JP2019105003A - Carbon short fiber wet non-woven fabric and carbon fiber reinforced resin - Google Patents

Carbon short fiber wet non-woven fabric and carbon fiber reinforced resin Download PDF

Info

Publication number
JP2019105003A
JP2019105003A JP2017238368A JP2017238368A JP2019105003A JP 2019105003 A JP2019105003 A JP 2019105003A JP 2017238368 A JP2017238368 A JP 2017238368A JP 2017238368 A JP2017238368 A JP 2017238368A JP 2019105003 A JP2019105003 A JP 2019105003A
Authority
JP
Japan
Prior art keywords
fibers
carbon short
fiber
carbon
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017238368A
Other languages
Japanese (ja)
Other versions
JP7211701B2 (en
Inventor
元道 福田
Motomichi Fukuda
元道 福田
敬生 増田
Takao Masuda
敬生 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2017238368A priority Critical patent/JP7211701B2/en
Publication of JP2019105003A publication Critical patent/JP2019105003A/en
Application granted granted Critical
Publication of JP7211701B2 publication Critical patent/JP7211701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

SOLUTION: This invention relates to a carbon short fiber wet non-woven fabric characterized in that: the proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric; the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to total carbon short fibers; and the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers.EFFECT: A carbon short fiber wet non-woven fabric can be obtained which exhibits excellent molding flowability when processed into a carbon fiber reinforced resin (CFRP) and has excellent strength and uniformity after CFRP processing.SELECTED DRAWING: None

Description

本発明は、炭素短繊維湿式不織布及び炭素繊維強化樹脂に関する。   The present invention relates to a carbon short fiber wet nonwoven fabric and a carbon fiber reinforced resin.

炭素繊維は鉄よりも軽量であり、強度が強いという優れた力学特性を有している。そのため、炭素繊維複合材料は航空機、自動車、テニスラケット、釣り竿、風力発電の羽根などの幅広い分野で使用されており、今後も用途が拡大すると予想される。   Carbon fibers are lighter than iron and have excellent mechanical properties such as higher strength. Therefore, carbon fiber composite materials are used in a wide range of fields such as aircraft, automobiles, tennis rackets, fishing rods, and blades of wind power generation, and their applications are expected to be expanded in the future.

炭素繊維としては、現在主に、ポリアクリロニトリルを炭素化、黒鉛化することで得られるPAN系炭素繊維と、タールピッチ液化石炭を溶融紡糸してから炭素化、黒鉛化することで得られるピッチ系炭素繊維とが使用されている。こうして生産された炭素繊維は、織物として加工するか、あるいは一方向に並べた後に、未硬化樹脂を含浸させた炭素繊維プリプレグと呼ばれる材料を、目標とする成形物の型に合うように裁断した後に樹脂を硬化することで得られる、炭素繊維強化樹脂(以下、「炭素繊維強化樹脂」を「CFRP」と略記する場合がある)として使用されることが多い。あるいは、CFRP廃材をリサイクルして得られた炭素繊維を使用する場合は、炭素繊維がリサイクル過程において短繊維化して炭素短繊維となることから、織物として加工することはできないため、不織布として加工されることが一般的である。   As carbon fibers, currently, PAN-based carbon fibers obtained by carbonizing and graphitizing polyacrylonitrile and pitch systems obtained by melt-spinning tar pitch liquefied coal and then carbonizing and graphitizing Carbon fiber and is used. The carbon fiber produced in this way was processed as a woven fabric, or after being arranged in one direction, a material called a carbon fiber prepreg impregnated with an uncured resin was cut to fit the mold of the target molding It is often used as a carbon fiber reinforced resin (hereinafter, "carbon fiber reinforced resin" may be abbreviated as "CFRP") obtained by curing the resin later. Alternatively, when using carbon fibers obtained by recycling CFRP waste material, carbon fibers are shorted in the recycling process to become carbon short fibers and can not be processed as woven fabrics, so they are processed as non-woven fabrics Is common.

炭素短繊維をシート化して炭素短繊維不織布とする方法としては、炭素短繊維と水膨潤フィブリル化繊維とを水中に分散させ、抄紙用スラリーを作製し、繊維を交絡させて、炭素短繊維湿式不織布を製造する方法が開示されている。水膨潤フィブリル化繊維としては、フィブリル化パラ型芳香族ポリアミド繊維や、フィブリル化アクリル繊維が挙げられている(特許文献1参照)。しかしながら、この方法は炭素短繊維不織布をCFRP加工する際の繊維・樹脂の成形流動性や不織布内の炭素短繊維の均一性などの点については考慮されておらず、CFRP加工する際にトラブルが発生する場合がある。CFRP加工の際に繊維・樹脂の成形流動性が低い場合、複雑な形状のCFRPを加工する際に細かい部分にまで繊維・樹脂が広がらず、複雑な形状に加工することができない場合がある。また、不織布内の炭素短繊維が均一でない場合、CFRP加工後の強度も不均一になり、CFRPとしては適さない場合がある。   As a method of forming a carbon short fiber into a sheet and forming a carbon short fiber non-woven fabric, a carbon short fiber and a water-swelled fibrillated fiber are dispersed in water to prepare a slurry for paper making, and the fiber is entangled, A method of making a nonwoven is disclosed. As water-swelled fibrillated fibers, fibrillated para-type aromatic polyamide fibers and fibrillated acrylic fibers are mentioned (see Patent Document 1). However, this method does not take into consideration the flowability of fibers and resin during CFRP processing of a carbon short fiber non-woven fabric and the uniformity of carbon short fibers in the non-woven fabric, and there are problems when processing CFRP. It may occur. When the flowability of fibers and resin is low during CFRP processing, the fibers and resin may not spread to fine parts when processing CFRP having a complicated shape, and it may not be able to be processed into a complicated shape. Moreover, when the carbon short fiber in a nonwoven fabric is not uniform, the intensity | strength after CFRP process will also become uneven, and it may not be suitable as CFRP.

また、炭素短繊維湿式不織布を製造する別方法としては、炭素短繊維75質量%〜97質量%、セルロース25質量%〜3質量%からなる炭素短繊維湿式不織布を製造する方法において、含窒素有機溶媒を含有する水性分散助剤を炭素短繊維に対して10質量%以下と炭素短繊維を所定量の水に添加して撹拌し、さらに水でスラリー固形分濃度を0.05質量%以下に希釈して回流させる工程を経た後、湿式抄紙する方法が示されている(特許文献2参照)。しかしながら、特許文献2の炭素短繊維湿式不織布は、ガス透過性や導電性を有する不織布であり、CFRPに使用される不織布ではないため、炭素短繊維不織布をCFRP加工する際の繊維・樹脂の成形流動性や不織布内の炭素短繊維の均一性などの点においては考慮されておらず、CFRP加工の際やCFRP加工後に不具合が発生する場合がある。   In addition, as another method of producing a carbon short fiber wet nonwoven fabric, in a method of producing a carbon short fiber wet nonwoven fabric comprising 75% by mass to 97% by mass of carbon short fibers and 25% by mass to 3% by mass of cellulose A solvent-containing aqueous dispersion aid is added to 10% by mass or less of carbon short fibers and carbon short fibers to a predetermined amount of water with respect to carbon short fibers and stirred, and the slurry solid concentration is further adjusted to 0.05% by mass or less A method of wet papermaking after a step of dilution and circulation is shown (see Patent Document 2). However, since the carbon short fiber wet non-woven fabric of Patent Document 2 is a non-woven fabric having gas permeability and conductivity and is not a non-woven fabric used for CFRP, the fiber / resin molding when carbon short fiber non-woven fabric is CFRP processed It is not considered in terms of flowability or uniformity of carbon short fibers in the non-woven fabric, and a defect may occur during CFRP processing or after CFRP processing.

国際公開第2014/021366号パンフレットInternational Publication No. 2014/021366 Pamphlet 特開2004−353124号公報JP, 2004-353124, A

本発明は、CFRPに加工する際に優れた成形流動性を示し、またCFRP加工後の強度が高く、均一性に優れた炭素短繊維湿式不織布を得ることを目的としている。   An object of the present invention is to obtain a carbon short fiber wet nonwoven fabric which exhibits excellent molding flowability when processed into CFRP, has high strength after CFRP processing, and is excellent in uniformity.

本発明者らは、この課題を解決するため研究を行った結果、下記手段を見出した。   As a result of conducting researches to solve this problem, the present inventors have found the following means.

(1)炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%であることを特徴とする炭素短繊維湿式不織布。
(2)上記(1)記載の炭素短繊維湿式不織布と、該不織布と複合化された樹脂とからなる炭素繊維強化樹脂。
(1) The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98 mass with respect to all carbon short fibers A short carbon fiber non-woven fabric characterized in that the ratio of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total short carbon fibers.
(2) A carbon fiber reinforced resin comprising the carbon short fiber wet nonwoven fabric according to the above (1) and a resin composited with the nonwoven fabric.

本発明によれば、CFRPに加工する際に優れた成形流動性を示し、CFRP加工後には優れた強度及び均一性を持つ炭素短繊維湿式不織布を得ることができる。   According to the present invention, it is possible to obtain a carbon short fiber wet nonwoven fabric which exhibits excellent molding flowability when processed into CFRP and has excellent strength and uniformity after CFRP processing.

実施例において、<CFRP成形流動性評価>の際に、リブ成形する方法を示した図である。In an Example, it is the figure which showed the method of rib-forming in the case of <CFRP molding flowability evaluation>.

本発明は、CFRPに加工する際に優れた成形流動性を持つ炭素短繊維湿式不織布を得るための手法である。炭素短繊維不織布をCFRPに加工する際において、炭素短繊維不織布の成形流動性が低い場合、複雑な形状に加工することができないという問題が発生する場合がある。すなわち、炭素短繊維が樹脂と共に流動せず、樹脂のみが複雑な形状を形成するが、樹脂のみの箇所の強度が非常に弱くなり、CFRPとしては適さないという問題が発生する場合がある。また、炭素短繊維不織布の成形流動性はあったとしても、炭素短繊維が流動するにあたり、炭素短繊維が寄り集まり、高密度となる箇所ができ、その結果、低密度箇所の強度と高密度箇所の強度が不均一となるため、CFRPの品質も不均一になり、CFRP加工用炭素短繊維不織布として適さないという問題が発生する場合があった。   The present invention is a method for obtaining a carbon short fiber wet non-woven fabric having excellent moldability and flowability when it is processed into CFRP. When the carbon short fiber non-woven fabric is processed into CFRP, when the molding flowability of the carbon short fiber non-woven fabric is low, there may occur a problem that it can not be processed into a complicated shape. That is, although carbon short fibers do not flow with the resin and only the resin forms a complicated shape, the strength of the portion of only the resin becomes very weak, which may cause a problem that it is not suitable as a CFRP. Moreover, even if there is molding fluidity of the carbon short fiber nonwoven fabric, when the carbon short fibers flow, the carbon short fibers are gathered together and there are places where the density becomes high, and as a result, the strength and the high density of the low density place Since the strength of the portion becomes uneven, the quality of the CFRP also becomes uneven, which may cause a problem of being unsuitable as a carbon short fiber non-woven fabric for CFRP processing.

これらの問題を解決するため、鋭意研究を行った結果、炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%であることを特徴とする炭素短繊維湿式不織布は、炭素短繊維の成形流動性が高く、CFRP加工後の強度及び均一性も高いことが分かった。炭素短繊維の繊維長が2mm以下の炭素短繊維の割合が80質量%を超えると、CFRP加工後の強度が低くなり、CFRP用の炭素短繊維不織布として適さない。また、繊維長が2mmより長い炭素短繊維の割合が98質量%を超える場合、不織布内に空隙が多くなり、CFRP加工時に炭素短繊維が不均一になりやすい傾向にある。不織布内の空隙を繊維長が2mm以下の炭素短繊維で充填することにより、炭素短繊維が均一なCFRPを得ることができる。   As a result of conducting earnest research to solve these problems, the proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the nonwoven fabric, and the proportion of carbon short fibers whose fiber length is longer than 2 mm Is 20 to 98 mass% with respect to total carbon short fibers, and the ratio of carbon short fibers having a fiber length of 2 mm or less is 80 to 2 mass% with respect to total carbon short fibers The wet non-woven fabric was found to have high moldability of carbon short fibers and high strength and uniformity after CFRP processing. If the proportion of carbon short fibers having a fiber length of 2 mm or less exceeds 80% by mass, the strength after CFRP processing becomes low, which is not suitable as a carbon short fiber non-woven fabric for CFRP. In addition, when the proportion of carbon short fibers having a fiber length of more than 2 mm exceeds 98 mass%, voids tend to be increased in the non-woven fabric, and the carbon short fibers tend to be nonuniform during CFRP processing. By filling the voids in the non-woven fabric with carbon short fibers having a fiber length of 2 mm or less, CFRP in which carbon short fibers are uniform can be obtained.

本発明において、繊維長が2mmよりも長い炭素短繊維の割合は、全炭素短繊維に対して20〜98質量%であり、より好ましくは25〜95質量%であり、更に好ましくは30〜90質量%である。また、繊維長が2mm以下の炭素短繊維の割合は、全炭素短繊維に対して80〜2質量%であり、より好ましくは75〜5質量%であり、更に好ましくは70〜10質量%である。   In the present invention, the proportion of carbon short fibers having a fiber length of more than 2 mm is from 20 to 98% by mass, more preferably from 25 to 95% by mass, and still more preferably from 30 to 90%. It is mass%. In addition, the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass, more preferably 75 to 5% by mass, and still more preferably 70 to 10% by mass with respect to total carbon short fibers. is there.

なお、本発明において、炭素短繊維とは、繊維長が50mm以下の繊維を言う。また、「繊維長が2mm以下の炭素短繊維」における繊維長の下限値は、0.1mmであることが好ましい。炭素短繊維の繊維長が0.1mm未満になると、湿式不織布を製造する際に繊維が脱落する場合がある。   In the present invention, carbon short fibers refer to fibers having a fiber length of 50 mm or less. Moreover, it is preferable that the lower limit of the fiber length in "a carbon short fiber whose fiber length is 2 mm or less" is 0.1 mm. When the fiber length of carbon short fibers is less than 0.1 mm, the fibers may fall off when producing a wet nonwoven fabric.

炭素短繊維としては、PAN系、ピッチ系など、どのような製法で製造された炭素短繊維でも使用することができる。また、新品未使用の炭素短繊維でも、廃棄された炭素繊維をリサイクル処理して得られた炭素短繊維でもなんら問題は無い。炭素短繊維を得るのに必要なコストを考慮すると、リサイクル処理して得られた炭素短繊維がより好ましい。   As carbon short fibers, carbon short fibers produced by any method such as PAN type and pitch type can be used. In addition, there is no problem in both new and unused carbon short fibers and carbon short fibers obtained by recycling discarded carbon fibers. Considering the cost required to obtain carbon short fibers, carbon short fibers obtained by recycling are more preferable.

本発明の炭素短繊維湿式不織布においては、性能を阻害しない範囲で、炭素短繊維以外の繊維を含有することができる。以下、「炭素短繊維以外の繊維」を「他繊維」と略記する場合がある。他繊維としては、セルロース繊維、半合成繊維、合成繊維、無機繊維等を挙げることができる。   In the short carbon fiber non-woven fabric of the present invention, fibers other than short carbon fibers can be contained as long as the performance is not impaired. Hereinafter, "fibers other than carbon short fibers" may be abbreviated as "other fibers". Examples of other fibers include cellulose fibers, semi-synthetic fibers, synthetic fibers, inorganic fibers and the like.

セルロース繊維を使用することができる。セルロース繊維の種類としては、天然セルロース繊維、再生セルロース繊維等が挙げられる。天然セルロース繊維としては、針葉樹パルプ、広葉樹パルプなどの木材パルプ;藁パルプ、竹パルプ、リンターパルプ、ケナフパルプなどの木本類又は草本類のパルプが挙げられる。再生セルロース繊維としては、レーヨン、キュプラ、リヨセル等の再生セルロース繊維が挙げられる。これらのセルロース繊維は、フィブリル化(叩解)されていてもなんら差し支えない。さらに、古紙、損紙などから得られるパルプ繊維を使用してもよい。   Cellulose fibers can be used. Examples of the type of cellulose fiber include natural cellulose fiber, regenerated cellulose fiber and the like. Natural cellulose fibers include wood pulp such as softwood pulp and hardwood pulp; wood pulp such as straw pulp, bamboo pulp, linter pulp and kenaf pulp or herbaceous pulp. Examples of regenerated cellulose fibers include regenerated cellulose fibers such as rayon, cupra and lyocell. These cellulose fibers may be fibrillated (beaten) at all. Furthermore, pulp fibers obtained from waste paper, broke or the like may be used.

上記セルロース繊維の中で、針葉樹パルプ、リンターパルプ及びリヨセルの群から選ばれる1種以上のセルロース繊維を使用することが好ましく、リヨセルを使用することがより好ましい。また、リヨセルはフィブリル化(叩解)されていることが好ましい。これらの好ましいセルロース繊維を使用することによって、繊維の脱落を抑制することができる。また、炭素短繊維湿式不織布を抄紙法で製造する場合の操業性が安定するという効果も得られる。   Among the above-mentioned cellulose fibers, it is preferable to use one or more cellulose fibers selected from the group of softwood pulp, linter pulp and lyocell, and it is more preferable to use lyocell. Also, lyocell is preferably fibrillated (beaten). By using these preferred cellulose fibers, it is possible to suppress the falling off of the fibers. In addition, the effect of stabilizing the operability in the case of producing a carbon short fiber wet non-woven fabric by a papermaking method is also obtained.

フィブリル化(叩解)セルロース繊維は、上記のセルロース繊維をフィブリル化することによって製造することができる。フィブリル化するための装置としては、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、また、顔料等の分散や粉砕に使用するボールミル、ダイノミル、ミキサー、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等の装置が挙げられる。これらの装置を、単独又は組み合わせて用いることによって、フィブリル化セルロース繊維を製造することができる。そして、これらの装置の種類、処理条件(繊維濃度、温度、圧力、回転数、リファイナーの刃の形状、リファイナーのプレート間のギャップ、処理回数)等のフィブリル化条件の調整により、目的のフィブリル化状態を得ることができる。   Fibrillated (refined) cellulose fibers can be produced by fibrillating the above-described cellulose fibers. As devices for fibrillation, beaters, PFI mills, single disc refiners (SDR), double disc refiners (DDR), ball mills used for dispersing or crushing pigments, etc., dyno mills, mixers, milling machines, high speed Rotary blade type homogenizer which applies shear force by rotary blade, Double cylindrical type high speed homogenizer which produces shear force between cylindrical inner blade rotating at high speed and fixed outer blade, Refinement by ultrasonic impact Ultrasonic crusher, apply a pressure difference of at least 20MPa to the fiber suspension, pass through a small diameter orifice to make it high speed, collide it and rapidly decelerate it to apply high shear force and cutting force to the fiber An apparatus such as a homogenizer may be mentioned. By using these devices alone or in combination, fibrillated cellulose fibers can be produced. And, by adjusting the fibrillation conditions such as the type of these devices, processing conditions (fiber concentration, temperature, pressure, number of revolutions, shape of refiner blade, gap between refiner plates, number of times of treatment), desired fibrillation You can get the status.

合成繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの合成繊維を挙げることができる。また、無機繊維としては、ガラス繊維、岩石繊維、スラッグ繊維、金属繊維などの無機繊維が挙げられる。また、半合成繊維としては、アセテート、トリアセテート、プロミックス等が挙げられる。   Examples of synthetic fibers include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, polyvinylidene chloride-based, polyvinyl chloride-based, polyester-based, benzoate-based, polychloral-based, and phenol-based synthetic fibers. . Inorganic fibers include inorganic fibers such as glass fibers, rock fibers, slug fibers and metal fibers. Moreover, as a semi-synthetic fiber, acetate, triacetate, promix etc. are mentioned.

本発明の炭素短繊維湿式不織布においては、性能を阻害しない範囲で、バインダー合成繊維を使用することができる。バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維;未延伸繊維;低融点合成樹脂単繊維;熱水可溶性繊維等が挙げられる。バインダー合成繊維は、繊維全体又は繊維の一部のガラス転移温度又は溶融温度(融点)が低く、抄紙機の乾燥工程において、バインダー能力を発現する。複合繊維は、皮膜を形成しにくいので、炭素短繊維湿式不織布の空間を保持したまま、機械的強度を向上させることができる。より具体的には、複合繊維としては、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせが挙げられる。未延伸繊維としては、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)等の低融点合成樹脂単繊維や、ポリビニルアルコール系のような熱水可溶性繊維は、乾燥工程で皮膜を形成しやすいが、本発明では使用することができる。本発明においては、熱水可溶性繊維であるポリビニルアルコール系のバインダー合成繊維が、炭素短繊維表面の官能基と水素結合を形成して強度を発揮しやすいため、好ましい。   In the carbon short fiber wet non-woven fabric of the present invention, a binder synthetic fiber can be used as long as the performance is not impaired. Examples of binder synthetic fibers include composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), radially divided fibers, undrawn fibers, low-melting-point synthetic resin single fibers, and hot water soluble fibers. The binder synthetic fiber has a low glass transition temperature or melting temperature (melting point) of the whole fiber or a part of the fiber, and develops a binder ability in the drying process of the paper machine. The composite fiber is less likely to form a film, and thus the mechanical strength can be improved while maintaining the space of the carbon short fiber wet nonwoven fabric. More specifically, as a composite fiber, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), high melting point polyester (core) and low melting polyester (sheath) A combination of The undrawn fibers include undrawn fibers such as polyester. In addition, low-melting-point synthetic resin single fibers such as single fibers (full melting type) composed only of low-melting-point resins such as polyethylene and polypropylene, and hot water-soluble fibers such as polyvinyl alcohol, form a film in the drying step. Although easy to use, it can be used in the present invention. In the present invention, a polyvinyl alcohol-based binder synthetic fiber which is a hot water soluble fiber is preferable because it easily forms a hydrogen bond with a functional group on the surface of a carbon short fiber to exhibit strength.

他繊維の中で、フィブリル化されていない再生セルロース繊維、合成繊維、無機繊維及び半合成繊維の繊維長は特に限定しないが、3mm以上30mm未満であることが好ましい。これらの他繊維の繊維長が長いほど、一本あたりの繊維同士の接触点が多くなり、繊維が脱落しにくくなる傾向があるため、これらの他繊維の繊維長は3mm以上であることが好ましい。繊維長が長過ぎる場合は、抄紙性や不織布の地合いが悪化する場合があるため、30mm未満であることが好ましい。繊維径についても特に限定しないが、1μm以上30μm未満であることが好ましく、2μm以上20μm未満であることが特に好ましい。繊維径が1μm未満の繊維を配合すると、炭素短繊維湿式不織布内が過剰に密な構造になることから、例えば炭素短繊維湿式不織布に樹脂を浸透させるなどの加工を行う際に樹脂の浸透を阻害し、加工後のCFRPの性能が下がる場合がある。繊維径が30μm以上である場合は、バインダー能力を持たない合成繊維又は無機繊維が脱落しやすい場合がある。   Among the other fibers, the fiber length of non-fibrillated regenerated cellulose fiber, synthetic fiber, inorganic fiber and semi-synthetic fiber is not particularly limited, but is preferably 3 mm or more and less than 30 mm. As the fiber length of these other fibers is longer, the number of contact points between fibers increases, and the fibers tend to be less likely to come off, so the fiber length of these other fibers is preferably 3 mm or more . If the fiber length is too long, the papermaking property and the texture of the non-woven fabric may deteriorate, so the fiber length is preferably less than 30 mm. The fiber diameter is also not particularly limited, but is preferably 1 μm or more and less than 30 μm, and particularly preferably 2 μm or more and less than 20 μm. If fibers with a fiber diameter of less than 1 μm are blended, the carbon short fiber wet non-woven fabric will have an excessively dense structure. For example, when processing such as impregnating a resin into carbon short fiber wet non-woven fabric It may inhibit and the performance of CFRP after processing may deteriorate. When the fiber diameter is 30 μm or more, synthetic fibers or inorganic fibers having no binder ability may easily fall off.

本発明において、炭素短繊維湿式不織布に含まれる全繊維に対して、炭素短繊維の含有量は10〜98質量%であり、20〜97質量%であることがより好ましく、30〜96質量%であることが更に好ましい。炭素短繊維の含有量が10質量%未満である場合は、加工した際に炭素短繊維が持つ「強度が高く、質量が軽い」という効果が十分に発揮できない場合がある。炭素短繊維の含有量が98質量%よりも多い場合は、繊維同士の結着が不十分となり、脱落繊維が発生する場合がある。   In the present invention, the content of carbon short fibers is 10 to 98% by mass, more preferably 20 to 97% by mass, and more preferably 30 to 96% by mass with respect to all the fibers contained in the carbon short fiber wet nonwoven fabric. It is further preferred that When the content of the carbon short fiber is less than 10% by mass, the effect that the carbon short fiber has “high strength and light weight” may not be sufficiently exhibited when processed. When the content of carbon short fibers is more than 98% by mass, bonding of the fibers becomes insufficient, and there may be generation of dropped fibers.

本発明の炭素短繊維湿式不織布は、炭素短繊維を抄紙機でシート化する抄紙法によって得られる。   The short carbon fiber non-woven fabric of the present invention is obtained by a paper making method in which the short carbon fiber is formed into a sheet by a paper machine.

抄紙法では、例えば、長網式、円網式、傾斜ワイヤー式を用いることができる。これらの抄紙方式を単独で有する抄紙機を使用しても良いし、同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用しても良い。均一性に優れた炭素短繊維湿式不織布を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。本発明の炭素短繊維湿式不織布は、単層であっても良いし、複層であっても良い。   In the paper making method, for example, a long mesh type, a circular mesh type, and an inclined wire type can be used. A paper machine having these papermaking systems alone may be used, or a combination paper machine in which two or more papermaking systems of the same type or different types are installed on-line may be used. In order to produce a carbon short fiber wet non-woven fabric excellent in uniformity, it is preferable to use a papermaking method that can be dewatered from the slurry on the wire gently, such as a long mesh type or a gradient wire type. The carbon short fiber wet nonwoven fabric of the present invention may be a single layer or multiple layers.

抄紙法において、炭素短繊維やその他の繊維を分散することを目的に、パルパーでの離解作業を行う。パルパーの種類は特に限定しておらず、縦型パルパーを使用しても良いし、横型パルパーを使用しても良いし、その他の形式のパルパーでもなんら問題は無い。パルパーの離解能力も特に限定していないが、パルパーの離解能力が強すぎる場合、炭素短繊維がパルパーによって砕かれ、ミルド状となり、CFRP加工後の強度が低くなる場合がある。パルパーの離解能力が弱すぎる場合、炭素短繊維が全く離解せずに、地合いが悪くなり、炭素短繊維が不均一になり、CFRP加工後の強度も不均一になる場合がある。炭素短繊維の離解の状態については、パルパーの強度、時間を調節することでコントロールすることが望ましい。   In the papermaking method, a pulping operation is carried out for the purpose of dispersing carbon short fibers and other fibers. The type of pulper is not particularly limited, and a vertical pulper may be used, a horizontal pulper may be used, and other types of pulpers have no problem. The disaggregation ability of the pulper is also not particularly limited, but if the disaggregation ability of the pulper is too strong, carbon short fibers may be crushed by the pulper to become milled and the strength after CFRP processing may be reduced. If the pulping ability is too weak, the carbon short fibers may not be completely disintegrated, the texture may deteriorate, the carbon short fibers may become uneven, and the strength after CFRP processing may also become uneven. The state of carbon short fiber disaggregation is desirably controlled by adjusting the strength and time of the pulper.

抄紙法において、繊維を均一に水中に分散させる目的や各種機能を付与する目的で、繊維を水中に分散する際に、各種アニオン性、ノニオン性、カチオン性、あるいは両性の分散剤、消泡剤、親水剤、濾水剤、紙力向上剤、粘剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤、pH調整剤、ピッチコントロール剤、スライムコントロール剤等の薬品を添加する場合もある。   When the fibers are dispersed in water in order to disperse the fibers uniformly in water or to impart various functions in the papermaking method, various anionic, nonionic, cationic or amphoteric dispersants, antifoaming agents Chemicals such as hydrophilic agent, drainage agent, paper strength improver, viscosity improver, antistatic agent, polymer adhesive, mold release agent, antibacterial agent, bactericidal agent, pH adjustor, pitch control agent, slime control agent, etc. It may be added.

本発明の炭素短繊維湿式不織布には、必要に応じてサイズ剤を配合することができる。サイズ剤としては、本発明の所望の効果を損なわないものであれば、強化ロジンサイズ剤、ロジンエマルジョンサイズ剤、石油樹脂系サイズ剤、合成サイズ剤、中性ロジンサイズ剤、アルキルケテンダイマー(AKD)などのサイズ剤の中からいずれをも用いることができる。   A sizing agent can be blended into the carbon short fiber wet nonwoven fabric of the present invention as required. As sizing agents, fortified rosin sizing agents, rosin emulsion sizing agents, petroleum resin sizing agents, synthetic sizing agents, neutral rosin sizing agents, alkyl ketene dimers (AKD) as long as the desired effects of the present invention are not impaired. Any of the sizing agents such as) can be used.

抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、炭素短繊維湿式不織布を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃が更に好ましい。圧力は、好ましくは50〜1000N/cmであり、より好ましくは100〜800N/cmである。   The wet short web produced by the paper machine is dried with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer or the like to obtain a carbon short fiber wet non-woven fabric. When the wet paper is dried, by bringing it into close contact with a heat roll such as a Yankee drier and performing heat and pressure drying, the smoothness of the adhered surface is improved. Hot-pressure drying refers to pressing a wet paper against a heat roll with a touch roll or the like to dry it. 100-180 degreeC is preferable, as for the surface temperature of a heat roll, 100-160 degreeC is more preferable, and 110-160 degreeC is still more preferable. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

本発明の炭素短繊維湿式不織布の坪量は、特に限定しないが、10g/m以上500g/m以下が好ましく、30g/m以上400g/m以下がより好ましい。坪量が10g/m未満では、不織布の密度が低くなり過ぎる傾向にあり、またCFRP加工時に多数の不織布を重ねる必要があり、樹脂の浸透量に表裏差が発生しやすくなることから、CFRPの均一性を損ねる可能性がある。坪量が500g/m超では、ドライヤーでの乾燥の際に均一に乾燥することが難しく、炭素短繊維湿式不織布の品質にムラが生じる場合がある。 Although the basis weight of the carbon short fiber wet nonwoven fabric of the present invention is not particularly limited, it is preferably 10 g / m 2 or more and 500 g / m 2 or less, and more preferably 30 g / m 2 or more and 400 g / m 2 or less. If the basis weight is less than 10 g / m 2 , the density of the non-woven fabric tends to be too low, and it is necessary to stack many non-woven fabrics during CFRP processing, and the difference in penetration of resin tends to occur. It may impair the uniformity of the If the basis weight is more than 500 g / m 2 , it may be difficult to uniformly dry when drying with a drier, and unevenness may occur in the quality of the carbon short fiber wet non-woven fabric.

以下、実施例によって本発明を更に詳しく説明するが、本発明はこの実施例に限定されるものではない。なお、実施例中の部数や百分率は質量基準である。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In the examples, parts and percentages are on a mass basis.

実施例1
表1記載の繊維長の炭素短繊維と叩解リヨセルとPVAバインダー(クラレ製、製品名:VPB107−1)とを、表1記載の配合比率(質量基準)で水に投入して、縦型パルパーで10分間混合分散した後、湿紙を傾斜ワイヤー方式で、一層抄きで湿式抄紙し、表面温度130℃のヤンキードライヤーで乾燥し、抄紙速度20m/minで、坪量50g/mの炭素短繊維湿式不織布を得た。
Example 1
A vertical pulper is charged with short carbon fibers having a fiber length shown in Table 1, a beaten Lyocell, and a PVA binder (made by Kuraray, product name: VPB 107-1) in water at a blending ratio (mass basis) described in Table 1 After mixing and dispersing for 10 minutes, wet paper was further made by wet wire making with single layer by inclined wire method, dried by Yankee dryer with surface temperature of 130 ° C., carbon with basis weight of 50 g / m 2 at paper making speed of 20 m / min. A short fiber wet non-woven fabric was obtained.

実施例2〜4、比較例1〜4
炭素短繊維の繊維長と炭素短繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例2〜4及び比較例1〜4の炭素短繊維湿式不織布を得た。
Examples 2 to 4 and Comparative Examples 1 to 4
The carbon short fiber wet nonwoven fabrics of Examples 2 to 4 and Comparative Examples 1 to 4 were obtained in the same manner as Example 1 except that the fiber length of carbon short fibers and the compounding ratio of carbon short fibers were changed to the contents described in Table 1. .

実施例5及び6
セルロース繊維の種類又はバインダー合成繊維の種類を表1記載内容に変えた以外は、実施例1と同様に実施例5及び6の炭素短繊維湿式不織布を得た。
Examples 5 and 6
A carbon short fiber wet non-woven fabric of Examples 5 and 6 was obtained in the same manner as Example 1, except that the type of cellulose fiber or the type of binder synthetic fiber was changed to the contents described in Table 1.

実施例7及び8
合成繊維を追加し、各繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例7及び8の炭素短繊維湿式不織布を得た。
Examples 7 and 8
A carbon short fiber wet non-woven fabric of Examples 7 and 8 was obtained in the same manner as Example 1 except that synthetic fibers were added and the blend ratio of each fiber was changed to the contents described in Table 1.

実施例9〜11、比較例5〜7
炭素短繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例9〜11及び比較例5〜7の炭素短繊維湿式不織布を得た。
Examples 9 to 11 and Comparative Examples 5 to 7
The short carbon fiber non-woven fabrics of Examples 9 to 11 and Comparative Examples 5 to 7 were obtained in the same manner as Example 1 except that the content of the short carbon fibers was changed to the contents described in Table 1.

実施例12〜17、比較例8
炭素短繊維、叩解リヨセル及びPVAバインダーの配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例12〜17及び比較例8の炭素短繊維湿式不織布を得た。
Examples 12 to 17 and Comparative Example 8
A carbon short fiber wet non-woven fabric of Examples 12 to 17 and Comparative Example 8 was obtained in the same manner as Example 1 except that the blending ratio of the carbon short fiber, the refined lyocell and the PVA binder was changed to the contents described in Table 1.

実施例18〜23
炭素短繊維の種類及び配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例18〜23の炭素短繊維湿式不織布を得た。
Examples 18 to 23
A carbon short fiber wet non-woven fabric of Examples 18 to 23 was obtained in the same manner as Example 1 except that the type and blending ratio of carbon short fibers were changed to the contents described in Table 1.

実施例24〜29
炭素短繊維湿式不織布の坪量を表1記載内容に変えた以外は、実施例1と同様に実施例24〜29の炭素短繊維湿式不織布を得た。
Examples 24-29
A carbon short fiber wet non-woven fabric of Examples 24 to 29 was obtained in the same manner as Example 1 except that the basis weight of the carbon short fiber wet non-woven fabric was changed to the contents described in Table 1.

表1に記載されている繊維の詳細は、以下の通りである。   The details of the fibers described in Table 1 are as follows.

叩解リヨセル:リヨセル繊維(繊度1.4dtex、繊維長3mm)を、ダブルディスクリファイナーを用いて処理し、平均繊維径14.0μmの幹部から平均繊維径1μm以下の枝部を発生させるように調製した繊維。
叩解針葉樹パルプ:ろ水度500mlCSFとなるように調製した天然針葉樹パルプ。
PET繊維:ポリエチレンテレフタレート(PET)延伸繊維、繊度1.7デシテックス、繊維長5mm
アラミド繊維:繊度0.9デシテックス、繊維長 5mm
PVAバインダー:ポリビニルアルコールバインダー繊維(クラレ製、製品名:VPB107−1)
PETバインダー:PET未延伸バインダー繊維、繊度1.2デシテックス、繊維長5mm
Refined lyocell: lyocell fiber (fineness 1.4 dtex, fiber length 3 mm) was treated using a double disc refiner to prepare branches with a mean fiber diameter of 1 μm or less from a stem with a mean fiber diameter 14.0 μm fiber.
Reconstituted softwood pulp: Natural softwood pulp prepared to have a freeness of 500 ml CSF.
PET fiber: Polyethylene terephthalate (PET) drawn fiber, fineness 1.7 dtex, fiber length 5 mm
Aramid fiber: fineness 0.9 dtex, fiber length 5 mm
PVA binder: polyvinyl alcohol binder fiber (made by Kuraray, product name: VPB107-1)
PET binder: PET unstretched binder fiber, fineness 1.2 dtex, fiber length 5 mm

実施例及び比較例で作製した炭素短繊維湿式不織布において、坪量を測定し、また、CFRP加工後の強度、均一性及び成形流動性を評価し、測定結果及び評価結果を表1に示した。   The basis weight was measured in the carbon short fiber wet non-woven fabric manufactured in the examples and the comparative examples, and the strength, uniformity and molding flowability after CFRP processing were evaluated, and the measurement results and the evaluation results are shown in Table 1. .

<坪量>
炭素短繊維湿式不織布の坪量をJIS P 8124:2011に則って測定した。
<Basic weight>
The basis weight of the carbon short fiber wet non-woven fabric was measured according to JIS P 8124: 2011.

<CFRP加工>
炭素短繊維湿式不織布のCFRP加工を行った。炭素短繊維不織布に硬化剤を混合した熱硬化性樹脂を炭素短繊維不織布の質量の二倍量塗工した後、厚みが2mmとなるように熱プレス加工(温度120℃、圧力5MPa)を行い、炭素短繊維湿式不織布のCFRP板を得た。
<CFRP processing>
CFRP processing of carbon short fiber wet non-woven fabric was performed. After applying a thermosetting resin in which a curing agent is mixed to a carbon short fiber non-woven fabric twice as much as the mass of the carbon short fiber non-woven fabric, heat pressing (temperature 120 ° C., pressure 5 MPa) is performed so that the thickness is 2 mm. , CFRP board of carbon short fiber wet non-woven fabric was obtained.

使用したエポキシ樹脂は以下の通りである。
エポキシ樹脂:GM−6800(ブレニー技研)
硬化剤混合後粘度:505cps
The epoxy resin used is as follows.
Epoxy resin: GM-6800 (Bleni Giken)
Viscosity after curing agent mixing: 505 cps

エポキシ樹脂は、硬化剤を主剤/硬化剤が10/3となるように混合した後、CFRP加工を実施した。   The epoxy resin was subjected to CFRP processing after the curing agent was mixed so that the main agent / curing agent would be 10/3.

<CFRP加工後の強度評価>
作製したCFRP板の強度をJIS K 7074:1988に則って、サンプルごとにN=10回測定して、評価を行った。
<Strength evaluation after CFRP processing>
The strength of the produced CFRP board was evaluated by measuring N = 10 times for each sample in accordance with JIS K 7074: 1988.

○:CFRPとして十分高い強度が得られた。
△:CFRPとしてやや低めではあるものの、高い強度が得られた。
×:CFRPとして強度が不足していた。
○: A sufficiently high strength as CFRP was obtained.
Δ: A high strength was obtained although it was somewhat lower as CFRP.
X: The strength was insufficient as CFRP.

<CFRP加工後の均一性評価>
作製したCFRPの強度の変動係数を求め、評価を行った。
<Evaluation of uniformity after CFRP processing>
The coefficient of variation of the strength of the produced CFRP was determined and evaluated.

○:変動係数が10%未満であり、強度が均一であった
△:変動係数が10〜30%であり、強度がやや不均一であった。
×:変動係数が30%よりも高く、強度が不均一であった。
○: The variation coefficient was less than 10% and the intensity was uniform. Δ: the variation coefficient was 10 to 30%, and the intensity was somewhat nonuniform.
X: The coefficient of variation was higher than 30%, and the intensity was uneven.

<CFRP成形流動性評価>
炭素短繊維湿式不織布の成形流動性を測定するため、上記<CFRP加工>と同様に、炭素短繊維不織布に熱硬化性樹脂を塗工して得た複合体31を、上板(スリットあり)11と下板(スリットなし)21との間に置き、熱プレス成形(温度120℃、圧力5MPa)して、幅2mm、長さ50mmのリブ41を成形して、成形流動性の測定を行った(図1)。
<CFRP molding flowability evaluation>
In order to measure the molding fluidity of the carbon short fiber wet non-woven fabric, the composite 31 obtained by applying the thermosetting resin to the carbon short fiber non-woven fabric as in the above <CFRP processing> is an upper plate (with slits) 11 and a lower plate (without a slit) 21 and hot press forming (temperature 120 ° C., pressure 5 MPa) to form a rib 41 having a width of 2 mm and a length of 50 mm, and measuring the forming fluidity (Figure 1).

○:炭素繊維を含んだリブが3mmよりも高く形成され、高い成形流動性が見られた。
△:炭素繊維を含んだリブが高さ0.5〜3mmの範囲で形成され、やや高い流動性が見られた。
×:炭素繊維を含んだリブが0.5mmよりも低く形成され、成形流動性が見られなかった。
Good: Ribs containing carbon fibers were formed to be higher than 3 mm, and high molding flowability was observed.
Δ: Ribs containing carbon fibers were formed at a height of 0.5 to 3 mm, and somewhat high fluidity was observed.
X: The rib containing carbon fiber was formed lower than 0.5 mm, and molding fluid property was not seen.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維の質量に対して80〜2質量%である実施例1〜4においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。繊維長が2mmよりも長い炭素短繊維により、炭素繊維の持つ高い強度を発揮し、且つ2mm以下の短い炭素短繊維が高い成形流動性を持つことから、リブに繊維が流動することができ、炭素短繊維湿式不織布を含むCFRPのリブを形成することできた。また、繊維長2mm以下の短い炭素短繊維がCFRPの空隙部分を埋める役割を果たすため、CFRPの内部に炭素繊維が均一に配合されることによって、優れたCFRPの均一性が示された。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 1 to 4 in which the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to the mass of all carbon short fibers, excellent molding flowability and strength and uniformity after CFRP processing It is understood that it has sex. Since carbon short fibers having a fiber length longer than 2 mm exhibit high strength of carbon fibers and short carbon short fibers having a length of 2 mm or less have high molding flowability, the fibers can flow in the ribs, It was possible to form CFRP ribs containing carbon short fiber wet non-woven fabric. In addition, since short carbon short fibers having a fiber length of 2 mm or less play a role of filling the void portion of CFRP, excellent uniformity of CFRP was shown by uniformly blending the carbon fiber inside the CFRP.

また、全炭素短繊維が繊維長2mm以下の炭素短繊維である比較例1及び2では、優れた成形流動性を持つものの、CFRP加工後の強度が低いことが分かる。これは全ての炭素繊維が短いため、炭素繊維が持つ強度を十分に発揮することができなかったためと推測される。また、全炭素短繊維が2mmよりも長い炭素短繊維である比較例3及び4では、CFRP加工後の強度は高かったものの、リブ部分に炭素短繊維が見られず、炭素短繊維に成形流動性が見られなかった。これは全ての炭素繊維が長いため、炭素短繊維同士の接点が多く、繊維同士が強く結合した炭素短繊維しか存在しないことから、細かいリブ部分に炭素短繊維が入っていかず、成形流動性が見られなかったと推測される。   Further, in Comparative Examples 1 and 2 in which all the carbon short fibers are carbon short fibers having a fiber length of 2 mm or less, it is understood that although they have excellent molding fluidity, the strength after CFRP processing is low. It is presumed that this is because all the carbon fibers are short and therefore the carbon fibers can not sufficiently exhibit the strength. Further, in Comparative Examples 3 and 4 in which all carbon short fibers are carbon short fibers longer than 2 mm, although the strength after CFRP processing was high, no carbon short fibers were found in the rib portion, and the molding flow to carbon short fibers I did not see any sex. This is because all carbon fibers are long, there are many points of contact between carbon short fibers, and only carbon short fibers in which the fibers are strongly bonded exist, so carbon short fibers do not enter the fine rib portion, and molding flowability is It is presumed that it could not be seen.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%である実施例5〜8においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。実施例1の叩解リヨセルを叩解針葉樹パルプに変えた実施例5の結果及び実施例1のPVAバインダー合成繊維をPETバインダー合成繊維に変更した実施例6の結果から、炭素短繊維以外の繊維を実施例1記載の繊維以外の繊維に変更しても問題が無いことが分かる。また、合成繊維としてPET繊維又はアラミド繊維が配合されている実施例7及び8においても、評価の結果に問題が見られないことから、合成繊維を配合してもCFRP加工性に影響は無いことが確認された。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 5 to 8 in which the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers, excellent molding flowability and strength and uniformity after CFRP processing are obtained. I know that I have. From the results of Example 5 in which the beaten lyocell of Example 1 was changed to a beaten softwood pulp and the results of Example 6 in which the PVA binder synthetic fiber of Example 1 was changed to PET binder synthetic fiber, fibers other than carbon short fibers were implemented It can be seen that there is no problem in changing to fibers other than the fibers described in Example 1. Further, in Examples 7 and 8 in which PET fiber or aramid fiber is blended as a synthetic fiber, no problem is observed in the evaluation result, so that blending of synthetic fiber has no influence on CFRP processability. Was confirmed.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%である実施例9〜11においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。実施例1の2mm以下の炭素短繊維と2mmよりも長い炭素短繊維の割合を変更した実施例9〜11の結果から、繊維長が2mmよりも長い炭素短繊維/繊維長が2mm以下の炭素短繊維=20〜98質量%/80〜2質量%の範囲内であれば、繊維長が2mm以下の炭素短繊維と繊維長が2mmよりも長い炭素短繊維の割合は変更しても問題が無いことが分かる。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 9 to 11 in which the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers, excellent molding flowability and strength and uniformity after CFRP processing are obtained. I know that I have. From the results of Examples 9 to 11 in which the proportions of the carbon short fibers of 2 mm or less and the carbon short fibers longer than 2 mm in Example 1 were changed, carbon short fibers having a fiber length longer than 2 mm / carbon having a fiber length of 2 mm or less If the ratio of carbon short fibers having a fiber length of 2 mm or less and carbon short fibers having a fiber length longer than 2 mm is changed within the range of short fibers = 20 to 98 mass% / 80 to 2 mass%, there is a problem I understand that there is no.

比較例5では、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して2質量%未満となったことから、リブ部分に入る炭素短繊維や、CFRP内の空隙に入る炭素短繊維が少なくなったため、成形流動性やCFRP加工後の均一性が悪くなったと推測される。比較例6及び7では、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20質量%未満となり、長い繊維が少なくなったことから、炭素繊維の強度を十分に発揮することができなくなったと推測される。   In Comparative Example 5, since the ratio of carbon short fibers having a fiber length of 2 mm or less is less than 2% by mass with respect to total carbon short fibers, carbon short fibers entering the rib portion and carbon entering voids in CFRP It is presumed that the molding flowability and the uniformity after CFRP processing are deteriorated because the short fibers are reduced. In Comparative Examples 6 and 7, the proportion of carbon short fibers having a fiber length longer than 2 mm is less than 20% by mass with respect to total carbon short fibers, and long fibers are reduced, so the carbon fiber strength is sufficiently exhibited. It is guessed that it can not be done.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%である実施例12〜17においては、優れた成形流動性とCFRP強度、均一性を持つことが分かる。不織布を構成する全繊維に対する炭素短繊維の割合を変更している実施例1及び実施例12〜17の結果から、炭素短繊維の割合が全繊維に対して10〜98質量%であれば、問題が無いことが分かる。実施例12においては、炭素短繊維の割合がやや少ないことから、CFRP加工後の強度や成形流動性がやや低い結果となった。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 12 to 17 in which the proportion of carbon short fibers having a fiber length of 2 mm or less with respect to total carbon short fibers is excellent in molding flowability, CFRP strength, and uniformity. I understand. From the results of Example 1 and Examples 12 to 17 in which the ratio of carbon short fibers to total fibers constituting the nonwoven fabric is changed, if the ratio of carbon short fibers is 10 to 98% by mass with respect to all fibers, It turns out that there is no problem. In Example 12, since the proportion of carbon short fibers is somewhat low, the strength and molding flowability after CFRP processing were somewhat low.

炭素短繊維の割合が不織布を構成する全繊維に対して10質量%未満である比較例8においては、炭素短繊維が少ないため、CFRP加工後の強度が不十分となったと推測する。   In Comparative Example 8 in which the proportion of carbon short fibers is less than 10% by mass with respect to all the fibers constituting the non-woven fabric, it is assumed that the strength after CFRP processing is insufficient because there are few carbon short fibers.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%である実施例18〜23においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。繊維長が2mm以下の炭素短繊維や、繊維長が2mmよりも長い炭素短繊維を複数混合している実施例18〜23の結果から、繊維長が2mmよりも長い炭素短繊維/繊維長が2mm以下の炭素短繊維=20〜98質量%/80〜2質量%の範囲内であれば、繊維長の異なる炭素短繊維を複数混合して使用しても問題が無いことが分かる。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 18 to 23 in which the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers, excellent molding flowability and strength and uniformity after CFRP processing are obtained. I know that I have. From the results of Examples 18 to 23 in which a plurality of carbon short fibers having a fiber length of 2 mm or less and a carbon short fiber having a fiber length longer than 2 mm are mixed, carbon short fibers having a fiber length greater than 2 mm / fiber length If it is within the range of carbon short fibers of 2 mm or less = 20 to 98% by mass / 80 to 2% by mass, it can be understood that there is no problem even if plural carbon short fibers having different fiber lengths are mixed and used.

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%である実施例24〜29においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。坪量を変更している実施例24〜29の結果から、炭素短繊維の割合が上記範囲であれば、坪量を変更しても問題が無いことが分かる。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers In Examples 24 to 29, in which the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers, excellent molding flowability and strength and uniformity after CFRP processing are obtained. I know that I have. From the results of Examples 24 to 29 in which the basis weight is changed, it can be understood that there is no problem even if the basis weight is changed as long as the ratio of carbon short fibers is in the above range.

本発明の炭素短繊維湿式不織布は、炭素繊維強化樹脂(CFRP)加工用として好適に使用できる。   The carbon short fiber wet nonwoven fabric of the present invention can be suitably used for carbon fiber reinforced resin (CFRP) processing.

11 上板(スリットあり)
21 下板(スリットなし)
31 炭素短繊維不織布と熱硬化性樹脂複合体
41 リブ
11 Upper plate (with slits)
21 Lower plate (without slits)
31 Carbon staple non-woven fabric and thermosetting resin composite 41 rib

Claims (2)

炭素短繊維の割合が不織布を構成する全繊維に対して10〜98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20〜98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80〜2質量%であることを特徴とする炭素短繊維湿式不織布。   The proportion of carbon short fibers is 10 to 98% by mass with respect to all the fibers constituting the non-woven fabric, and the proportion of carbon short fibers having a fiber length longer than 2 mm is 20 to 98% by mass with respect to all carbon short fibers A carbon short fiber wet nonwoven fabric characterized in that the proportion of carbon short fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to total carbon short fibers. 請求項1記載の炭素短繊維湿式不織布と、該不織布と複合化された樹脂とからなる炭素繊維強化樹脂。   A carbon fiber reinforced resin comprising the carbon short fiber wet nonwoven fabric according to claim 1 and a resin composited with the nonwoven fabric.
JP2017238368A 2017-12-13 2017-12-13 Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin Active JP7211701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238368A JP7211701B2 (en) 2017-12-13 2017-12-13 Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238368A JP7211701B2 (en) 2017-12-13 2017-12-13 Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2019105003A true JP2019105003A (en) 2019-06-27
JP7211701B2 JP7211701B2 (en) 2023-01-24

Family

ID=67061046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238368A Active JP7211701B2 (en) 2017-12-13 2017-12-13 Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP7211701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080615A (en) * 2019-11-22 2021-05-27 三菱製紙株式会社 Carbon short fiber nonwoven fabric
JP7473416B2 (en) 2020-07-30 2024-04-23 トヨタ自動車株式会社 Method for producing fiber-reinforced composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239806A (en) * 2004-02-25 2005-09-08 Toray Ind Inc Carbon fiber-reinforced thermoplastic resin molding
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2013016476A (en) * 2011-06-09 2013-01-24 Toray Ind Inc Gas diffusion electrode base material and production method therefor
JP2013163805A (en) * 2012-01-10 2013-08-22 Toray Ind Inc Carbon fiber-reinforced polypropylene sheet and molding of the same
JP2014095034A (en) * 2012-11-09 2014-05-22 Toray Ind Inc Molded article and method for producing molded article
WO2015122366A1 (en) * 2014-02-14 2015-08-20 帝人株式会社 Carbon fiber reinforced molding material and molded body
JP2017210581A (en) * 2016-05-27 2017-11-30 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239806A (en) * 2004-02-25 2005-09-08 Toray Ind Inc Carbon fiber-reinforced thermoplastic resin molding
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2013016476A (en) * 2011-06-09 2013-01-24 Toray Ind Inc Gas diffusion electrode base material and production method therefor
JP2013163805A (en) * 2012-01-10 2013-08-22 Toray Ind Inc Carbon fiber-reinforced polypropylene sheet and molding of the same
JP2014095034A (en) * 2012-11-09 2014-05-22 Toray Ind Inc Molded article and method for producing molded article
WO2015122366A1 (en) * 2014-02-14 2015-08-20 帝人株式会社 Carbon fiber reinforced molding material and molded body
JP2017210581A (en) * 2016-05-27 2017-11-30 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080615A (en) * 2019-11-22 2021-05-27 三菱製紙株式会社 Carbon short fiber nonwoven fabric
JP7077292B2 (en) 2019-11-22 2022-05-30 三菱製紙株式会社 Carbon staple fiber non-woven fabric
JP7473416B2 (en) 2020-07-30 2024-04-23 トヨタ自動車株式会社 Method for producing fiber-reinforced composite material

Also Published As

Publication number Publication date
JP7211701B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
BR112019004638B1 (en) METHOD FOR TRANSFORMING A PULP INTO A PRE-DISPERSED PULP FIBROUS MATERIAL, PRE-DISPERSED FIBROUS MATERIAL, AND, REFINER SYSTEM
CA2984690C (en) Filter media comprising cellulose filaments
JP6976767B2 (en) Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition
JP7211701B2 (en) Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP2020158912A (en) Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin
JP7211791B2 (en) Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric
JP2019131931A (en) Carbon short fiber wet non-woven fabric and carbon fiber-reinforced resin
JP6914106B2 (en) Carbon short fiber non-woven fabric
JP2020133055A (en) Carbon short fiber wet type nonwoven fabric and carbon fiber-reinforced resin
JP6963954B2 (en) Wet non-woven fabric manufacturing method
JP2021095646A (en) Carbon short fiber nonwoven fabric and carbon fiber-reinforced plastic
JP2022070291A (en) Carbon fiber-containing wet type unwoven fabric
JP2023098385A (en) Carbon-fiber-reinforced elastic polymer composite material
JP2022148272A (en) Carbon fiber composite material precursor and carbon fiber composite material
JP2022554071A (en) Wet-laid web containing viscose fibers
JP6625941B2 (en) Method for producing carbon fiber sheet
JP2019060043A (en) Carbon fiber unwoven fabric
JP2019157315A (en) Carbon fiber non-woven fabric and composite
JP7282056B2 (en) Wet laid nonwoven fabric containing carbon fiber
JP7030868B2 (en) Manufacturing method of carbon fiber non-woven fabric
JP4064880B2 (en) Method for producing fibrillated non-woven fabric
JP2003129392A (en) Wet-laid nonwoven fabric
JP2018159164A (en) Method for impregnating porous sheet-like matter comprising carbon fiber with liquid having conductive solid dispersed therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211026

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220126

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220920

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221108

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221122

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221220

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7211701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150