JP2019106374A - Negative electrode for lithium ion battery, and lithium ion battery - Google Patents

Negative electrode for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
JP2019106374A
JP2019106374A JP2018232576A JP2018232576A JP2019106374A JP 2019106374 A JP2019106374 A JP 2019106374A JP 2018232576 A JP2018232576 A JP 2018232576A JP 2018232576 A JP2018232576 A JP 2018232576A JP 2019106374 A JP2019106374 A JP 2019106374A
Authority
JP
Japan
Prior art keywords
negative electrode
particles
active material
lithium ion
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232576A
Other languages
Japanese (ja)
Other versions
JP7130540B2 (en
Inventor
勇輔 中嶋
Yusuke Nakajima
勇輔 中嶋
南 和也
Kazuya Minami
和也 南
英起 西村
Hideki Nishimura
英起 西村
花歩 鈴木
Kaho Suzuki
花歩 鈴木
雄樹 草地
Takeki Kusachi
雄樹 草地
健 秋月
Takeshi Akizuki
健 秋月
佐藤 一
Hajime Sato
一 佐藤
赤間 弘
Hiroshi Akama
弘 赤間
堀江 英明
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Publication of JP2019106374A publication Critical patent/JP2019106374A/en
Application granted granted Critical
Publication of JP7130540B2 publication Critical patent/JP7130540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide: a negative electrode for a lithium ion battery, which is high in the mechanical strength of cohering particles and superior in energy density and cycle characteristics; and a lithium ion battery arranged by use thereof.SOLUTION: A negative electrode for a lithium ion battery comprises: a negative electrode current collector; and a negative electrode active material layer including cohering particles resulting from agglomeration of primary particles made of silicon and/or a silicon compound, and disposed on the negative electrode current collector. In the negative electrode, the cohering particles are arranged by binding the primary particles to one another with a binding resin for cohering particle granulation; the binding resin for cohering particle granulation is a (meth)acrylic acid (co)polymer of which the acid value is 680-850; and the negative electrode active material layer is a non-binding body which does not include a binder for binding the cohering particles to one another.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池用負極及びリチウムイオン電池に関する。 The present invention relates to a lithium ion battery negative electrode and a lithium ion battery.

近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池(リチウムイオン二次電池ともいう)に注目が集まっている。 In recent years, reduction of carbon dioxide emissions is strongly desired for environmental protection. In the automobile industry, there are high hopes for reducing carbon dioxide emissions through the introduction of electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of motor-drive secondary batteries that hold the key to their practical application is keen It has been done. As secondary batteries, attention has been focused on lithium ion batteries (also referred to as lithium ion secondary batteries) capable of achieving high energy density and high power density.

リチウムイオン電池の高エネルギー密度化のためには、より理論容量の大きい活物質、すなわち単位体積あたりにより多くのリチウムイオンを吸蔵できる材料が注目されている。しかしながら、単位体積あたりに吸蔵可能なリチウムイオン量が多くなると、リチウムイオンの挿入・脱離に伴う体積変化も大きくなる。そのため、体積変化によって材料の自壊が発生する場合があり、活物質層が集電体表面から剥離しやすくなるため、サイクル特性を向上させることが困難であった。 In order to increase the energy density of lithium ion batteries, attention has been focused on active materials having higher theoretical capacity, that is, materials capable of storing more lithium ions per unit volume. However, when the amount of lithium ions that can be stored per unit volume increases, the volume change associated with insertion and desorption of lithium ions also increases. Therefore, self-destruction of the material may occur due to the volume change, and the active material layer is easily peeled off from the surface of the current collector, so that it is difficult to improve the cycle characteristics.

例えば、特許文献1には、負極活物質を造粒用結着剤により造粒した後、塗布用結着剤によって銅箔表面に固定することによって負極活物質の体積変化による自壊を抑制する方法が開示されている。 For example, in Patent Document 1, after the negative electrode active material is granulated with a binder for granulation, a method for suppressing self-destruction due to volume change of the negative electrode active material by fixing to the copper foil surface with a binder for coating Is disclosed.

特開2013−235684号公報JP, 2013-235684, A

しかしながら、特許文献1に記載された負極は、造粒用結着剤により造粒される粒子の機械的強度(造粒強度ともいう)が不充分であった。機械的強度が不充分であると、体積変化時に造粒体が割れて微粉が発生し、サイクル特性が悪化してしまう。造粒強度が不足する原因としては、特許文献1に記載された造粒用結着剤の酸価が30〜600程度と低いことが考えられる。 However, in the negative electrode described in Patent Document 1, mechanical strength (also referred to as granulation strength) of particles granulated by the granulation binder is insufficient. If the mechanical strength is insufficient, the granules break at the time of volume change to generate fine powder, and the cycle characteristics are deteriorated. As a cause of insufficient granulation strength, it is considered that the acid value of the binder for granulation described in Patent Document 1 is as low as about 30 to 600.

本発明は、上記課題を鑑みてなされたものであり、凝集粒子の機械的強度が高く、エネルギー密度及びサイクル特性に優れたリチウムイオン電池用負極及びこれを用いたリチウムイオン電池を提供することを目的とする。 The present invention has been made in view of the above problems, and it is an object of the present invention to provide a lithium ion battery negative electrode having high mechanical strength of aggregated particles and excellent energy density and cycle characteristics, and a lithium ion battery using the same. To aim.

本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、珪素及び/又は珪素化合物からなる一次粒子が凝集し結着してなる凝集粒子を含む負極活物質層が負極集電体上に配置されてなるリチウムイオン電池用負極であって、上記凝集粒子は、上記一次粒子が凝集粒子造粒用結着樹脂により互いに結着されてなり、上記凝集粒子造粒用結着樹脂は、酸価が680〜850の(メタ)アクリル酸(共)重合体であって、上記負極活物質層は、上記凝集粒子同士を互いに結着させるバインダを含まない非結着体であることを特徴とするリチウムイオン電池用負極;これを備えたリチウムイオン電池に関する。
The present inventors reached the present invention as a result of earnestly examining in order to solve the above-mentioned subject.
That is, the present invention is a negative electrode for a lithium ion battery in which a negative electrode active material layer including aggregated particles formed by aggregation and binding of primary particles composed of silicon and / or silicon compound is disposed on a negative electrode current collector. The aggregated particles are formed by binding the primary particles to each other with the aggregation resin for aggregation particle granulation, and the aggregation resin for aggregation particle granulation has (meth) acrylic acid having an acid value of 680 to 850. (Co) polymer, wherein the negative electrode active material layer is a non-binding body not containing a binder that binds the aggregated particles to each other; a lithium ion battery negative electrode comprising the same It relates to a lithium ion battery.

本発明のリチウムイオン電池用負極は、凝集粒子の機械的強度が高く、エネルギー密度及びサイクル特性に優れる。 The negative electrode for a lithium ion battery of the present invention has high mechanical strength of aggregated particles, and is excellent in energy density and cycle characteristics.

図1は、本発明のリチウムイオン電池用負極の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion battery negative electrode of the present invention.

以下、本発明を詳細に説明する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
Hereinafter, the present invention will be described in detail.
In addition, in this specification, when describing as a lithium ion battery, it is considered as the concept also containing a lithium ion secondary battery.

本発明のリチウムイオン電池用負極は、珪素及び/又は珪素化合物からなる一次粒子が凝集し結着してなる凝集粒子を含む負極活物質層が負極集電体上に配置されてなるリチウムイオン電池用負極であって、上記凝集粒子は、上記一次粒子が凝集粒子造粒用結着樹脂により互いに結着されてなり、上記凝集粒子造粒用結着樹脂は、酸価が680〜850の(メタ)アクリル酸(共)重合体であって、上記負極活物質層は、上記凝集粒子同士を互いに結着させるバインダを含まない非結着体であることを特徴とする。 The lithium ion battery negative electrode of the present invention is a lithium ion battery in which a negative electrode active material layer including agglomerated particles formed by aggregation and binding of primary particles consisting of silicon and / or silicon compound is disposed on a negative electrode current collector. In the negative electrode, the aggregated particles are formed by binding the primary particles to each other by the aggregation resin for aggregation particle granulation, and the aggregation resin for aggregation particle granulation has an acid value of 680 to 850 ( It is a (meth) acrylic acid (co) polymer, and the negative electrode active material layer is characterized in that it is a non-binding body which does not contain a binder for binding the aggregated particles to each other.

本発明のリチウムイオン電池用負極では、珪素及び/又は珪素化合物からなる一次粒子が凝集し結着して凝集粒子が形成されている。
凝集粒子は、一次粒子が酸価が680〜850の(メタ)アクリル酸(共)重合体によって互いに凝集し結着されることにより形成されているため、凝集粒子の機械的強度が高い。そのため、体積変化による凝集粒子の微粉化を抑制することができ、サイクル特性が良好となる。
In the negative electrode for a lithium ion battery of the present invention, primary particles composed of silicon and / or silicon compound are aggregated and bound to form aggregated particles.
The agglomerated particles are formed by the primary particles being agglomerated and bound to each other by the (meth) acrylic acid (co) polymer having an acid value of 680 to 850, so that the agglomerated particles have high mechanical strength. Therefore, pulverization of aggregated particles due to volume change can be suppressed, and cycle characteristics are improved.

さらに、本発明のリチウムイオン電池用負極では、負極活物質層は、凝集粒子同士を互いに結着させるバインダを含まない非結着体である。
負極活物質層が、凝集粒子同士を互いに結着させるバインダを含まない非結着体であると、負極活物質層中の凝集粒子が隣接する凝集粒子に拘束されることなく、ある程度自由に移動することができる。そのため、凝集粒子の膨張・収縮が発生したとしても、凝集粒子が負極活物質層中を移動することによってその体積変化を吸収することができるため、負極活物質層が集電体上から剥離することを抑制することができる。
さらに、一次粒子同士は凝集粒子造粒用結着樹脂により互いに結着されているため、一次粒子が膨張・収縮によって自壊したとしても電気的に孤立しにくい。
なお、凝集粒子同士を互いに結着させるバインダを含まない非結着体は、凝集粒子造粒用結着樹脂によっても、公知のバインダによっても互いに結着していない。
ここで、公知のバインダとは活物質粒子同士及び活物質粒子と集電体とを結着固定するために用いられる公知の溶剤乾燥型のリチウムイオン電池用結着剤(デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン−ブタジエンゴム、ポリエチレン、ポリプロピレン及びスチレン−ブタジエン共重合体等)であり、溶媒成分を揮発させることで乾燥、固体化して活物質粒子同士及び活物質粒子と集電体とを強固に固定するものを意味する。
Furthermore, in the negative electrode for a lithium ion battery of the present invention, the negative electrode active material layer is a non-binding body which does not contain a binder for binding the aggregated particles to each other.
If the negative electrode active material layer is a non-binding body that does not contain a binder that binds the aggregated particles to one another, the aggregated particles in the negative electrode active material layer move freely to some extent without being constrained by adjacent aggregated particles. can do. Therefore, even if expansion or contraction of the aggregated particles occurs, the aggregated particles can absorb the volume change by moving in the negative electrode active material layer, and the negative electrode active material layer is peeled off from the current collector. Can be suppressed.
Furthermore, since the primary particles are bound to each other by the binder resin for aggregation particle granulation, even if the primary particles are self-destructed due to expansion and contraction, they are hardly isolated electrically.
In addition, the non-binding body which does not contain the binder which binds the aggregated particles to each other is not bound to each other either by the binder resin for aggregation particle granulation or by the known binder.
Here, a known binder is a known solvent-drying type binder for lithium ion batteries (starch, polyvinylidene fluoride, etc.) used to bind and fix active material particles to each other, and active material particles and current collector. (Polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene, styrene-butadiene copolymer, etc.), which are dried and solidified by volatilizing the solvent component to form active material particles It means what firmly fixes the active material particles and the current collector.

本発明のリチウムイオン電池用負極において、負極活物質層を構成する凝集粒子は、一次粒子が凝集粒子造粒用結着樹脂により互いに凝集し結着されてなる。
しかしながら、上記負極活物質層は、凝集粒子同士を互いに結着させるバインダを含まない非結着体である。
すなわち、凝集粒子同士は互いに結着されていないので負極活物質層中を移動することができるが、凝集粒子を構成する一次粒子は凝集粒子造粒用結着樹脂により互いに結着されているため、一次粒子は凝集粒子中を移動することができない。
In the negative electrode for a lithium ion battery of the present invention, in the aggregated particles constituting the negative electrode active material layer, primary particles are aggregated and bound to each other by the aggregated particle granulation resin.
However, the negative electrode active material layer is a non-binding body that does not contain a binder that causes aggregated particles to be bound to each other.
That is, since the agglomerated particles are not bound to each other, they can move in the negative electrode active material layer, but the primary particles constituting the agglomerated particles are bound to each other by the binder resin for agglomerated particle granulation. Primary particles can not move in aggregated particles.

本発明のリチウムイオン電池用負極において、凝集粒子が存在するかどうかは、リチウムイオン電池用負極の断面を走査型電子顕微鏡(SEM)で観察することにより確認することができる。
なお、負極活物質と結着剤と溶媒との混合物に必要に応じて導電助剤を添加したスラリーを基材上に塗布して乾燥させるという公知の方法で作製した電極(以下、キャスト電極ともいう)では、負極活物質粒子がバラバラに分散した状態で結着剤により全体が固められており、凝集粒子を確認することができない。また、キャスト電極では負極活物質を均一に分散したスラリーを作製し、均一に塗布することがよいとされており、負極活物質を凝集粒子とする本発明とはその態様が異なる。また、キャスト電極において、仮に複数個の負極活物質粒子が局所的に集合している部分があったとしても、負極活物質層全体が結着剤により固められ、負極活物質が集合してできる粒子としての境界が存在しないため、本願明細書における凝集粒子とは異なる。
In the lithium ion battery negative electrode of the present invention, whether or not aggregated particles are present can be confirmed by observing a cross section of the lithium ion battery negative electrode with a scanning electron microscope (SEM).
In addition, an electrode prepared by a known method of applying a slurry obtained by adding a conductive auxiliary to a mixture of a negative electrode active material, a binder and a solvent according to need, and drying it (hereinafter also referred to as cast electrode) In the case where the negative electrode active material particles are dispersed separately, the whole is solidified by the binding agent, and aggregated particles can not be confirmed. In the cast electrode, a slurry in which the negative electrode active material is uniformly dispersed is preferably prepared and uniformly coated, and the embodiment is different from the present invention in which the negative electrode active material is used as aggregated particles. In addition, even if there is a portion where a plurality of negative electrode active material particles are locally gathered in the cast electrode, the entire negative electrode active material layer can be solidified by the binder, and the negative electrode active material can be gathered. It is different from the agglomerated particles herein because there is no boundary as particles.

本発明のリチウムイオン電池用負極の構成の例を、図1を用いて説明する。
図1は、本発明のリチウムイオン電池用負極の一例を模式的に示す断面図である。
図1に示すリチウムイオン電池用負極1は、負極集電体10上に負極活物質層20が配置されてなる。
負極活物質層20は、一次粒子30が凝集してなる凝集粒子60を含み、さらに非水電解液70及び導電材80を含んでいる。
凝集粒子60は、一次粒子30が凝集粒子造粒用結着樹脂40により互いに結着されてなる。
凝集粒子造粒用結着樹脂40は、酸価が680〜850の(メタ)アクリル酸(共)重合体であるため、凝集粒子60の機械的強度が高い。
さらに、負極活物質層20は、凝集粒子60同士がバインダである凝集粒子造粒用結着樹脂40により互いに結着されていない非結着体である。
凝集粒子60同士が凝集粒子造粒用結着樹脂40により互いに結着されていないため、凝集粒子60の体積が変化した場合であっても、凝集粒子60が負極活物質層20中をある程度自由に移動することができ、負極活物質20全体としての体積変化を抑制することができる。
また、図1に示すリチウムイオン電池用負極1では、例えば、図1中、破線bで囲った領域のように凝集粒子60同士が接触することによって、及び、図1中、破線aで囲った領域のように凝集粒子60同士が導電材80を介して接触することによって負極活物質層20内の導電パスが構築されている。
The example of a structure of the negative electrode for lithium ion batteries of this invention is demonstrated using FIG.
FIG. 1 is a cross-sectional view schematically showing an example of the lithium ion battery negative electrode of the present invention.
The negative electrode 1 for lithium ion batteries shown in FIG. 1 has a negative electrode active material layer 20 disposed on a negative electrode current collector 10.
The negative electrode active material layer 20 includes aggregated particles 60 formed by aggregation of primary particles 30, and further includes a non-aqueous electrolyte 70 and a conductive material 80.
The aggregated particles 60 are formed by binding the primary particles 30 to each other by the aggregated particle granulation binder resin 40.
Since the binder resin 40 for agglomerated particle granulation is a (meth) acrylic acid (co) polymer having an acid value of 680 to 850, the mechanical strength of the agglomerated particles 60 is high.
Furthermore, the negative electrode active material layer 20 is a non-binding body in which the aggregated particles 60 are not bound to each other by the aggregated particle granulation binder resin 40 which is a binder.
Since the agglomerated particles 60 are not bound to each other by the binder resin 40 for agglomerated particle granulation, the agglomerated particles 60 are free to some extent in the negative electrode active material layer 20 even when the volume of the agglomerated particles 60 changes. The negative electrode active material 20 as a whole can be inhibited from changing in volume.
In addition, in the lithium ion battery negative electrode 1 shown in FIG. 1, for example, the aggregated particles 60 are in contact with each other as in the region surrounded by the broken line b in FIG. A conductive path in the negative electrode active material layer 20 is constructed by bringing the aggregated particles 60 into contact with each other via the conductive material 80 as in the region.

また、図1に示すように、凝集粒子60の少なくとも一部は空隙50を有していてもよい。凝集粒子60が空隙50を有していると、一次粒子30の体積が変化したとしても、凝集粒子60中の空隙50によって凝集粒子60の体積変化を抑制することができる。さらに、なお空隙50は非水電解液70で満たされていてもよい。 In addition, as shown in FIG. 1, at least a part of the aggregated particles 60 may have a void 50. When the agglomerated particles 60 have the voids 50, the volume change of the agglomerated particles 60 can be suppressed by the voids 50 in the agglomerated particles 60 even if the volume of the primary particles 30 changes. Furthermore, the air gap 50 may be filled with the non-aqueous electrolyte 70.

本発明のリチウムイオン電池用負極において、珪素及び/又は珪素化合物は、珪素及び珪素化合物を指しており、珪素及び珪素化合物の混合物であってもよい。 In the negative electrode for a lithium ion battery of the present invention, silicon and / or a silicon compound refer to silicon and a silicon compound, and may be a mixture of silicon and a silicon compound.

[一次粒子]
一次粒子は、珪素及び/又は珪素化合物からなる。
珪素化合物としては、酸化珪素(SiOx)、珪素−炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素−アルミニウム合金、珪素−リチウム合金、珪素−ニッケル合金、珪素−鉄合金、珪素−チタン合金、珪素−マンガン合金、珪素−銅合金及び珪素−スズ合金等)等]等が挙げられる。
これらの中では酸化珪素が望ましい。
Primary particle
The primary particles consist of silicon and / or silicon compounds.
As a silicon compound, silicon oxide (SiOx), silicon-carbon composite (the surface of carbon particles is coated with silicon and / or silicon carbide, the surface of silicon particles or silicon oxide particles is coated with carbon and / or silicon carbide And silicon alloys) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel alloy, silicon-iron alloy, silicon-titanium alloy, silicon-manganese alloy, silicon-copper alloy and silicon-tin alloy) Etc) etc.].
Among these, silicon oxide is desirable.

上記の珪素としてはアルドリッチ社及び信越化学工業(株)等から入手できるものを用いることができ、珪素化合物としては(株)大阪チタニウムテクノロジーズ及び信越化学工業(株)等から入手できる一酸化珪素、信越化学工業(株)から入手できる酸化珪素粒子の表面を炭素で被覆したもの[KSC−1064(体積平均粒子径5μm)]等を用いることができる。
また、特開2017−191771号公報及び特開2017−191707号公報等に記載の珪素及び珪素化合物を用いることができる。
As silicon described above, those available from Aldrich and Shin-Etsu Chemical Co., Ltd. can be used, and as silicon compounds, silicon monoxide available from Osaka Titanium Technologies Co., Ltd. and Shin-Etsu Chemical Co., Ltd., etc. What coated the surface of the silicon oxide particle which can be obtained from Shin-Etsu Chemical Co., Ltd. with carbon [KSC-1064 (volume average particle diameter 5 micrometers)] etc. can be used.
In addition, silicon and silicon compounds described in JP-A-2017-191771 and JP-A-2017-191707 can be used.

一次粒子の体積平均粒子径は特に限定されないが、0.1〜20μmであることが好ましく、0.1〜10μmであることがより好ましい。
一次粒子の体積平均粒子径が0.1μm未満であると、凝集粒子における一次粒子同士の接触抵抗が増加してしまうことがある。一方、一次粒子の体積平均粒子径が20μmを超えると、凝集粒子の体積平均粒子径が大きくなりすぎてしまい好ましくない。
なお、一次粒子の体積平均粒子径は、凝集粒子造粒用結着樹脂が溶解する溶媒中に凝集粒子を分散させて凝集粒子から一次粒子を分離した後、マイクロトラック法により測定することができる。
The volume average particle size of the primary particles is not particularly limited, but is preferably 0.1 to 20 μm, and more preferably 0.1 to 10 μm.
If the volume average particle size of the primary particles is less than 0.1 μm, the contact resistance between the primary particles in the aggregated particles may increase. On the other hand, when the volume average particle size of the primary particles exceeds 20 μm, the volume average particle size of the aggregated particles becomes too large, which is not preferable.
The volume average particle diameter of the primary particles can be measured by the microtrack method after the aggregated particles are dispersed in a solvent in which the binder resin for aggregation particle granulation is dissolved and the primary particles are separated from the aggregated particles. .

一次粒子は、その表面の少なくとも一部が被覆用樹脂を含む被覆層によって被覆された被覆一次粒子であってもよい。
一次粒子の周囲が被覆層により被覆されていると、珪素及び/又は珪素化合物の体積膨張によって凝集粒子が膨張することを抑制することができ、電極の膨張抑制に寄与する。なお、一次粒子は負極活物質として機能するため、被覆一次粒子は被覆負極活物質粒子ともいう。
The primary particles may be coated primary particles coated at least at a part of the surface thereof with a coating layer containing a coating resin.
When the periphery of the primary particles is covered by the covering layer, expansion of the agglomerated particles can be suppressed by volume expansion of silicon and / or silicon compound, which contributes to suppression of expansion of the electrode. In addition, since primary particles function as a negative electrode active material, coated primary particles are also referred to as coated negative electrode active material particles.

被覆層を構成する被覆用樹脂としては、特開2017−054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができ、被覆用樹脂及び一次粒子を混合すること等によって被覆一次粒子が得られる。なお、被覆層には必要に応じてさらに導電材料を含んでもよく、後述する樹脂集電体で用いる導電助剤と同様のものを好適に用いることができる。 As resin for coating | cover which comprises a coating layer, what was described as Unexamined-Japanese-Patent No. 2017-054703 as resin for non-aqueous secondary battery active material coating can be used suitably, and resin for coating and a primary particle are mixed. The coated primary particles are obtained by The coating layer may further contain a conductive material as necessary, and the same conductive assistant as that used in the later-described resin current collector can be suitably used.

[凝集粒子]
凝集粒子は、一次粒子が凝集粒子造粒用結着樹脂により互いに結着されてなる。
凝集粒子の体積平均粒子径は、一次粒子の体積平均粒子径の200%以上、負極活物質層の厚さの50%以下であることが好ましい。
凝集粒子の体積平均粒子径が一次粒子の体積平均粒子径の200%未満であると、凝集粒子を構成する一次粒子の数が少なすぎて、凝集粒子として充分な機能を発揮しない場合がある。一方、凝集粒子の体積平均粒子径が負極活物質層の厚さの50%を超えると、負極活物質層の表面に凝集粒子の形状が反映されてしまい、負極活物質層表面の平滑性が失われる場合がある。
[Aggregated particle]
The aggregated particles are formed by binding primary particles to one another by the binder resin for aggregation particle granulation.
The volume average particle size of the aggregated particles is preferably 200% or more of the volume average particle size of the primary particles and 50% or less of the thickness of the negative electrode active material layer.
If the volume average particle size of the aggregated particles is less than 200% of the volume average particle size of the primary particles, the number of primary particles constituting the aggregated particles may be too small to exhibit a sufficient function as the aggregated particles. On the other hand, when the volume average particle diameter of the aggregated particles exceeds 50% of the thickness of the negative electrode active material layer, the shape of the aggregated particles is reflected on the surface of the negative electrode active material layer, and the smoothness of the surface of the negative electrode active material layer It may be lost.

凝集粒子の体積平均粒子径は、特に限定されないが、30〜100μmであることが好ましい。凝集粒子の体積平均粒子径が30μm未満であると、凝集粒子を構成する一次粒子の数が少なすぎて、凝集粒子として充分な機能を発揮しない場合がある。一方、凝集粒子の体積平均粒子径が100μmを超えると、負極活物質層の表面に凝集粒子の形状が反映されてしまい、負極活物質層表面の平滑性が失われる場合がある。 The volume average particle diameter of the aggregated particles is not particularly limited, but is preferably 30 to 100 μm. When the volume average particle diameter of the agglomerated particles is less than 30 μm, the number of primary particles constituting the agglomerated particles may be too small to exhibit a sufficient function as the agglomerated particles. On the other hand, when the volume average particle diameter of the aggregated particles exceeds 100 μm, the shape of the aggregated particles may be reflected on the surface of the negative electrode active material layer, and the smoothness of the surface of the negative electrode active material layer may be lost.

凝集粒子の体積平均粒子径は、負極活物質層を凝集粒子造粒用結着樹脂が溶解しない分散媒に分散させて凝集粒子を分離した後、マイクロトラック法(レーザー回折・散乱法)で測定することにより確認できる。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。 The volume average particle size of the aggregated particles is measured by the microtrack method (laser diffraction / scattering method) after separating the aggregated particles by dispersing the negative electrode active material layer in a dispersion medium in which the binder resin for aggregation particle granulation is not dissolved. It can confirm by doing. The microtrack method is a method of obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.

凝集粒子の粒子分布は特に限定されないが、体積基準における粒子径累積分布曲線における累積10%粒子径(d10ともいう)が1μm以上であることが望ましい。
凝集粒子のd10が1μm以上であるとは、全凝集粒子のうち、粒子径が1μm未満の凝集粒子の個数の割合が10%以上であることを意味する。
粒子径が1μm未満の凝集粒子の割合が10%以上であると、相対的に粒子径の大きい凝集粒子同士の隙間に粒子径1μm未満の凝集粒子が配置されることによって、凝集粒子同士の接触性が良好となる。
一方、凝集粒子のd10が1μm未満である、すなわち粒子径が1μm未満の凝集粒子の割合が10%未満であると、相対的に粒子径の大きい凝集粒子同士に隙間が形成されやすくなり凝集粒子同士の接触性が低下し、内部抵抗が増加してしまうことがある。
なお、凝集粒子の粒子径累積分布曲線はマイクロトラック法によって求めることができる。
The particle distribution of the aggregated particles is not particularly limited, but it is desirable that the cumulative 10% particle diameter (also referred to as d10) in the particle diameter cumulative distribution curve on a volume basis is 1 μm or more.
That d10 of the agglomerated particles is 1 μm or more means that the ratio of the number of agglomerated particles having a particle diameter of less than 1 μm is 10% or more among all the agglomerated particles.
When the ratio of agglomerated particles having a particle size of less than 1 μm is 10% or more, the agglomerated particles having a particle size of less than 1 μm are arranged in the gaps between agglomerated particles having a relatively large particle size. The quality is good.
On the other hand, if d10 of the agglomerated particles is less than 1 μm, that is, if the ratio of agglomerated particles having a particle diameter of less than 1 μm is less than 10%, gaps are easily formed between agglomerated particles having relatively large particle diameters. The contact between the two may be reduced, and internal resistance may increase.
The particle diameter cumulative distribution curve of the agglomerated particles can be determined by the microtrack method.

本発明のリチウムイオン電池用負極において、凝集粒子に占める凝集粒子造粒用結着樹脂の割合は特に限定されないが、凝集粒子の重量に対する凝集粒子造粒用結着樹脂の重量の割合は10〜30重量%であることが望ましい。
凝集粒子の重量に対する凝集粒子造粒用結着樹脂の割合が上記範囲であると、凝集粒子の強度が良好となり、凝集粒子の電気抵抗値を低くすることができる。
凝集粒子の重量に対する凝集粒子造粒用結着樹脂の重量の割合が10重量%未満であると、凝集粒子に占める凝集粒子造粒用結着樹脂の重量割合が少なすぎて、一次粒子の体積膨張による電極の体積変化を抑制しにくくなる。また凝集粒子の重量に対する凝集粒子造粒用結着樹脂の重量の割合が30重量%を超えると、凝集粒子に占める凝集粒子造粒用結着樹脂の重量割合が多すぎて、エネルギー密度が低下してしまう。
In the negative electrode for lithium ion batteries of the present invention, the ratio of the binder resin for aggregation particle granulation to the aggregation particles is not particularly limited, but the ratio of the weight of the binder resin for aggregation particle granulation to the weight of aggregation particles is 10 to 10 It is desirable to be 30% by weight.
If the ratio of the binder resin for granulation particle granulation to the weight of the aggregation particles is in the above range, the strength of the aggregation particles becomes good, and the electric resistance value of the aggregation particles can be lowered.
When the ratio of the weight of the binder resin for aggregation particle granulation to the weight of the aggregation particles is less than 10% by weight, the weight ratio of the binder resin for aggregation particle granulation to the aggregation particles is too small, and the volume of primary particles It becomes difficult to suppress the volume change of the electrode by expansion. When the weight ratio of the binder resin for aggregation particle granulation to the weight of the aggregation particles exceeds 30% by weight, the weight ratio of the binder resin for aggregation particle granulation to the aggregation particles is too large, and the energy density decreases. Resulting in.

本発明のリチウムイオン電池用負極において、凝集粒子は、一次粒子及び凝集粒子造粒用結着樹脂に加えてさらに導電助剤を有することが好ましい。
凝集粒子の重量に対する導電助剤の重量の割合は10〜50重量%であることがより好ましい。
凝集粒子が導電助剤を有し、導電助剤の重量の割合が上記範囲であると、充分なエネルギー密度を維持しつつ、凝集粒子に優れた導電性を付与することができる。
導電助剤の重量の割合が10重量%未満であると、凝集粒子に充分な導電性を付与できず、内部抵抗が増加してしまうことがある。また導電助剤の重量の割合が50重量%を超えると、凝集粒子に占める一次粒子の割合が相対的に減少し、エネルギー密度が低下してしまう。
In the negative electrode for a lithium ion battery of the present invention, it is preferable that the aggregated particles further have a conductive aid in addition to the primary particles and the binder resin for aggregated particle granulation.
The proportion of the weight of the conductive aid to the weight of the agglomerated particles is more preferably 10 to 50% by weight.
When the agglomerated particles have a conductive aid and the weight ratio of the conductive aid is in the above range, excellent conductivity can be imparted to the agglomerated particles while maintaining a sufficient energy density.
When the proportion of the weight of the conductive aid is less than 10% by weight, sufficient conductivity may not be imparted to the agglomerated particles, and internal resistance may increase. If the proportion of the weight of the conductive additive exceeds 50% by weight, the proportion of primary particles in the agglomerated particles relatively decreases, and the energy density decreases.

導電助剤は、導電性を有する材料から選択される。
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電助剤は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
The conductive aid is selected from materials having conductivity.
Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper and titanium etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black etc.), etc. And mixtures thereof, but not limited thereto.
These conductive aids may be used alone or in combination of two or more. Also, these alloys or metal oxides may be used. From the viewpoint of electrical stability, it is preferably aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof, more preferably silver, aluminum, stainless steel and carbon, and still more preferably carbon. Moreover, as these conductive support agents, conductive materials (metals of the above-mentioned conductive support agents) may be coated around the particulate ceramic material or resin material by plating or the like.

導電助剤の形状及び大きさは特に限定されないが、導電助剤の体積平均粒子径が、凝集粒子を構成する一次粒子の体積平均粒子径の0.001〜0.4倍であることが望ましい。
なお、導電助剤の体積平均粒子径は、マイクロトラック法により測定することができる。
The shape and size of the conductive additive are not particularly limited, but it is desirable that the volume average particle diameter of the conductive additive be 0.001 to 0.4 times the volume average particle diameter of the primary particles constituting the agglomerated particles. .
The volume average particle size of the conductive additive can be measured by the microtrack method.

導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive aid is not limited to the particle form, and may be a form other than the particle form, and may be a form such as a carbon nanotube that has been put to practical use as a so-called filler-based conductive resin composition Good.

導電助剤は、その形状が繊維状である導電性繊維であってもよい。
導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
導電助剤が導電性繊維である場合、その平均繊維径は0.1〜20μmであることが好ましい。
The conductive aid may be a conductive fiber whose shape is fibrous.
Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing conductive metals and graphite in synthetic fibers, and metals such as stainless steel. The metal fiber which carried out fiberization, the electroconductive fiber which coat | covered the surface of the organic fiber with metal, the electroconductive fiber which coat | covered the surface of the organic fiber with resin containing an electroconductive substance etc. are mentioned. Among these conductive fibers, carbon fibers are preferred. In addition, a polypropylene resin into which graphene is incorporated is also preferable.
When the conductive aid is a conductive fiber, the average fiber diameter is preferably 0.1 to 20 μm.

凝集粒子中には、一次粒子及び凝集粒子造粒用結着樹脂、並びに、上述した他の任意の構成のいずれもが配置されていない空隙が存在していてもよい。
凝集粒子中に空隙が存在していると、凝集粒子の体積膨張を抑制しやすくなる。
In the aggregated particles, voids may be present in which neither the primary particles nor the binder resin for aggregated particle granulation, nor any of the other configurations described above are arranged.
If voids exist in the agglomerated particles, it is easy to suppress the volumetric expansion of the agglomerated particles.

[凝集粒子造粒用結着樹脂]
本発明のリチウムイオン電池用負極において、凝集粒子造粒用結着樹脂は、凝集粒子を構成する一次粒子同士を結着している。
凝集粒子造粒用結着樹脂は、非水電解液に対する膨潤度が120%以下となるものが好ましい。
[Binder resin for agglomerated particle granulation]
In the negative electrode for a lithium ion battery of the present invention, the binder resin for aggregation particle granulation bonds primary particles constituting the aggregation particles to each other.
The binder resin for aggregation particle granulation preferably has a swelling degree of 120% or less with respect to the non-aqueous electrolyte.

凝集粒子造粒用結着樹脂を構成する樹脂は、(メタ)アクリル酸(共)重合体である。
凝集粒子造粒用結着樹脂が(メタ)アクリル酸(共)重合体を凝集粒子造粒用結着樹脂として用いると、凝集粒子の強度に優れる。
なお本明細書において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を示しており、(共)重合体とは、重合体又は共重合体を示している。
The resin constituting the binder resin for aggregated particle granulation is a (meth) acrylic acid (co) polymer.
When the binder resin for aggregation particle granulation uses (meth) acrylic acid (co) polymer as a binder resin for aggregation particle granulation, the strength of the aggregation particles is excellent.
In the present specification, (meth) acrylic acid means acrylic acid and / or methacrylic acid, and (co) polymer means polymer or copolymer.

(メタ)アクリル酸(共)重合体は、アクリル酸及びメタクリル酸の他に、アクリル酸メチル、メタクリル酸メチル、アクリル酸2−ヒドロキシエチル及びメタクリル酸2−ヒドロキシエチル等を単量体として含んだ共重合体であってもよい。 The (meth) acrylic acid (co) polymer contains methyl acrylate, methyl methacrylate, 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate as monomers in addition to acrylic acid and methacrylic acid. It may be a copolymer.

Si系活物質への密着性の観点から、(メタ)アクリル酸(共)重合体におけるアクリル酸及びメタクリル酸の合計重量は、(メタ)アクリル酸共重合体全体の70〜100重量%であることが好ましい。 From the viewpoint of adhesion to the Si-based active material, the total weight of acrylic acid and methacrylic acid in the (meth) acrylic acid (co) polymer is 70 to 100% by weight of the total (meth) acrylic acid copolymer Is preferred.

(メタ)アクリル酸(共)重合体の酸価は680〜850であり、680〜800であることがより望ましい。
(メタ)アクリル酸(共)重合体の酸価が680〜850であると、負極活物質粒子及び導電助剤に対する密着性が良好となるため造粒強度が高くなり、体積変化時に凝集構造を維持することができるため、凝集粒子から負極活物質粒子が欠落することを抑制できる。
The acid value of the (meth) acrylic acid (co) polymer is 680 to 850, and more preferably 680 to 800.
When the acid value of the (meth) acrylic acid (co) polymer is 680 to 850, the adhesion to the negative electrode active material particles and the conductive aid becomes good, so the granulation strength becomes high, and the aggregation structure is changed when the volume changes. Since maintenance can be performed, it is possible to suppress the loss of the negative electrode active material particles from the aggregated particles.

凝集粒子造粒用結着樹脂として(メタ)アクリル酸(共)重合体を用いる場合、上記の単量体を公知の方法で重合して得られたものを用いてもよく、市場から入手可能な(メタ)アクリル酸(共)重合体を用いてもよい。
市場から入手可能な(メタ)アクリル酸(共)重合体としては、東亜合成(株)製のポリアクリル酸等の他に和光純薬工業(株)製の試薬等を用いることができる。なお、使用できる(メタ)アクリル酸(共)重合体としては、結着剤として販売されているものだけでなく、分散剤として販売しているものも同じように用いることができる。
When a (meth) acrylic acid (co) polymer is used as a binder resin for agglomerated particle granulation, one obtained by polymerizing the above-mentioned monomers by a known method may be used, and can be obtained from the market (Meth) acrylic acid (co) polymers may be used.
As the (meth) acrylic acid (co) polymer available from the market, in addition to polyacrylic acid produced by Toagosei Co., Ltd., reagents produced by Wako Pure Chemical Industries, Ltd. can be used. As the (meth) acrylic acid (co) polymer which can be used, not only one sold as a binder but also one sold as a dispersant can be used in the same manner.

上記の凝集粒子は、凝集粒子の表面の少なくとも一部が被覆層によって被覆された被覆凝集粒子であってもよい。
被覆凝集粒子を構成する被覆層としては、被覆一次粒子を構成する被覆層と同様のものを好適に用いることができ、例えば一次粒子から被覆一次粒子を作成する方法と同様の方法で、凝集粒子から被覆凝集粒子を作成することができる。
The agglomerated particles described above may be coated agglomerated particles in which at least a part of the surface of the agglomerated particles is covered by the coating layer.
As a covering layer which constitutes covering aggregation particles, the thing similar to a covering layer which constitutes covering primary particles can be used suitably, for example, aggregation particles are carried out by the same method as a method of creating covering primary particles from primary particles. Coated agglomerated particles can be made from

本発明のリチウムイオン電池用負極において、負極活物質層は上記の凝集粒子を含んでなるが、凝集粒子を互いに結着させるバインダを含まない非結着体である。 In the negative electrode for a lithium ion battery of the present invention, the negative electrode active material layer is a non-binding body which contains the above-mentioned aggregated particles but does not contain a binder which binds the aggregated particles to each other.

負極活物質層の厚さは特に限定されないが、150〜600μmであることが好ましく、200〜600μmであることがより好ましい。 The thickness of the negative electrode active material layer is not particularly limited, but is preferably 150 to 600 μm, and more preferably 200 to 600 μm.

本明細書において、空隙とは、負極が非水電解液を含浸していない状態で負極活物質層が有する空隙のことを指す。
負極活物質層の空隙率は特に限定されないが、35〜50%であることが好ましい。
負極活物質層の空隙率が35%未満であると、空隙が少なすぎて、充放電に伴う一次粒子の体積膨張による凝集粒子の体積変化を緩和しにくくなる。一方、負極活物質層の空隙率が50%を超える場合、負極活物質層の機械的強度が低下してしまうことがある。
負極活物質層の空隙率はX線コンピュータ断層撮影(CT)等による画像解析で測定することができる。
ただし、負極活物質層が電解液や他の成分を含んでおり、空隙を含む負極活物質層のX線CT画像を得られない場合には、空隙率は、一定体積の負極活物質層を構成する各固体成分(電解質を除く)の重量を各成分の真密度でそれぞれ除して得られる各成分の体積値の合計値を負極活物質層の体積から引いて得られる値をさらに負極活物質層の体積で除することにより算出することができる。
In the present specification, the void refers to the void of the negative electrode active material layer in a state in which the negative electrode is not impregnated with the non-aqueous electrolyte.
The porosity of the negative electrode active material layer is not particularly limited, but is preferably 35 to 50%.
When the porosity of the negative electrode active material layer is less than 35%, the number of voids is too small, and it becomes difficult to alleviate the volume change of the agglomerated particles due to the volume expansion of the primary particles involved in charge and discharge. On the other hand, when the porosity of a negative electrode active material layer exceeds 50%, the mechanical strength of a negative electrode active material layer may fall.
The porosity of the negative electrode active material layer can be measured by image analysis by X-ray computed tomography (CT) or the like.
However, when the negative electrode active material layer contains an electrolytic solution and other components, and the X-ray CT image of the negative electrode active material layer containing voids can not be obtained, the porosity is a constant volume of the negative electrode active material layer. The sum of the volume values of each component obtained by dividing the weight of each constituting solid component (excluding the electrolyte) by the true density of each component is subtracted from the volume of the negative electrode active material layer to obtain a further negative electrode active It can be calculated by dividing by the volume of the material layer.

負極活物質層には、凝集粒子の他に導電材、炭素系負極活物質粒子及び非水電解液等を含んでいてもよい。
導電材としては、凝集粒子の任意成分である導電助剤と同様のものを好適に用いることができる。なお、導電助剤は上記の凝集粒子を構成する成分であり、凝集粒子に一体に含まれているのに対し、導電材は負極活物質層中に凝集粒子とは別に存在している点で区別することができる。
The negative electrode active material layer may contain, in addition to the aggregated particles, a conductive material, carbon-based negative electrode active material particles, a non-aqueous electrolytic solution, and the like.
As the conductive material, the same conductive assistant as an optional component of the agglomerated particles can be suitably used. The conductive support agent is a component constituting the above-described aggregated particles, and is integrally contained in the aggregated particles, while the conductive material is present separately from the aggregated particles in the negative electrode active material layer. It can be distinguished.

[炭素系負極活物質粒子]
本発明のリチウムイオン電池用負極は、さらに炭素系負極活物質粒子を含んでもよい。
炭素系負極活物質粒子としては、炭素系材料[例えば黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス(例えばピッチコークス、ニードルコークス及び石油コークス等)、導電性高分子(例えばポリアセチレン及びポリピロール等)等が挙げられる。
[Carbon-based negative electrode active material particles]
The negative electrode for a lithium ion battery of the present invention may further contain carbon-based negative electrode active material particles.
Examples of carbon-based negative electrode active material particles include carbon-based materials (eg, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (eg, those obtained by firing and carbonizing phenol resin and furan resin), coke (eg, pitch) Coke, needle coke, petroleum coke and the like), conductive polymers (for example, polyacetylene and polypyrrole and the like) and the like.

炭素系負極活物質粒子の体積平均粒子径は特に限定されないが、1〜40μmであることが望ましい。
また、炭素系負極活物質粒子は、その表面の少なくとも一部が被覆層によって被覆された炭素系被覆負極活物質粒子であってもよい。
炭素系被覆負極活物質粒子を構成する被覆層としては、被覆一次粒子を構成する被覆層と同様のものを好適に用いることができる。
The volume average particle diameter of the carbon-based negative electrode active material particles is not particularly limited, but is preferably 1 to 40 μm.
In addition, the carbon-based negative electrode active material particles may be carbon-based coated negative electrode active material particles in which at least a part of the surface is covered with a covering layer.
As the coating layer constituting the carbon-based coated negative electrode active material particles, the same one as the coating layer constituting the coated primary particles can be suitably used.

炭素系負極活物質粒子及び炭素系被覆負極活物質粒子は、凝集粒子を構成する材料としては用いず、凝集粒子とは別に負極活物質層中に含まれていることが望ましい。
凝集粒子と炭素系負極活物質粒子との合計重量に基づく凝集粒子の重量の割合は特に限定されないが、2〜50重量%であることが望ましい。
It is desirable that the carbon-based negative electrode active material particles and the carbon-based coated negative electrode active material particles be contained in the negative electrode active material layer separately from the aggregated particles, without being used as a material for forming the aggregated particles.
Although the ratio of the weight of the agglomerated particles based on the total weight of the agglomerated particles and the carbon-based negative electrode active material particles is not particularly limited, it is preferably 2 to 50% by weight.

炭素系被覆負極活物質粒子は、上記の被覆一次粒子と同様の方法により得ることができる。被覆層は導電材料を含んでもよく、後述する樹脂集電体を構成する導電助剤と同様のものを好適に用いることができる。 The carbon-based coated negative electrode active material particles can be obtained by the same method as the above-described coated primary particles. The coating layer may contain a conductive material, and the same conductive assistant as the resin current collector to be described later can be suitably used.

[非水電解液]
非水電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する非水電解液を使用することができる。
[Non-aqueous electrolyte]
As a non-aqueous electrolyte, the non-aqueous electrolyte containing electrolyte and a non-aqueous solvent used for manufacture of a lithium ion battery can be used.

電解質としては、公知の非水電解液に用いられているもの等が使用でき、好ましいものとしては、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩系電解質、LiN(FSO、LiN(CFSO及びLiN(CSO等のフッ素原子を有するスルホニルイミド系電解質、LiC(CFSO等のフッ素原子を有するスルホニルメチド系電解質等が挙げられる。これらの内、高濃度時のイオン伝導性及び熱分解温度の観点から好ましいのはフッ素原子を有するスルホニルイミド系電解質であり、LiN(FSOがより好ましい。LiN(FSOは、他の電解質と併用してもよいが、単独で使用することがより好ましい。 As the electrolyte, those used in known non-aqueous electrolytes can be used, and preferred examples include lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4. Sulfonylimide electrolytes having a fluorine atom such as electrolyte, LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 , fluorine such as LiC (CF 3 SO 2 ) 3 The sulfonyl methide type electrolyte which has an atom etc. are mentioned. Among these, preferred are sulfonylimide electrolytes having a fluorine atom from the viewpoint of ion conductivity at high concentration and thermal decomposition temperature, and LiN (FSO 2 ) 2 is more preferred. LiN (FSO 2 ) 2 may be used in combination with other electrolytes, but is preferably used alone.

非水電解液の電解質濃度は、特に限定されないが、非水電解液の取り扱い性及び電池容量等の観点から1〜5.0mol/Lであることが好ましく、1.2〜5.0mol/Lであることがより好ましく、1.5〜4.0mol/Lであることがさらに好ましく、2.0〜3.0mol/Lであることが特に好ましい。 The electrolyte concentration of the non-aqueous electrolytic solution is not particularly limited, but is preferably 1 to 5.0 mol / L, and preferably 1.2 to 5.0 mol / L, from the viewpoints of handleability of the non-aqueous electrolytic solution and battery capacity. Is more preferably 1.5 to 4.0 mol / L, and particularly preferably 2.0 to 3.0 mol / L.

非水電解液としては、非水電解液に対する凝集粒子造粒用結着樹脂の膨潤度が120%以下となるものであることが好ましく、115%以下となるものであるであることがより好ましい。
非水電解液に対する凝集粒子造粒用結着樹脂の膨潤度は、以下の方法により測定することができる。
凝集粒子造粒用結着樹脂を溶解した樹脂溶液を、水平なガラス板上に塗布して室温で半日自然乾燥を行う。次に、150℃に加熱した減圧乾燥機中に3時間静置した後、室温まで冷却した後、10×40×0.2mmの寸法に切り出した凝集粒子造粒用結着樹脂を試験片とし、この試験片を非水電解液に50℃で3日間浸漬させて飽和吸液状態とする。
その後、試験片の吸液前後の重量変化から下記式によって膨潤度を求めることができる。
膨潤度[%]=[(吸液後の試験片重量)/(吸液前の試験片重量)]×100
The non-aqueous electrolytic solution preferably has a degree of swelling of 120% or less, more preferably 115% or less, of the binder resin for aggregating particulate particles in the non-aqueous electrolytic solution. .
The swelling degree of the binder resin for aggregation particle granulation with respect to the non-aqueous electrolyte can be measured by the following method.
The resin solution in which the binder resin for agglomerated particle granulation is dissolved is applied on a horizontal glass plate and naturally dried for half a day at room temperature. Next, after standing for 3 hours in a reduced pressure drier heated to 150 ° C., after cooling to room temperature, a binder resin for aggregated particle granulation cut into a size of 10 × 40 × 0.2 mm is used as a test piece Then, this test piece is immersed in a non-aqueous electrolyte at 50 ° C. for 3 days to obtain a saturated liquid absorption state.
Then, swelling degree can be calculated | required by a following formula from the weight change before and behind liquid absorption of a test piece.
Swelling degree [%] = [(weight of test piece after liquid absorption) / (weight of test piece before liquid absorption)] × 100

非水溶媒としては、公知の非水電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in known non-aqueous electrolytes can be used, and examples thereof include lactone compounds, cyclic or linear carbonates, linear carboxylic esters, cyclic or linear ethers, and phosphoric esters. Nitrile compounds, amide compounds, sulfones and the like and mixtures thereof can be used.

ラクトン化合物としては、5員環(γ−ブチロラクトン及びγ−バレロラクトン等)及び6員環のラクトン化合物(δ−バレロラクトン等)等を挙げることができる。 Examples of lactone compounds include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered ring lactone compounds (such as δ-valerolactone).

環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート及びジ−n−プロピルカーボネート等が挙げられる。
Examples of cyclic carbonates include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of chain carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl n-propyl carbonate, ethyl n-propyl carbonate and di-n-propyl carbonate.

鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン及び1,4−ジオキサン等が挙げられる。
鎖状エーテルとしては、ジメトキシメタン及び1,2−ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate and methyl propionate.
Examples of cyclic ethers include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,4-dioxane.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.

リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2−エトキシ−1,3,2−ジオキサホスホラン−2−オン、2−トリフルオロエトキシ−1,3,2−ジオキサホスホラン−2−オン及び2−メトキシエトキシ−1,3,2−ジオキサホスホラン−2−オン等が挙げられる。
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、N,N−ジメチルホルムアミド(以下、DMFと記載する)等が挙げられる。
スルホンとしては、ジメチルスルホン及びジエチルスルホン等の鎖状スルホン及びスルホラン等の環状スルホン等が挙げられる。
非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
As phosphoric acid esters, trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphospholan-2-one.
Acetonitrile etc. are mentioned as a nitrile compound. As an amide compound, N, N- dimethylformamide (it describes as DMF hereafter) etc. are mentioned.
Examples of sulfones include linear sulfones such as dimethylsulfone and diethylsulfone and cyclic sulfones such as sulfolane.
A non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.

非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、ニトリル化合物を含まないことが好ましい。更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。
非水溶媒が環状炭酸エステルを含む場合、非水溶媒に占める環状炭酸エステルの体積割合は、50体積%以上であることが好ましい。
Among non-aqueous solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphates are preferable from the viewpoint of battery power and charge-discharge cycle characteristics, and it is preferable not to contain nitrile compounds. Further preferred are lactone compounds, cyclic carbonates and chain carbonates, and particularly preferred are mixed solutions of cyclic carbonates and chain carbonates. Most preferred is a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC).
When the non-aqueous solvent contains a cyclic carbonate, the volume ratio of the cyclic carbonate in the non-aqueous solvent is preferably 50% by volume or more.

[負極集電体]
負極集電体としては特に限定されないが、公知の金属集電体及び導電材料と樹脂とから構成されてなる樹脂集電体(特開2012−150905号公報等に記載されている)等を好適に用いることができる。
金属集電体としては、例えば、銅、アルミニウム、チタン、ニッケル、タンタル、ニオブ、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン及びこれらの一種以上を含む合金、ならびにステンレス合金からなる群から選択される一種以上の金属材料が挙げられ、これらの金属材料を薄板や金属箔等の形態で用いてもよく、基材表面にスパッタリング、電着、塗布等の手法により上記金属材料を形成したものであってもよい。
[Anode current collector]
The negative electrode current collector is not particularly limited, but a known metal current collector and a resin current collector composed of a conductive material and a resin (described in JP 2012-150905, etc.) and the like are preferable. It can be used for
The metal current collector is, for example, selected from the group consisting of copper, aluminum, titanium, nickel, tantalum, niobium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and alloys containing at least one of these, and stainless steel alloys Metal materials, and these metal materials may be used in the form of thin plates, metal foils, etc., and the above metal materials are formed on the surface of the substrate by a method such as sputtering, electrodeposition, coating, etc. It may be.

樹脂集電体を構成する導電材料は、導電性を有する材料から選択される。
具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電材料は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電材料としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電材料の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。
The conductive material constituting the resin current collector is selected from materials having conductivity.
Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper and titanium etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black etc.), etc. And mixtures thereof, but not limited thereto.
These conductive materials may be used alone or in combination of two or more. Also, these alloys or metal oxides may be used. From the viewpoint of electrical stability, it is preferably aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof, more preferably silver, aluminum, stainless steel and carbon, and still more preferably carbon. Further, as the conductive material, a conductive material (a metal of the above-described conductive materials) may be coated by plating or the like around a particle-based ceramic material or a resin material.

導電材料の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01〜10μmであることが好ましく、0.02〜5μmであることがより好ましく、0.03〜1μmであることがさらに好ましい。なお、「導電材料の粒子径」とは、導電材料の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the conductive material is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.02 to 5 μm, from the viewpoint of the electrical properties of the battery. More preferably, it is 03 to 1 μm. In addition, "the particle diameter of an electrically-conductive material" means the largest distance among the distances between any two points on the outline of an electrically-conductive material. As the value of “average particle diameter”, using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM), as an average value of particle diameters of particles observed in several to several tens of visual fields The calculated value shall be adopted.

導電材料の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノフィラー、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive material is not limited to the particle form, and may be a form other than the particle form, and is a form that is put into practical use as a so-called filler-based conductive resin composition such as carbon nanofiller or carbon nanotube. It may be.

導電材料は、その形状が繊維状である導電性繊維であってもよい。
導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。
導電材料が導電性繊維である場合、その平均繊維径は0.1〜20μmであることが好ましい。
The conductive material may be a conductive fiber whose shape is fibrous.
Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing conductive metals and graphite in synthetic fibers, and metals such as stainless steel. The metal fiber which carried out fiberization, the electroconductive fiber which coat | covered the surface of the organic fiber with metal, the electroconductive fiber which coat | covered the surface of the organic fiber with resin containing an electroconductive substance etc. are mentioned. Among these conductive fibers, carbon fibers are preferred. In addition, a polypropylene resin into which graphene is incorporated is also preferable.
When the conductive material is a conductive fiber, the average fiber diameter is preferably 0.1 to 20 μm.

樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
Examples of the resin constituting the resin current collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and polytetratetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture of these, etc. Can be mentioned.
From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferred, and more preferably polyethylene (PE), polypropylene (PP) and polymethylpentene (PMP).

[リチウムイオン電池]
本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を用いた電池であり、本発明のリチウムイオン電池用負極の対極となる電極を組み合わせて、セパレータと共にセル容器に収容し、非水電解液を注入し、セル容器を密封する方法等により製造することができる。
また、負極集電体の一方の面だけに負極活物質層を形成した本発明のリチウムイオン電池用負極の、負極集電体の他方の面に正極活物質からなる正極活物質層を形成して双極型電極を作製し、双極型電極をセパレータと積層してセル容器に収容し、非水電解液を注入し、セル容器を密閉することでも得られる。
[Lithium ion battery]
The lithium ion battery of the present invention is a battery using the lithium ion battery negative electrode of the present invention, and is combined with the electrode serving as the counter electrode of the lithium ion battery negative electrode of the present invention. It can manufacture by the method etc. which inject | pours electrolyte solution and seals a cell container.
Further, in the negative electrode for a lithium ion battery of the present invention in which the negative electrode active material layer is formed only on one side of the negative electrode current collector, a positive electrode active material layer made of a positive electrode active material is formed on the other side of the negative electrode current collector. It is also possible to manufacture a bipolar electrode, laminate the bipolar electrode with a separator, store it in a cell container, inject a non-aqueous electrolyte, and seal the cell container.

セパレータとしては、ポリエチレン又はポリプロピレン製の微多孔フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。
非水電解液としては、本発明のリチウムイオン電池用負極において説明したものを好適に用いることができる。
The separator may be a microporous film made of polyethylene or polypropylene, a laminated film of a porous polyethylene film and a porous polypropylene, a non-woven fabric made of synthetic fibers (such as polyester fibers and aramid fibers) or glass fibers, and silica on their surfaces. And separators for known lithium ion batteries such as those to which ceramic fine particles such as alumina and titania are attached.
As the non-aqueous electrolytic solution, those described for the lithium ion battery negative electrode of the present invention can be suitably used.

上記のリチウムイオン電池用負極の対極となる電極(正極)は、公知のリチウムイオン電池に用いられる正極を用いることができる。 The electrode used as a counter electrode of the said negative electrode for lithium ion batteries (positive electrode) can use the positive electrode used for a well-known lithium ion battery.

本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を備えることを特徴とする。本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を備えているため、エネルギー密度及びサイクル特性に優れる。 The lithium ion battery of the present invention is characterized by comprising the lithium ion battery negative electrode of the present invention. Since the lithium ion battery of the present invention is equipped with the lithium ion battery negative electrode of the present invention, it is excellent in energy density and cycle characteristics.

[リチウムイオン電池用負極の製造方法]
続いて、本発明のリチウムイオン電池用負極を製造する方法について説明する。
本発明のリチウムイオン電池用負極を製造する方法としては、例えば、凝集粒子及び必要により用いる導電材を、水又は溶媒(非水電解液又は非水電解液に用いる非水溶媒等)の重量に基づいて30〜60重量%の濃度で分散してスラリー化した分散液を、負極集電体にバーコーター等の塗工装置で塗布後、必要に応じて乾燥して水又は溶媒を除去して得られた負極活物質層を必要によりプレス機でプレスし、必要に応じて得られた負極活物質層に所定量の非水電解液を含浸させる方法が挙げられる。
なお、上記分散液から得られる負極活物質層は、負極集電体上に直接形成する必要はなく、例えば、アラミドセパレータ等の表面に上記分散液を塗布して得られる負極活物質層を、負極集電体と接触するように配置してよい。
また、上記分散液を塗布した後に必要により行う乾燥は、順風式乾燥機等の公知の乾燥機を用いて行うことができ、その乾燥温度は分散液に含まれる分散媒(水又は溶媒)の種類に応じて調整することができる。
上記分散液には、公知のリチウムイオン電池に含まれるポリフッ化ビニリデン(PVdF)等のバインダを添加しない。上記分散液に公知のリチウムイオン電池用の負極に含まれるバインダを添加してしまうと、負極活物質層において凝集粒子同士が互いに結着されてしまい、非結着体が得られなくなるためである。
従来のリチウムイオン電池用の負極においては、バインダで負極活物質を負極内に固定することで導電経路を維持する必要がある。しかし、凝集粒子を用いた本発明のリチウムイオン電池用負極の場合は、凝集粒子を負極活物質層内に固定することなく導電経路を維持することができるため、バインダを添加する必要がない。バインダを添加しないことによって、凝集粒子が負極内に固定化されないため、一次粒子の体積変化に対する緩和能力が更に良好となる。
[Method of producing negative electrode for lithium ion battery]
Then, the method to manufacture the negative electrode for lithium ion batteries of this invention is demonstrated.
As a method for producing the negative electrode for a lithium ion battery of the present invention, for example, it is preferable to use aggregated particles and a conductive material optionally used as the weight of water or a solvent (nonaqueous solvent used for nonaqueous electrolyte or nonaqueous electrolyte). Based on the dispersion liquid dispersed at a concentration of 30 to 60% by weight is applied to the negative electrode current collector with a coating device such as a bar coater, and then dried as necessary to remove water or solvent. The obtained negative electrode active material layer may be pressed by a pressing machine if necessary, and the obtained negative electrode active material layer may be impregnated with a predetermined amount of non-aqueous electrolyte solution as necessary.
The negative electrode active material layer obtained from the dispersion does not have to be formed directly on the negative electrode current collector, and, for example, the negative electrode active material layer obtained by applying the dispersion to the surface of an aramid separator or the like It may be arranged to be in contact with the negative electrode current collector.
Moreover, the drying which is carried out as necessary after applying the dispersion can be carried out using a known dryer such as a normal wind type dryer, and the drying temperature is the dispersion medium (water or solvent) contained in the dispersion. It can be adjusted according to the type.
A binder such as polyvinylidene fluoride (PVdF) contained in a known lithium ion battery is not added to the above-mentioned dispersion liquid. When a binder contained in a known negative electrode for a lithium ion battery is added to the above-mentioned dispersion liquid, aggregated particles are mutually bonded in the negative electrode active material layer, and a non-bonded body can not be obtained. .
In the conventional negative electrode for a lithium ion battery, it is necessary to maintain the conductive path by fixing the negative electrode active material in the negative electrode with a binder. However, in the case of the negative electrode for a lithium ion battery of the present invention using aggregated particles, since the conductive path can be maintained without fixing the aggregated particles in the negative electrode active material layer, it is not necessary to add a binder. By not adding the binder, the aggregated particles are not immobilized in the negative electrode, and the ability to relax the volume change of the primary particles is further improved.

なお、公知のリチウムイオン電池用バインダとしてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン−ブタジエンゴム、ポリエチレン及びポリプロピレン等が挙げられるが、これらのリチウムイオン電池用バインダは、本発明のリチウムイオン電池用負極を製造する際の上記分散液を調整する段階で添加しない。
ただし、凝集粒子造粒用結着樹脂を構成する成分としては上記のリチウムイオン電池用バインダを含んでいてもよい。この場合、上記のリチウムイオン電池用バインダは凝集粒子を構成する凝集粒子造粒用結着樹脂となるため、上記分散液を調整する際に添加されるバインダとは明確に区別できる。
Examples of known binders for lithium ion batteries include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, polypropylene and the like. The binder is not added at the stage of preparing the above-mentioned dispersion liquid at the time of producing the negative electrode for a lithium ion battery of the present invention.
However, the above-mentioned binder for lithium ion batteries may be included as a component which constitutes a binder resin for agglomerated particle granulation. In this case, since the binder for lithium ion batteries is a binder resin for aggregate particle granulation which constitutes aggregate particles, it can be clearly distinguished from the binder added when preparing the dispersion liquid.

上記の方法において、乾燥させたスラリーをプレスする際の圧力は、特に限定されないが、圧力が高すぎると負極活物質層に充分な量の空隙を形成することができず、圧力が低すぎると、プレスによる効果がみられないことから、1〜200MPaでプレスすることが好ましい。 In the above method, the pressure for pressing the dried slurry is not particularly limited, but if the pressure is too high, a sufficient amount of voids can not be formed in the negative electrode active material layer, and if the pressure is too low It is preferable to press at 1 to 200 MPa, since no effect by the press is observed.

本発明のリチウムイオン電池用負極は、上記分散液が水又は非水溶媒であり、塗布した分散液を乾燥した場合、乾燥後に得られた上記負極活物質層に上記非水電解液を含浸することで得られ、負極活物質層に含浸する非水電解液の重量は、負極活物質層の空隙量と非水電解液の電解質濃度とに応じて調整することができる。 In the negative electrode for a lithium ion battery of the present invention, when the dispersion is water or a non-aqueous solvent and the applied dispersion is dried, the non-aqueous electrolyte is impregnated in the negative electrode active material layer obtained after drying. The weight of the non-aqueous electrolytic solution impregnated into the negative electrode active material layer can be adjusted according to the amount of voids in the negative electrode active material layer and the electrolyte concentration of the non-aqueous electrolytic solution.

上記負極活物質層に対する上記非水電解液の含浸は、上記の方法で形成した負極活物質層の表面にスポイト等を用いて非水電解液を滴下して含浸させる方法等により行うことができる。 Impregnation of the non-aqueous electrolyte into the negative electrode active material layer can be carried out by a method such as dropping the non-aqueous electrolyte onto the surface of the negative electrode active material layer formed by the above method using a syringe etc. .

[凝集粒子の製造方法]
凝集粒子を製造する方法は特に限定されないが、凝集粒子造粒用結着樹脂と一次粒子及び必要により用いる導電助剤とを公知の造粒機(撹拌式造粒機及び圧縮式造粒機等)で混合し、さらに減圧乾燥等により脱溶媒することによって得られた混合物を必要に応じて解砕し、所望の粒子径のものが得られるよう、必要に応じてふるい等で分級すればよい。
[Method of producing aggregated particles]
The method for producing the agglomerated particles is not particularly limited, but a known granulator (agitation granulator, compression granulator, etc.) may be used for the agglomerated particle granulation binder resin, the primary particles, and the conductive auxiliary agent optionally used. If necessary, the mixture obtained by removing the solvent by mixing under reduced pressure and removing the solvent by reduced pressure drying etc. may be crushed, and classified with a sieve etc. as necessary so as to obtain the desired particle size. .

凝集粒子造粒用結着樹脂と一次粒子と必要により用いる導電助剤との混合においては、溶媒(水及び有機溶剤等)を併用してもよい。
溶媒を併用する場合には、溶媒を凝集粒子造粒用結着樹脂を溶解した樹脂溶液の溶媒として用いて、樹脂溶液と一次粒子と必要により用いる導電助剤とを混合してもよいし、凝集粒子造粒用結着樹脂と一次粒子と必要により用いる導電助剤とを混合するときに溶媒をそのまま添加してよい。
また、併用される溶媒はその全量を樹脂溶液の溶媒としてもよく、樹脂溶液の一部として用いる溶媒とそのまま添加混合する溶媒とに分けて用いてもよい。
In the mixing of the binder resin for aggregated particle granulation, the primary particles, and the conductive auxiliary agent optionally used, a solvent (such as water and an organic solvent) may be used in combination.
When a solvent is used in combination, the solvent may be used as a solvent of the resin solution in which the binder resin for aggregating aggregated particles is dissolved, and the resin solution, the primary particles, and the conductive auxiliary agent used as needed may be mixed. The solvent may be added as it is when mixing the binder resin for aggregation particle granulation, the primary particles, and the conductive auxiliary agent optionally used.
The total amount of the solvents used in combination may be used as a solvent for the resin solution, or may be divided into a solvent used as a part of the resin solution and a solvent to be added and mixed as it is.

凝集粒子造粒用結着樹脂と一次粒子と必要により用いる導電助剤・溶媒との混合の方法(順序)は特に制限されず、例えば、下記の(方法1)〜(方法6)に記載の方法が挙げられる。
(方法1)それぞれが粉体状態である凝集粒子造粒用結着樹脂と一次粒子と導電助剤とを一括に投入して混合する方法。
(方法2)それぞれが粉体状態である凝集粒子造粒用結着樹脂と一次粒子と導電助剤とを一括に投入して混合した後、さらに撹拌下に溶媒を加えてさらに混合する方法。
(方法3)粉体状態である凝集粒子造粒用結着樹脂を溶媒中に分散させた樹脂溶液中に、粉体状態の一次粒子と導電助剤とを一括に投入して混合する方法。
(方法4)粉体状態である凝集粒子造粒用結着樹脂を溶媒中に分散させた樹脂溶液を撹拌しながら、まず粉体状態の一次粒子を添加混合し、さらに撹拌した後に導電助剤を投入して混合する方法。
(方法5)粉体状態である凝集粒子造粒用結着樹脂を溶媒中に分散させた樹脂溶液を撹拌しながら、まず導電助剤を添加混合し、さらに撹拌した後に粉体状態の一次粒子を投入して混合する方法。
(方法6)粉体状態である凝集粒子造粒用結着樹脂を溶媒中に分散させた樹脂溶液を撹拌しながら、まず粉体状態の一次粒子を添加混合して一次粒子スラリーを得て、その後導電助剤を撹拌しながら上記一次粒子スラリーを滴下又は分割投入して混合する方法。
The method (order) of the mixing of the binder resin for aggregation particle granulation, the primary particles, and the conductive auxiliary agent / solvent used as required is not particularly limited, and, for example, described in (Method 1) to (Method 6) below The method is mentioned.
(Method 1) A method in which a binder resin for aggregation particle granulation, which is in a powdery state, a primary particle and a conductive additive are simultaneously charged and mixed.
(Method 2) A method in which a binder resin for agglomerated particle granulation, which is in a powdery state, primary particles and a conductive additive are simultaneously charged and mixed, and then a solvent is further added with stirring and further mixed.
(Method 3) A method in which primary particles in a powder state and a conductive support agent are simultaneously charged and mixed in a resin solution in which a binder resin for aggregation particle granulation in a powder state is dispersed in a solvent.
(Method 4) While stirring a resin solution in which a binder resin for agglomerated particles in powder form is dispersed in a solvent, first, primary particles in powder form are added and mixed, and then after being stirred, a conductive aid How to put in and mix.
(Method 5) While stirring a resin solution in which a binder resin for agglomerated particles in powder form is dispersed in a solvent, first, a conductive additive is added and mixed, and then primary particles in powder form are stirred. How to put in and mix.
(Method 6) A primary particle slurry is obtained by first adding and mixing primary particles in a powder state while stirring a resin solution in which a binder resin for agglomerated particle granulation in a powder state is dispersed in a solvent. Thereafter, the primary particle slurry is dropped or divided and mixed while stirring the conductive aid.

なお上述したように、導電助剤は必要に応じて用いてもよい任意成分であるから、上記(方法1)〜(方法6)に記載した方法から導電助剤を添加する工程を除いた方法であっても、本発明のリチウムイオン電池用負極を構成する凝集粒子を得ることができる。なお、導電助剤を添加する工程を除いた(方法4)〜(方法6)は実質的に同じものである。 As described above, since the conductive auxiliary is an optional component that may be used if necessary, a method obtained by excluding the step of adding the conductive auxiliary from the methods described in (Method 1) to (Method 6) above Even in such a case, it is possible to obtain aggregated particles constituting the negative electrode for a lithium ion battery of the present invention. Note that (Method 4) to (Method 6) excluding the step of adding the conductive aid are substantially the same.

上記の(方法3)〜(方法4)においては、樹脂溶液と一次粒子と導電助剤との混合物に対してさらに溶媒を添加してもよい。 In the above (Method 3) to (Method 4), a solvent may be further added to the mixture of the resin solution, the primary particles and the conductive aid.

上記の(方法2)〜(方法6)において用いる溶媒としては、凝集粒子造粒用結着樹脂を溶解し、かつ使用している負極活物質に対する樹脂溶液の濡れ性が良好であれば特に限定されない。なお、(方法2)〜(方法6)において用いる溶媒には、樹脂溶液を構成する溶媒と樹脂溶液とは別に添加する溶媒の両方を含める。 The solvent used in the above (Method 2) to (Method 6) is not particularly limited as long as it dissolves the binder resin for aggregation particle granulation and the wettability of the resin solution to the used negative electrode active material is good. I will not. The solvents used in (Method 2) to (Method 6) include both the solvent constituting the resin solution and the solvent added separately from the resin solution.

上記の樹脂溶液を用いる場合には、樹脂溶液に含まれる凝集粒子造粒用結着樹脂の含有率は、負極活物質粒子、導電助剤への濡れ性の観点から、樹脂溶液の重量に基づいて0.1〜60重量%が好ましく、1〜40重量%がさらに好ましい。 In the case of using the above resin solution, the content of the binder resin for aggregation particle granulation contained in the resin solution is based on the weight of the resin solution from the viewpoint of the wettability to the negative electrode active material particles and the conductive additive. 0.1 to 60 weight% is preferable, and 1 to 40 weight% is more preferable.

上記の(方法2)において、溶媒と凝集粒子造粒用結着樹脂と一次粒子と導電助剤とを混合する際の固形分濃度は、負極活物質粒子、導電助剤への濡れ性の観点から、溶媒と凝集粒子造粒用結着樹脂と一次粒子と導電助剤との合計重量に基づいて10〜90重量%であることが好ましく、30〜90重量%がさらに好ましい。 In the above (Method 2), the solid content concentration at the time of mixing the solvent, the binder resin for agglomerated particle granulation, the primary particles, and the conductive additive is the viewpoint of the wettability to the negative electrode active material particles and the conductive additive From the viewpoint of the total weight of the solvent, the binder resin for agglomerated particle granulation, the primary particles, and the conductive additive, it is preferably 10 to 90% by weight, and more preferably 30 to 90% by weight.

上記の(方法2)〜(方法6)において、樹脂溶液、一次粒子、導電助剤及び溶剤とを混合する際の固形分濃度は、一次粒子、導電助剤に対する樹脂溶液の濡れ性の観点から、溶媒と凝集粒子造粒用結着樹脂と一次粒子と導電助剤との合計重量に基づいて0.1〜90重量%であることが好ましく、0.5〜60重量%がさらに好ましい。 In the above (Method 2) to (Method 6), the solid content concentration at the time of mixing the resin solution, the primary particles, the conductive auxiliary agent and the solvent is from the viewpoint of the wettability of the resin solution to the primary particles and the conductive auxiliary agent. It is preferable that it is 0.1 to 90 weight% based on the total weight of a solvent, the binder resin for aggregation particle granulation, a primary particle, and a conductive support agent, and 0.5 to 60 weight% is more preferable.

上記の(方法6)において用いる一次粒子スラリーの固形分濃度は、一次粒子、導電助剤に対する樹脂溶液の濡れ性の観点から、一次粒子スラリーの合計重量に基づいて20〜90重量%であることが好ましく、40〜80重量%がさらに好ましい。 The solid content concentration of the primary particle slurry used in the above (Method 6) is 20 to 90% by weight based on the total weight of the primary particle slurry from the viewpoint of the wettability of the resin solution to the primary particles and the conductive additive Is preferable, and 40 to 80% by weight is more preferable.

凝集粒子造粒用結着樹脂と一次粒子と導電助剤と溶媒との混合は、公知の混合撹拌装置を用いて行うことができ、撹拌羽根を使用しない容器回転型混合装置であっても撹拌羽根を使用する撹拌型混合装置であってもよい。なかでも撹拌型混合装置が好ましく、二軸撹拌式造粒機等がさらに好ましい。 The binder resin for aggregation particle granulation, the primary particles, the conductive auxiliary agent, and the solvent can be mixed using a known mixing and stirring apparatus, and even if it is a container rotation type mixing apparatus which does not use a stirring blade It may be a stirring-type mixing device using blades. Among them, a stirring-type mixing apparatus is preferable, and a twin-screw stirring-type granulator and the like are more preferable.

凝集粒子造粒用結着樹脂と一次粒子と導電助剤と溶媒とを混合する工程は、その内容物をサンプリングし、凝集粒子の体積平均粒子径が目的の体積平均粒子径となるまで行うことが好ましい。 The step of mixing the binder resin for aggregation particle granulation, the primary particles, the conductive auxiliary agent, and the solvent is performed by sampling the contents and performing until the volume average particle diameter of the aggregation particles becomes a target volume average particle diameter Is preferred.

溶媒と凝集粒子造粒用結着樹脂と一次粒子と必要により用いる導電助剤とを混合して凝集粒子を得る場合、混合中、又は混合した後に、必要によりさらに溶媒の留去を行ってよい。混合中に溶媒の留去を行う場合は、混合装置で混合しながら混合装置の内部を減圧及び/又は加熱することで行うことができ、混合後に行う場合には混合後に混合装置の内部を減圧及び/又は加熱すること、又は混合した後の内容物を別の乾燥機に移して減圧及び/又は加熱することによって行うことが出来る。
溶媒を留去する時の混合装置及び乾燥機の圧力及び温度は、使用する溶媒の沸点及び蒸気圧に応じて調整すればよい。
When mixing a solvent, a binder resin for aggregation particle granulation, a primary particle, and a conductive auxiliary agent optionally used to obtain an aggregation particle, the solvent may be further distilled off if necessary during or after mixing. . When distilling off the solvent during mixing, it can be performed by reducing pressure and / or heating the inside of the mixing device while mixing with the mixing device, and when performing after mixing, the pressure reduction of the inside of the mixing device after mixing It can carry out by transferring the contents after heating and / or mixing to another dryer, and reducing pressure and / or heating.
The pressure and temperature of the mixing apparatus and dryer for distilling off the solvent may be adjusted according to the boiling point and vapor pressure of the solvent used.

混合装置で混合しながら混合装置の内部を減圧及び/又は加熱することで溶媒の留去を行う場合、含まれる溶媒を一気に連続的に留去してもよく、溶媒の一部を留去した時点で溶媒の留去を中断し、所定時間(目的の溶媒が完全に留去されたことを重量変化で確認したのち)の混合を行った後に溶媒の留去を再開することが好ましい。溶媒の一部を留去した時点で溶媒の留去を中断し、所定時間の混合を行った後に溶媒の留去を再開する方法で溶媒の留去を行う場合、溶媒として沸点の異なる溶媒を併用することが好ましい。 When distilling off the solvent by depressurizing and / or heating the inside of the mixing device while mixing with the mixing device, the contained solvent may be continuously distilled off at once, and a part of the solvent was distilled off It is preferable to stop evaporation of the solvent at a point in time and resume evaporation of the solvent after mixing for a predetermined time (after confirming by weight change that the target solvent has been completely evaporated). When distillation of the solvent is stopped by distilling off the solvent by stopping the evaporation of the solvent by resuming evaporation of the solvent after mixing for a predetermined period of time, the solvents having different boiling points are used as solvents. It is preferable to use in combination.

凝集粒子は、凝集粒子造粒用結着樹脂と一次粒子と必要により用いる導電助剤と必要により用いる溶媒との混合、及び必要により用いる溶媒を必要により留去することで得られるが、得られたものを必要に応じてさらに解砕及び/又は分級を行ってもよい。 The aggregated particles can be obtained by mixing the binder resin for aggregation particle granulation, the primary particles, the conductive auxiliary agent used as needed, the solvent used as needed, and the solvent used as needed, if necessary, by distilling off the solvent. These may be further crushed and / or classified as required.

解砕は、公知の解砕機又は公知の粉体混合機等を用いて行うことができる。 The crushing can be performed using a known crusher, a known powder mixer, or the like.

分級は、ふるい分け等によって行うことができる。ふるい分けを行う場合には、用いるふるいはその目開きを、凝集粒子の体積平均粒子径が一次粒子の体積平均粒子径の200%以上及び/又は下記の負極活物質層の厚さの50%以下になる大きさになるように選択することが好ましい。 Classification can be performed by screening or the like. When sieving is performed, the sieve to be used has an opening which is 200% or more of the volume average particle size of the primary particles and / or 50% or less of the thickness of the negative electrode active material layer described below. It is preferable to select the size to be

凝集粒子の体積平均粒子径は、上記解砕の条件及び、ふるい等による分級条件を変更することにより、適宜変更することができる。
また、電極内部での電気的孤立の抑制及び耐久性を向上させる等の観点から、得られた凝集粒子の体積基準における粒子径累積分布曲線における累積10%粒子径は1μm以上であることが好ましい。
The volume average particle diameter of the agglomerated particles can be changed as appropriate by changing the conditions of the above-mentioned crushing and the classification conditions using a sieve or the like.
In addition, from the viewpoint of suppressing electrical isolation inside the electrode and improving durability, it is preferable that the cumulative 10% particle diameter in the particle diameter cumulative distribution curve of the obtained aggregated particles on a volume basis be 1 μm or more .

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES The present invention will now be specifically described by way of Examples, but the present invention is not limited to the Examples unless departing from the gist of the present invention. Unless otherwise stated, parts mean parts by weight and% mean% by weight.

[樹脂集電体の作製]
2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。
得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、膜厚100μmの樹脂集電体用導電性フィルムを得た。次いで、得られた樹脂集電体用導電性フィルムを3cm×3cmに切断し、片面にニッケル蒸着を施した後、電流取り出し用の端子(5mm×3cm)を接続した樹脂集電体を得た。
[Production of resin current collector]
In a twin-screw extruder, polypropylene [trade name "Sun Aroma PL 500A", Sun Aroma Co., Ltd. product] 70 parts, carbon nanotube [trade name: "FloTube 9000", CNano company] 25 parts and dispersant [trade name "Yumex 1001" And 5 parts of Sanyo Chemical Industries, Ltd.] were melt-kneaded under the conditions of 200 ° C. and 200 rpm to obtain a resin mixture.
The obtained resin mixture was passed through a T-die extrusion film forming machine, and it was stretched and rolled to obtain a conductive film for a resin current collector having a film thickness of 100 μm. Next, the obtained conductive film for a resin current collector was cut into 3 cm × 3 cm, nickel deposition was performed on one side, and then a resin current collector to which a terminal (5 mm × 3 cm) for current extraction was connected was obtained. .

[一次粒子の作製]
リチウムイオン電池負極用酸化珪素粒子[信越化学工業(株)製、一次粒子の体積平均粒子径:5μm]を横型加熱炉中に入れ、横型加熱炉内にメタンガスを通気しながら1100℃/1000Pa、平均滞留時間約2時間の化学蒸着操作を行い、炭素含有量が2重量%で、表面が炭素で被覆された酸化珪素粒子(体積平均粒子径6μm)(N−1)を得た。
得られた(N−1)を顕微鏡により拡大観察して凝集体を形成していないことを確認し、これを下記の凝集粒子を得るための一次粒子として用いた。
[Preparation of Primary Particles]
Silicon oxide particles for lithium ion battery anode [Shin-Etsu Chemical Co., Ltd., volume average particle diameter of primary particles: 5 μm] is placed in a horizontal heating furnace, and methane gas is passed in the horizontal heating furnace at 1100 ° C./1000 Pa, Chemical vapor deposition operation with an average residence time of about 2 hours was carried out to obtain silicon oxide particles (volume average particle diameter 6 μm) (N-1) having a carbon content of 2% by weight and a surface covered with carbon.
The obtained (N-1) was magnified and observed with a microscope to confirm that aggregates were not formed, and this was used as primary particles for obtaining the following aggregated particles.

[被覆用樹脂溶液の作製]
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2−エチルヘキシルメタクリレート242.8部及びDMF116.5部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)1.7部及び2,2’−アゾビス(2−メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂固形分濃度50重量%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形濃度30重量%である被覆用樹脂溶液を得た。
[Preparation of resin solution for coating]
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas inlet, 407.9 parts of DMF was charged and the temperature was raised to 75 ° C. Next, a monomer combination liquid containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate and 116.5 parts of DMF, and 2,2′-azobis (2,4-dimethylvalero) An initiator solution of 1.7 parts of nitrile) and 4.7 parts of 2,2'-azobis (2-methylbutyronitrile) dissolved in 58.3 parts of DMF is stirred while blowing nitrogen into a four-necked flask In the lower portion, radical polymerization was continuously performed by dropping the solution for 2 hours with a dropping funnel. After completion of the addition, the reaction was continued at 75 ° C. for 3 hours. Then, the temperature was raised to 80 ° C. and the reaction was continued for 3 hours to obtain a copolymer solution having a resin solid concentration of 50% by weight. To this was added 789.8 parts of DMF to obtain a coating resin solution having a solid concentration of 30% by weight.

[炭素系被覆負極活物質粒子の作製]
リチウムイオン電池負極用ハードカーボン[JFEケミカル(株)製、体積平均粒子径20μm](N−2)68.2部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、上記被覆用樹脂溶液33.3部を2分かけて滴下し、さらに5分撹拌した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去し、炭素系被覆負極活物質粒子(N−3)を得た。
[Preparation of carbon-based coated negative electrode active material particles]
68.2 parts of hard carbon for lithium ion battery negative electrode (manufactured by JFE Chemical Co., Ltd., volume average particle diameter 20 μm) (N-2) is placed in universal mixer high speed mixer FS25 (manufactured by Earth Technica Co., Ltd.), and room temperature While stirring at 720 rpm, 33.3 parts of the coating resin solution was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of vacuum, and the volatile matter was distilled off while maintaining the degree of stirring, the pressure and the temperature for 8 hours The carbon-based coated negative electrode active material particles (N-3) were obtained.

<実施例1>
[凝集粒子の作製]
一次粒子である酸化珪素粒子(N−1)60部と凝集粒子造粒用結着樹脂であるポリアクリル酸[和光純薬工業(株)製 PHA(非架橋タイプ)酸価780]の25重量%水分散液80部と、導電助剤であるアセチレンブラック[デンカ(株)製 デンカブラックLi−400:体積平均粒子径48nm]20部を二軸撹拌式造粒機[アキラ機工(株)製 バランスグラン]を用いて2000rpmで10分間混合し、続いて100℃にセットした減圧乾燥機内で3時間加熱することにより溶媒を除去した。
得られた混合物を乳鉢により解砕して凝集粒子を得た。
なお、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiN(FSOを2mol/Lの割合で溶解させて作製した非水電解液に対する上記凝集粒子造粒用結着樹脂の膨潤度は、110%であった。
Example 1
[Preparation of aggregated particles]
25 parts by weight of 60 parts of silicon oxide particles (N-1) which are primary particles and polyacrylic acid [PHO (non-crosslinked type) acid number 780 made by Wako Pure Chemical Industries, Ltd.] which is a binder resin for aggregation particle granulation 80% aqueous dispersion and acetylene black (Denka Co., Ltd. Denka Black Li-400: volume average particle diameter 48 nm) 20 parts of a biaxial stirring type granulator (Akira Kiko Co.) The solvent was removed by mixing at 2000 rpm for 10 minutes using a Balance Granule, followed by heating for 3 hours in a vacuum oven set at 100 ° C.
The resulting mixture was crushed in a mortar to obtain agglomerated particles.
The above-mentioned aggregated particles for a non-aqueous electrolyte prepared by dissolving LiN (FSO 2 ) 2 at a ratio of 2 mol / L in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1: 1) The degree of swelling of the binder resin for granulation was 110%.

[超音波照射後の粒径20μm以下の粒子発生率の測定]
プロピレンカーボネート中に固形分が2重量%となるように凝集粒子を投入し、超音波洗浄器[アズワン(株)製 ASU−20M]により超音波(40kHz)を5分間照射した。その後、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル社製 MT3300 EXII)で粒度分布を測定し、粒径20μm以下の粒子の割合を求めることで、超音波照射後の粒径20μm以下の粒子発生率を求めた。
なお、超音波照射後の粒径20μm以下の粒子発生率が低いほど、凝集粒子の機械的強度が高く、充放電に伴う体積変化によって微粉が発生しにくいことを示す。
[Measurement of particle generation rate of particle diameter 20 μm or less after ultrasonic irradiation]
Aggregated particles were charged into propylene carbonate so that the solid content was 2% by weight, and ultrasonic waves (40 kHz) were applied for 5 minutes with an ultrasonic cleaner [ASU-20M manufactured by As One Co., Ltd.]. Thereafter, the particle size distribution is measured with a laser diffraction / scattering particle size distribution measuring apparatus (MT3300 EXII manufactured by Microtrac Bell Co., Ltd.) to determine the ratio of particles having a particle size of 20 μm or less. The following particle generation rates were determined.
The lower the particle generation rate with a particle diameter of 20 μm or less after the ultrasonic wave irradiation, the higher the mechanical strength of the aggregated particles, and the less the generation of fine powder due to the volume change associated with charge and discharge.

[負極活物質スラリーの作製]
上記非水電解液3000部に上記凝集粒子100部、導電材であるアセチレンブラック[デンカ(株)製 デンカブラックLi−400]15部を添加した後、遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて1000rpmで5分間混合して、負極活物質スラリーを作製した。
[Preparation of negative electrode active material slurry]
After adding 100 parts of the aggregated particles and 15 parts of acetylene black (denka black Li-400 manufactured by Denka Co., Ltd.) as the conductive material to 3000 parts of the non-aqueous electrolyte, a planetary stirring type mixing and kneading apparatus {Awatori Nritaro It mixed for 5 minutes at 1000 rpm using [made by Corporation | KK Shinky]}, and produced the negative electrode active material slurry.

[負極活物質層の作製]
得られた負極活物質スラリーをφ15mmのマスクを装着したφ23mmのアラミド不織布(日本バイリーン製、2415R)上に目付量が20mg/cmとなるように滴下し、裏面から吸引濾過(減圧)することでアラミド不織布上に積層し、さらに5MPaの圧力で約10秒プレスすることで負極活物質層を作製した。
接触式膜厚計で測定した負極活物質層の厚さは225μmであった。
また、負極活物質層を構成する各固体成分(電解質を除く)の重量を、各成分の真密度でそれぞれ除して得られる各成分の体積の合計値を、負極活物質層の体積から引くことによって、負極活物質層に占める空隙の体積を求めた。その後、負極活物質層に占める空隙の体積を負極活物質層の体積で除することにより、負極活物質層の空隙率を求めた。負極活物質層の空隙率は48%であった。
[Fabrication of negative electrode active material layer]
The obtained negative electrode active material slurry is dropped on a 23 mm φ aramid non-woven fabric (2415 R, manufactured by Nippon Byuren) fitted with a φ 15 mm mask so that the weight per unit area is 20 mg / cm 2 and suction filtration (decompression) The negative electrode active material layer was produced by laminating on the aramid non-woven fabric and pressing for about 10 seconds at a pressure of 5 MPa.
The thickness of the negative electrode active material layer measured by the contact film thickness meter was 225 μm.
Also, the total value of the volume of each component obtained by dividing the weight of each solid component (excluding the electrolyte) constituting the negative electrode active material layer by the true density of each component is subtracted from the volume of the negative electrode active material layer Thus, the volume of the void occupied in the negative electrode active material layer was determined. Then, the porosity of the negative electrode active material layer was determined by dividing the volume of the void occupied in the negative electrode active material layer by the volume of the negative electrode active material layer. The porosity of the negative electrode active material layer was 48%.

[外装材の作製]
端子(5mm×3cm)付き銅箔(3cm×3cm、厚さ17μm)2つを、同じ方向に2つの端子が出る向きで順に積層し、それを2枚の市販の熱融着型アルミラミネートフィルム(10cm×8cm)に挟み、端子の出ている1辺を熱融着し、電池外装材を作製した。
[Preparation of exterior material]
Two copper foils (3 cm × 3 cm, thickness 17 μm) with terminals (5 mm × 3 cm) are sequentially laminated in the direction in which the two terminals come out in the same direction, and these are laminated with two commercially available heat sealable aluminum laminate films The battery case was prepared by sandwiching (10 cm × 8 cm) and heat-sealing one side where the terminal was exposed.

[電池の作製]
外装材の銅箔上に上記樹脂集電体を配置し、その上にアラミド不織布を剥がした負極活物質層を配置し、非水電解液を100μL添加した。セパレータ(5cm×5cm、厚さ23μm、セルガード#3501 ポリプロピレン製)を負極活物質層上に配置し、非水電解液を100μL添加した。リチウム箔と負極活物質層とをセパレータを介して積層し、非水電解液を100μL添加した。さらにリチウム箔上に樹脂集電体を積層し、その上に外装材の銅箔が重なるように外装材を被せた。外装材の外周のうち、先に熱融着した1辺に直交する2辺をヒートシールし、さらに真空シーラーを用いてセル内を真空にしながら残る開口部をヒートシールすることでラミネートセルを密封し、本発明のリチウムイオン電池用負極を有する実施例1に係る評価用ハーフセル(以下、評価用電池ともいう)を得た。
[Production of battery]
The resin current collector was disposed on the copper foil of the packaging material, the negative electrode active material layer from which the aramid nonwoven fabric was peeled off was disposed thereon, and 100 μL of the non-aqueous electrolyte was added. A separator (5 cm × 5 cm, 23 μm thickness, made of Celgard # 3501 polypropylene) was disposed on the negative electrode active material layer, and 100 μL of a non-aqueous electrolyte was added. The lithium foil and the negative electrode active material layer were laminated via a separator, and 100 μL of a non-aqueous electrolyte was added. Furthermore, the resin current collector was laminated on lithium foil, and the covering material was covered so that the copper foil of the covering material might overlap. Of the outer periphery of the packaging material, heat seal the two sides orthogonal to the previously heat sealed side, and seal the laminated cell by heat sealing the remaining opening while vacuuming the inside of the cell using a vacuum sealer. Thus, a half cell for evaluation (hereinafter, also referred to as a battery for evaluation) according to Example 1 having the negative electrode for a lithium ion battery of the present invention was obtained.

[電池特性の測定]
作製した評価用電池について、充放電測定装置「HJ0501SM」[北斗電工(株)製]を用いて以下の方法で充放電試験を行い、1回目放電時において1gあたりの珪素及び珪素化合物(以下、まとめて珪素系活物質ともいう)が担った放電容量(珪素系活物質の初回放電容量)及び1回目放電時のハーフセルの放電容量に対する10回目の放電時のハーフセルの放電容量の比率(10サイクル目容量維持率ともいう)を、下記の方法で求めた。結果を表1に示す。
[Measurement of battery characteristics]
The prepared battery for evaluation was subjected to a charge / discharge test according to the following method using a charge / discharge measurement apparatus "HJ0501SM" (manufactured by Hokuto Denko Co., Ltd.), and silicon and silicon compounds per gram (hereinafter referred to as The discharge capacity carried by the silicon-based active material (initially the discharge capacity of the silicon-based active material) and the ratio of the discharge capacity of the half cell at the 10th discharge to the discharge capacity of the half cell at the first discharge (10 cycles) The eye volume maintenance rate was also determined by the following method. The results are shown in Table 1.

[充放電試験の測定条件]
本充放電試験においては、負極にリチウムイオンが挿入されてハーフセルである評価用電池の電位が下がる方向[すなわち、正極に金属リチウムではなく正極活物質を用いた通常のリチウムイオン電池(ハーフセルに対してフルセルともいう)の場合に充電となる電流の方向]を充電とした。試験は下記の通り45℃で行い、充電と放電との間には10分間の休止時間を設けた。
作製した評価用電池を充放電測定装置[北斗電工(株)製 HJ0501SM]にセットし、45℃の条件下で定電流定電圧充電方式により、まず0.05Cの電流で0Vまで充電して10分間の休止を行った。その後0.05Cの電流で1.5Vまで放電して10分間の休止の後に再び0.05Cの電流で0Vまで充電した。その後、上記の10分間の休止時間を挟んで行う0.05Cでの0Vまで充電と0.05Cでの1.5Vまで放電とを回繰り返し、合計10回の充放電を行った。
[Measurement conditions of charge and discharge test]
In this charge / discharge test, lithium ions are inserted into the negative electrode to decrease the potential of the evaluation battery as a half cell [ie, a normal lithium ion battery using a positive electrode active material instead of metallic lithium as the positive electrode In the case of a full cell), the direction of the current to be charged is referred to as charging. The test was conducted at 45 ° C. as described below, with a 10 minute dwell between charge and discharge.
Set the prepared evaluation battery in the charge and discharge measurement device (HJ0501SM manufactured by Hokuto Denko Co., Ltd.), charge to 0 V with a current of 0.05 C at a constant current constant voltage charging method under the condition of 45 ° C 10 A pause for a minute was done. Thereafter, it was discharged to 1.5 V at a current of 0.05 C, and charged to 0 V at a current of 0.05 C again after 10 minutes of rest. After that, charging to 0 V at 0.05 C and discharging to 1.5 V at 0.05 C, which are performed with the above-described 10-minute rest time, were repeated a total of 10 times.

[珪素系活物質の初回放電容量]
上述の通り、珪素系活物質の初回放電容量は、1gの珪素系活物質が有する容量を意味し、下記の方法で得られた評価用電池の放電容量から、電極に用いた原料のうちリチウムイオンが挿入反応できる原料である導電助剤が担った放電容量を除した値を電池作製に用いた珪素系活物質の重量で割ることで得た。
なお、評価用電池において導電助剤が担った放電容量は、実施例1において凝集粒子に代えて導電助剤を用いて容量計算用ハーフセルを作製し、評価用電池と同様にして充放電試験を行い、導電助剤1gあたりの容量を求め、その値と評価用電池の作製に用いた導電助剤の評価用電池における重量割合とをかけ算することで算出した。
[Initial discharge capacity of silicon-based active material]
As described above, the initial discharge capacity of the silicon-based active material means the capacity of 1 g of silicon-based active material, and from the discharge capacity of the evaluation battery obtained by the following method, lithium among the raw materials used for the electrode It was obtained by dividing the value obtained by dividing the discharge capacity carried by the conductive additive, which is a raw material capable of causing an insertion reaction, by the weight of the silicon-based active material used for battery preparation.
The discharge capacity of the conductive support agent in the evaluation battery was changed to the agglomerated particles in Example 1 to prepare a half cell for capacity calculation using the conductive support agent, and the charge / discharge test was performed in the same manner as the evaluation battery. The capacity per 1 g of the conductive additive was determined, and the value was calculated by multiplying the weight ratio of the conductive additive used in the preparation of the battery for evaluation to the weight ratio of the battery for evaluation.

[10サイクル目容量維持率]
下記の計算式で算出した。
10サイクル目容量維持率(%)=[(評価用電池の10回目の放電容量)÷(評価用電池の1回目の放電容量)×100]
[10th cycle capacity maintenance rate]
It calculated with the following formula.
10th cycle capacity retention rate (%) = [(10th discharge capacity of the evaluation battery) / (first discharge capacity of the evaluation battery) x 100]

[凝集粒子造粒用結着樹脂Aの製造]
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF150部を仕込み、75℃に昇温した。ついで、アクリル酸70部、メタクリル酸20部、メタクリル酸メチル10部及びDMF50部を配合した単量体組成物と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF30部に溶解した開始剤溶液とを、4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。ついで、80℃に昇温して反応を3時間継続し、樹脂濃度30%の共重合体溶液を得た。得られた共重合体溶液は、テフロン(登録商標)製のバットに移して150℃、0.01MPaで3時間の減圧乾燥を行い、DMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の凝集粒子造粒用結着樹脂Aを得た。
[Production of Binder Resin A for Agglomerated Particle Granulation]
150 parts of DMF was charged into a four-necked flask provided with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas inlet, and the temperature was raised to 75 ° C. Then, a monomer composition containing 70 parts of acrylic acid, 20 parts of methacrylic acid, 10 parts of methyl methacrylate and 50 parts of DMF, 0.3 parts of 2,2'-azobis (2,4-dimethylvaleronitrile), An initiator solution in which 0.8 parts of 2,2′-azobis (2-methylbutyronitrile) is dissolved in 30 parts of DMF is stirred for 2 hours with a dropping funnel under stirring while blowing nitrogen into a four-necked flask. The radical polymerization was carried out continuously dropwise. After completion of the addition, the reaction was continued at 75 ° C. for 3 hours. Then, the temperature was raised to 80 ° C. and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 30%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat, dried under reduced pressure at 150 ° C. and 0.01 MPa for 3 hours, and DMF was distilled off to obtain a copolymer. The copolymer was roughly crushed with a hammer and then further crushed in a mortar to obtain a powdery binder resin A for granulation particle granulation.

[凝集粒子造粒用結着樹脂Bの製造]
アクリル酸の添加量を70部、メタクリル酸20部及びメタクリル酸メチル10部を、アクリル酸83部及びメタクリル酸2−エチルヘキシル17部に変更したほかは、凝集粒子造粒用結着樹脂Aの製造と同様の手順で、凝集粒子造粒用結着樹脂Bを製造した。
[Manufacture of binder resin B for agglomerated particle granulation]
Production of Binder Resin A for Agglomerated Particles Except that 70 parts of acrylic acid, 20 parts of methacrylic acid and 10 parts of methyl methacrylate were changed to 83 parts of acrylic acid and 17 parts of 2-ethylhexyl methacrylate Binder resin B for aggregation particle granulation was manufactured in the procedure similar to the above.

<実施例2〜11及び比較例1〜2>
凝集粒子の作製における一次粒子の添加量、導電助剤の種類及び添加量、凝集粒子造粒用結着樹脂の種類及び添加量、導電材の種類及び添加量、負極活物質層の空隙率及び厚さ、並びに、炭素系負極活物質粒子と併用している場合は炭素系負極活物質粒子の種類及び添加量を表1に示すように変更した以外は、実施例1と同様の手順で実施例2〜11に係るリチウムイオン電池及び比較例1〜2に係るリチウムイオン電池を得た。なお、比較例2では、凝集粒子を形成せず、一次粒子(N−1)をそのまま負極活物質を構成する材料として用いた。
実施例2〜11及び比較例1〜2に係るリチウムイオン電池についても、実施例1と同様に電池特性の測定を行い、珪素系活物質の初回放電容量及び10サイクル目容量維持率を測定した。
ただし、炭素系負極活物質粒子を併用している実施例5〜8における珪素系活物質の初回放電容量は、評価用電池の1回目の放電容量から、電極に用いた原料のうちリチウムイオンが挿入反応できる原料である導電助剤と炭素系負極活物質粒子が担った容量をそれぞれ除した値を電池作製に用いた珪素系活物質の重量で割ることで得た。
なお、評価用電池における導電助剤が担った容量は、実施例1における珪素系活物質の初回放電容量の計算と同様に算出し、炭素系負極活物質粒子が担った容量は導電助剤を炭素系負極活物質粒子に代え、導電助剤が担った容量と同様に算出した。
表1における化合物名及び条件等の記載は以下のように対応している。
AB:デンカ(株)製 デンカブラック Li−400
KB:ライオン(株)製 ケッチェンブラック EC300J
PAA:和光純薬工業(株)製 PHA(非架橋タイプ) 酸価780 数平均分子量:約100万
PAA10%架橋体:和光純薬工業(株)製 10CLPAH 酸価740 数平均分子量:約100万
樹脂A:凝集粒子造粒用結着樹脂A 酸価680 数平均分子量:約10万
樹脂B:凝集粒子造粒用結着樹脂B 酸価640 数平均分子量:約10万
(N−1):[一次粒子の作製]により得られた一次粒子である酸化珪素粒子(体積平均粒子径:6μm)
(N−2):リチウムイオン電池負極用ハードカーボン[JFEケミカル(株)製、 体積平均粒子径:20μm]
(N−3):(N−2)を用いて作製した炭素系被覆負極活物質粒子(体積平均粒子径:20μm)
(N−4):リチウムイオン電池負極用黒鉛[日立化成(株)製MAGD−20、体積平均粒子径20μm]
<Examples 2 to 11 and Comparative Examples 1 to 2>
The amount of primary particles added in the preparation of aggregated particles, the type and amount of conductive aid, the type and amount of binder resin for aggregation particle granulation, the type and amount of conductive material, the porosity of the negative electrode active material layer, The procedure was carried out in the same manner as Example 1, except that the thickness and the type and amount of addition of carbon-based negative electrode active material particles were changed as shown in Table 1 when used in combination with carbon-based negative electrode active material particles. Lithium ion batteries according to Examples 2 to 11 and lithium ion batteries according to Comparative Examples 1 and 2 were obtained. In Comparative Example 2, the aggregated particles were not formed, and the primary particles (N-1) were used as they were as the material constituting the negative electrode active material.
The battery characteristics of the lithium ion batteries according to Examples 2 to 11 and Comparative Examples 1 and 2 were also measured in the same manner as Example 1, and the initial discharge capacity and the 10th cycle capacity retention rate of the silicon-based active material were measured. .
However, the first discharge capacity of the silicon-based active material in Examples 5 to 8 in which the carbon-based negative electrode active material particles are used in combination is the lithium ion among the raw materials used for the electrode from the first discharge capacity of the evaluation battery. It obtained by dividing the value which remove | divided the capacity | capacitance which the conductive support agent and carbon-type negative electrode active material particle which are the raw materials which can carry out an insertion reaction each into was divided by the weight of the silicon type active material used for battery preparation.
The capacity of the conductive support agent in the evaluation battery was calculated in the same manner as the calculation of the initial discharge capacity of the silicon-based active material in Example 1, and the capacity of the carbon-based negative electrode active material particles was the conductive support agent. In place of the carbon-based negative electrode active material particles, the volume was calculated in the same manner as the capacity of the conductive support agent.
The descriptions of compound names and conditions etc. in Table 1 correspond as follows.
AB: Denka Co., Ltd. Denka Black Li-400
KB: Lion Corporation Ketjen Black EC300J
PAA: Wako Pure Chemical Industries, Ltd. PHA (non-crosslinked type) acid number 780 Number average molecular weight: about 1,000,000 PAA 10% Cross-linked product: Wako Pure Chemical Industries, Ltd. 10 CLPAH acid value 740 number average molecular weight: about 1,000,000 Resin A: Binder resin for agglomerated particle granulation A Acid value 680 Number average molecular weight: about 100,000 Resin B: Binder resin for agglomerated particle granulation B Acid value 640 Number average molecular weight: about 100,000 (N-1): Silicon oxide particles (volume average particle diameter: 6 μm) which are primary particles obtained by [Preparation of primary particles]
(N-2): Hard carbon for lithium ion battery negative electrode (manufactured by JFE Chemical Co., Ltd., volume average particle diameter: 20 μm)
(N-3): Carbon-based coated negative electrode active material particles produced using (N-2) (volume average particle diameter: 20 μm)
(N-4): Graphite for lithium ion battery negative electrode [Hitachi Chemical Co., Ltd. MAGD-20, volume average particle diameter 20 μm]

Figure 2019106374
Figure 2019106374

表1の結果より、凝集粒子造粒用結着樹脂の酸価が、680〜850である凝集粒子を用いた本発明のリチウムイオン電池用負極を用いたリチウムイオン電池は、初回放電特性及び10サイクル目容量維持率に優れることがわかった。このことから、本発明のリチウムイオン電池用負極はエネルギー密度及びサイクル特性に優れることがわかる。実施例1〜11に係るリチウムイオン電池では、超音波照射後の粒径20μm以下の粒子発生率が低いことから、凝集粒子の機械的強度が高く、充放電に伴う体積変化によって微粉が発生しにくいと考えられる。さらに実施例5〜8の結果から、凝集粒子を炭素系負極活物質と併用した場合であっても、凝集粒子の電池特性の劣化はみられないことがわかった。 From the results of Table 1, the lithium ion battery using the lithium ion battery negative electrode of the present invention using aggregated particles in which the acid value of the binder resin for aggregated particle granulation is 680 to 850 has initial discharge characteristics and 10 It was found that the cycle capacity retention rate was excellent. From this, it is understood that the lithium ion battery negative electrode of the present invention is excellent in energy density and cycle characteristics. In the lithium ion batteries according to Examples 1 to 11, since the particle generation rate of the particle diameter of 20 μm or less after the ultrasonic wave irradiation is low, the mechanical strength of the aggregated particles is high, and fine powder is generated due to the volume change associated with charge and discharge. It is considered difficult. Furthermore, it was found from the results of Examples 5 to 8 that even when the agglomerated particles were used in combination with the carbon-based negative electrode active material, the battery characteristics of the agglomerated particles were not deteriorated.

本発明のリチウムイオン電池用負極は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の電極として有用である。 The negative electrode for lithium ion batteries of the present invention is particularly useful as an electrode for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, personal computers, hybrid vehicles and electric vehicles.

1 リチウムイオン電池用負極
10 負極集電体
20 負極活物質層
30 一次粒子
40 凝集粒子造粒用結着樹脂
50 空隙
60 凝集粒子
70 非水電解液
80 導電材
DESCRIPTION OF SYMBOLS 1 negative electrode 10 for lithium ion battery negative electrode collector 20 negative electrode active material layer 30 primary particle 40 binder resin for aggregation particle granulation 50 void 60 aggregation particle 70 non-aqueous electrolyte 80 conductive material

Claims (6)

珪素及び/又は珪素化合物からなる一次粒子が凝集し結着してなる凝集粒子を含む負極活物質層が負極集電体上に配置されてなるリチウムイオン電池用負極であって、
前記凝集粒子は、前記一次粒子が凝集粒子造粒用結着樹脂により互いに結着されてなり、
前記凝集粒子造粒用結着樹脂は、酸価が680〜850の(メタ)アクリル酸(共)重合体であって、
前記負極活物質層は、前記凝集粒子同士を互いに結着させるバインダを含まない非結着体であることを特徴とするリチウムイオン電池用負極。
A negative electrode for a lithium ion battery, comprising: a negative electrode active material layer including an agglomerated particle formed by aggregation and binding of primary particles composed of silicon and / or silicon compound disposed on an anode current collector,
The aggregated particles are formed by binding the primary particles to each other with a binder resin for aggregation particle granulation,
The binder resin for aggregating aggregated particles is a (meth) acrylic acid (co) polymer having an acid value of 680 to 850,
The negative electrode active material layer is a non-binding body that does not contain a binder that binds the aggregated particles to each other.
前記凝集粒子の重量に対する前記凝集粒子造粒用結着樹脂の重量の割合が10〜30重量%である請求項1に記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to claim 1, wherein a ratio of a weight of the binder resin for granulation of aggregated particles to a weight of the aggregated particles is 10 to 30% by weight. 前記負極活物質層の厚さは、150〜600μmである請求項1又は2に記載のリチウムイオン電池用負極。 The thickness of the said negative electrode active material layer is 150-600 micrometers, The negative electrode for lithium ion batteries of Claim 1 or 2. 前記リチウムイオン電池用負極は、さらに電解質及び非水溶媒を含有する非水電解液を含み、
前記非水溶媒は環状炭酸エステルを含み、
前記環状炭酸エステルの前記非水溶媒に占める体積割合は50体積%以上であり、
前記電解質濃度が1.2〜5.0mol/Lであって、
前記非水電解液に対する前記凝集粒子造粒用結着樹脂の膨潤度が120%以下である請求項1〜3のいずれかに記載のリチウムイオン電池用負極。
The lithium ion battery negative electrode further comprises a non-aqueous electrolyte containing an electrolyte and a non-aqueous solvent,
The non-aqueous solvent comprises cyclic carbonate,
The volume ratio of the cyclic carbonate to the non-aqueous solvent is 50% by volume or more,
The electrolyte concentration is 1.2 to 5.0 mol / L,
The negative electrode for a lithium ion battery according to any one of claims 1 to 3, wherein a degree of swelling of the binder resin for granulation of aggregated particles with respect to the non-aqueous electrolytic solution is 120% or less.
前記負極活物質層の空隙率は、35〜50%である請求項1〜4のいずれかに記載のリチウムイオン電池用負極。 The porosity of the said negative electrode active material layer is 35 to 50%, The negative electrode for lithium ion batteries in any one of Claims 1-4. 請求項1〜5のいずれかに記載のリチウムイオン電池用負極を備えることを特徴とするリチウムイオン電池。 A lithium ion battery comprising the negative electrode for a lithium ion battery according to any one of claims 1 to 5.
JP2018232576A 2017-12-13 2018-12-12 Negative electrode for lithium ion battery and lithium ion battery Active JP7130540B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238948 2017-12-13
JP2017238948 2017-12-13

Publications (2)

Publication Number Publication Date
JP2019106374A true JP2019106374A (en) 2019-06-27
JP7130540B2 JP7130540B2 (en) 2022-09-05

Family

ID=67061423

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018232577A Active JP7130541B2 (en) 2017-12-13 2018-12-12 Negative electrode for lithium ion battery and lithium ion battery
JP2018232576A Active JP7130540B2 (en) 2017-12-13 2018-12-12 Negative electrode for lithium ion battery and lithium ion battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018232577A Active JP7130541B2 (en) 2017-12-13 2018-12-12 Negative electrode for lithium ion battery and lithium ion battery

Country Status (1)

Country Link
JP (2) JP7130541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042897A1 (en) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 Negative electrode for secondary batteries and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106397A1 (en) * 2022-11-16 2024-05-23 富士フイルム株式会社 Method for manufacturing battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119079A (en) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk Negative electrode active material, method of manufacturing negative electrode, negative electrode, and secondary battery
WO2017126682A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Lithium ion secondary battery
JP2017160294A (en) * 2016-03-07 2017-09-14 三洋化成工業株式会社 Resin composition for coating nonaqueous secondary battery active material and coated active material for nonaqueous secondary battery
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357974B2 (en) 2014-08-25 2018-07-18 株式会社豊田自動織機 Secondary battery negative electrode binder, secondary battery negative electrode and method for producing the same, and non-aqueous electrolyte secondary battery
MY169874A (en) 2016-02-24 2019-05-28 Nissan Motor Electrode for lithium ion secondary battery and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119079A (en) * 2010-11-29 2012-06-21 Hiramatsu Sangyo Kk Negative electrode active material, method of manufacturing negative electrode, negative electrode, and secondary battery
WO2017126682A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Lithium ion secondary battery
JP2017160294A (en) * 2016-03-07 2017-09-14 三洋化成工業株式会社 Resin composition for coating nonaqueous secondary battery active material and coated active material for nonaqueous secondary battery
JP2017188451A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042897A1 (en) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 Negative electrode for secondary batteries and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2019106375A (en) 2019-06-27
JP7130541B2 (en) 2022-09-05
JP7130540B2 (en) 2022-09-05

Similar Documents

Publication Publication Date Title
KR101126425B1 (en) Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20120315541A1 (en) Lithium-ion secondary battery
JP5713198B2 (en) Method for manufacturing lithium secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP7145672B2 (en) lithium ion battery
WO2019230912A1 (en) Method for manufacturing lithium ion cell
JP2018101623A (en) Negative electrode for lithium-ion battery and lithium-ion battery
JP2014186955A (en) Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
JP2018101622A (en) Negative electrode for lithium ion battery and method of producing negative electrode for lithium ion battery
WO2018139288A1 (en) Nonaqueous electrolyte secondary battery
JP7356232B2 (en) Negative electrode for lithium ion batteries and lithium ion batteries
JP7034777B2 (en) Lithium-ion battery manufacturing method
JP5334506B2 (en) Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
JP7130540B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
Shi et al. Application of magnetron sputtering to deposit a multicomponent separator with polysulfide chemisorption and electrode stabilization for high-performance lithium‑sulfur batteries
JP7267131B2 (en) Positive electrode active material slurry for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2005243447A (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2023518591A (en) A negative electrode and a secondary battery including the negative electrode
JP2016021391A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP6844602B2 (en) electrode
WO2018117087A1 (en) Negative electrode for lithium-ion battery, and lithium-ion battery
GB2544495A (en) Surface modification
JP2019212464A (en) Manufacturing method of lithium ion battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220824

R150 Certificate of patent or registration of utility model

Ref document number: 7130540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150