JP2019114048A - Earthquake-resistance evaluation method and device for apparatus - Google Patents

Earthquake-resistance evaluation method and device for apparatus Download PDF

Info

Publication number
JP2019114048A
JP2019114048A JP2017246900A JP2017246900A JP2019114048A JP 2019114048 A JP2019114048 A JP 2019114048A JP 2017246900 A JP2017246900 A JP 2017246900A JP 2017246900 A JP2017246900 A JP 2017246900A JP 2019114048 A JP2019114048 A JP 2019114048A
Authority
JP
Japan
Prior art keywords
stress value
seismic
response curve
analysis
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017246900A
Other languages
Japanese (ja)
Other versions
JP7001462B2 (en
Inventor
設喜 五島
Nobuyoshi Goshima
設喜 五島
隼 丹羽
Hayato Niwa
隼 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67222643&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019114048(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017246900A priority Critical patent/JP7001462B2/en
Publication of JP2019114048A publication Critical patent/JP2019114048A/en
Application granted granted Critical
Publication of JP7001462B2 publication Critical patent/JP7001462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

To enable an earthquake-resistance evaluation on an apparatus easily within a short time period in an earthquake-resistance evaluation method and device for apparatus.SOLUTION: A method is for evaluating the earthquake-resistance of an apparatus placed in a building, and the method includes: a step of performing response analysis on the building by preset earthquake vibration; a step of creating a floor response curve on the basis of the response analysis result on the building; a step of calculating a ratio between a first floor response curve created at the last earthquake-resistance evaluation and a second floor response curve created at the present time; a step of calculating a second produced stress value at the present time on the basis of the ratio and of a first produced stress value obtained by performing the earthquake-resistance analysis; and a step of evaluating the earthquake-resistance of the apparatus by comparing the second produced stress value with an acceptable stress value.SELECTED DRAWING: Figure 2

Description

本発明は、各種プラントの建屋に設置される機器の耐震性を評価する機器の耐震評価方法及び装置に関するものである。   The present invention relates to a method and an apparatus for aseismatic evaluation of equipment for evaluating the earthquake resistance of equipment installed in buildings of various plants.

例えば、原子力発電プラントでは、地震の発生時における建屋や各種機器の物理的な損傷を把握するため、機器の耐震評価を実施している。この機器の耐震性を評価する場合、建屋が建設されている地域の地震動に基づいて建屋の応答解析を行い、建屋の応答解析結果に基づき床応答曲線を作成し、この床応答曲線を用いて、機器の耐震解析を実施し、各種機器の耐震性を評価している。   For example, in a nuclear power plant, in order to grasp physical damage of a building or various equipment at the time of occurrence of an earthquake, seismic evaluation of the equipment is carried out. When evaluating the earthquake resistance of this equipment, response analysis of the building is performed based on the earthquake motion of the area where the building is constructed, floor response curve is created based on the response analysis result of the building, and this floor response curve is used Implements seismic analysis of equipment and evaluates the earthquake resistance of various equipment.

このような機器の耐震評価方法としては、例えば、下記特許文献1に記載されたものがある。   As an earthquake-resistant evaluation method of such an apparatus, there is, for example, one described in Patent Document 1 below.

特許第6086752号公報Patent No. 6086752

近年、建屋モデルにおける諸元の変更、地震動の増大や追加を実施することが増えており、新しい条件における機器の耐震健全性の確保を短期間で見極めることが生じている。従来、地域の地震動に基づいて建屋の応答解析を行い、建屋の応答解析結果に基づき床応答曲線を作成し、この床応答曲線を用いて、機器の耐震解析を実施し、各種機器の耐震性を評価している。ところが、原子力発電プラントに設置される機器は、膨大な数であり、短期間で全ての機器の耐震解析を行うことは困難である。そのため、従来の機器の耐震評価方法では、短期間で機器の耐震評価の健全性の確保を見極めることは難しく、短期間で機器の耐震評価の健全性を見極める方法が望まれている。   In recent years, changes in specifications in building models and increases and additions of earthquake motions are increasing, and it has been found that securing of earthquake-proof soundness of equipment under new conditions is made in a short period of time. In the past, response analysis of buildings was performed based on regional earthquake motion, floor response curves were created based on the response analysis results of buildings, seismic analysis of equipment was performed using this floor response curve, and earthquake resistance of various equipment Is rated. However, the number of devices installed in nuclear power plants is huge, and it is difficult to perform seismic analysis of all devices in a short period of time. Therefore, it is difficult to determine the soundness of the seismic evaluation of the device in a short time by the conventional seismic evaluation method of the device, and a method of determining the soundness of the seismic evaluation of the device in a short period is desired.

本発明は、上述した課題を解決するものであり、短期間で容易に機器の耐震評価を行うことができる機器の耐震評価方法及び装置を提供することを目的とする。   This invention solves the subject mentioned above, and it aims at providing the aseismatic evaluation method and apparatus of an apparatus which can perform aseismatic evaluation of an apparatus easily in a short period of time.

上記の目的を達成するための本発明の機器の耐震評価方法は、建屋に配置された機器の耐震性評価方法であって、予め設定された地震動による前記建屋の応答解析を行う工程と、前記応答解析の結果に基づき床応答曲線を作成する工程と、前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率を算出する工程と、前記比率と前回の前記耐震評価時に耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出する工程と、前記第2発生応力値と予め設定される許容応力値とを比較して前記機器の耐震性を評価する工程と、を有することを特徴とするものである。   The seismic evaluation method of the device according to the present invention for achieving the above object is a seismic evaluation method of a device disposed in a building, and the step of carrying out the response analysis of the building by the earthquake motion set in advance; The step of creating a floor response curve based on the result of the response analysis, the step of computing the ratio between the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, the ratio and the previous one The step of calculating the current second generated stress value based on the first generated stress value obtained by performing the aseismatic analysis at the time of the aseismatic evaluation, and the second generated stress value are compared with the allowable stress value set in advance. And a step of evaluating the earthquake resistance of the device.

従って、前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率と、第1発生応力値に基づいて第2発生応力値を算出するため、耐震評価を実施する工程において、再度各種機器の耐震解析をする必要がなく、解析期間の短縮化を図ることができ、短期間で容易に機器の耐震評価を行うことができる。   Therefore, in order to calculate the second generated stress value based on the ratio of the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, and the first generated stress value, seismic evaluation is carried out In the process to be performed, it is not necessary to perform seismic analysis of various devices again, the analysis period can be shortened, and seismic evaluation of the devices can be easily performed in a short period of time.

本発明の機器の耐震評価方法では、前回の機器耐震解析データは、少なくとも建屋モデルの質点番号と前記機器の減衰定数と前記機器の固有振動数をリスト化し、前記第1床応答曲線と共に管理することを特徴としている。   In the seismic evaluation method of the device according to the present invention, the previous device seismic analysis data lists at least the material point number of the building model, the damping constant of the device, and the natural frequency of the device, and manages together with the first floor response curve It is characterized by

従って、建屋モデルの質点番号と機器の減衰定数と機器の固有振動数をリスト化し、前回の床応答曲線と共に管理することで、データの管理が容易となる。   Therefore, data management can be facilitated by listing the material model number of the building model, the damping constant of the device, and the natural frequency of the device and managing them together with the previous floor response curve.

本発明の機器の耐震評価方法では、前記床応答曲線は、前記機器の固有振動数に対する加速度を表すグラフであり、前記第1床応答曲線から求まる加速度に対する前記第2床応答曲線から求まる加速度の比率に、前記第1発生応力値を乗算して前記第2発生応力値を算出することを特徴としている。   In the seismic evaluation method of the device according to the present invention, the floor response curve is a graph representing an acceleration with respect to a natural frequency of the device, and the acceleration obtained from the second floor response curve to the acceleration obtained from the first floor response curve The ratio may be multiplied by the first generated stress value to calculate the second generated stress value.

従って、第1床応答曲線から求まる加速度と第2床応答曲線から求まる加速度の比率に第1発生応力値を乗算して第2発生応力値を算出することで、機器の耐震性評価に必要な今回の発生応力値を容易に算出することができる。   Therefore, by calculating the second generated stress value by multiplying the ratio of the acceleration obtained from the first floor response curve and the acceleration obtained from the second floor response curve by the first generated stress value, it is necessary to evaluate the earthquake resistance of the equipment. The stress value generated this time can be easily calculated.

本発明の機器の耐震評価方法では、前記許容応力値のうちボルトの組み合わせ応力は、前記第2発生応力値に基づいて算出されることを特徴としている。   In the seismic evaluation method for equipment according to the present invention, the combined stress of the bolts among the allowable stress values is calculated based on the second generated stress value.

従って、第2発生応力値に基づいて許容応力値のうちボルトの組み合わせ応力を算出することで、短期間で容易に機器の耐震評価を行うことができる。   Therefore, by calculating the combined stress of the bolts among the allowable stress values based on the second generated stress value, it is possible to easily perform the earthquake resistance evaluation of the device in a short period of time.

本発明の機器の耐震評価方法では、前期第1発生応力値が前記許容応力値以下であるときに前記機器の耐震性を良好であると評価する一方、前記第2発生応力値が前記許容応力値より大きいときに前記機器の耐震性を良好でないと評価することを特徴としている。   In the earthquake resistance evaluation method of the device according to the present invention, while the earthquake resistance of the device is evaluated as good when the first generated stress value is less than the allowable stress value, the second generated stress value is the allowable stress. When the value is larger than the value, the earthquake resistance of the device is evaluated as not good.

従って、第2発生応力値が許容応力値より大きいとき、機器の耐震解析を実行するため、高精度な機器の耐震評価を行うことができる。   Therefore, when the second generated stress value is larger than the allowable stress value, since the seismic analysis of the device is performed, the seismic evaluation of the device can be performed with high accuracy.

また、本発明の機器の耐震評価装置は、建屋に配置された機器の耐震性評価装置であって、
予め設定された地震動による前記機器の応答解析を行う建屋応答解析部と、
前記応答解析の結果に基づき床応答曲線を作成する床応答曲線作成部と、
前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率と、前回の前記耐震評価時に耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出し、前記第2発生応力値と予め設定される許容応力値とを比較して前記機器の耐震性を評価する評価部と、
前記第2発生応力値が前記許容応力値より大きいときに前記機器の耐震性を良好でないと評価して前記機器の耐震解析を実行する機器耐震解析部と、
を備えることを特徴とするものである。
In addition, the earthquake resistance evaluation device for equipment according to the present invention is an earthquake resistance evaluation device for equipment disposed in a building,
A building response analysis unit that analyzes the response of the device by a preset earthquake motion;
A floor response curve creation unit that creates a floor response curve based on the result of the response analysis;
The ratio of the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, and the first generated stress value obtained by performing the seismic analysis at the previous seismic assessment An evaluation unit that calculates a second generated stress value and compares the second generated stress value with a preset allowable stress value to evaluate the earthquake resistance of the device;
A device seismic analysis unit that evaluates the seismic resistance of the device as not good when the second generated stress value is larger than the allowable stress value and executes seismic analysis of the device;
And the like.

従って、短期間で容易に機器の耐震評価を行うことができる。   Therefore, it is possible to easily carry out seismic evaluation of equipment in a short period of time.

本発明の機器の耐震評価方法及び装置によれば、短期間で容易に機器の耐震評価を行うことができる。   According to the seismic evaluation method and apparatus of the device of the present invention, seismic evaluation of the device can be easily performed in a short period of time.

図1は、本実施形態の機器の耐震評価装置を表す概略構成図である。FIG. 1: is a schematic block diagram showing the earthquake-resistant evaluation apparatus of the apparatus of this embodiment. 図2は、機器の耐震評価方法を表すフローチャートである。FIG. 2 is a flowchart showing a method of seismic evaluation of equipment. 図3は、機器応答解析データのリストの一例を表す概略図である。FIG. 3 is a schematic diagram showing an example of a list of device response analysis data. 図4は、床応答曲線を表す周期に対する加速度のグラフである。FIG. 4 is a graph of acceleration against period representing a floor response curve. 図5は、耐震評価結果を表す概略図である。FIG. 5 is a schematic view showing the result of seismic evaluation. 図6は、建屋モデルの質点番号を表す概略図である。FIG. 6 is a schematic view showing a mass point number of a building model.

以下、添付図面を参照して、本発明に係る機器の耐震評価方法及び装置の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。   Hereinafter, with reference to the accompanying drawings, preferred embodiments of the method and apparatus for seismic assessment of equipment according to the present invention will be described in detail. Note that the present invention is not limited by the embodiments, and in the case where there are a plurality of embodiments, the present invention also includes those configured by combining the respective embodiments.

図1は、本実施形態の機器の耐震評価装置を表す概略構成図である。   FIG. 1: is a schematic block diagram showing the earthquake-resistant evaluation apparatus of the apparatus of this embodiment.

本実施形態の機器の耐震評価装置は、プラントの建屋に配置された機器の耐震性を評価する装置である。ここで、機器とは、建屋の床面上に設置される設備、この設備に接続される配管などである。機器の耐震評価装置は、建屋応答解析部11と、機器耐震解析部12と、床応答曲線作成部13と、評価部14と、入力部15と、出力部16と、記憶部17とを備えている。   The earthquake resistance evaluation device for equipment of the present embodiment is a device for evaluating the earthquake resistance of equipment arranged in a building of a plant. Here, the equipment is equipment installed on the floor of the building, piping connected to the equipment, and the like. The equipment earthquake resistance evaluation device includes a building response analysis unit 11, an equipment earthquake resistance analysis unit 12, a floor response curve creation unit 13, an evaluation unit 14, an input unit 15, an output unit 16, and a storage unit 17. ing.

建屋応答解析部11は、地震動と建屋の建設データに基づいて建屋応答解析をするものである。機器耐震解析部12は、床応答曲線と機器のデータに基づいて機器耐震解析をするものである。床応答曲線作成部13は、建屋の応答解析の結果に基づいて床応答曲線を作成するものである。この床応答曲線は、周期(振動数)に対する加速度のグラフによって表されるものである。評価部14は、床応答曲線作成部13が作成した床応答曲線に基づいて機器の耐震性を評価するものである。この評価部14は、入力部(例えば、キーボードなど)15と、出力部(例えば、ディスプレイなど)16と、記憶部17が接続されている。   The building response analysis unit 11 analyzes the building response based on earthquake motion and building construction data. The equipment seismic analysis unit 12 performs equipment seismic analysis based on the floor response curve and the data of the equipment. The floor response curve creation unit 13 creates a floor response curve based on the result of the building response analysis. This floor response curve is represented by a graph of acceleration against period (frequency). The evaluation unit 14 evaluates the earthquake resistance of the device based on the floor response curve created by the floor response curve creation unit 13. The evaluation unit 14 is connected to an input unit (for example, a keyboard or the like) 15, an output unit (for example, a display or the like) 16, and a storage unit 17.

本実施形態にて、床応答曲線作成部13は、予め設定された地震動による建屋の応答解析結果に基づいて、床応答曲線を作成する。建屋の床応答曲線は、床応答曲線作成部13から評価部14に入力される。前回の機器耐震解析データは、前回の機器の耐震評価時に解析したデータであり、記憶部17に格納されている。前回の機器耐震解析データは、例えば、建屋モデルの質点番号と、機器の減衰定数と、機器の固有振動数と発生応力値であって、リスト化され、前回の第1床応答曲線と共に管理している。ここで、建屋モデルの質点番号とは、機器の設置場所と建物を階層毎に質点に置き換えたモデルである。図6は、建屋モデルの質点番号を表す概略図である。図6に示すように、プラントが原子力発電プラントであるとき、例えば、地盤A上に原子炉格納容器Bと蒸気発生器Cと外部建屋Dが設置されており、所定の階にて、節点/質点(図6にて、黒丸)を介して複数の構成部材(図6にて、白丸)が連結されている。建屋モデルの質点番号は、各構成部材に付けられた番号であり、例えば、B01,B02・・・C01,C02・・・D01,D02などと表記される。   In the present embodiment, the floor response curve creation unit 13 creates a floor response curve based on the result of the response analysis of the building due to the earthquake motion set in advance. The floor response curve of the building is input from the floor response curve creation unit 13 to the evaluation unit 14. The previous device seismic analysis data is data analyzed at the time of the previous seismic evaluation of the device, and is stored in the storage unit 17. The previous equipment seismic analysis data are, for example, the building model's material point number, the equipment's damping constant, the equipment's natural frequency and generated stress value, and are listed and managed together with the previous first floor response curve ing. Here, the mass point number of the building model is a model in which the installation location of the equipment and the building are replaced with mass points for each hierarchy. FIG. 6 is a schematic view showing a mass point number of a building model. As shown in FIG. 6, when the plant is a nuclear power plant, for example, reactor containment vessel B, steam generator C and external building D are installed on ground A, and at a predetermined floor, nodes / A plurality of constituent members (white circles in FIG. 6) are connected via mass points (black circles in FIG. 6). The mass point number of the building model is a number attached to each component, and is described, for example, as B01, B02... C01, C02... D01, D02.

評価部(発生応力値算出部)14は、前回の耐震評価時に作成した第1床応答曲線と、今回床応答曲線作成部13が作成した第2床応答曲線との比率を求め、この比率と前回の第2発生応力値に基づいて第2発生応力値を算出する。具体的に、前回の第1床応答曲線から求まる加速度に対する今回作成した第2床応答曲線から求まる加速度の比率に、第1発生応力値を乗算して第2発生応力値を算出する。評価部14は、第2発生応力値と予め設定された許容応力値とを比較して機器の耐震性を評価する。このときの許容応力値のうちボルトの組み合わせ応力は、今回の発生応力値に基づいて算出される。   The evaluation unit (generated stress value calculation unit) 14 calculates the ratio between the first floor response curve created at the previous seismic evaluation and the second floor response curve created by the floor response curve creating unit 13 this time, and this ratio and The second generated stress value is calculated based on the previous second generated stress value. Specifically, a second generated stress value is calculated by multiplying the ratio of the acceleration obtained from the second floor response curve created this time to the acceleration obtained from the previous first floor response curve by the first generated stress value. The evaluation unit 14 compares the second generated stress value with the preset allowable stress value to evaluate the earthquake resistance of the device. The combined stress of the bolts among the allowable stress values at this time is calculated based on the current generated stress value.

また、評価部14は、第2発生応力値が許容応力値以下であるときに機器の耐震性を良好であると評価する。一方、第2発生応力値が許容応力値より大きいときに機器の耐震性を良好でないと評価する。床応答曲線作成部13は、予め設定された地震動による建屋の応答解析の結果を基づいて床応答曲線を作成し、機器耐震解析部12により機器の耐震解析を実行する。   Further, the evaluation unit 14 evaluates that the earthquake resistance of the device is good when the second generated stress value is equal to or less than the allowable stress value. On the other hand, when the second generated stress value is larger than the allowable stress value, the earthquake resistance of the device is evaluated as not good. The floor response curve creation unit 13 creates a floor response curve based on the result of the building response analysis based on the preset earthquake motion, and the equipment earthquake resistance analysis unit 12 executes the earthquake resistance analysis of the equipment.

ここで、本実施形態の機器の耐震評価方法について詳細に説明する。図2は、機器の耐震評価方法を表すフローチャート、図3は、機器応答解析データのリストの一例を表す概略図、図4は、床応答曲線を表す周期に対する加速度のグラフ、図5は、耐震評価結果を表す概略図である。   Here, the seismic evaluation method of the apparatus of this embodiment is demonstrated in detail. 2 is a flowchart showing a method of seismic evaluation of equipment, FIG. 3 is a schematic diagram showing an example of a list of equipment response analysis data, FIG. 4 is a graph of acceleration against a period representing a floor response curve, and FIG. It is the schematic showing an evaluation result.

本実施形態の機器の耐震評価方法は、建屋に配置された機器の耐震性評価方法であって、予め設定された地震動による建屋の応答解析を行う工程と、建屋の応答解析の結果に基づき床応答曲線を作成する工程と、前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率と、前回の耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出する工程と、第2発生応力値と許容応力値とを比較して機器の耐震性を評価する工程と、を有する。   The seismic evaluation method of the device according to the present embodiment is a seismic evaluation method of the device disposed in the building, which is a step of performing a response analysis of the building by a earthquake motion set in advance, and a floor based on a result of the response analysis of the building. A process of creating a response curve, a ratio between a first floor response curve created at the previous seismic evaluation and a second floor response curve created this time, and a first generated stress value obtained by performing the previous seismic analysis A step of calculating a second generated stress value of this time and a step of evaluating the earthquake resistance of the device by comparing the second generated stress value and the allowable stress value are included.

図1及び図2に示すように、ステップS11にて、地震動を策定する。地震動は、定期的にその健全性が見直されるものであり、最新の地震動により、ステップS12にて、建屋応答解析部11が地震動と建屋の建設データに基づいて建屋応答解析を実施する。この建屋の建設データは、建屋が変更された場合、その変更後のデータを使用する。   As shown in FIGS. 1 and 2, in step S11, earthquake motion is formulated. The earthquake motion is regularly reviewed for its soundness, and the building response analysis unit 11 carries out a building response analysis based on the construction data of the earthquake motion and the building in step S12 according to the latest earthquake motion. The construction data of this building will use the data after the change if the building is changed.

ステップS13にて、記憶部17に、図3に示すように、前回の耐震評価データと共に前回の機器応答解析データとしての建屋モデルの質点番号と機器の減衰定数と機器の固有振動数をリスト化して格納する。   In step S13, as shown in FIG. 3, the storage unit 17 lists the material model number of the building model as the previous equipment response analysis data as well as the previous earthquake resistance evaluation data, the equipment damping constant and the equipment natural frequency. Store.

そして、図1及び図2に示すように、ステップS14にて、床応答曲線作成部13は、予め設定された地震動による建屋の応答解析の結果に基づいて床応答曲線を作成する。そして、ステップS15にて、機器の耐震評価を実行する。即ち、図4にて、実線は前回の耐震評価時に作成した第1床応答曲線であり、二点鎖線は、今回作成した第2床応答曲線である。評価部14は、この前回の第1床応答曲線と今回の第2床応答曲線の比率と、前回の第1発生応力値に基づいて第2発生応力値を算出する。例えば、所定の機器の固有振動数(周期)がaであるとき、前回の第1床応答曲線R1を用いると加速度G1であるが、今回の第2床応答曲線R2を用いると加速度G2となる。すると、比率Dは、D=G2/G1であり、前回の第1発生応力値F1とすると、今回の第2発生応力値F2は、F2=F1・(G2/G1)となる。   Then, as shown in FIG. 1 and FIG. 2, in step S14, the floor response curve creation unit 13 creates a floor response curve based on the result of the building response analysis based on the earthquake motion set in advance. Then, in step S15, seismic evaluation of the device is performed. That is, in FIG. 4, the solid line is the first floor response curve created at the time of the previous earthquake resistance evaluation, and the two-dot chain line is the second floor response curve created this time. The evaluation unit 14 calculates a second generated stress value based on the ratio of the previous first floor response curve to the current second floor response curve, and the previous first generated stress value. For example, when the natural frequency (period) of a predetermined device is a, the acceleration G1 is obtained using the previous first floor response curve R1, but the acceleration G2 is obtained using the current second floor response curve R2. . Then, assuming that the ratio D is D = G2 / G1 and the first generated stress value F1 of the previous time, the second generated stress value F2 of this time is F2 = F1 · (G2 / G1).

評価部14は、第2発生応力値F2と許容応力値Fs2とを比較して機器の耐震性を評価する。なお、ボルトの組み合わせ応力についての許容応力値Fs2は、第2発生応力値F2に基づいて設定する。第2許容応力値Fs2は、Fs2=f(F2)となる。関数fは、ボルトの組み合わせ応力により基準規格を用いて設定される。そして、耐震評価は、図5に示すように、機器種類に対する応力分類、発生応力値、許容応力値、評価として出力部16に出力される。   The evaluation unit 14 compares the second generated stress value F2 with the allowable stress value Fs2 to evaluate the earthquake resistance of the device. In addition, allowable stress value Fs2 about the combination stress of a bolt is set based on 2nd generation | occurrence | production stress value F2. The second allowable stress value Fs2 is Fs2 = f (F2). The function f is set using the standard by the combined stress of the bolts. Then, as shown in FIG. 5, earthquake resistance evaluation is output to the output unit 16 as stress classification, generated stress value, allowable stress value, and evaluation for the type of device.

また、図1及び図2に示すように、評価部14は、今回の第2発生応力値が許容応力値以下であるときに機器の耐震性を良好であると評価する一方、今回の第2発生応力値が許容応力値より大きいときに機器の耐震性を良好でないと評価する。ステップS16にて、評価部14は、今回の第2発生応力値が許容応力値より大きいとして異常ありと判定(Yes)されると、ステップS17にて、機器耐震解析部12により機器の耐震解析を実行する。一方、ステップS16にて、評価部14は、今回の第2発生応力値が許容応力値以下であって異常なしと判定(No)されると、処理を終了する。   Further, as shown in FIG. 1 and FIG. 2, the evaluation unit 14 evaluates that the earthquake resistance of the device is good when the second generated stress value at this time is equal to or less than the allowable stress value, When the generated stress value is larger than the allowable stress value, the earthquake resistance of the equipment is evaluated as not good. When it is determined that the second generated stress value at this time is larger than the allowable stress value (Yes) in step S16, the aseismatic analysis unit 12 performs an earthquake resistance analysis of the device in step S17. Run. On the other hand, when it is determined in step S16 that the second generated stress value at this time is equal to or less than the allowable stress value and that there is no abnormality (No), the processing ends.

このように本実施形態の機器の耐震評価方法にあっては、建屋に配置された機器の耐震性を評価する方法であって、予め設定された地震動による建屋の応答解析を行う工程と、建屋の応答解析結果に基づき床応答曲線を作成する工程と、前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率を算出する工程と、比率と前回の耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出する工程と、第2発生応力値と予め設定された許容応力値とを比較して機器の耐震性を評価する工程とを有する。   As described above, in the seismic evaluation method of the device according to the present embodiment, there is a method of evaluating the earthquake resistance of the device disposed in the building, and the process of performing the response analysis of the building by the earthquake motion set in advance; The process of creating the floor response curve based on the result of the response analysis, the process of computing the ratio between the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, the ratio and the previous earthquake resistant The process of calculating the second generated stress value of this time based on the first generated stress value obtained by analysis and the earthquake resistance of the equipment by comparing the second generated stress value with the preset allowable stress value And a step of

従って、前回の耐震評価時に作成した床応答曲線と今回作成した第2床応答曲線との比率と、第1発生応力値に基づいて今回の第2発生応力値を算出するため、耐震評価を実施する工程において、再度各種機器の耐震解析をする必要がなく、解析期間の短縮化を図ることができ、短期間で容易に機器の耐震評価を行うことができる。   Therefore, in order to calculate the current second generated stress value based on the ratio between the floor response curve created at the previous seismic evaluation and the second floor response curve created this time, the seismic evaluation is performed. In the process to be performed, it is not necessary to perform seismic analysis of various devices again, the analysis period can be shortened, and seismic evaluation of the devices can be easily performed in a short period of time.

本実施形態の機器の耐震評価方法では、前回の機器耐震解析結果(機器耐震解析データ)は、少なくとも建屋モデルの質点番号と機器の減衰定数と機器の固有振動数をリスト化し、前回の床応答曲線と共に管理している。従って、データの管理が容易となり、容易に耐震評価を実施することができる。   In the seismic evaluation method of the device according to the present embodiment, the previous device seismic analysis result (device seismic analysis data) lists at least the mass point number of the building model, the damping constant of the device, and the natural frequency of the device, I manage with a curve. Therefore, management of data becomes easy, and seismic evaluation can be easily implemented.

本実施形態の機器の耐震評価方法では、床応答曲線は、機器の固有振動数に対する加速度を表すグラフであり、第1床応答曲線から求まる加速度に対する今回作成した第2床応答曲線から求まる加速度の比率に、第1発生応力値を乗算して第2発生応力値を算出する。従って、第1床応答曲線から求まる加速度と第2床応答曲線から求まる加速度の比率に第1発生応力値を乗算して第2発生応力値を算出することで、機器の耐震性評価に必要な今回の発生応力値を容易に算出することができる。   In the seismic evaluation method of the device according to the present embodiment, the floor response curve is a graph representing the acceleration with respect to the natural frequency of the device, and the acceleration obtained from the second floor response curve created this time to the acceleration obtained from the first floor response curve The ratio is multiplied by a first generated stress value to calculate a second generated stress value. Therefore, by calculating the second generated stress value by multiplying the ratio of the acceleration obtained from the first floor response curve and the acceleration obtained from the second floor response curve by the first generated stress value, it is necessary to evaluate the earthquake resistance of the equipment. The stress value generated this time can be easily calculated.

本実施形態の機器の耐震評価方法では、ボルトの組み合わせ応力についての許容応力値は、第2発生応力値に基づいて算出される。従って、第2発生応力値に基づいて許容応力値を算出することで、短期間で容易に機器の耐震評価を行うことができる。   In the seismic evaluation method of the device of the present embodiment, the allowable stress value for the combined stress of the bolts is calculated based on the second generated stress value. Therefore, by calculating the allowable stress value based on the second generated stress value, it is possible to easily carry out seismic evaluation of the device in a short period of time.

本実施形態の機器の耐震評価方法では、第2発生応力値が許容応力値以下であるときに機器の耐震性を良好であると評価する一方、第2発生応力値が許容応力値より大きいときに機器の耐震性を良好でないと評価して機器の耐震解析を実行する。従って、第2発生応力値が許容応力値より大きいとき、機器の耐震解析を実行するため、高精度な機器の耐震評価を行うことができる。   In the earthquake resistance evaluation method of the device according to the present embodiment, when the second generation stress value is equal to or less than the allowable stress value, the earthquake resistance of the device is evaluated as good, while the second generated stress value is larger than the allowable stress value. Evaluate the seismic resistance of the equipment as not good and execute seismic analysis of the equipment. Therefore, when the second generated stress value is larger than the allowable stress value, since the seismic analysis of the device is performed, the seismic evaluation of the device can be performed with high accuracy.

また、本実施形態の機器の耐震評価装置にあっては、建屋に配置された機器の耐震性評価装置であって、予め設定された地震動による建屋の応答解析を行う建屋応答解析部11と、建屋の応答解析の結果に基づき床応答曲線を作成する床応答曲線作成部13と、前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率と、第1発生応力値に基づいて第2発生応力値を算出し、第2発生応力値と予め設定された許容応力値とを比較して機器の耐震性を評価する評価部14と、第2発生応力値が許容応力値より大きいときに機器の耐震性を良好でないと評価して機器の耐震解析を実行する機器耐震解析部12とを備える。   Further, in the earthquake resistance evaluation device for equipment according to the present embodiment, there is a earthquake resistance evaluation device for equipment arranged in a building, which is a building response analysis unit 11 that performs response analysis of the building due to earthquake motion set in advance; The floor response curve creation unit 13 that creates a floor response curve based on the results of building response analysis, the ratio of the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, and the first A second generated stress value is calculated based on the generated stress value, and the evaluation unit 14 that evaluates the earthquake resistance of the device by comparing the second generated stress value with a preset allowable stress value, and the second generated stress value The apparatus seismic analysis unit 12 evaluates that the seismic resistance of the device is not good when the stress value is larger than the allowable stress value, and executes seismic analysis of the device.

従って、短期間で容易に機器の耐震評価を行うことができる。   Therefore, it is possible to easily carry out seismic evaluation of equipment in a short period of time.

11 建屋応答解析部
12 機器耐震解析部
13 床応答曲線作成部
14 評価部
15 入力部
16 出力部
17 記憶部
11 building response analysis unit 12 equipment earthquake resistance analysis unit 13 floor response curve creation unit 14 evaluation unit 15 input unit 16 output unit 17 storage unit

Claims (6)

建屋に配置された機器の耐震性評価方法であって、
予め設定された地震動による前記建屋の応答解析を行う工程と、
前記応答解析の結果に基づき床応答曲線を作成する工程と、
前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率を算出する工程と、
前記比率と前回の前記耐震評価時に耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出する工程と、
前記第2発生応力値と予め設定される許容応力値とを比較して前記機器の耐震性を評価する工程と、
を有することを特徴とする機器の耐震評価方法。
It is an earthquake resistance evaluation method of the equipment arranged in the building,
Performing a response analysis of the building by a preset earthquake motion;
Creating a floor response curve based on the result of the response analysis;
Calculating the ratio between the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time;
Calculating a second generated stress value of this time based on the ratio and a first generated stress value obtained by performing aseismatic analysis at the time of the previous aseismatic evaluation;
Evaluating the earthquake resistance of the device by comparing the second generated stress value with a preset allowable stress value;
Seismic evaluation method of equipment characterized by having.
前回の機器耐震解析データは、少なくとも建屋モデルの質点番号と前記機器の減衰定数と前記機器の固有振動数をリスト化し、前記第1床応答曲線と共に管理することを特徴とする請求項1に記載の機器の耐震評価方法。   The previous equipment seismic analysis data is a list of at least the material model number of the building model, the damping constant of the device, and the natural frequency of the device, and is managed together with the first floor response curve. Seismic evaluation method of equipment. 前記床応答曲線は、前記機器の固有振動数に対する加速度を表すグラフであり、前記第1床応答曲線から求まる加速度に対する前記第2床応答曲線から求まる加速度の比率に、前記第1発生応力値を乗算して前記第2発生応力値を算出することを特徴とする請求項1または請求項2に記載の機器の耐震評価方法。   The floor response curve is a graph representing the acceleration to the natural frequency of the device, and the first generated stress value is a ratio of the acceleration obtained from the second floor response curve to the acceleration obtained from the first floor response curve. The earthquake resistance evaluation method of the apparatus according to claim 1 or 2, wherein the second generated stress value is calculated by multiplication. 前記許容応力値のうちボルトの組み合わせ応力は、前記第2発生応力値に基づいて算出されることを特徴とする請求項1から請求項3のいずれか一項に記載の機器の耐震評価方法。   The combined stress of a bolt is calculated based on the said 2nd generation | occurrence | production stress value among the said allowable stress values, The seismic-assessment evaluation method of the apparatus as described in any one of the Claims 1-3 characterized by the above-mentioned. 前期第1発生応力値が前記許容応力値以下であるときに前記機器の耐震性を良好であると評価する一方、前記第2発生応力値が前記許容応力値より大きいときに前記機器の耐震性を良好でないと評価することを特徴とする請求項1から請求項4のいずれか一項に記載の機器の耐震評価方法。   While the earthquake resistance of the device is evaluated as good when the first generation stress value is less than the allowable stress value, the earthquake resistance of the device when the second generated stress value is greater than the allowable stress value. Is evaluated as not good, The seismic evaluation method of the apparatus as described in any one of Claim 1 to 4 characterized by the above-mentioned. 建屋に配置された機器の耐震性評価装置であって、
予め設定された地震動による前記機器の応答解析を行う建屋応答解析部と、
前記応答解析の結果に基づき床応答曲線を作成する床応答曲線作成部と、
前回の耐震評価時に作成した第1床応答曲線と今回作成した第2床応答曲線との比率と、前回の前記耐震評価時に耐震解析を実施して求めた第1発生応力値に基づいて今回の第2発生応力値を算出し、前記第2発生応力値と予め設定される許容応力値とを比較して前記機器の耐震性を評価する評価部と、
前記第2発生応力値が前記許容応力値より大きいときに前記機器の耐震性を良好でないと評価して前記機器の耐震解析を実行する機器耐震解析部と、
を備えることを特徴とする機器の耐震評価装置。
Seismic resistance evaluation device for equipment placed in a building,
A building response analysis unit that analyzes the response of the device by a preset earthquake motion;
A floor response curve creation unit that creates a floor response curve based on the result of the response analysis;
The ratio of the first floor response curve created at the previous seismic evaluation and the second floor response curve created this time, and the first generated stress value obtained by performing the seismic analysis at the previous seismic assessment An evaluation unit that calculates a second generated stress value and compares the second generated stress value with a preset allowable stress value to evaluate the earthquake resistance of the device;
A device seismic analysis unit that evaluates the seismic resistance of the device as not good when the second generated stress value is larger than the allowable stress value and executes seismic analysis of the device;
Seismic evaluation equipment for equipment characterized by comprising.
JP2017246900A 2017-12-22 2017-12-22 Seismic evaluation method and equipment for equipment Active JP7001462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246900A JP7001462B2 (en) 2017-12-22 2017-12-22 Seismic evaluation method and equipment for equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246900A JP7001462B2 (en) 2017-12-22 2017-12-22 Seismic evaluation method and equipment for equipment

Publications (2)

Publication Number Publication Date
JP2019114048A true JP2019114048A (en) 2019-07-11
JP7001462B2 JP7001462B2 (en) 2022-01-19

Family

ID=67222643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246900A Active JP7001462B2 (en) 2017-12-22 2017-12-22 Seismic evaluation method and equipment for equipment

Country Status (1)

Country Link
JP (1) JP7001462B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112149213A (en) * 2020-09-23 2020-12-29 中广核工程有限公司 Method, device and equipment for transmitting finite element model grid data of nuclear island structure
JP2021071822A (en) * 2019-10-30 2021-05-06 三菱重工業株式会社 Structure evaluation method and structure evaluation program and structure evaluation device
JP2022537850A (en) * 2020-05-08 2022-08-31 ナサン エレクトリック インダストリーズ カンパニー リミテッド A system for designing seismic devices to protect electrical equipment with switchboards and control panels from earthquakes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load hysteresis and cumulative damage monitoring system
JP2011214970A (en) * 2010-03-31 2011-10-27 Toshiba Corp Method, device and system for evaluating earthquake-resistant characteristics of plant apparatus
JP2015222232A (en) * 2014-05-23 2015-12-10 三菱重工業株式会社 Plant equipment soundness evaluation apparatus and method
JP2016200881A (en) * 2015-04-08 2016-12-01 東京電力ホールディングス株式会社 Method for simply evaluating earthquake resistance of outdoor steel structure of substation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177085A (en) * 1996-12-19 1998-06-30 Hitachi Ltd Load hysteresis and cumulative damage monitoring system
JP2011214970A (en) * 2010-03-31 2011-10-27 Toshiba Corp Method, device and system for evaluating earthquake-resistant characteristics of plant apparatus
JP2015222232A (en) * 2014-05-23 2015-12-10 三菱重工業株式会社 Plant equipment soundness evaluation apparatus and method
JP2016200881A (en) * 2015-04-08 2016-12-01 東京電力ホールディングス株式会社 Method for simply evaluating earthquake resistance of outdoor steel structure of substation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071822A (en) * 2019-10-30 2021-05-06 三菱重工業株式会社 Structure evaluation method and structure evaluation program and structure evaluation device
JP7234091B2 (en) 2019-10-30 2023-03-07 三菱重工業株式会社 Structural evaluation method, structural evaluation program, and structural evaluation device
JP2022537850A (en) * 2020-05-08 2022-08-31 ナサン エレクトリック インダストリーズ カンパニー リミテッド A system for designing seismic devices to protect electrical equipment with switchboards and control panels from earthquakes
JP7160386B2 (en) 2020-05-08 2022-10-25 ナサン エレクトリック インダストリーズ カンパニー リミテッド A system for designing seismic devices to protect electrical equipment with switchboards and control panels from earthquakes
CN112149213A (en) * 2020-09-23 2020-12-29 中广核工程有限公司 Method, device and equipment for transmitting finite element model grid data of nuclear island structure

Also Published As

Publication number Publication date
JP7001462B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
Bhasin et al. Black box testing based on requirement analysis and design specifications
Bayraktarli et al. On the application of Bayesian probabilistic networks for earthquake risk management
Do et al. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations
KR100856500B1 (en) A method for quantitive evaluation of the damage frequencies of reactor core on external accidents at nuclear power plant
Larsen et al. A flexible system for in situ triggers
JP2019114048A (en) Earthquake-resistance evaluation method and device for apparatus
Moussi et al. Nonlinear normal modes of a two degrees-of-freedom piecewise linear system
CN107545110B (en) Dynamic stress accelerated life test profile compiling method
Yu et al. Using seismic isolation to reduce risk and capital cost of safety-related nuclear structures
JP6472581B1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP6486566B2 (en) Risk assessment device, risk assessment method, and risk assessment program
De Biasio et al. Intensity measures for probabilistic assessment of non‐structural components acceleration demand
CN104573906A (en) System and method for analyzing oscillatory stability in electrical power transmission systems
JP2009176315A (en) Process management system with risk monitor, and process management method with risk display function
Greco et al. Damage-based inelastic seismic spectra
Khademi-Zahedi et al. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm
WO2018179941A1 (en) Risk assessment device, risk assessment method, and risk assessment program
Audebert et al. SICODYN international benchmark on dynamic analysis of structure assemblies: variability and numerical-experimental correlation on an industrial pump (part 2)
Ghorbani et al. Time‐varying reliability analysis based on hybrid Kalman filtering and probability density evolution
Morato et al. POMDP based maintenance optimization of offshore wind substructures including monitoring
JP2019095370A (en) Fatigue damage diagnosis method, fatigue damage diagnosis system, and fatigue damage diagnosis program
Lucchini et al. Spectrum-to-spectrum methods for the generation of elastic floor acceleration spectra
JP6454826B1 (en) Risk assessment device, risk assessment method, and risk assessment program
Riddle et al. Effects of Defects Part A: Stochastic Finite Element Modeling of Wind Turbine Blades with Manufacturing Defects for Reliability Estimation
JP6818658B2 (en) Power system monitoring system, power system monitoring method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157