用いられるフィルムスプリット不織布フィルムスプリット不織布は、フィルムスプリット不織布を構成するフィルムスプリット繊維の構成比率と断面形状を特定することによって、上記の問題を回避することが可能である。
上記フィルムスプリット不織布は、少なくとも、高分子フィルムをスプリット状に加工したフィルムスプリット繊維を50重量%以上含有することが好ましく、更に好ましくは50〜90重量%であって、前記フィルムスプリット繊維の構成比率が50重量%未満の場合には、エレクトレット処理した高分子フィルムの存在量が少なくなる為、十分な捕集効率が得られない。また、90重量%を超える場合には、通気性の問題に加え、エアフィルタ濾材としての強度維持等に不都合を生じる可能性が高まる。
また、フィルムスプリット繊維は、特定の扁平または矩形を呈することで、水蒸気発生部から供給された水蒸気による圧力損失の増加を低く抑えながら、効率良く浮遊微粒子を捕集することが可能であり、フィルムスプリット繊維の繊維幅w(μm)と繊維厚k(μm)とが、2≦w/k≦5の関係を満たしていることが好ましい。w/kが2未満の場合、開繊カッターによる処理面の影響が大きくなり、集塵効率の低下を招き易く。また、w/kが5を超える場合には、圧力損失が大きくなり、通気性の確保が困難となる。
フィルムスプリット繊維は、その断面形状が扁平または矩形であることが好適であり、フィルムスプリット繊維の長径(以下、「繊維幅」と称す)は、高分子フィルムの短径(以下、「フィルム厚」と称す)の2〜5倍の長さであって、フィルムスプリット不織布の構成繊維全体に占めるフィルムスプリット繊維の構成比率が50〜90%であることが好ましい。繊維幅がフィルム厚の2倍未満の場合、開繊カッターによる処理面の影響が大きくなり、集塵効率の低下を招き易い。また、5倍を超える場合には、圧力損失が大きくなり、通気性の確保が困難となる。
フィルムスプリット不織布は、圧力損失を軽減する為に、フィルムスプリット繊維の構成比率が50〜90%を満足する範囲で骨材やスペーサーとなる高分子繊維を併用することが好ましく、上記の問題を回避することが出来る。フィルムスプリット繊維の構成比率が50%未満の場合には、エレクトレット処理した高分子フィルムの存在量が少なくなる為、十分な捕集効率が得られない。また、90%を超える場合には、エアフィルタ濾材としての強度維持等に不都合を生じる。
フィルムスプリット繊維は、繊維厚kが3〜15μmであるものが好ましい。特に、ナイロン、レーヨン、アセテートから選ばれる一種類以上の高分子繊維を10重量%を超えない範囲で混合することで、フィルムスプリット繊維のフィルム厚は3〜15μmとすることが好ましい。更に、上記フィルムスプリット繊維には、ナイロン、レーヨン、アセテートから選ばれる一種類以上の高分子繊維を混合することで、骨材やスペーサーの役割を果たしつつ、エレクトレットの保持に役立てることが出来る。特に、不織布が、帯電系列が異なる複数の高分子繊維からなることが好ましく、通気時に擦れ合うことによって、エレクトレット効果の消失分を補償することが可能となる。
As a film split nonwoven fabric suitable for the present invention, for example, as shown in FIG. 6 (a), a web in which a part of the film split fibers is disposed in a direction in which the passage of introduced air is not easily impeded I can do it. By using such a film split nonwoven fabric for the dust collection unit 130, the influence of the water vapor supplied from the water vapor generation unit 120 can be minimized.
Generally, a film split fiber is produced by finely cutting a polymer film as a raw material with an opening cutter or the like so that the film width (hereinafter referred to as "fiber width w") is the film thickness (hereinafter referred to as "film width") And “fiber thickness k”). When the polymer film is subjected to electret treatment, the film surface of the fiber tends to be arranged parallel to the surface of the non-woven fabric by laminating such film split fibers to form a web since polarization occurs on the front and back of the film surface. , The passage of air is likely to be impeded (see FIG. 6 (b)). Furthermore, since the adjacent polarized surfaces tend to cancel each other's electrostatic force, the water vapor supplied from the water vapor generation unit 120 may cause the effect of the electret processing to be reduced, or in the worst case, condensation may occur. There is.
However, the film split non-woven film split non-woven fabric used for the air filter medium of the present invention can avoid the above problems by specifying the composition ratio and the cross-sectional shape of the film split fibers constituting the film split non-woven fabric is there.
The film split nonwoven preferably contains at least 50% by weight, more preferably 50 to 90% by weight, of film split fibers obtained by processing a polymer film into splits, and the composition ratio of the film split fibers If the content of the polymer is less than 50% by weight, sufficient collection efficiency can not be obtained because the amount of electret-treated polymer film decreases. Moreover, in addition to the problem of air permeability, when it exceeds 90 weight%, possibility that a malfunction may arise in the intensity | strength maintenance as an air filter medium, etc. increases.
In addition, the film split fiber can collect floating particles efficiently, while suppressing an increase in pressure loss due to water vapor supplied from the water vapor generation part by presenting a specific flat or rectangular shape, and a film It is preferable that the fiber width w (μm) of the split fiber and the fiber thickness k (μm) satisfy the relationship 2 ≦ w / k ≦ 5. When w / k is less than 2, the influence of the treated surface by the opening cutter becomes large, and the dust collection efficiency tends to be reduced. Moreover, when w / k exceeds 5, a pressure loss will become large and ensuring of air permeability will become difficult.
The cross-sectional shape of the film split fiber is preferably flat or rectangular, and the major axis of the film split fiber (hereinafter, referred to as "fiber width") is the minor axis of the polymer film (hereinafter, "film thickness") It is preferable that the composition ratio of the film split fiber occupied in the whole constituent fiber of a film split nonwoven fabric is 50 to 90%. When the fiber width is less than twice the film thickness, the influence of the treated surface by the opening cutter becomes large, and the dust collection efficiency tends to be reduced. Moreover, when it exceeds 5 times, a pressure loss will become large and it will become difficult to ensure air permeability.
In order to reduce pressure loss, it is preferable to use a film split non-woven fabric in combination with a polymer fiber to be an aggregate or a spacer within a range where the composition ratio of the film split fiber satisfies 50 to 90%. You can do it. When the composition ratio of the film split fiber is less than 50%, the amount of the electret-treated polymer film is small, so that sufficient collection efficiency can not be obtained. Moreover, when it exceeds 90%, it will become inconvenient in the intensity | strength maintenance as an air filter medium, etc.
The film split fiber preferably has a fiber thickness k of 3 to 15 μm. In particular, the film thickness of the film split fiber is preferably 3 to 15 μm by mixing one or more types of polymer fibers selected from nylon, rayon, and acetate in a range not exceeding 10% by weight. Furthermore, by mixing one or more types of polymer fibers selected from nylon, rayon and acetate into the film split fiber, it can be used for holding the electret while playing the role of aggregate and spacer. In particular, the non-woven fabric is preferably made of a plurality of polymer fibers different in charge series, and it is possible to compensate for the loss of the electret effect by rubbing at the time of aeration.

ところで、本実施形態の電気集塵装置の主要部分100は、そのまま気流中に設置して用いるだけでなく、必要に応じて、気流発生部140を接続して、主要部分100への空気導入量を増減して使用することも出来る(図1の(b)参照)。例えば、主要部分100を家電や事務機の内部に設置した場合、電気集塵ユニットとして、機外に排出される空気中の浮遊微粒子を除去することが出来る。また、主要部分100に、気流発生部140として、プロペラファンを備えた軸流送風機を接続した場合、自立型の室内電気集塵機とすることが出来る。
この時の通風方向は図中の矢印の方向であって、浮遊微粒子を含有する空気を気流発生部140で吸引することで主要部分100内に導入し、集塵した後に排気する。送風機の吐出側で発生する旋回流とは異なり、送風機の吸引側で発生する気流は比較的一様である為、気流中の浮遊微粒子を好ましく取り除くことが出来る。これによって、プロペラファンに起因する旋回流が均一化されるので、帯電部110を通過する気流中の浮遊微粒子は、均一にイオン付与を受けることが可能となる。
気流発生部140に適応される送風機としては、例えば、プロペラファンを備えた軸流送風機、多翼ファンやターボファンを備えた遠心送風機、斜流ファンを備えた斜流送風機、クロスフローファンを備えた横断流送風機等を適応することが可能である。この時の通風方向は、図中の矢印の方向であって、浮遊微粒子を含有する空気を送風機で吸引して主要部分100内に導入することが出来る。
By the way, the main part 100 of the electrostatic precipitator of this embodiment is not only installed and used as it is in the air flow, but also the air flow generation unit 140 is connected as needed to introduce the amount of air introduced into the main part 100 It can also be used by increasing or decreasing (see (b) in FIG. 1). For example, when the main part 100 is installed inside a home appliance or an office machine, it is possible to remove suspended particles in the air discharged to the outside of the machine as an electric dust collection unit. In addition, when an axial-flow fan equipped with a propeller fan is connected as the air flow generation unit 140 to the main portion 100, a self-standing indoor electrostatic precipitator can be obtained.
The ventilation direction at this time is the direction of the arrow in the figure, and air containing floating particulates is introduced into the main portion 100 by sucking the air by the air flow generation unit 140, collected after dust collection, and then exhausted. Unlike the swirling flow generated on the discharge side of the blower, the air flow generated on the suction side of the blower is relatively uniform, and therefore, it is possible to preferably remove suspended particles in the air flow. As a result, the swirling flow caused by the propeller fan is made uniform, so that the suspended particles in the air flow passing through the charging unit 110 can be uniformly ionized.
As a blower applied to the airflow generation unit 140, for example, an axial-flow blower equipped with a propeller fan, a centrifugal blower equipped with a multi-blade fan or a turbofan, a mixed-flow blower equipped with a mixed-flow fan, a crossflow fan It is possible to adapt cross flow fans etc. The ventilation direction at this time is the direction of the arrow in the figure, and air containing suspended particles can be sucked by a blower and introduced into the main portion 100.

以下、本発明を実施例(及び比較例)により詳細に説明するが、本発明は、これ等の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by examples (and comparative examples), but the present invention is not limited to these examples.

<実施例1>
図1(b)に記載の自立型の電気集塵装置を用い、空気中の浮遊微粒子の捕集効率とオゾンの放散速度を評価した。
帯電部110には、鋸歯状の放電電極の両側面に平板状の対向電極を平行に配置した。帯電部110の開口部の大きさは、縦80mm、横80mmであって、放電電極と対向電極の間隔Gを5.0mmとし、前記開口部を11枚の対向電極(と10枚の放電電極)で区画した。放電電極は、板厚0.3mmの平板(SUS304)をエッチング加工したものであり、鋸歯状の突起部分の間隔Pが5.0mmで(P/G=1.0)、電極先端部の先端曲率半径Rは50μmとした。
集塵部130には、エレクトレット処理を施したポリプロピレン製シート(シート厚t=0.1mm、接触角94°)を積層して得られたコルゲート構造体を用いた。コルゲート構造体の管状通風路の開口径dは0.9mmで、風路長L(濾材厚)は20mmであり(d/L=0.045、開口率=70%、圧力損失=3Pa)、受風面の面積は64cm(帯電部110の開口部と同じ)とした。
気流発生部140として、プロペラファンを備えたDC軸流送風機(80mm×80mm×15mm)を用い、管状通風路を有する構造物に導入される空気の通過風速が0.5m/秒となるように設定した(L/(V×1,000)=0.04)。この時の空気処理量は192L/分であった。
電気集塵装置の稼働時には、放電電極にはプラス極性の電圧を印加し、電極間通電量が90μAとなるように設定した。また、水蒸気発生部120には超音波式の小型加湿器を用い、水蒸気発生部120から帯電部110に供給される水蒸気の供給速度が、帯電部110の電極部分を通過する風路の断面積(前記開口部と同じ)1cm当たりに対して、0.35mg/分となるように調整した。
Example 1
Using the self-standing electrostatic precipitator shown in FIG. 1 (b), the collection efficiency of suspended particulates in the air and the rate of ozone emission were evaluated.
In the charging unit 110, flat counter electrodes were disposed in parallel on both sides of the sawtooth discharge electrode. The size of the opening of the charging portion 110 is 80 mm long and 80 mm wide, and the distance G between the discharge electrode and the counter electrode is 5.0 mm, and the opening is 11 counter electrodes (and 10 discharge electrodes). It divided by). The discharge electrode is formed by etching a flat plate (SUS 304) with a thickness of 0.3 mm, and the distance P between the sawtooth-like protrusions is 5.0 mm (P / G = 1.0), and the tip of the electrode tip is The curvature radius R was 50 μm.
For the dust collection unit 130, a corrugated structure obtained by laminating a polypropylene sheet (sheet thickness t = 0.1 mm, contact angle 94 °) subjected to electret processing was used. The opening diameter d of the tubular air passage in the corrugated structure is 0.9 mm, and the air passage length L (filter medium thickness) is 20 mm (d / L = 0.045, opening ratio = 70%, pressure loss = 3 Pa), The area of the air receiving surface was 64 cm 2 (the same as the opening of the charging unit 110).
A DC axial flow fan (80 mm × 80 mm × 15 mm) equipped with a propeller fan is used as the air flow generation unit 140 so that the passing wind speed of air introduced into a structure having a tubular air passage is 0.5 m / sec. It was set (L / (V × 1,000) = 0.04). The air throughput at this time was 192 L / min.
When the electrostatic precipitator was in operation, a voltage of positive polarity was applied to the discharge electrode, and the inter-electrode conduction amount was set to 90 μA. In addition, a small-sized ultrasonic humidifier is used for the water vapor generation unit 120, and a supply speed of water vapor supplied from the water vapor generation unit 120 to the charging unit 110 is a cross-sectional area of an air passage through which an electrode portion of the charging unit 110 passes. The adjustment was made to 0.35 mg / min per 1 cm 2 (same as the opening).

空気中の浮遊微粒子の捕集効率とオゾンの放散速度を評価したところ、空気中の浮遊微粒子の捕集効率は99個数%で、オゾンの放散速度は1.0mg/時未満であり、非常に良好な結果を示した。
更に、放電電極の通電劣化の影響試験を行う為に、180μAの電極間通電量で放電電極の通電劣化を加速させた。
放電電極を通電劣化させた後、前記と同様に空気中の浮遊微粒子の捕集効率とオゾンの放散速度を評価したところ、空気中の浮遊微粒子の捕集効率は98個数%で、オゾンの放散速度は1.0mg/時であり、非常に良好な状態を維持していた。
As a result of evaluating the collection efficiency of suspended particles in air and the emission rate of ozone, the collection efficiency of suspended particles in air is 99% by number, and the emission rate of ozone is less than 1.0 mg / hour. It showed good results.
Furthermore, in order to conduct the influence test of the current flow deterioration of the discharge electrode, the current flow deterioration of the discharge electrode was accelerated by the current flow between the electrodes of 180 μA.
After the discharge electrode was subjected to current flow degradation, the collection efficiency of suspended particles in air and the rate of ozone release were evaluated in the same manner as described above. The collection efficiency of suspended particles in air was 98% by number, and ozone was released The rate was 1.0 mg / hr and remained very good.

以上の結果の詳細を図7の表にまとめた。尚、空気中の浮遊微粒子の捕集効率とオゾンの放散速度の測定方法と測定結果の評価基準及び放電電極の通電劣化の影響試験の方法は、以下の通りである。   The details of the above results are summarized in the table of FIG. In addition, the measuring method of the collection efficiency of the floating fine particles in the air and the emission rate of ozone, the evaluation standard of a measurement result, and the method of the influence test of the electricity deterioration of a discharge electrode are as follows.

[1.浮遊微粒子の捕集効率の評価]
電気集塵装置によって捕集された空気中の浮遊微粒子の捕集効率は、電気集塵装置に吸気される空気中の大気塵の個数濃度と、電気集塵装置から排気される空気中の大気塵の個数濃度をそれぞれ3分間ずつ測定し、大気塵の減少率を算出することによって求めた。算出した浮遊微粒子の捕集効率は、下記の基準に従って評価した。尚、空気中の大気塵の個数濃度の測定には、小型UFP測定器(NANOSCAN SMPS NANOPARTICLE SIZER Model 3910、TSI社製)を用いた。
A;98個数%以上 (非常に良好である)
B;95個数%以上98個数%未満 (良好である)
C;80個数%以上95個数%未満 (本発明において許容レベルである)
D;80個数%未満 (本発明において不可レベルである)
[1. Evaluation of collection efficiency of suspended particles]
The collection efficiency of suspended particulates in the air collected by the electrostatic precipitator is determined by the number concentration of atmospheric dust in the air taken into the electrostatic precipitator and the air in the air exhausted from the electrostatic precipitator. The number concentration of dust was measured for 3 minutes each, and the reduction rate of atmospheric dust was calculated. The collection efficiency of the floating particles thus calculated was evaluated according to the following criteria. A small UFP measuring device (NANOSCAN SMPS NANOPARTICLE SIZER Model 3910, manufactured by TSI Corporation) was used to measure the number concentration of atmospheric dust in the air.
A; 98 number% or more (very good)
B: 95 or more and 98 or less% (good)
C: 80 number% or more and less than 95 number% (this is an acceptable level in the present invention)
D: less than 80% by number (not acceptable in the present invention)

[2.オゾンの放散速度の評価]
電気集塵装置外に排出されたオゾンの放散量は、クリーンブース内に設置した電気集塵装置が稼働時に放散するオゾンの発生濃度変化を測定し、放散速度を算出した。算出したオゾンの放散速度は、下記の基準に従って評価した。尚、稼働時に放散されたオゾンの濃度測定には、紫外線吸収式の低濃度用オゾン濃度系(Model1100、ダイレック社製)を用いた。
A;1.0mg/時未満 (非常に良好である)
B;1.0mg/時以上2.0mg/時未満 (良好である)
C;2.0mg/時以上3.0mg/時未満 (本発明において許容レベルである)
D;3.0mg/時以上 (本発明において不可レベルである)
[2. Evaluation of Ozone Emission Rate]
The amount of ozone discharged to the outside of the electrostatic precipitator was calculated by measuring the change in the concentration of ozone generated by the electrostatic precipitator installed in the clean booth during operation to calculate the emission rate. The calculated ozone emission rate was evaluated according to the following criteria. In addition, the ultraviolet absorption type ozone concentration system for low concentration (Model 1100, product made by DYREC Co., Ltd.) was used for the density | concentration measurement of the ozone diffused at the time of operation | use.
A; less than 1.0 mg / hour (very good)
B: 1.0 mg / hour or more and 2.0 mg / hour or less (good)
C: 2.0 mg / hour or more and less than 3.0 mg / hour (this is an acceptable level in the present invention)
D: 3.0 mg / hour or more (this is an unacceptable level in the present invention)

[3.放電電極の通電劣化の影響試験]
通常使用時の1.5倍の電極間通電量で累積700時間の通電を実施し、放電電極の通電劣化を加速させた後、あらためて、前記[1.浮遊微粒子の捕集効率の評価]と[2.オゾンの放散速度の評価]に記載の測定と評価を行った。
[3. Influence test of current deterioration of discharge electrode]
After conducting electricity for a total of 700 hours with an inter-electrode conduction amount of 1.5 times that in normal use and accelerating the current-carrying deterioration of the discharge electrode, again, the above-mentioned [1. Evaluation of collection efficiency of suspended particles] and [2. Evaluation and Evaluation of Ozone Emission Rate] were carried out.

<実施例2>
帯電部110の放電電極を交換し、電極先端部の曲率半径を75μmに変更した。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリプロピレン製フィルム(フィルム厚(繊維厚k)=10μm、接触角94°)をフィルムスプリット繊維(繊維幅w=43μm、w/k=4.3)とした後、フィルムスプリット不織布(濾材厚=3.0mm、フィルムスプリット繊維の構成比率=70質量%、圧力損失=20Pa)に加工したものを用いた。実施例1と比較して、集塵部130に用いたエアフィルタ濾材の濾材厚が薄くなった為、電極間通電量が120μAとなるように再調整した以外は、実施例1と同様に設定した上で、放散試験を行った。
その結果、電極間通電量を増やしたが、帯電部110に水蒸気を供給しているので、オゾンの放散量を増やすことなく、浮遊微粒子の放散量を大幅に削減することが出来た。また、放電電極の通電劣化の影響試験を実施したところ、実施例1と比較して、電極先端部の曲率半径を大きくしたので、電極間通電量を増やしても、安定して浮遊微粒子を捕集することが出来たが、オゾンの放散量の増加が僅かに見られた。
Example 2
The discharge electrode of the charging unit 110 was replaced, and the curvature radius of the tip of the electrode was changed to 75 μm. In addition, a polypropylene film (film thickness (fiber thickness k) = 10 μm, contact angle 94 °) subjected to electret processing as an air filter material of the dust collection portion 130 is a film split fiber (fiber width w = 43 μm, w / k After setting it as = 4.3, a film split nonwoven fabric (filter material thickness = 3.0 mm, composition ratio of film split fibers = 70 mass%, pressure loss = 20 Pa) was used. Since the thickness of the filter material of the air filter material used in the dust collection unit 130 is thinner than that of the first embodiment, the setting is the same as that of the first embodiment except that readjustment is performed so that the interelectrode current flow amount becomes 120 μA. Then, we conducted a radiation test.
As a result, although the inter-electrode electrification amount is increased, since the water vapor is supplied to the charging unit 110, the amount of floating fine particles can be significantly reduced without increasing the amount of ozone being emitted. In addition, when the influence test of the deterioration of the discharge electrode was conducted, the curvature radius of the tip of the electrode was increased compared to Example 1, so that the floating particles can be stably captured even if the amount of current flowing between the electrodes is increased. It could be collected, but a slight increase in ozone emissions was observed.

<実施例3>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを3.5mmに変更した(P/G=0.7)。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリエチレン製フィルム(フィルム厚(繊維厚k)=15μm、接触角101°)をフィルムスプリット繊維(繊維幅w=35μm、w/k=2.3)とした後、フィルムスプリット不織布(濾材厚=3.0mm、フィルムスプリット繊維の構成比率=53質量%、圧力損失=15Pa)に加工したものを用いた。また、帯電部110に供給される水蒸気の供給速度を0.22mg/分となるように再調整した以外は、実施例2と同様に設定した上で、放散試験を行った。
その結果、実施例2と比較して、帯電部110に供給される水蒸気の供給速度が遅くなった分、オゾンの放散量が増加した。また、放電電極の通電劣化の影響試験を実施したところ、浮遊微粒子の捕集効率が低下し、オゾンの放散量が更に増加したが、帯電部110の突起部分の間隔Pを3.0mmに調整しているので、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。
Example 3
The discharge electrode of the charging unit 110 was replaced, and the interval P of the sawtooth-shaped projection was changed to 3.5 mm (P / G = 0.7). In addition, a polyethylene film (film thickness (fiber thickness k) = 15 μm, contact angle 101 °) subjected to electret processing as an air filter material of the dust collection portion 130 is a film split fiber (fiber width w = 35 μm, w / k After setting it as = 2.3, one processed into a film split nonwoven fabric (filter medium thickness = 3.0 mm, composition ratio of film split fiber = 53 mass%, pressure loss = 15 Pa) was used. Further, the radiation test was conducted after setting in the same manner as in Example 2 except that the supply rate of the water vapor supplied to the charging unit 110 was readjusted to 0.22 mg / min.
As a result, as compared with Example 2, the amount of ozone released increased as the supply rate of the water vapor supplied to the charging unit 110 became slower. In addition, when the influence test of current flow deterioration of the discharge electrode was carried out, the collection efficiency of suspended particulates decreased and the amount of released ozone further increased, but the interval P of the protruding portion of the charging portion 110 was adjusted to 3.0 mm. As a result, it was possible to achieve both the collection efficiency of suspended particulates and the amount of released ozone at an acceptable level.

<実施例4>
集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリエチレンテレフタレート製フィルム(フィルム厚(繊維厚k)=12μm、接触角=79°)をフィルムスプリット繊維(繊維幅w=60μm、w/k=5.0)とした後、フィルムスプリット不織布(濾材厚=4.0mm、フィルムスプリット繊維の構成比率=80質量%、圧力損失=55Pa)に加工したものを用いた以外は、実施例3と同様に設定した上で、放散試験を行った。
その結果、実施例3と比較して、エアフィルタ濾材の水に対する親和性が増した分、浮遊微粒子の捕集効率が僅かに低下した。しかし、放電電極の通電劣化の影響試験の結果も含め、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。
Example 4
A film made of polyethylene terephthalate (film thickness (fiber thickness k) = 12 μm, contact angle = 79 °) subjected to electret processing as an air filter material for the dust collection portion 130 is a film split fiber (fiber width w = 60 μm, w / k After setting it as = 5.0), the film split non-woven fabric (filter material thickness = 4.0 mm, composition ratio of film split fiber = 80 mass%, pressure loss = 55 Pa) was used, except that it was used. The radiation test was conducted after setting in the same manner.
As a result, as compared with Example 3, the affinity for water of the air filter medium increased, and the collection efficiency of suspended particulates slightly decreased. However, it was possible to achieve both the collection efficiency of the floating fine particles and the amount of released ozone at an acceptable level, including the results of the influence test of the current-carrying deterioration of the discharge electrode.

<実施例5>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを7.0mm(P/G=1.4)に変更した。また、帯電部110に供給される水蒸気の供給速度を0.47mg/分となるように再調整した以外は、実施例3と同様に設定した上で、放散試験を行った。
その結果、実施例3と比較して、P/Gが大きく、帯電部110に供給される水蒸気の供給速度を速めた分、オゾンの放散量が減少すると共に、水に対する親和性が低いエアフィルタ濾材を用いることで、浮遊微粒子の捕集効率の低下を小幅に抑制することが出来た。また、放電電極の通電劣化の影響試験でも、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。
Example 5
The discharge electrode of the charging unit 110 was replaced, and the spacing P of the sawtooth-shaped protruding portions was changed to 7.0 mm (P / G = 1.4). Further, the radiation test was conducted after setting in the same manner as in Example 3 except that the supply rate of the water vapor supplied to the charging unit 110 was readjusted so as to be 0.47 mg / min.
As a result, as compared with Example 3, the P / G is large, and the amount of ozone released is reduced as the supply rate of the water vapor supplied to the charging unit 110 is increased, and the air filter has a low affinity for water. By using the filter medium, it was possible to suppress the decrease in the collection efficiency of the floating fine particles to a small extent. In addition, in the influence test of the current-carrying deterioration of the discharge electrode, it was possible to achieve both the collection efficiency of the floating fine particles and the emission amount of ozone at an acceptable level.

<実施例6>
集塵部130のエアフィルタ濾材として、実施例4で用いたフィルムスプリット不織布を用いる以外は、実施例5と同様に設定した上で、放散試験を行った。
その結果、実施例4と比較して、P/Gが大きく、帯電部110に供給される水蒸気の供給速度を速めた分、浮遊微粒子の捕集効率が低下したが、オゾンの放散量を大幅に抑制することが出来た。
引き続き、放電電極の通電劣化の影響試験を行ったところ、浮遊微粒子の捕集効率が更に低下したが、電極間通電量を150μAに変更することで、浮遊微粒子の捕集効率を許容出来るレベルに改善し、放電電極の通電劣化の影響試験前後での性能格差を最小限にすることが出来た。
Example 6
A radiation test was conducted after setting in the same manner as in Example 5 except that the film split nonwoven fabric used in Example 4 was used as the air filter material of the dust collection portion 130.
As a result, P / G was large compared to Example 4, and the collection efficiency of suspended particulates decreased because the feed rate of water vapor supplied to the charging unit 110 was increased, but the amount of ozone released was significantly reduced. It was possible to
Subsequently, when the influence test of the discharge deterioration of the discharge electrode was carried out, the collection efficiency of suspended particles further decreased. However, by changing the inter-electrode supply amount to 150 μA, the collection efficiency of suspended particles was made to an acceptable level. It was possible to improve and minimize the performance difference before and after the influence test of the discharge deterioration of the discharge electrode.

<実施例7>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを2.5mm(P/G=0.5)に変更した。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリエチレンテレフタレート製シート(シート厚t=0.1mm、接触角79°)を積層して得られたコルゲート構造体(管状通風路の開口径d=0.5mm、風路長L(濾材厚)=5.0mm、d/L=0.10、開口率=75%、圧力損失=7Pa)を用いる以外は、実施例1と同様に設定した上で、放散試験を行った。
その結果、実施例1と比較して、エアフィルタ濾材の水に対する親和性が増し、風路長Lが短くなった分、P/Gと開口径dを小さくすることで、浮遊微粒子の捕集効率の低下を小幅に抑制することが出来た。また、放電電極の通電劣化の影響試験を実施したところ、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。更に、電極間通電量を150μAに変更したが、オゾンの放散量が増えるだけで、浮遊微粒子の捕集効率に改善は見られなかった。
Example 7
The discharge electrode of the charging unit 110 was replaced, and the spacing P of the sawtooth-shaped protruding portions was changed to 2.5 mm (P / G = 0.5). A corrugated structure (a tubular air passage) obtained by laminating a polyethylene terephthalate sheet (sheet thickness t = 0.1 mm, contact angle 79 °) subjected to electret processing as an air filter material for the dust collection portion 130 As in Example 1, except that the opening diameter d = 0.5 mm, air path length L (filter medium thickness) = 5.0 mm, d / L = 0.10, opening ratio = 75%, pressure loss = 7 Pa) The emission test was conducted after setting to.
As a result, as compared with Example 1, the affinity of the air filter medium to water is increased, and the air passage length L is shortened, so that P / G and the opening diameter d are reduced, thereby collecting the floating fine particles. It was possible to suppress the decrease in efficiency to a small extent. Moreover, when the influence test of the current supply deterioration of the discharge electrode was implemented, the collection efficiency of the floating fine particles and the amount of released ozone could be compatible at an acceptable level. Furthermore, although the amount of current flow between the electrodes was changed to 150 μA, no improvement was seen in the collection efficiency of suspended particulates only by the increase of the amount of released ozone.

<実施例8>
帯電部110の放電電極を交換し、鋸歯状の突起部分の電極先端部の先端曲率半径Rを125μmに変更した。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリプロピレン製シート(シート厚t=0.2mm、接触角94°)を積層して得られたコルゲート構造体(管状通風路の開口径d=1.2mm、風路長L(濾材厚)=45mm、d/L=0.027、開口率=62%、圧力損失=2Pa)に加工したものを用いた以外は、実施例1と同様に設定した上で、放散試験を行った。
その結果、実施例1と比較して、エアフィルタ濾材の開口径dが大きくなった上、シート厚tが厚くなった影響で開口率が低くなったが、風路長Lを長くすることで、浮遊微粒子の捕集効率の低下を小幅に抑制することが出来た。また、電極先端部の先端曲率半径Rが大きくなったことによってオゾンの放散量が増加するが、帯電部110に水蒸気を供給することで、最小限に抑制することが出来た。
更に、放電電極の通電劣化の影響試験を実施したところ、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させると共に、電極先端部の先端曲率半径Rを大きくすることで、放電電極の通電劣化の影響試験前後での性能格差を最小限にすることが出来た。
Example 8
The discharge electrode of the charging unit 110 was replaced, and the tip radius of curvature R of the electrode tip of the sawtooth-shaped projection was changed to 125 μm. In addition, a corrugated structure (opening of a tubular air passage) obtained by laminating an electret-treated polypropylene sheet (sheet thickness t = 0.2 mm, contact angle 94 °) as an air filter material of the dust collection portion 130 Example 1 except that one processed into an aperture diameter d = 1.2 mm, air path length L (filter material thickness) = 45 mm, d / L = 0.027, aperture ratio = 62%, pressure loss = 2 Pa) was used The emission test was conducted after setting in the same manner as in.
As a result, compared with Example 1, the opening diameter d of the air filter medium was increased, and the opening ratio decreased due to the increase of the sheet thickness t. However, the air passage length L is increased. The reduction of the collection efficiency of the floating particulates could be suppressed to a small extent. In addition, although the amount of ozone emission increases due to the increase of the tip radius of curvature R of the electrode tip, the supply of water vapor to the charging unit 110 can minimize the amount.
Furthermore, when the influence test of current flow deterioration of the discharge electrode was conducted, discharge efficiency was achieved by making the collection efficiency of floating particles and the amount of released ozone compatible with each other at an acceptable level, and by increasing the tip curvature radius R of the electrode tip. It was possible to minimize the performance difference before and after the influence test of the current deterioration of the electrode.

<実施例9>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pが7.0mmで(P/G=1.4)、電極先端部の先端曲率半径Rを75μmに変更した。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリエチレン製シート(シート厚t=1.5mm、接触角=101°)を積層して得られたハニカム構造体(管状通風路の開口径d=5mm、風路長L(濾材厚)=25mm、d/L=0.20、開口率=79%、圧力損失=1Pa)に加工したものを用い、電極間通電量が120μAとなるように再調整した以外は、実施例1と同様に設定した上で、放散試験を行った。
その結果、実施例1と比較して、電極先端部の曲率半径Rが大きくなり、電極間通電量も増やしているが、帯電部110に水蒸気が供給されているので、オゾンの放散量は僅かに増加した程度であった。一方、P/Gとエアフィルタ濾材の開口径dが大きくなったが、エアフィルタ濾材の水に対する親和性を低くすると共に電極間通電量を大きくすることによって、浮遊微粒子の捕集効率の低下を許容出来るレベルとすることが出来た。
引き続き、放電電極の通電劣化の影響試験を行ったところ、オゾンの放散量が増えたものの、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させ、放電電極の通電劣化の影響試験前後での性能格差を最小限にすることが出来た。
Example 9
The discharge electrode of the charging unit 110 was replaced, the distance P between the sawtooth-shaped protruding portions was 7.0 mm (P / G = 1.4), and the tip radius of curvature R of the electrode tip was changed to 75 μm. In addition, a honeycomb structure (a tubular air passage) obtained by laminating an electret-treated polyethylene sheet (sheet thickness t = 1.5 mm, contact angle = 101 °) as an air filter material of the dust collection portion 130 With an aperture diameter d of 5 mm, an air passage length L (filter material thickness) of 25 mm, d / L of 0.20, an aperture ratio of 79%, and a pressure loss of 1 Pa) The emission test was conducted after setting in the same manner as in Example 1 except that the readjustment was performed as described above.
As a result, the radius of curvature R of the tip of the electrode is larger than in Example 1, and the amount of electrification between the electrodes is also increased. However, since water vapor is supplied to the charging unit 110, the amount of ozone released is small. Was increased to On the other hand, although P / G and the opening diameter d of the air filter medium became large, by lowering the affinity of the air filter medium for water and increasing the amount of electrification between the electrodes, the collection efficiency of suspended particulates was lowered. It was possible to make it an acceptable level.
Subsequently, an influence test of the discharge deterioration of the discharge electrode was conducted, and although the amount of ozone released increased, the collection efficiency of suspended particles and the amount of ozone discharge were compatible at an acceptable level, and the influence of the discharge deterioration of the discharge electrode The performance gap before and after the test could be minimized.

<実施例10>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを3.5mmにすると共に(P/G=0.7)、電極先端部の先端曲率半径Rを10μmに変更した。また、集塵部130のエアフィルタ濾材として、エレクトレット処理を施したポリプロピレン繊維を主材とするメルトブローン不織布(濾材厚=2.0mm、接触角=94°、圧力損失=60Pa)に加工したものを用いた。また、電極間通電量が120μAとなるように再調整した以外は、実施例1と同様に設定した上で、放散試験を行った。
その結果、エアフィルタ濾材をメルトブローン不織布に変更した為、浮遊微粒子の捕集効率の低下を招いたが、エレクトレット処理を施したポリプロピレン繊維を用いることで許容出来るレベルに止めることが出来た。
引き続き、放電電極の通電劣化の影響試験を行ったところ、電極先端部の先端曲率半径Rが小さい放電電極を用いた為、通電劣化の影響で浮遊微粒子の捕集効率が低下したので、電極間通電量を150μAに変更した。その結果、オゾンの放散量が大幅に増えたものの、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。
Example 10
The discharge electrode of the charging unit 110 was replaced, and the interval P of the sawtooth-shaped protruding portions was 3.5 mm (P / G = 0.7), and the tip curvature radius R of the electrode tip was changed to 10 μm. Moreover, as an air filter material of the dust collection part 130, what was processed into the meltblown non-woven fabric (filter material thickness = 2.0 mm, contact angle = 94 °, pressure loss = 60 Pa) mainly composed of polypropylene fiber subjected to electret treatment Using. Moreover, after setting similarly to Example 1 except having readjusted so that the amount of electricity_supply between electrodes might be 120 microampere, the diffusion test was done.
As a result, since the air filter material was changed to the meltblown nonwoven fabric, the collection efficiency of the floating fine particles was lowered, but it could be stopped at an acceptable level by using the electret-treated polypropylene fiber.
Subsequently, when the influence test of the deterioration of the discharge electrode was conducted, the discharge electrode with the small tip radius of curvature R at the tip of the electrode was used. The amount of energization was changed to 150 μA. As a result, although the amount of released ozone increased significantly, it was possible to achieve both the collection efficiency of suspended particles and the amount of released ozone at an acceptable level.

実施例2〜10の評価結果を、図7の表にまとめて示す。   The evaluation results of Examples 2 to 10 are summarized in the table of FIG.

<比較例1>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを5.0mmに変更すると共に(P/G=1.0)、帯電部110に供給される水蒸気の供給を停止する以外は、実施例10と同様に設定した上で、放散試験を行った。その結果、オゾンの放散量を許容レベルに抑制することが出来なかった為、水蒸気の供給速度を0.18mg/分となるように再調整して、放散試験を再開した。
その結果、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来た。
引き続き、放電電極の通電劣化の影響試験を行ったところ、浮遊微粒子の捕集効率が低下した為、実施例10と同様に、電極間通電量を150μAに変更して、浮遊微粒子の捕集効率を改善したが、帯電部110に供給される水蒸気の供給速度が十分ではなかった為、オゾンの放散量を許容出来るレベルに改善することが出来なかった。
Comparative Example 1
While replacing the discharge electrode of the charging unit 110 and changing the interval P of the sawtooth-like protruding portions to 5.0 mm (P / G = 1.0) and stopping the supply of the water vapor supplied to the charging unit 110 In the same manner as in Example 10, the emission test was conducted. As a result, since the ozone emission amount could not be suppressed to an acceptable level, the water vapor supply rate was readjusted to 0.18 mg / min, and the emission test was resumed.
As a result, it was possible to achieve both the collection efficiency of suspended particulates and the amount of released ozone at an acceptable level.
Subsequently, when the influence test of the current flow deterioration of the discharge electrode was conducted, the collection efficiency of the floating fine particles was lowered. Therefore, similarly to Example 10, the amount of current flow between the electrodes is changed to 150 μA to collect the floating fine particles. However, since the supply rate of the water vapor supplied to the charging unit 110 was not sufficient, the amount of ozone released could not be improved to an acceptable level.

<比較例2>
帯電部110の放電電極を交換し、鋸歯状の突起部分の電極先端部の曲率半径を150μmに変更した。また、帯電部110に供給される水蒸気の供給速度を0.55mg/分となるように再調整した以外は、比較例1と同様に設定した上で、放散試験を行った。
その結果、浮遊微粒子の捕集効率とオゾンの放散量を許容出来るレベルで両立させることが出来たが、その後に行った放電電極の通電劣化の影響試験の最中に、エアフィルタ濾材に結露を生じた為、試験を中止した。
Comparative Example 2
The discharge electrode of the charging unit 110 was replaced, and the radius of curvature of the electrode tip of the sawtooth-shaped projection was changed to 150 μm. Further, the emission test was conducted after setting in the same manner as in Comparative Example 1 except that the supply rate of the water vapor supplied to the charging unit 110 was readjusted so as to be 0.55 mg / min.
As a result, although it was possible to achieve both the collection efficiency of floating particulates and the amount of ozone released at an acceptable level, dew condensation was applied to the air filter medium during the effect test of current-carrying deterioration of the discharge electrode performed thereafter. The test was discontinued as it occurred.

<比較例3>
集塵部130のエアフィルタ濾材として、ガラス繊維を主材とする高性能エアフィルタ(準HEPAフィルタ、圧力損失=200Pa、濾材厚2.5mm)を用いる以外は、比較例1と同様に設定した上で、放散試験を行った。
その結果、空気処理量が大幅に減少した上に、エアフィルタ濾材に結露を生じた為、試験を中止した。
Comparative Example 3
Similar to Comparative Example 1 except that a high-performance air filter (quasi HEPA filter, pressure loss = 200 Pa, filter medium thickness 2.5 mm) mainly composed of glass fiber is used as an air filter medium for the dust collection unit 130 Above, the emission test was done.
As a result, the air treatment amount was significantly reduced, and the air filter medium had dew condensation, so the test was stopped.

<比較例4>
帯電部110の放電電極を交換し、鋸歯状の突起部分の間隔Pを5.0mmに変更すると共に(P/G=1.0)、集塵部130のエアフィルタ濾材として、エレクトレット処理を施していないポリエチレンテレフタレート製フィルム(フィルム厚(繊維厚k)=12μm、接触角=79°)をフィルムスプリット繊維(繊維幅w=60μm、w/k=5.0)とした後、フィルムスプリット不織布(濾材厚=4.0mm、フィルムスプリット繊維の構成比率=40質量%、圧力損失=12Pa)に加工したものを用いた以外は、実施例5と同様に設定した上で、放散試験を行った。
その結果、浮遊微粒子の捕集効率が許容出来るレベルに至らなかった。尚、放電電極の通電劣化の影響試験は中止した。
Comparative Example 4
The discharge electrode of the charging unit 110 is replaced, and the interval P of the sawtooth-shaped protruding portions is changed to 5.0 mm (P / G = 1.0), and electret treatment is applied as an air filter material of the dust collection unit 130 A film split nonwoven fabric (fiber width w = 60 μm, w / k = 5.0) after making a polyethylene terephthalate film (film thickness (fiber thickness k) = 12 μm, contact angle = 79 °) A radiation test was conducted after setting in the same manner as in Example 5 except that a filter material having a thickness of 4.0 mm, a composition ratio of film split fibers of 40 mass%, and a pressure loss of 12 Pa was used.
As a result, the collection efficiency of suspended particulates did not reach an acceptable level. In addition, the influence test of the energization degradation of the discharge electrode was discontinued.

<比較例5>
集塵部130のエアフィルタ濾材として、エレクトレット処理を施していないポリエチレンテレフタレート製シート(シート厚t=0.1mm、接触角79°)を積層して得られたコルゲート構造体(管状通風路の開口径d=0.5mm、風路長L(濾材厚)=5.0mm、d/L=0.10、開口率=75%、圧力損失=7Pa)を用いた以外は、比較例4と同様に設定した上で、放散試験を行った。
その結果、浮遊微粒子の捕集効率が許容出来るレベルに至らなかった。尚、放電電極の通電劣化の影響試験は中止した。
Comparative Example 5
A corrugated structure (opening of a tubular air passage) obtained by laminating a polyethylene terephthalate sheet (sheet thickness t = 0.1 mm, contact angle 79 °) not subjected to electret processing as an air filter material of the dust collection portion 130 The same as Comparative Example 4 except that the diameter d was 0.5 mm, the air path length L (filter medium thickness) was 5.0 mm, d / L = 0.10, the aperture ratio was 75%, and the pressure loss was 7 Pa). The emission test was conducted after setting to.
As a result, the collection efficiency of suspended particulates did not reach an acceptable level. In addition, the influence test of the energization degradation of the discharge electrode was discontinued.

比較例1〜5の評価結果を、図7の表にまとめて示す。   The evaluation results of Comparative Examples 1 to 5 are summarized in the table of FIG.

110...帯電部
111...放電電極
112...対向電極
120...水蒸気発生部
130...集塵部
140...気流発生部
G...放電電極と対向電極の間隔
L...管状通風路の長さ
P...放電電極の突起部分の間隔
d...管状通風路の開口径
110. . . Charging unit 111. . . Discharge electrode 112. . . Counter electrode 120. . . Water vapor generation part 130. . . Dust collection unit 140. . . Airflow generator G. . . Distance between discharge electrode and counter electrode . . Tubular air passage length P.I. . . Distance between protrusions of discharge electrode d. . . Opening diameter of tubular air passage

Claims (5)

少なくとも、空気中の浮遊微粒子を帯電させる「帯電部」と、
前記帯電部に水蒸気を供給する「水蒸気発生部」と、
前記帯電部の通風方向の下流側に配置され、前記帯電部にて帯電させた前記浮遊微粒子を集める「集塵部」と、を備える電気集塵装置であって、
前記水蒸気発生部から前記帯電部に供給される水蒸気の供給速度が、前記帯電部の電極部分を通過する風路の断面積1cm当たりに対して、0.20〜0.50mg/分であることを特徴とする電気集塵装置。
At least a "charging unit" for charging suspended particles in air;
"A steam generation unit" for supplying steam to the charging unit;
And a "dust collection unit" disposed downstream of the charging unit in the flow direction of the charging unit and collecting the floating fine particles charged by the charging unit.
The supply rate of the water vapor supplied from the water vapor generation unit to the charging unit is 0.20 to 0.50 mg / minute per 1 cm 2 of the cross-sectional area of the air passage passing through the electrode portion of the charging unit. Electric dust collector characterized by.
前記帯電部が、少なくとも、高電圧電源によって高電圧が印加される「放電電極」と、接地された平板状の「対向電極」を備え、
前記放電電極は、放電の為の複数の「突起部分」を間隔P(mm)で備えると共に、前記対向電極は、前記放電電極の両側面に間隔G(mm)を保って平行に配置されており、前記突起部分の間隔Pと、前記放電電極と前記対向電極の間隔Gとが、0.5≦P/G≦1.5の関係を満たすことを特徴とする請求項1に記載の電気集塵装置。
The charging unit includes at least a “discharge electrode” to which a high voltage is applied by a high voltage power supply, and a flat plate-like “counter electrode” grounded.
The discharge electrode is provided with a plurality of "protrusion portions" for discharge at an interval P (mm), and the counter electrodes are arranged in parallel on both sides of the discharge electrode with an interval G (mm). 2. The electricity according to claim 1, wherein the distance P between the protruding portions and the distance G between the discharge electrode and the counter electrode satisfy the relationship of 0.5 ≦ P / G ≦ 1.5. Dust collector.
前記集塵部が、エレクトレット処理を施したシート状またはフィルム状の高分子材料からなるエアフィルタ濾材を備えており、
前記高分子材料の水に対する接触角が75°以上であって、
前記エアフィルタ濾材の厚みが3mm以上で、風速0.2m/秒における圧力損失が60Pa以下であることを特徴とする請求項1または2に記載の電気集塵装置。
The dust collection unit includes an air filter medium made of a sheet-like or film-like polymer material subjected to electret treatment,
The contact angle of the polymer material with water is 75 ° or more,
The electrostatic precipitator according to claim 1 or 2, wherein the thickness of the air filter medium is 3 mm or more, and the pressure loss at a wind speed of 0.2 m / sec is 60 Pa or less.
前記エアフィルタ濾材が、少なくとも、高分子シートを積層して形成された管状通風路を有する構造物であって、前記エアフィルタ濾材の通風方向と直交する面に占める前記管状通風路の開口部分が60面積%以上であり、前記管状通風路の開口径d(mm)と風路長L(mm)が、0.025≦d/L≦0.2の関係を満たすことを特徴とする請求項3に記載の電気集塵装置。   The air filter medium is a structure having at least a tubular air passage formed by laminating polymer sheets, and the opening of the tubular air passage is in a plane orthogonal to the air flow direction of the air filter medium. 60% by area or more, and the opening diameter d (mm) of the tubular air passage and the air passage length L (mm) satisfy the relationship of 0.025 ≦ d / L ≦ 0.2. The electrostatic precipitator as described in 3. 前記エアフィルタ濾材が、少なくとも、高分子フィルムをスプリット状に加工したフィルムスプリット繊維を50質量%以上含有する不織布であって、前記フィルムスプリット繊維の繊維幅w(mm)と繊維厚k(mm)が、2≦w/k≦5の関係を満たすことを特徴とする請求項3に記載の電気集塵装置。   The air filter medium is a non-woven fabric containing at least 50% by mass or more of film split fibers obtained by processing a polymer film into splits, wherein the fiber width w (mm) and the fiber thickness k (mm) of the film split fibers 4. The electrostatic precipitator according to claim 3, wherein the relationship of 2 ≦ w / k ≦ 5 is satisfied.
JP2018001770A 2018-01-10 2018-01-10 Electrostatic precipitator Pending JP2019118897A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018001770A JP2019118897A (en) 2018-01-10 2018-01-10 Electrostatic precipitator
PCT/KR2018/011916 WO2019139223A1 (en) 2018-01-10 2018-10-11 Particle collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018001770A JP2019118897A (en) 2018-01-10 2018-01-10 Electrostatic precipitator

Publications (1)

Publication Number Publication Date
JP2019118897A true JP2019118897A (en) 2019-07-22

Family

ID=67218292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001770A Pending JP2019118897A (en) 2018-01-10 2018-01-10 Electrostatic precipitator

Country Status (2)

Country Link
JP (1) JP2019118897A (en)
WO (1) WO2019139223A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119751A1 (en) * 2021-07-29 2023-02-02 Woco Gmbh & Co. Kg Room air purifier with fog generator for ozone depletion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111229B2 (en) * 2006-05-19 2008-07-02 ダイキン工業株式会社 Discharge device and air purification device
US7618583B2 (en) * 2007-02-06 2009-11-17 Mandish Theodore O Air purifying process
US20100132561A1 (en) * 2007-04-17 2010-06-03 Excellims Corporation Electrostatic charging and collection
US20120103184A1 (en) * 2010-11-02 2012-05-03 Clarkson University Electrostatic filtration system
CN106362536B (en) * 2016-11-03 2018-08-28 东南大学 A kind of device grown up based on steam phase transformation strengthening fine grained

Also Published As

Publication number Publication date
WO2019139223A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP5304096B2 (en) Charging device and air treatment device
WO2001064349A9 (en) Dust collecting apparatus and air-conditioning apparatus
KR20100085092A (en) Air processing device
US20060144026A1 (en) Air cleanness filter
US11452960B2 (en) Corrugated filtration media for polarizing air cleaner
US20200363770A1 (en) Particle collection system with discharging electrode
JP2010029740A (en) Electrostatic dust collector
KR102205159B1 (en) Electric dust collector
KR20150065501A (en) Air cleaner for air conditioner
JP2013079755A (en) Ion delivery device and air conditioner with the same
Lee et al. Minimizing the size and ozone emission of electrostatic precipitators using dielectric and rolled carbon film coatings
US7141098B2 (en) Air filtration system using point ionization sources
US6758884B2 (en) Air filtration system using point ionization sources
JP2019118897A (en) Electrostatic precipitator
JP2007021375A (en) Air conditioner
WO2010038872A1 (en) Electric dust collecting apparatus and electric dust collecting system
JP4983566B2 (en) Clean air production equipment
JP2003211023A (en) Dust collecting element
JP2007167812A (en) Air cleaning apparatus
JP2019058904A (en) Air filter and air cleaner using the same
JP5098885B2 (en) Charging device and air treatment device
CN114870997A (en) Electret corrugated dust collecting electrode and manufacturing method thereof
JP2020138172A (en) Air filter unit
JP2015182000A (en) Air purifying device
JPH0347547A (en) Air purifying apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181030

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200417