JP2019113116A - Vehicular control apparatus - Google Patents

Vehicular control apparatus Download PDF

Info

Publication number
JP2019113116A
JP2019113116A JP2017247033A JP2017247033A JP2019113116A JP 2019113116 A JP2019113116 A JP 2019113116A JP 2017247033 A JP2017247033 A JP 2017247033A JP 2017247033 A JP2017247033 A JP 2017247033A JP 2019113116 A JP2019113116 A JP 2019113116A
Authority
JP
Japan
Prior art keywords
value
learning
automatic transmission
vehicle
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017247033A
Other languages
Japanese (ja)
Other versions
JP6900895B2 (en
Inventor
義隆 鈴木
Yoshitaka Suzuki
義隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017247033A priority Critical patent/JP6900895B2/en
Publication of JP2019113116A publication Critical patent/JP2019113116A/en
Application granted granted Critical
Publication of JP6900895B2 publication Critical patent/JP6900895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

To provide a vehicular control apparatus capable of setting a shift learning value of an automatic transmission as an optimum value quickly.SOLUTION: A control apparatus performs: collecting an initial specification value of an automatic transmission and a temporal change value thereof from a plurality of other vehicles with automatic transmissions; calculating a learning representative value from learning values of a given number of vehicles with many number of times of learning for respective a plurality of initial specification value groups and a plurality of temporal change value groups, in which the collected values are categorized; calculating an optimal learning value on the basis of the learning representative value as a learning value of the vehicle that belongs to either of the initial specification value groups and temporal change value groups; calculating an optimal learning value for the optimal leaning value on the basis of the learning representative value; and replacing the learning value of the vehicle with the optimal leaning value. This sets an optimal value quickly as a shift learning value of the automatic transmission and suppresses deterioration in a shift performance of the automatic transmission such as the occurrence of a shift shock.SELECTED DRAWING: Figure 6

Description

本発明は、自動変速機の変速学習値を速やかに最適値に設定する車両の制御装置に関するものである。   The present invention relates to a control device for a vehicle that promptly sets a shift learning value of an automatic transmission to an optimum value.

特許文献1には、自動変速機を備えた車両において、変速制御の学習を車両の走行状態情報を反映させた学習制御を行なう車両において、現在の道路状況と異なることが検出された場合には現在の道路状況に対応する学習制御を禁止する制御が、記載されている。   According to Patent Document 1, in a vehicle provided with an automatic transmission, when it is detected that a difference in the current road condition is detected in a vehicle that performs learning control in which the learning of shift control is reflected on the traveling state information of the vehicle. A control that prohibits learning control corresponding to current road conditions is described.

特開平09−292011号公報Japanese Patent Application Laid-Open No. 09-292011

ところで、上記従来の車両では、自車の実際の走行に基づいて入力トルク毎、温度毎、および変速段毎に学習が行なう必要があるので、すべての入力トルク毎および変速段毎の学習が完了するまでに時間がかかり、運転者によって用いられる頻度が少ない走行条件では学習が進展しない一方で、変速によって摩擦材の表面状態は変化するので、変速性能が悪化する可能性があった。たとえば、常時、スロットル開度をWOT(全開)とする運転指向のある運転者が運転する車両では、WOTでの逐次変速学習値は最適となるが、パーシャル(非全開)での逐次変速学習は進展せず、変速ショックが発生する場合があった。また、極低温領域では逐次変速学習が禁止されるので、変速学習値が最適値とならないので、変速ショックが発生する場合があった。   By the way, in the above-mentioned conventional vehicle, since it is necessary to perform learning for each input torque, for each temperature, and for each shift gear based on the actual travel of the own vehicle, learning for every input torque and each shift gear is completed. While it takes time to do so and learning conditions do not progress under running conditions that are used less frequently by the driver, the surface condition of the friction material changes due to the shift, which may deteriorate the shift performance. For example, in a vehicle driven by a driver with a drive-oriented driver who always sets the throttle opening to WOT (full open), the sequential shift learning value in WOT is optimum, but sequential shift learning in partial (non-full open) is There was a case where shift shock did occur without progressing. Further, since shift learning is prohibited in the extremely low temperature region, the shift learning value may not be an optimum value, and therefore, there may be a shift shock.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、自動変速機の変速学習値を速やかに最適値とすることができる車両の制御装置を提供することにある。   The present invention has been made against the background described above, and it is an object of the present invention to provide a control device of a vehicle capable of promptly setting the gear shift learning value of an automatic transmission to an optimum value. is there.

本発明の要旨とするところは、自動変速機を備え、前記自動変速機の変速学習を行なう形式の車両の、制御装置であって、(a)複数の他車両に搭載された自動変速機のパッククリアランスおよび初期学習値を含む初期諸元値を収集して、相互に近似した値をそれぞれ有する複数の初期諸元値グループに分類する初期諸元値分類手段と、(b)前記複数の他車両に搭載された自動変速機の変速回数および摩擦材への総熱量を含む経時変化値を収集して、相互に近似した値をそれぞれ有する複数の経時変化値グループに分類する経時変化値分類手段と、(c)前記初期諸元値分類手段および前記経時変化値分類手段によりそれぞれ分類された複数の初期諸元値グループおよび複数の経時変化値グループ毎に、前記複数の他車両のうちの学習回数の多い所定台数の他車両の学習値から学習代表値を算出する学習代表値算出手段と、(d)前記初期諸元値グループのいずれかおよび経時変化値グループのいずれかに属する前記車両の学習値として、前記学習代表値に基づいて最適学習値を算出する最適学習値算出手段と、(e)前記車両の学習値を、前記最適値算出手段により算出された最適値に書き替える学習値書替手段とを、含むことにある。   The subject matter of the present invention is a control device of a vehicle including an automatic transmission and performing shift learning of the automatic transmission, wherein (a) the automatic transmission mounted on a plurality of other vehicles Initial specification value classification means for collecting initial specification values including pack clearances and initial learning values, and classifying the plurality of initial specification value groups into a plurality of initial specification value groups respectively having approximate values; (b) the plurality of others Aging value classification means for collecting aging values including the number of shifts of an automatic transmission mounted on a vehicle and total heat amount to the friction material, and classifying the aging values into a plurality of aging value groups respectively having values approximate to each other And (c) learning of the plurality of other vehicles for each of a plurality of initial specification value groups and a plurality of aging value groups classified by the initial specification value classification unit and the aging data classification unit. Number of times Learning representative value calculation means for calculating a learning representative value from the learning values of a large number of predetermined number of other vehicles, (d) a learning value of the vehicle belonging to any of the initial specification value group and any of the time series change value group And (e) learning value rewriting means for rewriting the learning value of the vehicle to the optimum value calculated by the optimum value calculating means, as (e) calculating the optimum learning value based on the learning representative value. And means.

本発明の車両の制御装置によれば、自動変速機を備える複数の他車両から、自動変速機の初期諸元値および経時変化値が収集され、それらが分類された複数の初期諸元値グループおよび複数の経時変化値グループ毎に、学習回数の多い所定台数の車両の学習値から学習代表値が算出され、前記初期諸元値グループのいずれかおよび経時変化値グループのいずれかに属する前記車両の学習値として、前記学習代表値に基づいて最適学習値が算出され、その最適学習値に前記学習代表値に基づいて最適学習値が算出され、前記車両の学習値が前記最適学習値に書き換えられる。これにより、自動変速機の変速学習値を速やかに最適値とされるとともに、変速ショックの発生など自動変速機の変速性能の悪化が抑制される。   According to the vehicle control device of the present invention, the initial specification values and the time-dependent change values of the automatic transmission are collected from the plurality of other vehicles provided with the automatic transmission, and the plurality of initial specification value groups into which they are classified The learning representative value is calculated from the learning values of a predetermined number of vehicles having a large number of learning times for each of the plurality of time-varying value groups, and the vehicles belonging to any of the initial specification value group and any of the time-varying value groups The optimal learning value is calculated on the basis of the learning representative value as the learning value of 1, the optimal learning value is calculated on the basis of the learning representative value as the optimal learning value, and the learning value of the vehicle is rewritten to the optimal learning value. Be As a result, the shift learning value of the automatic transmission is promptly set to the optimum value, and the deterioration of the shift performance of the automatic transmission, such as the occurrence of shift shock, is suppressed.

本発明が適用される車両の駆動装置および電子制御制部を説明する概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explaining the drive device and electronic control part of the vehicle to which this invention is applied. 図1の車両に備えられる駆動装置の構成を例示する骨子図である。It is a skeleton figure which illustrates the structure of the drive device with which the vehicle of FIG. 1 is equipped. 図2の駆動装置の一部を構成する自動変速段を成立させる摩擦係合装置の組み合わせを説明する係合表である。It is an engagement table | surface which demonstrates the combination of the friction engagement apparatus which establishes the automatic shift speed which comprises a part of drive device of FIG. 図1の電子制御装置による変速制御に用いられる変速線図を示す図である。FIG. 6 is a diagram showing a shift diagram used for shift control by the electronic control unit of FIG. 1; 図1の電子制御装置の制御により得られる、複数の初期諸元値グループおよび複数の経時変化値グループとそれらグループの組み合わせに対応する学習代表値との関係を示す図表である。It is a chart showing a relation between a plurality of initial specification value groups and a plurality of time-dependent change value groups obtained by the control of the electronic control unit of FIG. 1 and a learning representative value corresponding to a combination of those groups. 図1の電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action of the electronic control unit of FIG. 図1の車両に設けられる自動変速機の他の構成例を示す骨子図である。It is a skeleton figure which shows the other structural example of the automatic transmission provided in the vehicle of FIG. 図7の自動変速段を成立させる摩擦係合装置の組み合わせを説明する係合表である。It is an engagement table | surface explaining the combination of the friction engagement apparatus which establishes the automatic gear stage of FIG.

以下、本発明の実施例を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用される車両10の概略構成を説明する図である。車両10は、動力源として機能するエンジン12と、駆動輪14と、エンジン12と駆動輪14との間の動力伝達経路に設けられた電気式無段変速機16および自動変速機18とを備えている。動変速機18は、たとえば図2の骨子図に示すように構成される。電気式無段変速機16は、エンジン12に直接的に回転駆動されるメカオイルポンプMOPと、エンジン12、第1電動機MG1および第2電動機MG2に回転要素が連結された差動歯車機構とを備え、エンジン12からの直達トルクと第2電動機MG2の出力トルクとを自動変速機18に入力させる。   FIG. 1 is a view for explaining the schematic configuration of a vehicle 10 to which the present invention is applied. The vehicle 10 includes an engine 12 functioning as a motive power source, a drive wheel 14, and an electric continuously variable transmission 16 and an automatic transmission 18 provided on a power transmission path between the engine 12 and the drive wheel 14. ing. The dynamic transmission 18 is configured, for example, as shown in the skeleton view of FIG. The electric continuously variable transmission 16 includes a mechanical oil pump MOP directly driven to rotate by the engine 12, and a differential gear mechanism in which rotating elements are connected to the engine 12, the first electric motor MG1 and the second electric motor MG2. The automatic transmission 18 is provided with the direct transmission torque from the engine 12 and the output torque of the second electric motor MG2.

自動変速機18は、たとえば図3に示すように、油圧式摩擦係合装置C1、C2、B1、B2、B3が選択的に作動させられることによって複数段(本実施例では4段)の前進段、および1段の後進段が油圧式摩擦係合装置C1、C2、B1、B2、B3のうちの2つの係合により得られる。前進段に関しては、2つの油圧式摩擦係合装置のうちの一方の解放と他方の係合とが行なわれる所謂クラッチツウクラッチ変速によって変速段が切り換えられる。   For example, as shown in FIG. 3, the automatic transmission 18 is advanced by a plurality of stages (four stages in this embodiment) by selectively operating the hydraulic friction engagement devices C1, C2, B1, B2 and B3. A stage and a reverse stage are obtained by engagement of two of the hydraulic friction engagement devices C1, C2, B1, B2, B3. With regard to the forward gear, the gear is switched by so-called clutch-to-clutch shifting, in which the release and engagement of one of the two hydraulic friction engagement devices take place.

図1に戻って、油圧制御回路20は、メカオイルポンプMOPおよび電動オイルポンプEOPから供給される作動油を油圧源として、電子制御装置22からの指令に従って作動するように電磁弁を含み、自動変速機18内の油圧式摩擦係合装置C1、C2、B1、B2、B3の係合および解放を上記電磁弁を用いて制御する。   Returning to FIG. 1, the hydraulic control circuit 20 includes a solenoid valve so as to operate in accordance with a command from the electronic control unit 22 using hydraulic oil supplied from the mechanical oil pump MOP and the electric oil pump EOP as a hydraulic source. The engagement and release of the hydraulic friction engagement devices C1, C2, B1, B2 and B3 in the transmission 18 are controlled using the solenoid valve.

電子制御装置22は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことによりエンジン12の出力を制御し、たとえば図4に示す予め記憶された変速マップから実際の車速V(km/h)およびアクセル開度Acc(%)基づいて、電気式無段変速機16および自動変速機18の変速比を制御し、油圧ポンプの切替を行なう等の各種制御を実行する。たとえば、電子制御装置22は、図示しないアクセルペダルの開度に基づいて運転者の要求駆動力を算出し、その要求駆動力が最小燃費で得られるように、エンジン12の出力を制御するとともに、電気式無段変速機16内の駆動用第1電動機MG1および第2電動機MG2と、油圧制御回路20内の電磁弁を制御し、エンジン12および第1電動機MG1および第2電動機MG2を用いたエンジン走行や第2電動機MG2を用いた電気走行を選択する。   The electronic control unit 22 includes, for example, a so-called microcomputer provided with a CPU, a RAM, a ROM, an input / output interface and the like, and the CPU follows a program stored in advance in the ROM while using a temporary storage function of the RAM. The output of the engine 12 is controlled by performing signal processing, and based on the actual vehicle speed V (km / h) and the accelerator opening Acc (%), for example, from the pre-stored shift map shown in FIG. The transmission ratio of the transmission 16 and the automatic transmission 18 is controlled, and various controls such as switching of the hydraulic pump are executed. For example, the electronic control unit 22 calculates the required driving force of the driver based on the degree of opening of the accelerator pedal (not shown), and controls the output of the engine 12 so that the required driving force can be obtained with the minimum fuel consumption. The first control motor MG1 and the second control motor MG2 in the electric continuously variable transmission 16 and the solenoid valves in the hydraulic control circuit 20 are controlled, and the engine 12 and the engine using the first control motor MG1 and the second control motor MG2 The traveling or the electric traveling using the second electric motor MG2 is selected.

また、電子制御装置22は、自動運転/手動運転選択スイッチ32が運転者によって自動運転側へ操作された場合には、車両を走行させるために必要な運転者の運転動作の一部を自動化して一部自動運転制御や、設定された目標値間で運転者の操作を要しない完全自動運転などの自動運転制御を実施する。   Further, when the automatic driving / manual driving selection switch 32 is operated by the driver to the automatic driving side, the electronic control device 22 automates a part of the driving operation of the driver necessary for causing the vehicle to travel. The automatic operation control such as the partial automatic operation control or the complete automatic operation which does not require the driver's operation between the set target values is performed.

電子制御装置22は、2つの油圧式摩擦係合装置のうちの解放側の油圧式摩擦係合装置の解放と係合側の油圧式摩擦係合装置の係合とを同時期に行なう所謂クラッチツウクラッチ変速によって自動変速機18の前進変速段を切り換える変速制御手段を備える。また、電子制御装置22は、変速毎に、タイアップやエンジンの吹きを学習補正によって抑制する側とするために、解放側の油圧式摩擦係合装置の係合圧および/または係合側の油圧式摩擦係合装置の係合圧の学習補正値を入力トルク毎および変速段毎に生成し、次回のクラッチツウクラッチ変速に適用する学習補正手段を備える。   The electronic control unit 22 is a so-called clutch that simultaneously releases the hydraulic friction engagement device on the release side of the two hydraulic friction engagement devices and engages the hydraulic friction engagement device on the engagement side. A transmission control means is provided for switching the forward gear position of the automatic transmission 18 by the two-clutch transmission. In addition, the electronic control unit 22 controls the engagement pressure and / or the engagement side of the release side hydraulic friction engagement device so as to suppress tie-up and engine blowing by learning correction every shift. A learning correction means is provided that generates a learning correction value of the engagement pressure of the hydraulic friction engagement device for each input torque and each gear and applies to the next clutch-to-clutch shift.

電子制御装置22は、送受信器24を介して、図示しないセンターに設けられたサーバ28との間や、他車両との間で、自動運転等に利用可能な道路交通情報、インフラ情報、他車両の持っている自動変速機に関する情報(初期諸元値、経時変化値、学習補正値等)、その統計値の授受を行なう。   The electronic control unit 22 can use road traffic information, infrastructure information, and other vehicles that can be used for automatic driving and the like between the server 28 provided at a center (not shown) and the other vehicle via the transmitter / receiver 24. Information on the automatic transmission that it has (initial specification values, aging values, learning correction values, etc.), and its statistical values are exchanged.

サーバ28は、電子制御装置および送受信器から構成されている。サーバ28は、複数の他車両に搭載された自動変速機のパッククリアランスおよび初期学習値を含む初期諸元値を収集して、相互に近似した値をそれぞれ有する複数の初期諸元値グループA1〜A4に分類する初期諸元値分類手段と、前記複数の他車両に搭載された自動変速機の変速回数および摩擦材への総熱量を含む経時変化値を収集して、相互に近似した値をそれぞれ有する複数の経時変化値グループB1〜B4に分類する経時変化値分類手段と、前記初期諸元値分類手段および前記経時変化値分類手段によりそれぞれ分類された複数の初期諸元値グループおよび複数の経時変化値グループ毎に、前記複数の他車両のうちの学習回数の多い所定台数の他車両の学習値から学習代表値C(C11〜C44)を算出する学習代表値算出手段と、前記初期諸元値グループのいずれかおよび経時変化値グループのいずれかに属する車両10の学習値として、次式(1)から前記学習代表値C(C11〜C44)に基づいて最適学習値Dを算出する最適学習値算出手段と、車両10の学習値を、前記最適値算出手段により算出された最適値に書き替える学習値書替手段とを、含む。   The server 28 is composed of an electronic control unit and a transceiver. The server 28 collects initial specification values including pack clearances and initial learning values of automatic transmissions mounted on a plurality of other vehicles, and sets a plurality of initial specification value groups A1 to A1 having values approximate to each other. Collecting time-lapse values including initial specification value classification means classified into A4, the number of shifts of the automatic transmission mounted on the plurality of other vehicles, and the total heat quantity to the friction material, mutually approximate values are A time-lapse value classification unit classified into a plurality of time-lapse value groups B1 to B4 respectively, a plurality of initial specification value groups and a plurality of initial specification value groups classified by the initial specification value classification unit and the time-lapse value classification unit Learning representative value calculating means for calculating a learning representative value C (C11 to C44) from the learning values of the predetermined number of other vehicles having a large number of times of learning among the plurality of other vehicles for each time-lapse value group As a learning value of the vehicle 10 belonging to any of the initial specification value group and any of the time-variation value group, the optimum learning value D is calculated based on the learning representative value C (C11 to C44) from the following equation (1) It includes optimal learning value calculation means to be calculated, and learning value rewriting means for rewriting the learning value of the vehicle 10 to the optimal value calculated by the optimum value calculation means.

D=E−(E−C)×補正率 ・・・(1)
但し、Eは、既に車両10に設定されている学習値(たとえばデフォルト値)である。
D = E-(E-C) x correction factor (1)
However, E is a learning value (for example, default value) already set to the vehicle 10.

図5は、複数の初期諸元値グループA1〜A4および複数の経時変化値グループB1〜B4と、それらグループの組み合わせに対応する学習代表値C(C11〜C44)との関係を示す図表である。   FIG. 5 is a chart showing the relationship between a plurality of initial specification value groups A1 to A4 and a plurality of time-dependent change value groups B1 to B4 and learning representative values C (C11 to C44) corresponding to combinations of those groups. .

図6は、サーバ28の制御作動の要部を説明するフローチャートである。図6において、S1では、通信により得られた他車の初期諸元値A、経時変化値B、学習値Cなどのデータが読み込まれる。次いで、前記初期諸元値分類手段に対応するS2〜S4では、読み込まれた初期諸元値Aがa1≦A<a2のグループA1であるか、a2≦A<a3のグループA2であるか、a3≦A<a4のグループA3であるか、a4≦AのグループA4であるが判断され、S5〜S8では、判断が肯定された初期諸元値AがグループA1、A2、A3、A4に分類される。次いで、前記経時変化値分類手段に対応するS9〜S11では、読み込まれた経時変化値Bがb1≦B<b2のグループB1であるか、b2≦B<b3のグループB2であるか、b3≦B<b4のグループB3であるか、b4≦BのグループB4であるが判断され、S12〜S15では、その判断が肯定された経時変化値BがグループB1、B2、B3、B4に分類される。   FIG. 6 is a flowchart for explaining the main part of the control operation of the server 28. In FIG. 6, in S1, data such as an initial specification value A, a time-dependent change value B, and a learning value C of another vehicle obtained by communication are read. Next, in S2 to S4 corresponding to the initial specification value classification means, whether the read initial specification value A is a group A1 of a1 ≦ A <a2 or a group A2 of a2 ≦ A <a3. It is determined that a3 3 A <a4 group A3 or a4 A A group A4. In S5 to S8, the initial specification value A for which the determination is affirmed is classified into groups A1, A2, A3 and A4. Be done. Next, in S9 to S11 corresponding to the time-varying value classification means, the read time-lapse value B is the group B1 of b1 ≦ B <b2, or the group B2 of b2 ≦ B <b3, or b3 ≦ It is determined that B <b4 is group B3 or b4 ≦ B is group B4, and in S12 to S15, the temporal change value B for which the determination is affirmed is classified into groups B1, B2, B3, and B4. .

続いて、前記学習代表値算出手段に対応するS16では、複数の初期諸元値グループA1〜A4および複数の経時変化値グループB1〜B4毎に、そのグループに属する複数の他車両のうちの学習回数の多い所定台数たとえば10台の他車両の学習値の平均値或いは中央値から学習代表値C(C11〜C44)が算出される。そして、前記最適学習値算出手段および学習値書替手段に対応するS17において、初期諸元値グループA1〜A4のいずれかと経時変化値グループB1〜B4のいずれかとに属する車両10の学習値として、式(1)から学習代表値C(C11〜C44)に基づいて最適学習値Dが算出され、上記初期諸元値グループA1〜A4のいずれかと経時変化値グループB1〜B4のいずれかとに属する車両10の学習値が、最適学習値Dに書き替えられる。   Subsequently, in S16 corresponding to the learning representative value calculating means, learning among the plurality of other vehicles belonging to the plurality of initial specification value groups A1 to A4 and the plurality of temporal change value groups B1 to B4 is performed. The learning representative value C (C11 to C44) is calculated from the average value or the median value of the learning values of the predetermined number of vehicles, for example 10 other vehicles, which has a large number of times. Then, in S17 corresponding to the optimum learning value calculating means and the learning value rewriting means, as learning values of the vehicle 10 belonging to any of the initial specification value groups A1 to A4 and any of the time-lapse change value groups B1 to B4 The optimum learning value D is calculated based on the learning representative value C (C11 to C44) from the equation (1), and a vehicle belonging to any of the initial specification value groups A1 to A4 and any of the time-lapse change value groups B1 to B4 Ten learning values are rewritten to the optimum learning value D.

図7は、車両10が所謂1モータハイブリッド車両である場合の例を示している。車両10は、動力源として機能するエンジン12、断接クラッチK0、電動機MG、および、ステータの回転を許容するクラッチBs付のトルクコンバータTCを有する8速の自動変速機50を、直列に備える所謂1モータハイブリッド車両である。自動変速機50は、たとえば図7の骨子図に示すように構成され、たとえば図8に示すように、油圧式摩擦係合装置C1、C2、C3、C4、B1、B2が選択的に作動させられることによって複数段(本実施例では8段)の前進段、および1段の後進段が得られるようになっている。   FIG. 7 shows an example where the vehicle 10 is a so-called one-motor hybrid vehicle. The vehicle 10 includes an engine 12 functioning as a motive power source, an engagement / disengagement clutch K0, an electric motor MG, and an eight-speed automatic transmission 50 having a torque converter TC with a clutch Bs permitting rotation of a stator in series. It is a 1-motor hybrid vehicle. Automatic transmission 50 is configured, for example, as shown in the skeleton diagram of FIG. 7, and hydraulic friction engagement devices C1, C2, C3, C4, C1, B1, B2 are selectively operated as shown, for example, in FIG. As a result, a plurality of (eight in this embodiment) forward gears and one reverse gear can be obtained.

なお、前述の実施例1では、サーバ28が図6に示す制御を行なう例が説明されていたが、電子制御装置22が図6に示す制御の全部または一部を実行するものであってもよい。   Although the example in which the server 28 performs the control shown in FIG. 6 has been described in the first embodiment described above, the electronic control unit 22 may execute all or part of the control shown in FIG. Good.

また、前述の実施例1および2はエンジンおよび電動機MG、MG1、MG2を駆動源として備えたハイブリッド車両であったが、駆動源として電動機のみを備えた電動車両であってもよい。要するに、自動変速機を備える車両であればよい。   Although the first and second embodiments described above are hybrid vehicles having an engine and electric motors MG, MG1, and MG2 as drive sources, they may be electric vehicles having only electric motors as drive sources. In short, any vehicle provided with an automatic transmission may be used.

また、前述の実施例1および2において、無人の自動運転の場合には、図6の学習制御が実施されなくてもよい。   Further, in the above-described first and second embodiments, in the case of unmanned automatic driving, the learning control of FIG. 6 may not be performed.

10:車両
18、50:自動変速機
22:電子制御装置(制御装置)
10: Vehicle 18, 50: Automatic transmission 22: Electronic control unit (control unit)

Claims (1)

自動変速機を備え、前記自動変速機の変速学習を行なう形式の車両の、制御装置であって、
複数の他車両に搭載された自動変速機のパッククリアランスおよび初期学習値を含む初期諸元値を収集して、相互に近似した値をそれぞれ有する複数の初期諸元値グループに分類する初期諸元値分類手段と、
前記複数の他車両に搭載された自動変速機の変速回数および摩擦材への総熱量を含む経時変化値を収集して、相互に近似した値をそれぞれ有する複数の経時変化値グループに分類する経時変化値分類手段と、
前記初期諸元値分類手段および前記経時変化値分類手段によりそれぞれ分類された前記複数の初期諸元値グループおよび前記複数の経時変化値グループ毎に、前記複数の他車両のうちの学習回数の多い所定台数の他車両の学習値から学習代表値を算出する学習代表値算出手段と、
前記初期諸元値グループのいずれかおよび前記経時変化値グループのいずれかに属する前記車両の学習値として、前記学習代表値に基づいて最適学習値を算出する最適学習値算出手段と、
前記車両の学習値を、前記最適値算出手段により算出された最適値に書き替える学習値書替手段とを、含む
ことを特徴とする車両の制御装置。
A control device of a vehicle provided with an automatic transmission and performing shift learning of the automatic transmission,
Initial specifications for collecting initial specification values including pack clearances and initial learning values of automatic transmissions mounted on a plurality of other vehicles and classifying into initial specification value groups each having values approximate to each other Value classification means,
The temporal change value including the number of shift of the automatic transmission mounted on the plurality of other vehicles and the total heat quantity to the friction material is collected, and classified into a plurality of temporal change value groups respectively having values approximate to each other Change value classification means,
The number of times of learning among the plurality of other vehicles is large for each of the plurality of initial specification value groups and the plurality of aging value groups classified by the initial specification value classification unit and the aging value classification unit. Learning representative value calculating means for calculating a learning representative value from a predetermined number of learning values of other vehicles;
Optimal learning value calculating means for calculating an optimal learning value based on the learning representative value as the learning value of the vehicle belonging to any of the initial specification value group and any of the time-lapse change value group;
And a learning value rewriting unit that rewrites the learning value of the vehicle to the optimum value calculated by the optimum value calculating unit.
JP2017247033A 2017-12-22 2017-12-22 Vehicle control device Active JP6900895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247033A JP6900895B2 (en) 2017-12-22 2017-12-22 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247033A JP6900895B2 (en) 2017-12-22 2017-12-22 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2019113116A true JP2019113116A (en) 2019-07-11
JP6900895B2 JP6900895B2 (en) 2021-07-07

Family

ID=67221346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247033A Active JP6900895B2 (en) 2017-12-22 2017-12-22 Vehicle control device

Country Status (1)

Country Link
JP (1) JP6900895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156347A (en) * 2020-03-26 2021-10-07 本田技研工業株式会社 Vehicle control device and vehicle management system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292011A (en) * 1996-04-25 1997-11-11 Toyota Motor Corp Control device for automatic transmission
JP2003004129A (en) * 2001-06-19 2003-01-08 Nisshin Seifun Group Inc Vehicle running condition learning system using communication network
JP2003004130A (en) * 2001-06-21 2003-01-08 Fuji Heavy Ind Ltd Control device of automatic transmission
JP2003049702A (en) * 2001-08-07 2003-02-21 Mazda Motor Corp On-vehicle automobile control-gain changing device, automobile control-gain changing method and automobile control-gain changing program
JP2003222236A (en) * 2002-01-30 2003-08-08 Fuji Heavy Ind Ltd Hydraulic control apparatus for automatic transmission for automobile
JP2006234063A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Driving device, power output device equipped with it, automobile equipped with it, and control method of driving device
JP2012233519A (en) * 2011-04-28 2012-11-29 Jvc Kenwood Corp Automatic transmission controller
US20150224997A1 (en) * 2014-02-07 2015-08-13 Ford Global Technologies, Llc Method and system for engine and powertrain control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292011A (en) * 1996-04-25 1997-11-11 Toyota Motor Corp Control device for automatic transmission
JP2003004129A (en) * 2001-06-19 2003-01-08 Nisshin Seifun Group Inc Vehicle running condition learning system using communication network
JP2003004130A (en) * 2001-06-21 2003-01-08 Fuji Heavy Ind Ltd Control device of automatic transmission
JP2003049702A (en) * 2001-08-07 2003-02-21 Mazda Motor Corp On-vehicle automobile control-gain changing device, automobile control-gain changing method and automobile control-gain changing program
JP2003222236A (en) * 2002-01-30 2003-08-08 Fuji Heavy Ind Ltd Hydraulic control apparatus for automatic transmission for automobile
JP2006234063A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Driving device, power output device equipped with it, automobile equipped with it, and control method of driving device
JP2012233519A (en) * 2011-04-28 2012-11-29 Jvc Kenwood Corp Automatic transmission controller
US20150224997A1 (en) * 2014-02-07 2015-08-13 Ford Global Technologies, Llc Method and system for engine and powertrain control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021156347A (en) * 2020-03-26 2021-10-07 本田技研工業株式会社 Vehicle control device and vehicle management system
JP7390231B2 (en) 2020-03-26 2023-12-01 本田技研工業株式会社 Vehicle control device and vehicle management system

Also Published As

Publication number Publication date
JP6900895B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
KR102588325B1 (en) Powertrain for electric vehicle and control method thereof
RU2668448C2 (en) Hybrid vehicle control device
KR101609086B1 (en) Motor control device for electric vehicle
JP2007069789A (en) Engine start-controlling device for hybrid vehicle
JP5392398B2 (en) Hybrid drive device for vehicle
CN111279098B (en) Multi-mode power split hybrid transmission with two planetary gear mechanisms
CN104802789A (en) Method and apparatus for controlling a torque converter clutch in a multi-mode powertrain system
CN109941098B (en) Method for operating a power transmission device of a motor vehicle and power transmission device
JP2019113116A (en) Vehicular control apparatus
JP5917866B2 (en) Vehicle control device
JP2015178360A (en) Vehicular hybrid running gear
CN105882380B (en) Mixed power plant
CN109869472B (en) Vehicle shift control device
JP2010260373A (en) Power transmission controller for vehicle
US11007866B1 (en) Transmission for a hybrid drive arrangement, hybrid drive arrangement, vehicle, method for operating the hybrid drive arrangement, computer program and storage medium
KR102371015B1 (en) Method for controlling hybrid electric vehicle
JP2017043206A (en) Hybrid-vehicular control apparatus
KR101704297B1 (en) Method for controlling trnasmission of hybrid vehicle
Hashchuk et al. Optimal laws of gear shift in automotive transmissions
CN109353208A (en) A kind of hybrid power assembly and its control method
JP2000110930A (en) Control device for transmission of vehicle
JP2021151168A (en) Virtual shift control device of electric vehicle
KR101724957B1 (en) Method for controlling trnasmission of hybrid vehicle
JP2020203592A (en) Hybrid-vehicular control apparatus
JP2013099992A (en) Hybrid vehicle power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6900895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151