JP2019114825A - Communication performance prediction system - Google Patents

Communication performance prediction system Download PDF

Info

Publication number
JP2019114825A
JP2019114825A JP2017244459A JP2017244459A JP2019114825A JP 2019114825 A JP2019114825 A JP 2019114825A JP 2017244459 A JP2017244459 A JP 2017244459A JP 2017244459 A JP2017244459 A JP 2017244459A JP 2019114825 A JP2019114825 A JP 2019114825A
Authority
JP
Japan
Prior art keywords
communication
communication performance
performance
ground station
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017244459A
Other languages
Japanese (ja)
Other versions
JP6943173B2 (en
Inventor
善将 小野
Yoshimasa Ono
善将 小野
俊治 伊東
Toshiharu Ito
俊治 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017244459A priority Critical patent/JP6943173B2/en
Publication of JP2019114825A publication Critical patent/JP2019114825A/en
Application granted granted Critical
Publication of JP6943173B2 publication Critical patent/JP6943173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

To provide a technique that predicts communication performance in optical space communication with improved accuracy.SOLUTION: A communication performance prediction device of the present invention includes processing means that records a communication record including a first communication performance which is performance of a first optical space communication performed between a first mobile body and a ground station, obtains communication setting which is setting of a second optical space communication performed between a second mobile body and the ground station, and predicts a second communication performance which is performance of the second optical space communication on the basis of the communication record and the communication setting.SELECTED DRAWING: Figure 2

Description

本発明は、光空間通信システムにおける回線品質の予測技術に関連する、通信性能予測装置、通信性能予測方法に関する。   The present invention relates to a communication performance prediction apparatus and communication performance prediction method related to channel quality prediction technology in an optical space communication system.

近年、衛星数の増加やリモートセンシング技術の高度化に伴って、衛星と地上局との間の通信の大容量化が求められている。衛星と地上局との間の大容量通信を実現する技術として、光空間通信が期待されている。衛星と地上局との間の光空間通信では、「雲」や「大気揺らぎ」の影響によって通信性能が変化する。雲は信号光を大幅に減衰させるため、通信品質の低下及び通信の遮断の原因となる。また、大気揺らぎは、ミリ秒程度の短い周期で通信性能の変化を引き起こす。大気揺らぎによる通信性能変化は「地上局から見た衛星の仰角」及び「大気の状態」に大きく依存する。そして、雲とは異なり、大気揺らぎは目視では通信への影響を予測できない。   In recent years, with the increase in the number of satellites and the advancement of remote sensing technology, it is required to increase the capacity of communication between satellites and ground stations. Optical space communication is expected as a technology for realizing large-capacity communication between satellites and ground stations. In optical space communication between satellites and ground stations, communication performance changes due to the effects of "clouds" and "atmospheric fluctuations". Clouds cause the signal light to be greatly attenuated, which causes deterioration in communication quality and blocking of communication. In addition, atmospheric fluctuations cause changes in communication performance with a short cycle of about millisecond. Communication performance changes due to atmospheric fluctuations largely depend on "the satellite's elevation angle seen from the ground station" and "the state of the atmosphere". And, unlike clouds, atmospheric fluctuations can not predict the impact on communication visually.

一方、多数の観測衛星を地球周囲に配置する衛星コンステレーションでは、測定したデータを速やかに地上局へと転送し、次の観測データの取得に備えることがそれぞれの衛星に求められる。従って、地上局は多数の衛星との間で大容量通信を行う必要がある。多数の衛星と少数の地上局との間で効率的にデータを転送するためには、限られた地上局の通信リソースを効率的に衛星との通信に割り当てる必要がある。そして、通信リソースの効率的な割り当てのためには、衛星と地上局との間における通信性能及びその時間変化が事前に把握できることが好ましい。   On the other hand, in a satellite constellation in which a large number of observation satellites are arranged around the earth, each satellite is required to quickly transfer measured data to the ground station and prepare for acquisition of the next observation data. Therefore, the ground station needs to perform large-capacity communication with a large number of satellites. In order to efficiently transfer data between a large number of satellites and a small number of ground stations, it is necessary to efficiently allocate limited ground station communication resources to the communication with satellites. And, for efficient allocation of communication resources, it is preferable that the communication performance between the satellite and the ground station and the time change thereof can be grasped in advance.

本発明に関連して、特許文献1は、マイクロ波を利用した衛星と地上局との間の通信において、雨雲や降雨地域を把握する通信性能予測方法を開示する。   In connection with this invention, patent document 1 discloses the communication performance prediction method which grasps a rain cloud and a rainfall area in communication between a satellite and a ground station using microwaves.

特開平10−190550号公報Japanese Patent Application Laid-Open No. 10-190550

上述のように、衛星と地上局との間の光空間通信では、主に雲による光の減衰と大気揺らぎとが、通信性能を変化させる。特許文献1の技術を衛星と地上局との間の光空間通信に適用した場合、雲による通信の遮断が予測できる。しかし、特許文献1の技術は大気揺らぎ強度を検知できないため、大気揺らぎによる通信性能の変化は予測できない。光空間通信では、通信性能に与える大気揺らぎの影響が大きいため、特許文献1に記載された技術は衛星と地上局との間の光空間通信における、通信性能の予測が困難である。   As described above, in optical space communication between a satellite and a ground station, attenuation of light by clouds and atmospheric fluctuation change communication performance mainly. When the technology of Patent Document 1 is applied to optical space communication between a satellite and a ground station, it is possible to predict blocking of communication due to clouds. However, since the technology of Patent Document 1 can not detect the atmospheric fluctuation intensity, the change in communication performance due to the atmospheric fluctuation can not be predicted. In optical space communication, since the influence of atmospheric fluctuation on communication performance is large, it is difficult to predict communication performance in optical space communication between a satellite and a ground station according to the technique described in Patent Document 1.

(発明の目的)
本発明の目的は、光空間通信における通信性能をより正確に予想する技術を提供することにある。
(Object of the Invention)
An object of the present invention is to provide a technique for more accurately predicting communication performance in optical space communication.

本発明の通信性能予測装置は、第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を記録し、第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する処理手段を備える。   A communication performance prediction apparatus according to the present invention records a communication record including a first communication performance, which is a performance of a first optical space communication performed between a first mobile unit and a ground station, and performs a second movement. Acquiring a communication setting which is a setting of a second optical space communication performed between a body and the ground station, and a second communication performance which is a performance of the second optical space communication, the communication record and the communication It comprises processing means for predicting based on the setting.

本発明の通信性能予測方法は、第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を取得し、
第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、
前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する、ことを特徴とする。
The communication performance prediction method of the present invention acquires a communication record including a first communication performance that is a performance of a first optical space communication performed between a first mobile unit and a ground station,
Acquiring a communication setting that is a setting of a second optical space communication performed between a second mobile unit and the ground station;
The second communication performance, which is the performance of the second optical space communication, is predicted based on the communication record and the communication setting.

本発明の通信性能予測装置は、衛星と地上局との間の通信性能の時間変化をより正確に予測できる。   The communication performance prediction apparatus of the present invention can more accurately predict the time change of the communication performance between the satellite and the ground station.

第1の実施形態の通信性能予測システム10の構成例を説明する図である。It is a figure explaining the example of composition of communication performance prediction system 10 of a 1st embodiment. 第1の実施形態の地上局G11の構成例を示すブロック図である。It is a block diagram showing an example of composition of ground station G11 of a 1st embodiment. 通信性能予測装置100の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a communication performance prediction device 100. 通信性能予測装置100の動作手順の例を示すフローチャートである。5 is a flowchart illustrating an example of an operation procedure of the communication performance prediction device 100. 通信性能予測装置100の動作手順の変形例を示すフローチャートである。It is a flowchart which shows the modification of the operation | movement procedure of the communication performance prediction apparatus 100. FIG. 第2の実施形態の通信性能予測システム20の例を示す図である。It is a figure which shows the example of the communication performance prediction system 20 of 2nd Embodiment. 地上局G21の構成例を示すブロック図である。It is a block diagram which shows the structural example of ground station G21. 通信性能予測装置200の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a communication performance prediction device 200. 受信光の強度の変動の分布の例を示す図である。It is a figure showing an example of distribution of change of intensity of receiving light. 大気揺らぎ強度を求める手順の例を説明する図である。It is a figure explaining the example of the procedure which calculates | requires atmospheric fluctuation intensity. 通信性能予測装置200の動作手順の例を示すフローチャートである。7 is a flowchart illustrating an example of an operation procedure of the communication performance prediction device 200. 第3の実施形態の通信性能予測システム30の例を示すブロック図である。It is a block diagram which shows the example of the communication performance prediction system 30 of 3rd Embodiment. 地上局G31の構成例を示すブロック図である。It is a block diagram which shows the structural example of ground station G31. 通信性能予測装置300の構成例を示すブロック図である。FIG. 6 is a block diagram showing an example of configuration of a communication performance prediction device 300. 通信性能予測装置300の動作手順の例を示すフローチャートである。7 is a flowchart illustrating an example of an operation procedure of the communication performance prediction device 300. 通信性能予測システム30の変形例を説明する図である。It is a figure explaining the modification of communication performance prediction system 30. As shown in FIG. 第4の実施形態の通信性能の予測手順の例を示すフローチャートである。It is a flow chart which shows an example of a prediction procedure of communication performance of a 4th embodiment.

本発明の実施の形態について図面を参照して以下、詳細に説明する。   Embodiments of the present invention will be described in detail below with reference to the drawings.

(第1の実施形態)
図1は本発明の第1の実施形態の通信性能予測システム10の構成例を説明する図である。通信性能予測システム10は、地上局G11、衛星S12及びS13を備える。地上局G11は地上に設置されており、光送受信装置を用いて衛星S12及びS13との間で双方向の光空間通信を行う。衛星S12及びS13は、天球19上の軌道B15上を移動する衛星であり、地上局G11と通信するための光送受信機を備える。衛星S13は、地上局G11から見て、衛星S12に続いて軌道B15を移動する。
First Embodiment
FIG. 1 is a diagram for explaining a configuration example of a communication performance prediction system 10 according to a first embodiment of this invention. The communication performance prediction system 10 includes a ground station G11 and satellites S12 and S13. The ground station G11 is installed on the ground, and performs two-way optical space communication with the satellites S12 and S13 using the optical transmission / reception device. The satellites S12 and S13 are satellites that move on the orbit B15 on the celestial sphere 19 and include optical transceivers for communicating with the ground station G11. The satellite S13 moves on the trajectory B15 following the satellite S12 as viewed from the ground station G11.

衛星を地上局から見上げる角度を「仰角」という。地上局G11は、まず衛星S12と通信し、衛星S12との通信が終了した後、後続の衛星S13と、衛星12とほぼ同様の仰角で通信する。衛星S12及びS13は地上局G11との通信中にも移動するため、各衛星の仰角は通信中にも変化する。従って、地上局G11が衛星S12と通信する際の衛星S12の仰角の範囲と地上局G11が衛星S13と通信する際の衛星S13の仰角の範囲はおおむね等しい。ただし、通信量や通信条件の相違により衛星S12及びS13と地上局G11との通信時間は変化するため、これらの仰角の範囲とは同一とは限らない。   The angle at which the satellite looks up from the ground station is called the elevation. The ground station G11 first communicates with the satellite S12, and after communication with the satellite S12 is completed, communicates with the subsequent satellite S13 and the satellite 12 at substantially the same elevation angle. Since the satellites S12 and S13 move also during communication with the ground station G11, the elevation angle of each satellite changes also during communication. Therefore, the range of elevation angle of the satellite S12 when the ground station G11 communicates with the satellite S12 and the range of elevation angle of the satellite S13 when the ground station G11 communicates with the satellite S13 are approximately equal. However, the communication time between the satellites S12 and S13 and the ground station G11 changes due to the difference in the communication amount and the communication condition, so the elevation angle range is not necessarily the same.

本実施形態では、衛星S12と地上局G11との間の通信結果に基づいて、衛星S12と同一の軌道B15上を移動する衛星S13と地上局G11との間の通信の際の性能が予測される。本実施形態では、衛星S12を先行衛星S12、衛星S13を予測対象衛星S13と表記する場合がある。   In this embodiment, based on the communication result between the satellite S12 and the ground station G11, the performance in communication between the satellite S13 moving on the same orbit B15 as the satellite S12 and the ground station G11 is predicted. Ru. In the present embodiment, the satellite S12 may be referred to as the leading satellite S12, and the satellite S13 may be referred to as the prediction target satellite S13.

図2は、本発明の第1の実施形態の地上局G11の構成例を示すブロック図である。地上局G11は、アンテナ103と、光送受信装置104と、通信性能予測装置100とを備える。アンテナ103は、衛星S12及びS13に対する追尾機能を備えた光送受信アンテナであり、例えばレンズ及び反射鏡で構成される。光送受信装置104は光送信機及び光受信機を備える光トランシーバである。光送受信装置104にはアンテナが含まれてもよい。光送受信装置104は、衛星S12及びS13との間で伝送される伝送データを含む光信号をアンテナ103と入出力するとともに、当該伝送データを含む電気信号を通信装置105との間で入出力する。また、光送受信装置104は、衛星S12との間の通信の際のデータである通信記録を通信性能予測装置100へ出力する。   FIG. 2 is a block diagram showing a configuration example of the ground station G11 according to the first embodiment of this invention. The ground station G11 includes an antenna 103, an optical transmission / reception device 104, and a communication performance prediction device 100. The antenna 103 is an optical transmitting / receiving antenna provided with a tracking function for the satellites S12 and S13, and is configured of, for example, a lens and a reflecting mirror. The optical transceiver 104 is an optical transceiver that includes an optical transmitter and an optical receiver. The optical transmission / reception device 104 may include an antenna. The optical transmission / reception device 104 inputs / outputs an optical signal including transmission data transmitted between the satellites S12 and S13 to / from the antenna 103, and inputs / outputs an electric signal including the transmission data to / from the communication device 105. . Also, the optical transmission / reception device 104 outputs a communication record, which is data at the time of communication with the satellite S12, to the communication performance prediction device 100.

通信性能予測装置100は、光送受信装置104から取得した通信記録に基づいて通信性能予測値を算出し、算出した通信性能予測値を通信装置105に出力する。通信装置105は、伝送データを光送受信装置104と送受信するとともに、通信性能予測装置100から取得した通信性能予測値を処理する。本実施形態の通信装置105は地上局G11の外部に接続されているが、通信装置105は、地上局G11の内部に備えられていてもよい。   The communication performance prediction apparatus 100 calculates a communication performance prediction value based on the communication record acquired from the optical transmission / reception device 104, and outputs the calculated communication performance prediction value to the communication device 105. The communication device 105 transmits and receives transmission data to and from the optical transmission / reception device 104, and processes the communication performance prediction value acquired from the communication performance prediction device 100. Although the communication device 105 of this embodiment is connected to the outside of the ground station G11, the communication device 105 may be provided inside the ground station G11.

図3は、本発明の第1の実施形態の通信性能予測装置100の構成例を示すブロック図である。通信性能予測装置100は、第1処理部101と、第2処理部102と、を備える。第1処理部101は、先行衛星S12の通信性能及び仰角の時間変化と、その際の伝送路上の雲の位置の時間変化とを通信記録として記録する。雲の位置は、例えば、地上局G11と接続された、地上の全天カメラの撮像データから取得される。撮像データは、撮像時刻における、天球19上の雲の位置の情報を含む。   FIG. 3 is a block diagram showing an exemplary configuration of the communication performance prediction apparatus 100 according to the first embodiment of this invention. The communication performance prediction apparatus 100 includes a first processing unit 101 and a second processing unit 102. The first processing unit 101 records, as a communication record, the time change of the communication performance and elevation angle of the leading satellite S12 and the time change of the position of the cloud on the transmission path at that time. The position of the cloud is acquired, for example, from imaging data of an all-sky camera on the ground connected to the ground station G11. The imaging data includes information of the position of the cloud on the sky at the imaging time.

通信性能は、先行衛星S12あるいは予測対象衛星S13と地上局G11との間の通信のスループットやパケット誤り率などの性能の指標の値であるが、特定の指標に限定されない。以降では、先行衛星S12と地上局G11との間の通信結果を示す通信性能を「先行衛星S12の通信性能」と記載し、予測対象衛星S13と地上局G11との間の通信における通信性能の予測値を「予測対象衛星S13の通信性能」と記載する。先行衛星S12の通信記録は、先行衛星S12が地上局G11に通知してもよく、地上局G11が先行衛星S12との通信の際に通信性能及び仰角の変化を記録してもよい。   The communication performance is a value of a performance index such as throughput and packet error rate of communication between the preceding satellite S12 or the satellite S13 for prediction and the ground station G11, but is not limited to a specific index. Hereinafter, the communication performance indicating the communication result between the preceding satellite S12 and the ground station G11 is referred to as "the communication performance of the preceding satellite S12", and the communication performance in the communication between the prediction target satellite S13 and the ground station G11 is The predicted value is referred to as "the communication performance of the satellite S13 to be predicted". The communication record of the leading satellite S12 may be notified to the ground station G11 by the leading satellite S12, and the ground station G11 may record changes in communication performance and elevation angle when communicating with the leading satellite S12.

なお、先行衛星の通信性能は「第1の通信性能」と呼ぶことができ、予測対象衛星の通信性能は「第2の通信性能」と呼ぶことができる。また、先行衛星S12等の、予測対象衛星以外の衛星は「第1の移動体」と呼ぶことができ、第1の移動体と地上局との間の通信は「第1の光空間通信」と呼ぶことができる。また、予測対象衛星は「第2の移動体」と呼ぶことができ、第2の移動体と地上局G11との間の通信は「第2の光空間通信」と呼ぶことができる。   Note that the communication performance of the preceding satellite can be referred to as "first communication performance", and the communication performance of the prediction target satellite can be referred to as "second communication performance". In addition, satellites other than the satellite targeted for prediction, such as the preceding satellite S12, can be called "first mobile", and communication between the first mobile and the ground station is "first optical space communication". It can be called. Also, the prediction target satellite can be called a "second mobile unit", and the communication between the second mobile unit and the ground station G11 can be called a "second optical space communication".

第1処理部101は、さらに、予測対象衛星S13と地上局G11との通信時の、光信号の伝搬経路上の雲の濃度の時間変化を予測する。当該伝搬経路上の雲の濃度の時間変化は、複数の時刻の撮像データ、地上局G11と通信する際の予測対象衛星S13の位置、及び地上局G11の位置に基づいて予測できる。例えば、先行衛星S12と地上局G11との通信の際の雲の移動量及び移動方向に基づいて、予測対象衛星S13と地上局G11との通信時刻における雲の位置を予測する。そして、地上局G11と予測対象衛星S13とを結ぶ直線(すなわち、光信号の伝搬経路)上の雲の濃度を求めてもよい。ただし、予測対象衛星S13と地上局G11とが通信する際の光信号の伝搬経路上の雲の濃度の時間変化を求める手順はこれに限定されない。   The first processing unit 101 further predicts the temporal change of the cloud concentration on the propagation path of the light signal at the time of communication between the prediction target satellite S13 and the ground station G11. The temporal change of the cloud concentration on the propagation path can be predicted based on imaging data of a plurality of times, the position of the prediction target satellite S13 when communicating with the ground station G11, and the position of the ground station G11. For example, the position of the cloud at the communication time between the prediction target satellite S13 and the ground station G11 is predicted based on the movement amount and the movement direction of the cloud at the time of communication between the preceding satellite S12 and the ground station G11. Then, the cloud concentration may be obtained on a straight line connecting the ground station G11 and the prediction target satellite S13 (that is, the propagation path of the light signal). However, the procedure for obtaining the temporal change of the cloud concentration on the propagation path of the light signal when the prediction target satellite S13 and the ground station G11 communicate with each other is not limited to this.

さらに、第1処理部101は、予測対象衛星S13の通信性能の時間変化を予測する。第1処理部101は、先行衛星S12の通信性能を先行衛星S12の仰角の変化とともに記録する。なお、第1処理部101の処理の時点では、先行衛星S12と地上局G11とが通信する際の光送受信装置104の設定と、予測対象衛星S13と地上局G11とが通信する際の光送受信装置104の設定とは同一であるとする。先行衛星S12と地上局G11との通信時と予測対象衛星S13と地上局G11との通信時とで雲による通信性能への同様である場合には、予測対象衛星S13の通信性能の予測値として、先行衛星S12の通信性能を用いることができる。   Furthermore, the first processing unit 101 predicts the time change of the communication performance of the prediction target satellite S13. The first processing unit 101 records the communication performance of the preceding satellite S12 together with the change of the elevation angle of the preceding satellite S12. At the time of processing of the first processing unit 101, the setting of the optical transmission / reception device 104 when the preceding satellite S12 communicates with the ground station G11, and the light transmission / reception when the prediction target satellite S13 communicates with the ground station G11 It is assumed that the setting of the device 104 is the same. If the communication performance by the cloud is the same at the time of communication between the leading satellite S12 and the ground station G11 and at the time of communication between the prediction target satellite S13 and the ground station G11, the communication performance of the prediction target satellite S13 is estimated as a predicted value. The communication performance of the leading satellite S12 can be used.

雲の影響による予測対象衛星S13の通信性能への予測手順について説明する。実験や過去の通信性能の実測値に基づいて雲の濃度と通信性能(例えば誤り率)の変化との関係を求めておくことで、予測対象衛星S13と地上局G11との間の通信における誤り率の変化量を予測できる。なお、通信性能は、地上局G11及び先行衛星S12のいずれの側で測定されたものでもよい。   The prediction procedure to the communication performance of the satellite S13 to be predicted due to the influence of clouds will be described. Errors in the communication between the satellite S13 to be predicted and the ground station G11 by finding the relationship between the cloud concentration and the change in communication performance (for example, error rate) based on experiments and actual measured values of communication performance in the past You can predict the rate of change. The communication performance may be measured on either side of the ground station G11 and the preceding satellite S12.

例えば、先行衛星S12と地上局G11とが通信する際に、光信号の伝搬経路上に濃度N1の雲が存在し、予測対象衛星S13と地上局G11との通信時には濃度N2の雲が存在すると予測されたとする。ここでは0<N1<N2とする。雲の濃度の判断のために、可視光による雲の撮像データを用いることができる。一般的な可視光の白黒の雲画像では、白色が濃いほど雲が濃い(すなわち、雲が厚い)と判断される。ここで、雲の濃度がグレースケール上のN1からN2へ変化するとデータの誤り率がM倍になることがわかっているとすると、予測対象衛星S13と地上局G11との通信時にもデータの誤り率がM倍悪化すると予測できる。雲の動きが速い場合には、複数の時刻で雲の濃度を予測し、雲の濃度変化に伴う通信性能の時間的な変化を求めてもよい。より単純には、予測対象衛星S13と地上局G11との通信の期間内で光信号の伝搬経路上に所定の濃度以上の雲の存在が予測される期間は通信が不能となると予測してもよい。第1処理部101は、先行衛星S12の通信性能に、上述の手順で求めた雲による影響を反映させた予測結果を、第2処理部へ出力する。   For example, when the preceding satellite S12 communicates with the ground station G11, it is assumed that a cloud with a density N1 exists on the propagation path of the light signal and a cloud with a density N2 exists during the communication between the prediction target satellite S13 and the ground station G11. Suppose that it is predicted. Here, it is assumed that 0 <N1 <N2. The imaging data of the cloud by visible light can be used to determine the density of the cloud. In a general visible light black-and-white cloud image, the darker the white, the darker the cloud (ie, the thicker the cloud). Here, if it is known that the data error rate becomes M times as the cloud density changes from N1 to N2 on the gray scale, the data error also occurs during communication between the satellite S13 for prediction and the ground station G11. It can be expected that the rate will deteriorate M times. If the movement of the cloud is fast, the concentration of the cloud may be predicted at a plurality of times, and the temporal change in communication performance may be obtained as the concentration of the cloud changes. More simply, it is predicted that communication will not be possible in a period in which the presence of a cloud of a predetermined concentration or more is predicted on the propagation path of the optical signal within the period of communication between the prediction target satellite S13 and the ground station G11. Good. The first processing unit 101 outputs, to the second processing unit, a prediction result in which the influence of the cloud obtained in the above-described procedure is reflected on the communication performance of the preceding satellite S12.

第2処理部102は、第1処理部で求められた先行衛星S12の通信性能及び雲画像に基づく予測結果に、先行衛星S12の設定と予測対象衛星S13の設定との差分を反映させ、予測対象衛星S13の通信性能を予測する。すなわち、第2処理部102は、第1処理部101から入力された予測結果に、先行衛星S12の通信デバイスの設定情報と予測対象衛星S13の通信デバイスの設定情報との差分に基づく補正を行う。   The second processing unit 102 reflects the difference between the setting of the preceding satellite S12 and the setting of the prediction target satellite S13 on the communication performance of the preceding satellite S12 and the prediction result based on the cloud image obtained by the first processing unit The communication performance of the target satellite S13 is predicted. That is, the second processing unit 102 corrects the prediction result input from the first processing unit 101 based on the difference between the setting information of the communication device of the preceding satellite S12 and the setting information of the communication device of the prediction target satellite S13. .

通信デバイスは、先行衛星S12、予測対象衛星S13及び地上局G11に搭載され、先行衛星S12と地上局G11との通信及び予測対象衛星S13と地上局G11との通信に用いられる。しかし、これらの通信デバイスは互いに異なっていてもよい。通信デバイスは、光送信機、光受信機、光ビームの光学系(例えば、光望遠鏡)を含む。地上局G11の通信デバイスは、アンテナ103及び光送受信装置104である。   The communication device is mounted on the leading satellite S12, the prediction target satellite S13, and the ground station G11, and is used for the communication between the leading satellite S12 and the ground station G11 and for the communication between the prediction target satellite S13 and the ground station G11. However, these communication devices may be different from one another. The communication device comprises an optical transmitter, an optical receiver, an optical system of light beams (e.g. an optical telescope). The communication devices of the ground station G11 are an antenna 103 and an optical transmission / reception device 104.

通信デバイスの設定情報は、大気揺らぎや雲以外に起因する、受信時の光強度に寄与する通信デバイスのパラメータである。設定情報には、例えば、衛星S12、S13及び地上局G11の送信光の強度、送信光の送信ビーム発散角、光学系の特性のばらつき、光受信機の感度(光受信感度)、光信号の変調方式及び符号化方式がある。これらの通信デバイスの設定情報に依存して、光空間通信の通信性能(すなわち、例えばスループットやパケット誤り率)は変化する。   The setting information of the communication device is a parameter of the communication device that contributes to the light intensity at the time of reception other than atmospheric fluctuation and clouds. The setting information includes, for example, the intensity of the transmission light of the satellites S12 and S13 and the ground station G11, the transmission beam divergence angle of the transmission light, the dispersion of the characteristics of the optical system, the sensitivity of the optical receiver (optical reception sensitivity), the optical signal There are modulation schemes and coding schemes. Depending on the setting information of these communication devices, the communication performance (ie, throughput and packet error rate, for example) of the optical space communication changes.

先行衛星S12の通信時と予測対象衛星S13の通信時とで各衛星及び地上局G11の通信デバイスの設定が異なる場合の通信性能への影響は、あらかじめ知ることができる。例えば、シミュレーション、又は、衛星及び地上局と同様の設定の通信デバイスを備える光送受信機を用いた測定によって当該影響を知ることができる。従って、第1処理部101において求められた予測結果に、先行衛星S12と予測対象衛星S13との通信デバイスの設定の相違に起因する通信性能への影響を加味することができる。その結果、予測対象衛星S13の通信性能の予測に、雲の影響及び通信デバイスの設定の相違を反映させることができる。衛星S12及びS13の通信デバイスの設定情報はあらかじめ保守者によって地上局G11に入力されてもよく、地上局G11が衛星S12及びS13との通信の際にこれらの衛星から取得してもよい。第2処理部102は、予測対象衛星S13の通信性能の予測に先だって、先行衛星S12、予測対象衛星S13及び地上局G11の通信デバイスの設定を取得する
図4は、通信性能予測装置100の動作手順の例を示すフローチャートである。第1処理部101は、先行衛星S12と地上局G11とが通信する間の通信性能の時間変化を取得し(図3のステップS011)、その際の伝送路上の雲の位置及び動きを取得する(ステップS012)。そして、第1処理部101は、予測対象衛星S13と地上局G11との通信時の光信号の伝搬経路上の雲の濃度を予測する(ステップS013)。雲の有無には雲の濃度の情報が含まれてもよい。さらに、第1処理部101は、予測対象衛星S13と地上局G11との通信の際の、雲の位置の移動を反映した通信性能の時間変化を予測する(ステップS014)。
It is possible to know in advance the communication performance in the case where the setting of the communication devices of each satellite and the ground station G11 is different between the communication of the leading satellite S12 and the communication of the prediction target satellite S13. For example, the influence can be known by measurement using a simulation or an optical transceiver provided with communication devices in the same setting as the satellite and the ground station. Therefore, the influence on the communication performance due to the difference in the setting of the communication device between the preceding satellite S12 and the prediction target satellite S13 can be added to the prediction result obtained in the first processing unit 101. As a result, it is possible to reflect the influence of the cloud and the difference in the setting of the communication device in the prediction of the communication performance of the prediction target satellite S13. The setting information of the communication devices of the satellites S12 and S13 may be previously input to the ground station G11 by a maintenance person, and the ground station G11 may be acquired from these satellites when communicating with the satellites S12 and S13. The second processing unit 102 acquires the settings of the preceding satellite S12, the prediction target satellite S13, and the communication device of the ground station G11 prior to the prediction of the communication performance of the prediction target satellite S13. FIG. 4 shows the operation of the communication performance prediction apparatus 100. It is a flowchart which shows the example of a procedure. The first processing unit 101 acquires a time change of communication performance during communication between the preceding satellite S12 and the ground station G11 (step S011 in FIG. 3), and acquires the position and movement of the cloud on the transmission path at that time. (Step S012). Then, the first processing unit 101 predicts the cloud concentration on the propagation path of the optical signal at the time of communication between the prediction target satellite S13 and the ground station G11 (step S013). The presence or absence of a cloud may include information on the concentration of the cloud. Furthermore, the first processing unit 101 predicts the time change of the communication performance reflecting the movement of the position of the cloud at the time of the communication between the prediction target satellite S13 and the ground station G11 (step S014).

第2処理部102は、先行衛星S12、予測対象衛星S13及び地上局G11の通信デバイスの設定を取得する(ステップS015)。第2処理部102は、予測対象衛星と地上局G11との通信の際の通信性能の時間変化を、先行衛星と予測対象衛星との通信デバイスの設定の相違に起因する通信性能への影響によって補償する(ステップS016)。さらに、第2処理部102は、予測対象衛星の通信性能の時間変化を予測する(ステップS017)。通信性能の時間変化の予測結果は、通信性能予測値として通信装置105に出力される。   The second processing unit 102 acquires settings of the preceding satellite S12, the prediction target satellite S13, and the communication device of the ground station G11 (step S015). The second processing unit 102 changes the time change of the communication performance in the communication between the prediction target satellite and the ground station G11 by the influence on the communication performance due to the difference in the setting of the communication device between the preceding satellite and the prediction target satellite. It compensates (step S016). Furthermore, the second processing unit 102 predicts the time change of the communication performance of the prediction target satellite (step S017). The prediction result of the time change of communication performance is output to the communication apparatus 105 as a communication performance prediction value.

以上に説明したように、本実施形態の通信性能予測装置100は、先行衛星の通信性能の時間変化に対して、先行衛星の通信時の雲の位置と予測対象衛星の通信時の雲の予測位置との相違、及び、衛星毎の通信デバイスの個体差を加味する補償を実施する。その結果、予測対象衛星における通信性能の時間変化をより正確に予測できる。   As described above, the communication performance prediction apparatus 100 according to the present embodiment predicts the cloud position at the time of communication of the preceding satellite and the cloud at the time of communication of the prediction target satellite with respect to the time change of the communication performance of the preceding satellite. Implement compensation that takes into account differences in position and individual differences in communication devices from satellite to satellite. As a result, it is possible to more accurately predict the time change of the communication performance in the prediction target satellite.

通信装置105は、通信性能予測装置100が出力した通信性能予測値に基づいて、地上局G11及び予測対象衛星S13の通信デバイスを設定する。例えば、予測対象衛星S13の通信性能が先行衛星S12よりも低下すると予想されたとする。このような場合には、通信装置105は、予測対象衛星S13との通信の際に、地上局G11及び予測対象衛星S13が送信する光信号の送信パワーを高めるように、予測対象衛星S13及び地上局G11の光送信機の設定を変更してもよい。あるいは、伝送速度を低下させてもよく、エラー耐性がより高い変調方法や符号化方法を採用してもよい。   The communication device 105 sets communication devices for the ground station G11 and the satellite S13 to be predicted based on the communication performance prediction value output by the communication performance prediction device 100. For example, it is assumed that the communication performance of the prediction target satellite S13 is expected to be lower than that of the preceding satellite S12. In such a case, the communication device 105 increases the transmission power of the optical signal transmitted by the ground station G11 and the prediction target satellite S13 when communicating with the prediction target satellite S13. The setting of the optical transmitter of the station G11 may be changed. Alternatively, the transmission rate may be reduced, and a modulation method or coding method with higher error tolerance may be employed.

本実施形態では光信号の遮蔽物として雲を例に説明したが、遮蔽物は雲には限定されない。例えば、同様の手順で火山の噴煙の影響を予測することができる。   In the present embodiment, a cloud is described as an example of the shield of the light signal, but the shield is not limited to the cloud. For example, the same procedure can be used to predict the effects of volcanic fumes.

一般に、衛星と地上局との間の光空間通信においては、大気揺らぎに起因して、通信の対象となる衛星の仰角により通信性能が大幅に変化する。一方、本実施形態では、先行衛星と予測対象衛星とが同一の衛星軌道上にあるため、先行衛星の通信記録を予測対象衛星と仰角がほぼ等しい(略同一)状態で記録できる。その結果、予測対象衛星の通信時の状態に近い大気揺らぎ強度に基づいて、予測対象衛星の通信性能が予測できる。なお、大気揺らぎの統計的性質が予測対象衛星S13と地上局G11との間の通信時とおおむね同様であると見なせる時間帯に測定された先行衛星の通信記録が用いられてもよい。この場合には、予測対象衛星S13と地上局G11との間の通信時の大気揺らぎによる影響を、通信性能の予測結果により好ましく反映できる。   Generally, in optical space communication between a satellite and a ground station, the communication performance changes significantly depending on the elevation angle of the satellite to be communicated due to atmospheric fluctuation. On the other hand, in the present embodiment, since the preceding satellite and the prediction target satellite are on the same satellite orbit, the communication record of the preceding satellite can be recorded with the prediction target satellite in almost the same (approximately the same) elevation angle. As a result, the communication performance of the prediction target satellite can be predicted based on the atmospheric fluctuation intensity close to the state at the time of communication of the prediction target satellite. Note that the communication record of the preceding satellite may be used, which is measured in a time zone in which the statistical nature of the atmospheric fluctuation can be regarded as substantially the same as the time of communication between the prediction target satellite S13 and the ground station G11. In this case, the influence of atmospheric fluctuation at the time of communication between the prediction target satellite S13 and the ground station G11 can be preferably reflected by the prediction result of the communication performance.

このように、第1の実施形態の通信性能予測装置100は、衛星と地上局との間の通信性能に雲による影響及び大気揺らぎの影響を反映させることができる。その結果、予測対象衛星と地上局との通信時の通信性能をより正確に予測することが可能となり、多数の衛星と通信する地上局の通信リソースの割り当ての効率化が可能となる。   As described above, the communication performance prediction apparatus 100 according to the first embodiment can reflect the influence of clouds and the influence of atmospheric fluctuation on the communication performance between a satellite and a ground station. As a result, it is possible to more accurately predict the communication performance at the time of communication between the prediction target satellite and the ground station, and it becomes possible to make efficient allocation of communication resources of the ground station that communicates with a large number of satellites.

(第1の実施形態の変形例)
図5は、通信性能予測装置100の動作手順の変形例を示すフローチャートである。図4のフローチャートは、図4のフローチャートと比較して、雲画像の処理に関するステップS012〜S014が省略されている。雲画像を用いることで雲の有無による影響を予測できるが、雲のない場合には雲画像による処理は不要である。また、雲画像の解析を行わない場合でも、先行衛星S12の通信性能を用いて、予測対象衛星S13の通信性能へ大気揺らぎの影響を反映できる。従って、図5の手順によっても、予測対象衛星と地上局との通信時の通信性能をより正確に予測するという効果が得られる。
(Modification of the first embodiment)
FIG. 5 is a flowchart showing a modification of the operation procedure of the communication performance prediction apparatus 100. Compared to the flowchart of FIG. 4, the flowchart of FIG. 4 omits steps S <b> 012 to S <b> 014 related to cloud image processing. Although the influence by the presence or absence of a cloud can be predicted by using a cloud image, the process by a cloud image is unnecessary when there is no cloud. Further, even when the analysis of the cloud image is not performed, the communication performance of the leading satellite S12 can be used to reflect the influence of the atmospheric fluctuation on the communication performance of the prediction target satellite S13. Therefore, the procedure shown in FIG. 5 also has the effect of more accurately predicting the communication performance at the time of communication between the prediction target satellite and the ground station.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図6は本発明の第2の実施形態の通信性能予測システム20の例を示す図である。通信性能予測システム20は、地上局G21、衛星S22、S23及びS24を備える。軌道B25、B26は天球29上の衛星軌道である。衛星S22及びS23は軌道B25上を移動する衛星であり、衛星S24は軌道B26上を移動する衛星である。
Second Embodiment
Next, a second embodiment of the present invention will be described. FIG. 6 is a diagram showing an example of the communication performance prediction system 20 according to the second embodiment of this invention. The communication performance prediction system 20 includes a ground station G21 and satellites S22, S23 and S24. The orbits B25 and B26 are satellite orbits on the celestial sphere 29. The satellites S22 and S23 are satellites traveling on the orbit B25, and the satellite S24 is a satellite traveling on the orbit B26.

通信性能予測システム20は、衛星S24のように同一軌道上に先行衛星が存在しない衛星の通信性能を予測する手順を提供する。本実施形態の説明では、衛星S22及びS23を他の衛星S22及びS23と記載し、衛星S24を予測対象衛星S24と記載する場合がある。   The communication performance prediction system 20 provides a procedure for predicting the communication performance of satellites having no preceding satellite on the same orbit as the satellite S24. In the description of this embodiment, the satellites S22 and S23 may be described as the other satellites S22 and S23, and the satellite S24 may be described as the satellite S24 to be predicted.

図7は、第2の実施形態の地上局G21の構成例を示すブロック図である。地上局G21は、アンテナ103と、光送受信装置104と、通信性能予測装置200とを備える。アンテナ103及び光送受信装置104は、第1の実施形態の地上局G11に備えられたものと同様の機能を有する。ただし、本実施形態のアンテナ103は衛星S22〜S24に対する追尾機能を備える。光送受信装置104は、衛星S22〜S24との間で伝送される伝送データを含む光信号をアンテナ103と入出力するとともに、当該伝送データを含む電気信号を通信装置105との間で入出力する。また、光送受信装置104は、衛星S22及びS23との間の通信の際の通信記録を通信性能予測装置200へ出力する。   FIG. 7 is a block diagram showing a configuration example of the ground station G21 of the second embodiment. The ground station G21 includes an antenna 103, an optical transmission / reception device 104, and a communication performance prediction device 200. The antenna 103 and the optical transmission / reception device 104 have the same functions as those provided in the ground station G11 of the first embodiment. However, the antenna 103 of the present embodiment has a tracking function for the satellites S22 to S24. The optical transmitting and receiving apparatus 104 inputs and outputs optical signals including transmission data transmitted to and from the satellites S22 to S24 with the antenna 103, and inputs and outputs electrical signals including the transmission data to and from the communication apparatus 105. . The optical transmission / reception device 104 also outputs a communication record during communication with the satellites S22 and S23 to the communication performance prediction device 200.

通信性能予測装置200は、光送受信装置104から取得した通信記録に基づいて通信性能予測値を生成し、生成した通信性能予測値を通信装置105に出力する。通信装置105は、伝送データを光送受信装置104と送受信するとともに、通信性能予測装置200から取得した通信性能予測値を処理する。本実施形態の通信装置105は、第1の実施形態の通信装置105と同様の機能を備え、地上局G31の内部に備えられていてもよい。   The communication performance prediction apparatus 200 generates a communication performance prediction value based on the communication record acquired from the optical transmission / reception device 104, and outputs the generated communication performance prediction value to the communication device 105. The communication device 105 transmits and receives transmission data to and from the optical transmission / reception device 104, and processes the communication performance prediction value acquired from the communication performance prediction device 200. The communication device 105 of the present embodiment has the same function as the communication device 105 of the first embodiment, and may be provided inside the ground station G31.

図8は、第2の実施形態の通信性能予測装置200の構成例を示すブロック図である。通信性能予測装置200は、第1揺らぎ算出部201、仰角算出部202、第2揺らぎ算出部203、通信性能算出部204を備える。第1揺らぎ算出部201は、他の衛星S22及びS23の通信性能を含む通信の記録(通信記録)から、大気揺らぎ強度を算出する、第1揺らぎ算出手段を担う。なお、第1揺らぎ算出部201は、他の衛星S22及びS23の一方の通信性能のみを用いてもよい。第1揺らぎ算出部201で算出された大気揺らぎ強度は、第1の指標と呼ぶことができる。   FIG. 8 is a block diagram showing a configuration example of the communication performance prediction apparatus 200 of the second embodiment. The communication performance prediction apparatus 200 includes a first fluctuation calculating unit 201, an elevation angle calculating unit 202, a second fluctuation calculating unit 203, and a communication performance calculating unit 204. The first fluctuation calculating unit 201 serves as a first fluctuation calculating unit that calculates the atmospheric fluctuation intensity from the communication recording (communication recording) including the communication performance of the other satellites S22 and S23. The first fluctuation calculating unit 201 may use only the communication performance of one of the other satellites S22 and S23. The atmospheric fluctuation intensity calculated by the first fluctuation calculating unit 201 can be referred to as a first index.

仰角算出部202は、第1揺らぎ算出部201で算出された大気揺らぎ強度と、他の衛星S22の仰角及び他の衛星S23の仰角との関係を求める(モデル化する)、仰角算出手段を担う。第2揺らぎ算出部203は、仰角算出部202で求められた関係に基づいて、予測対象衛星S24の仰角から大気揺らぎ強度を求める、第2揺らぎ算出手段を担う。第2揺らぎ算出部203で算出された大気揺らぎ強度は、第2の指標と呼ぶことができる。通信性能算出部204は、第2揺らぎ算出部203で求められた大気揺らぎ強度を、予測対象衛星S24の通信性能へ変換する、通信性能算出手段を担う。通信性能予測装置200を構成する各部を総称して「処理手段」ということができる。   The elevation angle calculation unit 202 takes an elevation angle calculation means by determining (modeling) the relationship between the atmospheric fluctuation intensity calculated by the first fluctuation calculation unit 201, the elevation angle of another satellite S22 and the elevation angle of another satellite S23. . The second fluctuation calculating unit 203 is responsible for a second fluctuation calculating unit that obtains the atmospheric fluctuation strength from the elevation angle of the prediction target satellite S24 based on the relationship obtained by the elevation angle calculation unit 202. The atmospheric fluctuation intensity calculated by the second fluctuation calculating unit 203 can be referred to as a second index. The communication performance calculation unit 204 serves as communication performance calculation means for converting the atmospheric fluctuation intensity obtained by the second fluctuation calculation unit 203 into the communication performance of the prediction target satellite S24. Each part which comprises the communication performance prediction apparatus 200 can be named generically, and can be called "processing means."

本実施形態で使用する通信記録は、他の衛星S22及びS23と地上局G21との通信の際に記録された通信性能と、それらの通信時の仰角、通信デバイスの設定、伝送距離を含むデータ群である。通信性能は、第1の実施形態と同様、スループットやパケット誤り率などの性能の指標の値であるが、特定の指標に限定されない。通信デバイスの設定は、第1の実施形態と同様、大気揺らぎや雲以外に起因する受信時の光強度に寄与するパラメータである。伝送距離は、地上局G21と衛星S22〜S24との距離である。通信性能予測装置200は、予測対象衛星S24の通信性能の予測を実行する時刻から大気揺らぎの統計的性質が空間的に一定と見なせる時間前までの間に実行された他の衛星S22及びS23と地上局G21との間の通信において記録された通信記録を利用してもよい。   The communication record used in the present embodiment is data including communication performance recorded at the time of communication between the other satellites S22 and S23 and the ground station G21, elevation angle at the time of the communication, setting of communication devices, and transmission distance. It is a group. The communication performance is a value of a performance indicator such as throughput and packet error rate as in the first embodiment, but is not limited to a specific indicator. As in the first embodiment, the setting of the communication device is a parameter that contributes to the light intensity at reception due to things other than atmospheric fluctuation and clouds. The transmission distance is the distance between the ground station G21 and the satellites S22 to S24. The communication performance prediction device 200 executes the prediction of the communication performance of the prediction target satellite S24 and the other satellites S22 and S23 performed before the time when the statistical property of the atmospheric fluctuation can be regarded as spatially constant. A communication record recorded in communication with the ground station G21 may be used.

大気揺らぎ強度は、フリードパラメータやシンチレーションインデックスなど、大気揺らぎ強度を示す物理量であるが、特定の物理量に限定されない。フリードパラメータは、大気揺らぎ強度を望遠鏡の口径と関連させた値である。シンチレーションインデックスは、信号強度の変動量の標準偏差であり、信号強度の変動量を示す指数である。   The atmospheric fluctuation intensity is a physical quantity that indicates the atmospheric fluctuation intensity, such as a freed parameter or a scintillation index, but is not limited to a specific physical quantity. The Freed parameter is a value that relates the atmospheric fluctuation intensity to the aperture of the telescope. The scintillation index is a standard deviation of the amount of fluctuation of signal intensity, and is an index indicating the amount of fluctuation of signal intensity.

第1揺らぎ算出部201は、他の衛星S22及びS23と地上局G21との間の通信における通信記録から、測定時の大気揺らぎ強度を算出する。大気揺らぎ強度の算出手順の例を以下に示す。   The first fluctuation calculating unit 201 calculates the atmospheric fluctuation strength at the time of measurement from the communication record in the communication between the other satellites S22 and S23 and the ground station G21. An example of calculation procedure of atmospheric fluctuation intensity is shown below.

通信性能として衛星S22〜S24と地上局G21との間で伝送されるデータの誤り率を用い、大気揺らぎ強度として大気揺らぎにより生じる受信光強度の分散値を用いる。ここで、以下の2つを仮定する。1つは、誤り率が大気揺らぎに起因する受信光強度の変動により決定されることであり、他の1つは、その受信光強度変動の分布が図9に示すγ−γ分布で表せることである。   As the communication performance, the error rate of the data transmitted between the satellites S22 to S24 and the ground station G21 is used, and as the atmospheric fluctuation intensity, the dispersion value of the received light intensity caused by the atmospheric fluctuation is used. Here, assume the following two. One is that the error rate is determined by the fluctuation of the received light intensity caused by atmospheric fluctuation, and the other is that the distribution of the received light intensity fluctuation can be expressed by the γ-γ distribution shown in FIG. It is.

図9は、受信光の強度の変動の分布の例を示す図である。γ−γ分布は式(1)に示す累積確率P(I)のように分散値σによって特徴づけられる。受信光強度Iは、大気揺らぎがない場合の受信光強度で正規化された値である。この分散値σを大気揺らぎ強度として利用する。式(1)は、受信光強度がI以下となる確率がP(I)であることを示す。

Figure 2019114825
FIG. 9 is a diagram showing an example of the distribution of fluctuations in the intensity of received light. The γ-γ distribution is characterized by the variance value σ R as the cumulative probability P (I) shown in equation (1). The received light intensity I is a value normalized by the received light intensity when there is no atmospheric fluctuation. This dispersion value σ R is used as the atmospheric fluctuation intensity. Equation (1) indicates that the probability that the received light intensity is less than or equal to I is P (I).

Figure 2019114825

・・・(1)

ここで、α及びβは下式で表される。また、Iは大気揺らぎのない状態を0とした受信光強度の変動であり、Γはガンマ関数、Κはベッセル関数を示す。

Figure 2019114825
... (1)

Here, α and β are represented by the following formulas. Also, I is the fluctuation of the received light intensity with 0 being the atmospheric fluctuation-free state, Γ is the gamma function, and Κ is the Bessel function.

Figure 2019114825



Figure 2019114825


Figure 2019114825



以上の仮定の下で、大気揺らぎ強度を示す分散値σを決定する方法を説明する。まず、他の衛星S22及びS23の通信記録における通信デバイスの設定と、他の衛星S22及びS23と地上局G21との伝送距離の情報とから、大気揺らぎがない状態における受信光強度のマージンm(受信マージン)を計算する。例えば、送信光強度をT(dBm)、受信感度をR(dBm)、光の回折による自由空間損失をL(dB)とし、大気揺らぎ以外に他に光強度の損失がない場合、マージンm(dB)は下記の式(2)により表せる。

Figure 2019114825


Under the above assumption, a method of determining the dispersion value σ R indicating the atmospheric fluctuation intensity will be described. First, from the setting of the communication device in the communication record of the other satellites S22 and S23, and the information of the transmission distance between the other satellites S22 and S23 and the ground station G21, the margin m of the received light intensity in the absence of atmospheric fluctuation Calculate the reception margin). For example, assuming that the transmission light intensity is T (dBm), the reception sensitivity is R (dBm), the free space loss due to light diffraction is L (dB), and there is no loss of light intensity other than atmospheric fluctuation, the margin m ( dB) can be expressed by the following equation (2).

Figure 2019114825

・・・(2)

図10は、大気揺らぎ強度を求める手順の例を説明する図である。一般に、マージンmが大きいほどダイナミックレンジに余裕があり誤り率は低い。そこで、本実施形態では、累積確率を誤り率に対応させ、γ−γ分布へのフィッティングを行う。具体的には、マージンmと通信記録における誤り率が式(1)の累積確率P(I)の曲線上に存在するような分散値σを式(1)から求め、求められた分散値σを大気揺らぎ強度とする。
... (2)

FIG. 10 is a diagram for explaining an example of the procedure for determining the atmospheric fluctuation intensity. In general, the larger the margin m, the smaller the dynamic range and the lower the error rate. Therefore, in the present embodiment, the cumulative probability is made to correspond to the error rate, and fitting to the γ-γ distribution is performed. Specifically, the variance value σ R is determined from the equation (1) such that the margin m and the error rate in the communication record are on the curve of the cumulative probability P (I) of the equation (1) Let σ R be the atmospheric fluctuation intensity.

仰角算出部202は、第1揺らぎ算出部201で計算された大気揺らぎ強度と、その際の他の衛星S22及びS23の仰角とのデータ群から、大気揺らぎ強度と仰角との関係を求める。大気揺らぎ強度と仰角との関係は、例えば以下のようにして求めることができる。   The elevation angle calculation unit 202 obtains the relationship between the atmospheric fluctuation intensity and the elevation angle from the data group of the atmospheric fluctuation intensity calculated by the first fluctuation calculation unit 201 and the elevation angles of the other satellites S22 and S23 at that time. The relationship between the atmospheric fluctuation intensity and the elevation angle can be determined, for example, as follows.

大気揺らぎ強度を上述の分散値σとした場合、分散値σと仰角θ(rad)の関係は、以下の式(3)に示す比例関係で表せる。

Figure 2019114825
When the atmospheric fluctuation intensity is the above-mentioned dispersion value σ R , the relationship between the dispersion value σ R and the elevation angle θ (rad) can be expressed by the proportional relationship shown in the following equation (3).

Figure 2019114825

・・・(3)

そして、他の衛星S22及びS23の通信記録から得られる仰角θと、それらの衛星の通信性能から求めた分散値σとを対応させたデータ群に対して式(3)によるフィッティングを行う。その結果、分散値σと仰角θとの関係をモデル化できる。例えば、分散値σを、仰角θの関数として表現することで、大気揺らぎ強度と仰角との関係のモデル化が行われる。通信記録のデータが多数あれば、式(3)に代えて高次多項式のような一般的な関数を用いてモデル化を行ってもよい。
... (3)

Then, the fitting by the equation (3) is performed on a data group in which the elevation angle θ obtained from the communication record of the other satellites S22 and S23 and the dispersion value σ R obtained from the communication performance of those satellites. As a result, the relationship between the dispersion value σ R and the elevation angle θ can be modeled. For example, by expressing the dispersion value σ R as a function of the elevation angle θ, modeling of the relationship between the atmospheric fluctuation intensity and the elevation angle is performed. If there is a large amount of data in the communication record, modeling may be performed using a general function such as a high-order polynomial instead of equation (3).

第2揺らぎ算出部203は、仰角算出部202で求められた他の衛星S22及びS23の仰角と大気揺らぎ強度との関係を予測対象衛星S24の仰角に適用することで、予測対象衛星S24の仰角の変化を大気揺らぎ強度の時間変化へ変換する。すなわち、第2揺らぎ算出部203は、予測対象衛星S24の仰角を仰角算出部202が生成したモデルに適用することで、予測対象衛星S24と地上局G21との通信時の大気揺らぎ強度を求める。第2揺らぎ算出部203における大気揺らぎ強度の算出の際に、他の衛星S22及びS23のうち予測対象衛星S24の近くを通過した衛星の通信性能の記録だけを利用することで、場所に依存する大気揺らぎの相違による影響を低減させることができる。   The second fluctuation calculation unit 203 applies the relationship between the elevation angles of the other satellites S22 and S23 and the atmospheric fluctuation intensity obtained by the elevation angle calculation unit 202 to the elevation angle of the prediction target satellite S24 to obtain the elevation angle of the prediction target satellite S24. Transform the change in the atmospheric pressure into the temporal change of atmospheric fluctuation intensity. That is, the second fluctuation calculating unit 203 obtains the atmospheric fluctuation intensity at the time of communication between the prediction target satellite S24 and the ground station G21 by applying the elevation angle of the prediction target satellite S24 to the model generated by the elevation angle calculation unit 202. When calculating the atmospheric fluctuation intensity in the second fluctuation calculation unit 203, it is dependent on the place by using only the recording of the communication performance of the satellites passing near the prediction target satellite S24 among the other satellites S22 and S23. It is possible to reduce the influence of atmospheric fluctuation differences.

通信性能算出部204は、大気揺らぎ強度の時間変化、衛星S22〜S24の通信デバイス設定及びそれらの相違、並びに予測対象衛星S24と地上局G21との間の伝送距離の時間変化から、予測対象衛星S24の通信性能(例えば誤り率)の時間変化を予測する。予測対象衛星S24の通信デバイス設定及び予測対象衛星S24と地上局G21との間の伝送距離の時間変化は、「通信設定」と呼ぶこともできる。   The communication performance calculation unit 204 is a satellite for prediction from the time variation of the atmospheric fluctuation intensity, the communication device settings of the satellites S22 to S24 and the difference between them, and the time variation of the transmission distance between the satellite for prediction S24 and the ground station G21. The time change of the communication performance (for example, error rate) of S24 is predicted. The communication device setting of the prediction target satellite S24 and the temporal change of the transmission distance between the prediction target satellite S24 and the ground station G21 can also be called "communication setting".

伝送距離の時間変化は、低軌道衛星と地上局との間の通信で顕著である。伝送距離の時間変化に合わせて、光の回折による伝搬損失を時間的に変えることで、伝送距離の時間変化を通信性能の時間変化に反映できる。大気揺らぎ強度から通信性能への換算は、図10で説明した手順の逆の手順によって行うことができる。通信デバイスの設定に関しては、第1の実施形態の手順(図4のステップS015及びステップS016)によって、先行衛星S22、S23の設定と予測対象衛星S24の設定の相違を、通信性能予測値に反映できる。   The time change of the transmission distance is remarkable in the communication between the low orbit satellite and the ground station. By temporally changing the propagation loss due to light diffraction in accordance with the time change of the transmission distance, it is possible to reflect the time change of the transmission distance in the time change of the communication performance. The conversion from the atmospheric fluctuation intensity to the communication performance can be performed by the reverse procedure of the procedure described in FIG. Regarding the setting of the communication device, the difference between the setting of the preceding satellites S22 and S23 and the setting of the prediction target satellite S24 is reflected in the communication performance predicted value by the procedure of the first embodiment (step S015 and step S016 in FIG. 4). it can.

図11は、通信性能予測装置200の動作手順の例を示すフローチャートである。第1揺らぎ算出部201は、他の衛星S22及びS23の通信性能から、測定時の大気揺らぎ強度を算出する(図11のステップS021)。仰角算出部202は、大気揺らぎ強度と他の衛星S22及びS23の仰角との関係をモデル化する(ステップS022)。第2揺らぎ算出部203は、ステップS022で求めた仰角と大気揺らぎ強度との関係から、予測対象衛星S24の仰角を予測対象衛星S24と地上局G21との通信時の大気揺らぎ強度へ変換する(ステップS023)。通信性能算出部204は、ステップS023で求められた大気揺らぎ強度、各衛星S22〜S24及び地上局G21の通信デバイス設定、及び予測対象衛星S24と地上局G21との間の伝送距離から、予測対象衛星S24の通信性能を予測する。   FIG. 11 is a flowchart illustrating an example of the operation procedure of the communication performance prediction apparatus 200. The first fluctuation calculating unit 201 calculates the atmospheric fluctuation intensity at the time of measurement from the communication performance of the other satellites S22 and S23 (step S021 in FIG. 11). The elevation angle calculation unit 202 models the relationship between the atmospheric fluctuation intensity and the elevation angles of the other satellites S22 and S23 (step S022). The second fluctuation calculating unit 203 converts the elevation angle of the prediction target satellite S24 into the atmospheric fluctuation strength at the time of communication between the prediction target satellite S24 and the ground station G21 based on the relationship between the elevation angle and the atmospheric fluctuation strength obtained in step S022 Step S023). The communication performance calculation unit 204 predicts from the atmospheric fluctuation intensity obtained in step S023, the communication device settings for each of the satellites S22 to S24 and the ground station G21, and the transmission distance between the satellite S24 for prediction and the ground station G21. The communication performance of the satellite S24 is predicted.

以上に説明したように、本実施形態の通信性能予測装置200は、予測対象衛星S24と地上G21との間の大気揺らぎ強度を、他の衛星S22及びS23と地上局G21との間の通信記録を用いて予測する。すなわち、本実施形態の通信性能予測装置200は、他の衛星と異なる軌道を運行する予測対象衛星の通信性能を予測できる。また、予測対象衛星と同一の軌道上の先行衛星との通信時刻の間隔が長い場合には、先行衛星の通信記録を用いることなく、他の衛星との通信記録に基づいて、予測対象衛星の通信性能を予測できる。すなわち、第2の実施形態においても、衛星と地上局との間の通信性能の時間変化をより正確に予測できるという効果が得られる。   As described above, the communication performance prediction apparatus 200 of the present embodiment records the atmospheric fluctuation intensity between the satellite S24 for prediction and the ground G21, and the communication record between the other satellites S22 and S23 and the ground station G21. Use to predict. That is, the communication performance prediction apparatus 200 of the present embodiment can predict the communication performance of a prediction target satellite operating on a trajectory different from that of other satellites. In addition, when the communication time interval between the prediction target satellite and the preceding satellite on the same orbit is long, the prediction target satellite's can be obtained based on the communication records with other satellites without using the communication record of the preceding satellite. Communication performance can be predicted. That is, also in the second embodiment, it is possible to more accurately predict the time change of the communication performance between the satellite and the ground station.

本実施形態の説明では、第1の実施形態で行った雲の影響は考慮されていない。しかしながら、他の衛星S22又はS23と地上局G21との通信時の雲画像を用い、第1の実施形態で説明した手順を用いて通信性能予測値を補正してもよい。例えば、図11のステップS024に図4のステップS012〜S014の手順を適用することで、通信性能を予測値に雲の影響を反映できる。これにより、本実施形態においても雲の動きの影響が考慮された通信性能を予測できる。   In the description of the present embodiment, the influence of the clouds performed in the first embodiment is not considered. However, the communication performance prediction value may be corrected using the procedure described in the first embodiment using a cloud image at the time of communication between another satellite S22 or S23 and the ground station G21. For example, by applying the procedures of steps S012 to S014 of FIG. 4 to step S024 of FIG. 11, the influence of clouds can be reflected on the predicted value of the communication performance. Thereby, also in this embodiment, it is possible to predict the communication performance in which the influence of the movement of the cloud is considered.

(第3の実施形態)
次に、本発明の第3の実施形態について説明する。図12は第3の実施形態の通信性能予測システム30の例を示すブロック図である。通信性能予測システム30では、大気揺らぎ強度が直接測定される。
Third Embodiment
Next, a third embodiment of the present invention will be described. FIG. 12 is a block diagram showing an example of the communication performance prediction system 30 of the third embodiment. In the communication performance prediction system 30, the atmospheric fluctuation intensity is directly measured.

通信性能予測システム30は、地上局G31、天球39上の軌道B35上の衛星S32及びS33、軌道B36上の衛星S34を備える。ここで、衛星S31及びS32は、地上局G31とは通信しない衛星である。通信性能予測システム30において、衛星S32は地上局G31へ光を照射する。あるいは、地上局G31はコーナリフレクタを搭載した衛星S33へ光を照射し、衛星S33は地上局G31から照射された光をコーナリフレクタで反射して地上局G31へ照射する。地上局G31はこれらのいずれかの光を受信し、その強度の時間変動を検出することで、大気揺らぎ強度を直接測定できる。   The communication performance prediction system 30 includes a ground station G31, satellites S32 and S33 on the orbit B35 on the celestial sphere 39, and a satellite S34 on the orbit B36. Here, the satellites S31 and S32 are satellites that do not communicate with the ground station G31. In the communication performance prediction system 30, the satellite S32 emits light to the ground station G31. Alternatively, the ground station G31 emits light to the satellite S33 equipped with the corner reflector, and the satellite S33 reflects the light emitted from the ground station G31 by the corner reflector and emits the light to the ground station G31. The ground station G31 can measure the atmospheric fluctuation intensity directly by receiving any of these lights and detecting the time variation of the intensity.

図13は、第3の実施形態の地上局G31の構成例を示すブロック図である。地上局G31は、アンテナ103と、光送受信装置104と、通信性能予測装置300とを備える。アンテナ103及び光送受信装置104は、第2の実施形態と同様の機能を備える。ただし、本実施形態のアンテナ103は、衛星S32〜S34に対する追尾機能を備えた光送受信アンテナである。光送受信装置104は、衛星S34との間で伝送される伝送データを含む光信号をアンテナ103と入出力するとともに、当該伝送データを含む電気信号を通信装置105との間で入出力する。また、光送受信装置104は、衛星S32及びS33の少なくとも一方との間で大気揺らぎ強度を測定するための光の送受信機能、又は、衛星S32及びS33の少なくとも一方から受信した光の強度変動から大気揺らぎ強度を求める機能を備える。   FIG. 13 is a block diagram showing a configuration example of the ground station G31 of the third embodiment. The ground station G31 includes an antenna 103, an optical transmission / reception device 104, and a communication performance prediction device 300. The antenna 103 and the optical transmission / reception device 104 have the same functions as those in the second embodiment. However, the antenna 103 of the present embodiment is an optical transmitting / receiving antenna provided with a tracking function for the satellites S32 to S34. The optical transmission / reception device 104 inputs / outputs an optical signal including transmission data transmitted to / from the satellite S34 with the antenna 103, and inputs / outputs an electric signal including the transmission data into / from the communication device 105. In addition, the light transmitting / receiving device 104 has a light transmitting / receiving function for measuring the atmospheric fluctuation intensity with at least one of the satellites S32 and S33, or the light intensity fluctuation received from at least one of the satellites S32 and S33. It has a function to obtain fluctuation strength.

通信性能予測装置300は、光送受信装置104から取得した通信記録に基づいて通信性能予測値を生成し、生成した通信性能予測値を通信装置105に出力する。通信装置105は、伝送データを光送受信装置104と送受信するとともに、通信性能予測装置300から取得した通信性能予測値を処理する。本実施形態の通信装置105は、第1及び第2の実施形態の通信装置105と同様の機能を備え、地上局G31の内部に備えられていてもよい。   The communication performance prediction apparatus 300 generates a communication performance prediction value based on the communication record acquired from the optical transmission / reception device 104, and outputs the generated communication performance prediction value to the communication device 105. The communication device 105 transmits and receives transmission data to and from the optical transmission / reception device 104, and processes the communication performance prediction value acquired from the communication performance prediction device 300. The communication device 105 of this embodiment may have the same function as the communication device 105 of the first and second embodiments, and may be provided inside the ground station G31.

図14は、第3の実施形態の通信性能予測装置300の構成例を示すブロック図である。通信性能予測装置300は、第2の実施形態の通信性能予測装置200と比較して、第1揺らぎ算出部201に代えて、揺らぎ測定部301を備える点で相違する。通信性能予測装置300は、第2の実施形態の通信性能予測装置200と同様の、仰角算出部202、第2揺らぎ算出部203、及び通信性能算出部204を備える。揺らぎ測定部301以外の各部の機能は、第2の実施形態と同様であるため、説明を省略する。   FIG. 14 is a block diagram showing a configuration example of the communication performance prediction apparatus 300 of the third embodiment. The communication performance prediction apparatus 300 is different from the communication performance prediction apparatus 200 of the second embodiment in that a fluctuation measurement unit 301 is provided instead of the first fluctuation calculation unit 201. The communication performance prediction apparatus 300 includes an elevation angle calculation unit 202, a second fluctuation calculation unit 203, and a communication performance calculation unit 204, similar to the communication performance prediction apparatus 200 of the second embodiment. The functions of the units other than the fluctuation measuring unit 301 are the same as those of the second embodiment, and thus the description thereof is omitted.

通信性能予測装置300は、衛星S32又はS33から受信した光の強度の変動を測定する。そして、通信性能予測装置300は、その測定結果から地上局G31付近の大気揺らぎ強度を求めることで、衛星S32〜S34と通信することなく予測対象衛星の通信性能を予測する。例えば、地上局G31が伝送データの送受信を行わない場合であっても、他の衛星から受信した光を用いて大気揺らぎ強度の予測が可能となる。   The communication performance prediction apparatus 300 measures the fluctuation of the light intensity received from the satellite S32 or S33. Then, the communication performance prediction apparatus 300 predicts the communication performance of the prediction target satellite without communicating with the satellites S32 to S34 by obtaining the atmospheric fluctuation intensity in the vicinity of the ground station G31 from the measurement result. For example, even if the ground station G31 does not transmit or receive transmission data, it is possible to predict the atmospheric fluctuation intensity using light received from another satellite.

図15は、通信性能予測装置300の動作手順の例を示すフローチャートである。地上局G11の揺らぎ測定部301は、他の衛星S32又はS33から受信した光強度の変動に基づいて大気揺らぎを測定する(図15のステップS031)。以降のステップS032〜S034は、第2の実施形態の図11のステップS022〜S024と同様である。   FIG. 15 is a flowchart illustrating an example of the operation procedure of the communication performance prediction apparatus 300. The fluctuation measurement unit 301 of the ground station G11 measures atmospheric fluctuation based on the fluctuation of light intensity received from another satellite S32 or S33 (step S031 in FIG. 15). The subsequent steps S032 to S034 are the same as steps S022 to S024 in FIG. 11 of the second embodiment.

なお、第1の実施形態の先行衛星S12、第2の実施形態の他の衛星S22又はS23が、本実施形態の他の衛星S32又はS33の機能を備えてもよい。地上局G11又はG21は、本実施形態と同様の手順で衛星S12、S22又はS23から受信した光の強度の変動を測定し、大気揺らぎ強度を求めてもよい。   The preceding satellite S12 of the first embodiment and the other satellites S22 and S23 of the second embodiment may have the functions of the other satellites S32 and S33 of the present embodiment. The ground station G11 or G21 may measure the fluctuation of the intensity of the light received from the satellite S12, S22 or S23 in the same procedure as the present embodiment to obtain the atmospheric fluctuation intensity.

(第3の実施形態の変形例)
図16は第3の実施形態の通信性能予測システム30の変形例を説明する図である。通信性能予測システム31では、ガイド星S37あるいはレーザガイド星S38を用いて大気揺らぎ強度を測定する点で、第3の実施形態の通信性能予測システム30とは異なる。
(Modification of the third embodiment)
FIG. 16 is a view for explaining a modification of the communication performance prediction system 30 of the third embodiment. The communication performance prediction system 31 differs from the communication performance prediction system 30 of the third embodiment in that the atmospheric fluctuation intensity is measured using the guide star S37 or the laser guide star S38.

図13において、ガイド星S37は宇宙空間に存在する明るい星(例えば恒星)である。レーザガイド星S38は、地上局G31から放射したレーザ光によって大気上層部の元素(例えばナトリウム)を励起させることで発光する擬似的な恒星である。地上局G31は、ガイド星あるいはレーザガイド星から受信する光の強度の変動によって大気揺らぎを算出する。他の動作は第3の実施形態と同様である。   In FIG. 13, a guide star S37 is a bright star (for example, a star) existing in space. The laser guide star S38 is a pseudo star which emits light by exciting elements (for example, sodium) in the upper air layer by laser light emitted from the ground station G31. The ground station G31 calculates the atmospheric fluctuation by the fluctuation of the light intensity received from the guide star or the laser guide star. The other operations are the same as in the third embodiment.

(第4の実施形態)
次に、本発明の第4の実施形態について説明する。本実施形態では、第1の実施形態、第2の実施形態、第3の実施形態のいずれかが選択される。図17は、第4の実施形態による通信性能の予測手順の例を示すフローチャートである。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described. In the present embodiment, any one of the first embodiment, the second embodiment, and the third embodiment is selected. FIG. 17 is a flowchart illustrating an example of a communication performance prediction procedure according to the fourth embodiment.

まず、予測対象衛星と地上局との通信の予定時刻から所定の時間以前までの期間内に、予測対象衛星と同一軌道上の衛星(先行衛星)との通信記録があるかを判定する(図14のステップS041)。通信記録は、衛星と地上局との通信の際の通信性能を含む。そのような通信記録があった場合(ステップS041:YES)、第1の実施形態の手順により通信性能の時間変化を予測する(ステップS042)。   First, it is determined whether there is a communication record with a satellite on the same orbit (preceding satellite) within the period from the scheduled time of communication between the prediction target satellite and the ground station to a predetermined time or earlier (Fig. 14 steps S041). The communication record includes the communication performance in the communication between the satellite and the ground station. If there is such a communication record (step S041: YES), the time change of communication performance is predicted according to the procedure of the first embodiment (step S042).

先行衛星と地上局との通信記録がない場合(ステップS041:NO)、当該期間内に同一軌道以外の衛星(他の衛星)との通信記録があるかを判定する(ステップS043)。他の衛星との通信記録があった場合(ステップS043:YES)、第2の実施形態の手順により通信性能の時間変化を予測する(ステップS044)。他の衛星との通信記録がなかった場合(ステップS043:NO)、第3の実施形態の手順により通信性能の時間変化を予測する(ステップS045)。   If there is no communication record between the preceding satellite and the ground station (step S041: NO), it is determined whether there is a communication record with satellites (other satellites) other than the same orbit within the period (step S043). If there is a communication record with another satellite (step S043: YES), the time change of the communication performance is predicted according to the procedure of the second embodiment (step S044). If there is no communication record with another satellite (step S043: NO), the time change of the communication performance is predicted according to the procedure of the third embodiment (step S045).

本実施形態の手順によれば、通信記録の有無によって各実施形態の手順を選択することで、より予測精度が高い手順によって通信性能を予測できる。   According to the procedure of the present embodiment, communication performance can be predicted by a procedure with higher prediction accuracy by selecting the procedure of each embodiment according to the presence or absence of the communication record.

なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。   In addition, although embodiment of this invention may be described also like the following additional remarks, it is not limited to these.

(付記1)
第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を記録し、第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する処理手段を備える、
通信性能予測装置。
(Supplementary Note 1)
A communication record including a first communication performance, which is a performance of a first optical space communication performed between a first mobile unit and a ground station, is recorded, and a second mobile unit and the ground station are recorded. Processing means for acquiring a communication setting which is a setting of a second optical space communication to be performed, and predicting a second communication performance which is a performance of the second optical space communication based on the communication record and the communication setting Prepare,
Communication performance prediction device.

(付記2)
前記通信記録は、前記第1の光空間通信における、
前記第1の移動体の仰角と前記第1の通信性能との関係、及び、
前記第1の移動体の通信デバイスの設定、及び、
前記地上局の通信デバイスの設定を含み、
前記通信設定は、前記第2の光空間通信における、
前記第2の移動体の仰角及び前記第2の移動体の通信デバイスの設定及び前記地上局の通信デバイスの設定を含む、
付記1に記載された通信性能予測装置。
(Supplementary Note 2)
The communication record is in the first optical space communication,
A relationship between an elevation angle of the first mobile body and the first communication performance;
Setting of the communication device of the first mobile, and
Including the configuration of the ground station communication device,
The communication setting is performed in the second optical space communication,
Including the setting of the elevation angle of the second mobile unit and the communication device of the second mobile unit and the setting of the communication device of the ground station;
The communication performance prediction device described in Supplementary Note 1.

(付記3)
前記処理手段は、前記第2の光空間通信における前記第2の移動体の仰角と略同一の範囲の前記第1の移動体の仰角における前記通信記録に基づいて前記第2の通信性能を予測する、付記1又は2に記載された通信性能予測装置。
(Supplementary Note 3)
The processing means predicts the second communication performance based on the communication record at the elevation angle of the first mobile body in a range substantially the same as the elevation angle of the second mobile body in the second optical space communication. The communication performance prediction device described in Appendix 1 or 2.

(付記4)
前記処理手段は、
前記第1の光空間通信の際の大気揺らぎ強度を示す第1の指標を求める第1揺らぎ算出手段、
前記第1の光空間通信の際の前記第1の移動体の仰角と前記第1の指標とから、前記第1の指標と前記第1の移動体の仰角との関係を求める仰角算出手段、
前記第1の指標と前記第1の移動体の仰角との関係に基づいて、前記第2の移動体の仰角から前記第2の光空間通信における前記大気揺らぎ強度を示す第2の指標を求める第2揺らぎ算出手段、
前記第2の指標、及び前記第1及び第2の移動体の通信デバイスの設定、及び前記第2の移動体と前記地上局との距離に基づいて、前記第2の通信性能の予測結果を出力する通信性能算出手段、
を備える付記1乃至3のいずれか1項に記載された通信性能予測装置。
(Supplementary Note 4)
The processing means
First fluctuation calculating means for obtaining a first index indicating atmospheric fluctuation strength at the time of the first optical space communication;
Elevation angle calculation means for determining the relationship between the first index and the elevation angle of the first mobile body from the elevation angle of the first mobile body and the first index at the time of the first optical space communication;
Based on the relationship between the first index and the elevation angle of the first moving body, a second index indicating the atmospheric fluctuation intensity in the second optical space communication is determined from the elevation angle of the second moving body Second fluctuation calculation means,
Based on the second indicator, the settings of the communication devices of the first and second mobile units, and the distance between the second mobile unit and the ground station, the second communication performance prediction result is Communication performance calculation means to output,
The communication performance prediction apparatus described in any one of the additional claims 1 to 3 comprising

(付記5)
前記第1揺らぎ算出手段は、前記第1の通信性能として前記第1の光空間通信の際の誤り率を用い、前記第1の光空間通信の受信マージンと前記誤り率との関係をγ−γ分布にフィッティングした際の累積確率の分散値を前記第1の指標とする、付記4に記載された通信性能予測装置。
(Supplementary Note 5)
The first fluctuation calculation means uses the error rate in the first optical space communication as the first communication performance, and sets the relationship between the reception margin of the first optical space communication and the error rate to γ−. The communication performance prediction device described in appendix 4, wherein a dispersion value of cumulative probability when fitting to a γ distribution is used as the first index.

(付記6)
前記通信性能算出手段は、前記第1及び第2の移動体の通信デバイスの設定の差分により生じる前記第1の通信性能と前記第2の通信性能との差分に基づいて前記第2の通信性能を予測する、付記4又は5に記載された通信性能予測装置。
(Supplementary Note 6)
The communication performance calculation means is configured to calculate the second communication performance based on a difference between the first communication performance and the second communication performance which are generated by a difference between settings of communication devices of the first and second mobile units. The communication performance prediction apparatus described in appendix 4 or 5 which predicts.

(付記7)
前記通信性能算出手段は、前記第1の移動体が前記第2の移動体と同一の軌道上を運行する場合に前記第2の通信性能の予測結果を出力する、付記4乃至6のいずれか1項に記載された通信性能予測装置。
(Appendix 7)
The communication performance calculation means outputs the prediction result of the second communication performance when the first mobile unit operates on the same orbit as the second mobile unit. The communication performance prediction device described in item 1.

(付記8)
前記第1揺らぎ算出手段は、前記第1の移動体から受信した光強度の揺らぎから前記第1の指標を求める、付記4に記載された通信性能予測装置。
(Supplementary Note 8)
The communication performance prediction device described in appendix 4, wherein the first fluctuation calculating means obtains the first index from the fluctuation of light intensity received from the first moving body.

(付記9)
前記通信性能算出手段は、前記第1の移動体が前記第2の移動体の軌道上と異なる位置にある場合に前記第2の通信性能の予測結果を出力する、付記8に記載された通信性能予測装置。
(Appendix 9)
The communication according to appendix 8, wherein the communication performance calculation means outputs the prediction result of the second communication performance when the first mobile body is at a position different from that on the trajectory of the second mobile body. Performance prediction device.

(付記10)
前記第1揺らぎ算出手段は、前記第1の移動体から受信した光強度の揺らぎから求めた前記第1の指標に代えて、レーザガイド星又は天球上の星から受信した光強度の揺らぎを前記第1の指標として出力する、付記4乃至9のいずれか1項に記載された通信性能予測装置。
(Supplementary Note 10)
The first fluctuation calculating means is configured to detect the fluctuation of the light intensity received from the laser guide star or the star on the celestial sphere, instead of the first index obtained from the fluctuation of the light intensity received from the first moving body. The communication performance prediction device according to any one of appendices 4 to 9, which is output as a first index.

(付記11)
前記第1及び第2の移動体の通信デバイスの設定及び前記地上局の通信デバイスの設定は、それぞれ、送信光の強度、送信光の送信ビーム発散角、光学系の特性のばらつき、光受信感度の少なくとも1つを含む、付記1乃至10のいずれか1項に記載された通信性能予測装置。
(Supplementary Note 11)
The setting of the communication device of the first and second mobile units and the setting of the communication device of the ground station are respectively the intensity of the transmission light, the transmission beam divergence angle of the transmission light, the dispersion of the characteristics of the optical system, the light reception sensitivity The communication performance prediction device according to any one of appendices 1 to 10, comprising at least one of:

(付記12)
前記第1の光空間通信の際の光信号の遮蔽物の位置及び前記第2の光空間通信の際の前記遮蔽物の予測位置に基づいて前記第1の通信性能と前記第2の通信性能との差分を求め、求められた差分を用いて前記第2の通信性能を予測する、付記1乃至10のいずれか1項に記載された通信性能予測装置。
(Supplementary Note 12)
The first communication performance and the second communication performance based on the position of the shield of the optical signal in the first optical space communication and the predicted position of the shield in the second optical space communication The communication performance prediction apparatus according to any one of appendices 1 to 10, wherein the second communication performance is predicted using the calculated difference.

(付記13)
前記第1及び第2の移動体と光空間通信を行う光送信機及び光受信機を備え、前記通信記録及び前記通信設定を出力する光送受信装置と、
付記1乃至12のいずれか1項に記載された通信性能予測装置と、
を備える地上局。
(Supplementary Note 13)
An optical transmitter / receiver that performs optical space communication with the first and second movable bodies and an optical receiver, and outputs the communication record and the communication setting;
The communication performance prediction apparatus described in any one of Appendices 1 to 12;
Ground station with.

(付記14)
付記13に記載された地上局と、前記地上局が備える前記通信性能予測装置が予測した前記第2の通信性能を処理する通信装置と、を備える通信性能予測システム。
(Supplementary Note 14)
A communication performance prediction system, comprising: the ground station described in Appendix 13; and a communication device that processes the second communication performance predicted by the communication performance prediction device provided in the ground station.

(付記15)
第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を取得し、
第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、
前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する、
通信性能予測方法。
(Supplementary Note 15)
Obtaining a communication record including a first communication performance that is a performance of a first optical space communication performed between the first mobile unit and the ground station;
Acquiring a communication setting that is a setting of a second optical space communication performed between a second mobile unit and the ground station;
Predicting a second communication performance which is a performance of the second optical space communication based on the communication record and the communication setting;
Communication performance prediction method.

(付記16)
前記通信記録は、前記第1の光空間通信における、
前記第1の移動体の仰角と前記第1の通信性能との関係、及び、
前記第1の移動体の通信デバイスの設定、及び、
前記地上局の通信デバイスの設定を含み、
前記通信設定は、前記第2の光空間通信における、
前記第2の移動体の仰角及び前記第2の移動体の通信デバイスの設定及び前記地上局の通信デバイスの設定を含む、
付記15に記載された通信性能予測方法。
(Supplementary Note 16)
The communication record is in the first optical space communication,
A relationship between an elevation angle of the first mobile body and the first communication performance;
Setting of the communication device of the first mobile, and
Including the configuration of the ground station communication device,
The communication setting is performed in the second optical space communication,
Including the setting of the elevation angle of the second mobile unit and the communication device of the second mobile unit and the setting of the communication device of the ground station;
The communication performance prediction method described in appendix 15.

(付記17)
前記第2の光空間通信における前記第2の移動体の仰角と略同一の範囲の前記第1の移動体の仰角における前記通信記録に基づいて前記第2の通信性能を予測する、付記15又は16に記載された通信性能予測方法。
(Supplementary Note 17)
The second communication performance is predicted based on the communication record at the elevation angle of the first mobile body in a range substantially the same as the elevation angle of the second mobile body in the second optical space communication, Appendix 15 or The communication performance prediction method described in 16.

(付記18)
前記第1の光空間通信の際の大気揺らぎ強度を示す第1の指標を求め、
前記第1の光空間通信の際の前記第1の移動体の仰角と前記第1の指標とから、前記第1の指標と前記第1の移動体の仰角との関係を求め、
前記第1の指標と前記第1の移動体の仰角との関係に基づいて、前記第2の移動体の仰角から前記第2の光空間通信における前記大気揺らぎ強度を示す第2の指標を求め、
前記第2の指標、及び前記第1及び第2の移動体の通信デバイスの設定、及び前記第2の移動体と前記地上局との距離に基づいて、前記第2の通信性能を予測する、
付記15乃至17のいずれかに記載された通信性能予測方法。
(Appendix 18)
Determining a first index indicating atmospheric fluctuation intensity in the first optical space communication;
The relationship between the first index and the elevation angle of the first moving body is obtained from the elevation angle of the first moving body and the first index during the first optical space communication,
Based on the relationship between the first index and the elevation angle of the first movable body, a second index indicating the atmospheric fluctuation intensity in the second optical space communication is obtained from the elevation angle of the second movable body ,
The second communication performance is predicted based on the second indicator, the settings of the communication devices of the first and second mobile units, and the distance between the second mobile unit and the ground station.
The communication performance prediction method according to any one of appendices 15 to 17.

(付記19)
前記第1の通信性能として前記第1の光空間通信の際の誤り率を用い、前記第1の光空間通信の受信マージンと前記誤り率との関係をγ−γ分布にフィッティングした際の累積確率の分散値を前記第1の指標とする、付記18に記載された通信性能予測方法。
(Appendix 19)
Accumulation when fitting the relationship between the reception margin of the first optical space communication and the error rate to the γ-γ distribution using the error rate in the first optical space communication as the first communication performance The communication performance prediction method described in appendix 18, wherein a variance value of probability is used as the first index.

(付記20)
前記第1及び第2の移動体の通信デバイスの設定の差分により生じる前記第1の通信性能と前記第2の通信性能との差分に基づいて前記第2の通信性能を予測する、付記18又は19に記載された通信性能予測方法。
(Supplementary Note 20)
The second communication performance is predicted on the basis of the difference between the first communication performance and the second communication performance which are caused by the difference between the settings of the communication devices of the first and second mobile units, or the second communication performance is predicted The communication performance prediction method described in 19.

(付記21)
前記第1の移動体が前記第2の移動体と同一の軌道上を運行する場合に実行される、付記18乃至20のいずれか1項に記載された通信性能予測方法。
(Supplementary Note 21)
The communication performance prediction method according to any one of appendices 18 to 20, which is executed when the first mobile unit travels on the same orbit as the second mobile unit.

(付記22)
前記第1の移動体から受信した光強度の揺らぎから前記第1の指標を求める、付記18に記載された通信性能予測方法。
(Supplementary Note 22)
The communication performance prediction method described in appendix 18, wherein the first index is obtained from the fluctuation of light intensity received from the first mobile body.

(付記23)
前記第1の移動体が前記第2の移動体の軌道上と異なる位置にある場合に実行される、付記21に記載された通信性能予測方法。
(Supplementary Note 23)
24. The communication performance prediction method according to appendix 21, executed when the first mobile body is at a position different from that on the trajectory of the second mobile body.

(付記24)
前記第1の移動体から受信した光強度の揺らぎから求めた前記第1の指標に代えて、レーザガイド星又は天球上の星から受信した光強度の揺らぎを前記第1の指標として用いる、付記18乃至23のいずれか1項に記載された通信性能予測方法。
(Supplementary Note 24)
Note that the fluctuation of the light intensity received from the laser guide star or the star on the celestial sphere is used as the first index instead of the first index obtained from the fluctuation of the light intensity received from the first moving body The communication performance prediction method described in any one of items 18 to 23.

(付記25)
前記第1及び第2の移動体の通信デバイスの設定及び前記地上局の通信デバイスの設定は、それぞれ、送信光の強度、送信光の送信ビーム発散角、光学系の特性のばらつき、光受信感度の少なくとも1つを含む、付記15乃至24のいずれか1項に記載された通信性能予測方法。
(Appendix 25)
The setting of the communication device of the first and second mobile units and the setting of the communication device of the ground station are respectively the intensity of the transmission light, the transmission beam divergence angle of the transmission light, the dispersion of the characteristics of the optical system, the light reception sensitivity The communication performance prediction method according to any one of appendages 15 to 24, including at least one of:

(付記26)
前記第1の光空間通信の際の光信号の遮蔽物の位置及び前記第2の光空間通信の際の前記遮蔽物の予測位置に基づいて前記第1の通信性能と前記第2の通信性能との差分を求め、求められた差分を用いて前記第2の通信性能を予測する、付記15乃至25のいずれか1項に記載された通信性能予測方法。
(Appendix 26)
The first communication performance and the second communication performance based on the position of the shield of the optical signal in the first optical space communication and the predicted position of the shield in the second optical space communication The communication performance prediction method according to any one of Appendices 15 to 25, wherein the second communication performance is predicted using the calculated difference.

(付記27)
通信性能予測装置のコンピュータに、
第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を取得する手順、
第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得する手順、
前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する手順、
を実行させるための通信性能予測プログラム。
(Appendix 27)
In the computer of the communication performance prediction device,
A procedure for acquiring a communication record including a first communication performance that is a performance of a first optical space communication performed between a first mobile unit and a ground station;
A procedure for acquiring a communication setting which is a setting of a second optical space communication performed between a second mobile unit and the ground station;
A procedure for predicting a second communication performance that is a performance of the second optical space communication based on the communication record and the communication setting;
Performance forecasting program for running.

以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。   Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。   Further, the configurations described in the respective embodiments are not necessarily mutually exclusive. The actions and effects of the present invention may be realized by a combination of all or part of the above-described embodiments.

以上の各実施形態に記載された機能及び手順は、各実施形態の通信性能予測装置が備えるコンピュータ(Central Processing Unit、CPU)がプログラムを実行することにより実現されてもよい。プログラムは、固定された、一時的でない記録媒体に記録される。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。   The functions and procedures described in each of the above embodiments may be implemented by executing a program by a computer (Central Processing Unit, CPU) included in the communication performance prediction device of each of the embodiments. The program is recorded on a fixed, non-temporary recording medium. Although a semiconductor memory or a fixed magnetic disk drive is used as a recording medium, it is not limited thereto.

10、20、30、31 通信性能予測システム
G11、G21、G31 地上局
S12、S13、S22〜S24、S31〜S34 衛星
S37 ガイド星
S38 レーザガイド星
B15、B25、B35、B36 軌道
19、29、39 天球
100、200、300 通信性能予測装置
101 第1処理部
102 第2処理部
103 アンテナ
104 光送受信装置
105 通信装置
201 第1揺らぎ算出部
202 仰角算出部
203 第2揺らぎ算出部
204 通信性能算出部
301 揺らぎ測定部
10, 20, 30, 31 Communication Performance Prediction System G11, G21, G31 Ground Station S12, S13, S22 to S24, S31 to S34 Satellite S37 Guide Star S38 Laser Guide Star B15, B25, B35, B36 Orbit 19, 29, 39 Celestial sphere 100, 200, 300 communication performance prediction device 101 first processing unit 102 second processing unit 103 antenna 104 light transmitting / receiving device 105 communication device 201 first fluctuation calculating unit 202 elevation angle calculating unit 203 second fluctuation calculating unit 204 communication performance calculating unit 301 Fluctuation measurement unit

Claims (10)

第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を記録し、第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する処理手段を備える、
通信性能予測装置。
A communication record including a first communication performance, which is a performance of a first optical space communication performed between a first mobile unit and a ground station, is recorded, and a second mobile unit and the ground station are recorded. Processing means for acquiring a communication setting which is a setting of a second optical space communication to be performed, and predicting a second communication performance which is a performance of the second optical space communication based on the communication record and the communication setting Prepare,
Communication performance prediction device.
前記通信記録は、前記第1の光空間通信における、
前記第1の移動体の仰角と前記第1の通信性能との関係、及び、
前記第1の移動体の通信デバイスの設定、及び、
前記地上局の通信デバイスの設定を含み、
前記通信設定は、前記第2の光空間通信における、
前記第2の移動体の仰角及び前記第2の移動体の通信デバイスの設定及び前記地上局の通信デバイスの設定を含む、
請求項1に記載された通信性能予測装置。
The communication record is in the first optical space communication,
A relationship between an elevation angle of the first mobile body and the first communication performance;
Setting of the communication device of the first mobile, and
Including the configuration of the ground station communication device,
The communication setting is performed in the second optical space communication,
Including the setting of the elevation angle of the second mobile unit and the communication device of the second mobile unit and the setting of the communication device of the ground station;
The communication performance prediction device according to claim 1.
前記処理手段は、前記第2の光空間通信における前記第2の移動体の仰角と略同一の範囲の前記第1の移動体の仰角における前記通信記録に基づいて前記第2の通信性能を予測する、請求項1又は2に記載された通信性能予測装置。   The processing means predicts the second communication performance based on the communication record at the elevation angle of the first mobile body in a range substantially the same as the elevation angle of the second mobile body in the second optical space communication. The communication performance prediction device according to claim 1 or 2. 前記処理手段は、
前記第1の光空間通信の際の大気揺らぎ強度を示す第1の指標を求める第1揺らぎ算出手段、
前記第1の光空間通信の際の前記第1の移動体の仰角と前記第1の指標とから、前記第1の指標と前記第1の移動体の仰角との関係を求める仰角算出手段、
前記第1の指標と前記第1の移動体の仰角との関係に基づいて、前記第2の移動体の仰角から前記第2の光空間通信における前記大気揺らぎ強度を示す第2の指標を求める第2揺らぎ算出手段、
前記第2の指標、及び前記第1及び第2の移動体の通信デバイスの設定、及び前記第2の移動体と前記地上局との距離に基づいて、前記第2の通信性能の予測結果を出力する通信性能算出手段、
を備える請求項1乃至3のいずれか1項に記載された通信性能予測装置。
The processing means
First fluctuation calculating means for obtaining a first index indicating atmospheric fluctuation strength at the time of the first optical space communication;
Elevation angle calculation means for determining the relationship between the first index and the elevation angle of the first mobile body from the elevation angle of the first mobile body and the first index at the time of the first optical space communication;
Based on the relationship between the first index and the elevation angle of the first moving body, a second index indicating the atmospheric fluctuation intensity in the second optical space communication is determined from the elevation angle of the second moving body Second fluctuation calculation means,
Based on the second indicator, the settings of the communication devices of the first and second mobile units, and the distance between the second mobile unit and the ground station, the second communication performance prediction result is Communication performance calculation means to output,
The communication performance prediction device according to any one of claims 1 to 3, comprising:
前記第1揺らぎ算出手段は、前記第1の通信性能として前記第1の光空間通信の際の誤り率を用い、前記第1の光空間通信の受信マージンと前記誤り率との関係をγ−γ分布にフィッティングした際の累積確率の分散値を前記第1の指標とする、請求項4に記載された通信性能予測装置。   The first fluctuation calculation means uses the error rate in the first optical space communication as the first communication performance, and sets the relationship between the reception margin of the first optical space communication and the error rate to γ−. The communication performance prediction device according to claim 4, wherein a variance value of cumulative probability at the time of fitting to a γ distribution is used as the first index. 前記通信性能算出手段は、前記第1及び第2の移動体の通信デバイスの設定の差分により生じる前記第1の通信性能と前記第2の通信性能との差分に基づいて前記第2の通信性能を予測する、請求項4又は5に記載された通信性能予測装置。   The communication performance calculation means is configured to calculate the second communication performance based on a difference between the first communication performance and the second communication performance which are generated by a difference between settings of communication devices of the first and second mobile units. The communication performance prediction device according to claim 4 or 5, wherein 前記通信性能算出手段は、前記第1の移動体が前記第2の移動体と同一の軌道上を運行する場合に前記第2の通信性能の予測結果を出力する、請求項4乃至6のいずれか1項に記載された通信性能予測装置。   The communication performance calculation means outputs the prediction result of the second communication performance when the first mobile unit operates on the same orbit as the second mobile unit. The communication performance prediction device described in 1 or 2. 前記第1揺らぎ算出手段は、前記第1の移動体から受信した光強度の揺らぎから前記第1の指標を求める、請求項4に記載された通信性能予測装置。   5. The communication performance prediction device according to claim 4, wherein the first fluctuation calculating means obtains the first index from the fluctuation of light intensity received from the first moving body. 前記通信性能算出手段は、前記第1の移動体が前記第2の移動体の軌道上と異なる位置にある場合に前記第2の通信性能の予測結果を出力する、請求項8に記載された通信性能予測装置。   9. The communication performance calculation means according to claim 8, wherein the prediction result of the second communication performance is output when the first mobile body is at a position different from that on the trajectory of the second mobile body. Communication performance prediction device. 第1の移動体と地上局との間で行われる第1の光空間通信の性能である第1の通信性能を含む通信記録を取得し、
第2の移動体と前記地上局との間で行われる第2の光空間通信の設定である通信設定を取得し、
前記第2の光空間通信の性能である第2の通信性能を前記通信記録及び前記通信設定に基づいて予測する、
通信性能予測方法。
Obtaining a communication record including a first communication performance that is a performance of a first optical space communication performed between the first mobile unit and the ground station;
Acquiring a communication setting that is a setting of a second optical space communication performed between a second mobile unit and the ground station;
Predicting a second communication performance which is a performance of the second optical space communication based on the communication record and the communication setting;
Communication performance prediction method.
JP2017244459A 2017-12-20 2017-12-20 Communication performance prediction system Active JP6943173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017244459A JP6943173B2 (en) 2017-12-20 2017-12-20 Communication performance prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017244459A JP6943173B2 (en) 2017-12-20 2017-12-20 Communication performance prediction system

Publications (2)

Publication Number Publication Date
JP2019114825A true JP2019114825A (en) 2019-07-11
JP6943173B2 JP6943173B2 (en) 2021-09-29

Family

ID=67223871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017244459A Active JP6943173B2 (en) 2017-12-20 2017-12-20 Communication performance prediction system

Country Status (1)

Country Link
JP (1) JP6943173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389688A (en) * 2022-01-04 2022-04-22 烽火通信科技股份有限公司 Method and device for predicting performance of optical module
JP2022552914A (en) * 2019-12-13 2022-12-20 シグニファイ ホールディング ビー ヴィ computing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552914A (en) * 2019-12-13 2022-12-20 シグニファイ ホールディング ビー ヴィ computing device
JP7217573B2 (en) 2019-12-13 2023-02-03 シグニファイ ホールディング ビー ヴィ computing device
CN114389688A (en) * 2022-01-04 2022-04-22 烽火通信科技股份有限公司 Method and device for predicting performance of optical module
CN114389688B (en) * 2022-01-04 2023-06-13 烽火通信科技股份有限公司 Method and device for predicting performance of optical module

Also Published As

Publication number Publication date
JP6943173B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US20190320403A1 (en) Channel Latency Determining Method, Positioning Method, and Related Device
AU2012245010B2 (en) Process and system to determine temporal changes in retransmission and propagation of signals used to measure distances, syncronize actuators and georeference applications
KR20180055623A (en) Method and apparatus for analyzing communication channel considering information related to material and exterior shape of a object
US20180329023A1 (en) System and method for wireless time-of-arrival localization
JP6943173B2 (en) Communication performance prediction system
US11950169B2 (en) Uplink positioning methods and apparatuses for non-terrestrial networks
KR102400458B1 (en) Apparatus and method for generating environment information for network design in wireless communication system
US10611495B2 (en) Sea state estimation
US11733344B2 (en) Interference source searching method and interference source searching apparatus
US11832210B2 (en) Systems and methods for location determination of base station facilities and mobile user equipment (UE) devices in a wireless communication network
KR101503831B1 (en) Distance measuring system between the wireless communication devices and method thereof
KR20180083763A (en) Method and apparatus for performing drive test in a mobile communication system
US20230266425A1 (en) Estimating a Location of a User Equipment
KR20200087326A (en) System and method for path loss exponent prediction
US11463165B2 (en) Systems and methods for optical wireless communications
US10863452B2 (en) Method and radio for setting the transmission power of a radio transmission
KR102424104B1 (en) Apparatus and method for estimating radiation characteristics in wireless communication system
US11438804B2 (en) Method and apparatus for operating a wireless communication network
CN117240354B (en) Satellite-ground quantum key distribution code quantity estimation method based on beacon light intensity change
KR102577520B1 (en) Method and apparatus of positioning for accommodating wireless-environment change
KR101105064B1 (en) Method to Optimize Antenna Configuration for NLOS Area using Dominant Path
JP2012039285A (en) Optical communication device and optical communication method
GB2609911A (en) Wireless telecommunications network
JP2022105434A (en) Estimation device that estimates reception power of radio signals
WO2022149065A1 (en) Measurement and reporting for downlink angle of departure positioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150