JP2019102189A - Nonaqueous secondary cell - Google Patents

Nonaqueous secondary cell Download PDF

Info

Publication number
JP2019102189A
JP2019102189A JP2017229592A JP2017229592A JP2019102189A JP 2019102189 A JP2019102189 A JP 2019102189A JP 2017229592 A JP2017229592 A JP 2017229592A JP 2017229592 A JP2017229592 A JP 2017229592A JP 2019102189 A JP2019102189 A JP 2019102189A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017229592A
Other languages
Japanese (ja)
Other versions
JP6895083B2 (en
Inventor
英輝 萩原
Hideki Hagiwara
英輝 萩原
大樹 加藤
Daiki Kato
大樹 加藤
彰 齊藤
Akira Saito
彰 齊藤
友哉 佐藤
Tomoya Sato
友哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017229592A priority Critical patent/JP6895083B2/en
Publication of JP2019102189A publication Critical patent/JP2019102189A/en
Application granted granted Critical
Publication of JP6895083B2 publication Critical patent/JP6895083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To stably provide a nonaqueous secondary cell capable of concurrently satisfying high-output characteristics and overcharge resistance.SOLUTION: The nonaqueous secondary cell includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The positive electrode includes a positive electrode collector and a positive electrode active material layer. The positive electrode active material layer includes a positive electrode active material, LiPOand a binder and a variation (4σ variation) in the content of the LiPOis 1.89% or more to 58.91% or less.SELECTED DRAWING: Figure 1

Description

本発明は、非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery.

非水系二次電池では、従来、電池性能の向上や過充電耐性の向上を目的として、電池内に無機リン酸塩を添加することがなされている。例えば特許文献1には、正極に所定の割合でリン酸三リチウム(LiPO)を含有させることにより、電池の出力特性や耐久性を向上し得る旨が記載されている。 Conventionally, in the non-aqueous secondary battery, an inorganic phosphate is added to the battery in order to improve the battery performance and the overcharge resistance. For example, Patent Document 1 describes that the output characteristics and durability of the battery can be improved by containing trilithium phosphate (Li 3 PO 4 ) in a predetermined ratio in the positive electrode.

特開2015−103332号公報JP, 2015-103332, A

しかしながら、本発明者らの検討によれば、たとえ正極中のLiPOの含有割合が同じであっても、出力特性や過充電耐性がバラついて、所望の効果を得られないことがあった。 However, according to the study of the present inventors, even if the content ratio of Li 3 PO 4 in the positive electrode is the same, the output characteristics and the overcharge resistance may vary, and the desired effect may not be obtained. The

本発明は、かかる点に鑑みてなされたものであり、その目的は、高出力特性と過充電耐性とを兼ね備えた非水系二次電池を安定的に提供することにある。   This invention is made in view of this point, The objective is to provide stably the non-aqueous secondary battery which has a high output characteristic and overcharge tolerance.

本発明者らの検討により、上記した出力特性や過充電耐性のバラつきは、正極活物質層内のLiPOの分散性の違いに起因していることが判明した。
図1(A),(B)は、LiPO(LPO)の含有割合が同じで、かつLiPOの分散性が異なる正極活物質層の模式図である。図1(A)は、正極活物質層内でLiPOの分散性が良好な場合を表している。図1(A)では、LiPOが正極活物質層の全体に均質に含まれている。これに対し、図1(B)は、正極活物質層内でLiPOの分散性が悪い場合を表している。図1(B)では、LiPOが片側に偏在している。詳しくは、図1(B)の右側にLiPOが多く存在し、LiPOの含有割合が高くなっている。図1(B)の左側では、LiPOが少なく、局所的にLiPOの含有割合が低くなっている。
According to the study of the present inventors, it was found that the variation in the output characteristics and the overcharge resistance described above is due to the difference in the dispersibility of Li 3 PO 4 in the positive electrode active material layer.
FIGS. 1A and 1B are schematic views of positive electrode active material layers in which the content ratio of Li 3 PO 4 (LPO) is the same and the dispersibility of Li 3 PO 4 is different. FIG. 1A shows a case where the dispersibility of Li 3 PO 4 in the positive electrode active material layer is good. In FIG. 1A, Li 3 PO 4 is homogeneously contained in the entire positive electrode active material layer. On the other hand, FIG. 1 (B) represents the case where the dispersibility of Li 3 PO 4 is bad in the positive electrode active material layer. In FIG. 1 (B), Li 3 PO 4 is unevenly distributed on one side. Specifically, a large amount of Li 3 PO 4 is present on the right side of FIG. 1 (B), and the content ratio of Li 3 PO 4 is high. On the left side of FIG. 1 (B), less Li 3 PO 4, the content of locally Li 3 PO 4 is lower.

しかしながら、このような正極活物質層の質的な差異、すなわち、LiPOの分散性を表す評価指標は、従来明らかになっていなかった。そこで、本発明者らはLiPOの分散性を表す評価指標を創出し、これに基づいて正極活物質層を評価することを考えた。そして、更なる鋭意検討を重ね、本発明を完成させた。 However, an evaluation index representing such a qualitative difference of the positive electrode active material layer, that is, the dispersibility of Li 3 PO 4 has not been clarified in the past. Then, the present inventors considered creating an evaluation index showing the dispersibility of Li 3 PO 4 and evaluating the positive electrode active material layer based on this. Then, the present invention was completed after repeated intensive studies.

本発明により、正極と、負極と、非水電解質と、を備える非水系二次電池が提供される。上記正極は、正極集電体と、上記正極集電体の上に固着された正極活物質層と、を備える。上記正極活物質層は、正極活物質と、LiPOと、結着剤と、を含み、以下の(手順1)〜(手順4)で求められる上記LiPOの含有量のバラつき(4σバラつき)が、1.89%以上58.91%以下である。
(手順1)上記正極活物質層を、Φ40mmの大きさで、合計8つ切り出す。
(手順2)切り出した上記正極活物質層を、酸性溶媒にそれぞれ浸漬させて、上記酸性溶媒中にリン原子を抽出する。
(手順3)誘導結合プラズマ発光分光法で上記酸性溶媒を分析し、上記リン原子をそれぞれ定量する。
(手順4)上記リン原子の定量結果に基づいて、上記LiPOの含有量の算術平均値と4σ値とを算出し、上記4σ値を上記算術平均値で除すことにより、上記LiPOの含有量のバラつき(4σバラつき)を算出する。
The present invention provides a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material, Li 3 PO 4, and a binder, and the variation in the content of the Li 3 PO 4 determined in the following (Procedure 1) to (Procedure 4) (4σ variation) is 1.89% or more and 58.91% or less.
(Procedure 1) A total of eight pieces of the positive electrode active material layer are cut out with a size of 40 40 mm.
(Procedure 2) The cut out positive electrode active material layer is immersed in an acid solvent to extract a phosphorus atom in the acid solvent.
(Procedure 3) The above-mentioned acidic solvent is analyzed by inductively coupled plasma emission spectroscopy, and the above-mentioned phosphorus atoms are quantified respectively.
(Procedure 4) The arithmetic mean value and the 4σ value of the content of the Li 3 PO 4 are calculated based on the determination result of the phosphorus atom, and the 4σ value is divided by the arithmetic mean value to obtain the Li 3 Calculate the variance of the content of PO 4 (4σ variance).

上記4σバラつきは、LiPOの分散性を定量的に表す1つの評価指標である。上記4σバラつきの範囲を満たすようにLiPOが正極活物質層内に分散されていると、優れた出力特性を実現することができる。また、過充電時にはLiPOの添加の効果が適切に発揮されて、電池の発熱を抑えることができる。このため、優れた過充電耐性を実現することができる。したがって、本発明によれば、高出力特性と過充電耐性とを安定的に兼ね備えた非水系二次電池を安定的に実現することができる。 The 4σ variation is one evaluation index that quantitatively represents the dispersibility of Li 3 PO 4 . When Li 3 PO 4 is dispersed in the positive electrode active material layer so as to satisfy the above-described 4σ variation range, excellent output characteristics can be realized. Further, at the time of overcharging, the effect of the addition of Li 3 PO 4 is appropriately exhibited, and the heat generation of the battery can be suppressed. Therefore, excellent overcharge resistance can be realized. Therefore, according to the present invention, it is possible to stably realize a non-aqueous secondary battery stably combining high power characteristics and overcharge resistance.

LiPOの分散性を表す模式図であり、(A)は、分散性が良好な場合を、(B)は分散性が悪い場合をそれぞれ表している。Are schematic views showing the dispersion of the Li 3 PO 4, (A) is a case where dispersibility is good, represents (B) is a case where poor dispersibility, respectively. 一実施形態に係る、正極活物質層の切り出し方法を表す模式図である。It is a schematic diagram showing the cutting-out method of a positive electrode active material layer based on one Embodiment. LiPOの含有量のバラつき(4σバラつき)と10秒出力との関係を表すグラフである。It is a graph showing the relation between the variation (4σ variation) of the content of Li 3 PO 4 and the 10 second output. LiPOの含有量のバラつき(4σバラつき)と過充電時の温度上昇量(ΔT)との関係を表すグラフである。Li 3 is a graph showing the relationship between PO 4 content of variation and (4 [sigma] variation) and the temperature rise amount at the time of overcharge ([Delta] T).

以下、ここで開示される非水系二次電池の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、本明細書において数値範囲をA〜B(ここでA,Bは任意の数値)と記載している場合は、A以上B以下を意味するものである。
Hereinafter, preferred embodiments of the non-aqueous secondary battery disclosed herein will be described. The matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be understood as the design matters of those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in the present specification and common technical knowledge in the field.
In addition, when the numerical range is described as AB (here, A and B are arbitrary numerical values) in this specification, A or more and B or less are meant.

本実施形態の非水系二次電池は、正極と、負極と、非水電解質と、を備える。
以下、各構成要素について順に説明する。
The non-aqueous secondary battery of the present embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
Hereinafter, each component will be described in order.

正極は、正極集電体と、正極集電体の上に固着された正極活物質層と、を備えている。正極集電体としては、導電性の良好な金属製のシート、例えばアルミニウム箔が好適である。正極活物質層は、多孔質構造である。正極活物質層は、少なくとも、正極活物質と、リン酸三リチウム(LiPO)と、結着剤(バインダ)と、を含んでいる。このような正極は、例えば、正極活物質とLiPOと結着剤とを適当な溶媒中で混練してなる正極ペーストを、正極集電体の表面に塗布し、乾燥することによって作製される。 The positive electrode includes a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector. As the positive electrode current collector, a metal sheet having good conductivity, for example, an aluminum foil is suitable. The positive electrode active material layer has a porous structure. The positive electrode active material layer contains at least a positive electrode active material, trilithium phosphate (Li 3 PO 4 ), and a binder (binder). Such a positive electrode is produced, for example, by applying a positive electrode paste obtained by kneading a positive electrode active material, Li 3 PO 4 and a binder in a suitable solvent on the surface of a positive electrode current collector and drying it. Be done.

正極活物質は、電荷担体を可逆的に吸蔵及び放出可能な材料であればよい。正極活物質の好適例としては、リチウムニッケル含有複合酸化物、リチウムコバルト含有複合酸化物、リチウムニッケルコバルト含有複合酸化物、リチウムマンガン含有複合酸化物、リチウムニッケルコバルトマンガン含有複合酸化物等のリチウム遷移金属複合酸化物が挙げられる。高耐久の観点からは、通常使用時の作動電位が金属リチウム基準で4.2V以下である、所謂、4V級の正極活物質が好ましい。4V級の正極活物質の一好適例として、層状構造のリチウムニッケルコバルトマンガン含有複合酸化物が挙げられる。   The positive electrode active material may be any material that can occlude and release charge carriers reversibly. Preferred examples of the positive electrode active material include lithium transition such as lithium nickel-containing composite oxide, lithium cobalt-containing composite oxide, lithium nickel cobalt-containing composite oxide, lithium manganese-containing composite oxide, lithium nickel cobalt manganese-containing composite oxide, etc. Metal complex oxides can be mentioned. From the viewpoint of high durability, a so-called 4 V class positive electrode active material having an operating potential of 4.2 V or less based on lithium metal is preferable in normal use. A lithium-nickel-cobalt-manganese-containing composite oxide having a layered structure can be mentioned as a preferable example of the 4V class positive electrode active material.

正極活物質は、典型的には粒子状である。正極活物質の平均粒径(レーザー回折・光散乱法に基づく50体積%粒径(D50粒径)。以下同じ。)は、典型的には1〜20μm、例えば3〜10μm程度であるとよい。正極活物質の比表面積(窒素ガスを用いた定容量式吸着法により測定した表面積をBET法で解析したBET比表面積。以下同じ。)は、典型的には0.1〜5m/g、例えば0.5〜3m/gであるとよい。 The positive electrode active material is typically in the form of particles. The average particle size of the positive electrode active material (50% by volume particle size based on laser diffraction / light scattering method (D 50 particle size). The same applies hereinafter) is typically 1 to 20 μm, for example, about 3 to 10 μm Good. The specific surface area of the positive electrode active material (BET specific surface area analyzed by BET method surface area measured by fixed volume adsorption method using nitrogen gas. The same applies hereinafter) is typically 0.1 to 5 m 2 / g, For example, it may be 0.5 to 3 m 2 / g.

LiPOは、例えば、(a)正極活物質の表面を被覆する;(b)非水電解質の酸化分解、典型的には非水電解質に含まれる支持塩の加水分解を抑制する;(c)フッ素含有支持塩、例えばフッ素含有リチウム塩の加水分解によって生成されるフッ酸(HF)を捕捉あるいは消費して、非水電解質の酸性度(pH)を緩和する;(d)対向する負極の表面に安定な皮膜を形成する;のうち少なくとも1つの作用を奏する材料である。LiPOは、かかる作用によって、正極活物質からの金属元素の溶出を抑制して、通常使用時の電池特性、例えば耐久性を向上する効果を奏する。また、過充電時には、電池温度の上昇を抑制して、過充電耐性を向上する効果を奏する。 Li 3 PO 4 for example, (a) covers the surface of the positive electrode active material; (b) suppresses the oxidative decomposition of the non-aqueous electrolyte, typically the hydrolysis of the supporting salt contained in the non-aqueous electrolyte; c) capture or consume a fluorine-containing support salt, for example, a hydrofluoric acid (HF) generated by hydrolysis of a fluorine-containing lithium salt to reduce the acidity (pH) of the non-aqueous electrolyte; (d) the opposite negative electrode Forming a stable film on the surface of the at least one material. By such an action, Li 3 PO 4 suppresses the elution of the metal element from the positive electrode active material, and exhibits the effect of improving the battery characteristics in normal use, for example, the durability. Further, at the time of overcharging, an increase in the battery temperature is suppressed to exhibit an effect of improving overcharging resistance.

LiPOは、典型的には粒子状である。LiPOの平均粒径は、概ね0.1〜30μm、典型的には1〜25μm、例えば2〜10μm程度であるとよい。LiPOの平均粒径は、典型的には正極活物質の平均粒径と同等(±1μm程度)か、正極活物質の平均粒径よりも小さいことが好ましい。これにより、上述した作用をより良く発揮することができる。LiPOの比表面積は、典型的には0.5〜30m/g、例えば1〜20m/gであるとよい。LiPOの比表面積は、典型的には正極活物質の比表面積と同等(±1m/g程度)か、正極活物質の比表面積よりも大きいことが好ましい。これにより、上述した作用をより良く発揮することができる。 Li 3 PO 4 is typically particulate. The average particle size of Li 3 PO 4 may be about 0.1 to 30 μm, typically about 1 to 25 μm, for example, about 2 to 10 μm. It is preferable that the average particle size of Li 3 PO 4 is typically equivalent to the average particle size of the positive electrode active material (about ± 1 μm) or smaller than the average particle size of the positive electrode active material. Thereby, the above-mentioned action can be exhibited better. The specific surface area of Li 3 PO 4 may typically be 0.5 to 30 m 2 / g, for example 1 to 20 m 2 / g. It is preferable that the specific surface area of Li 3 PO 4 is typically equivalent to the specific surface area of the positive electrode active material (about ± 1 m 2 / g) or larger than the specific surface area of the positive electrode active material. Thereby, the above-mentioned action can be exhibited better.

結着剤は、正極活物質層を一体的に維持すると共に、正極集電体の上に正極活物質層を固着させる成分である。結着剤の好適例としては、例えば、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂や、ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドが挙げられる。   The binder is a component that holds the positive electrode active material layer integrally and fixes the positive electrode active material layer on the positive electrode current collector. Preferred examples of the binder include, for example, halogenated vinyl resins such as polyvinylidene fluoride (PVdF) and polyalkylene oxides such as polyethylene oxide (PEO).

正極活物質層には、上記した正極活物質とLiPOと結着剤とに加えて、必要に応じて更なる任意成分を含んでいてもよい。任意成分の一例としては、例えば、導電材、増粘剤、pH調整剤等が挙げられる。導電材としては、例えば、アセチレンブラックやケッチェンブラック等のカーボンブラック、活性炭、黒鉛、炭素繊維等の炭素材料が挙げられる。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)等のセルロース類が挙げられる。pH調整剤としては、例えば、リン酸等の酸性物質が挙げられる。 The positive electrode active material layer may contain, in addition to the above-described positive electrode active material, Li 3 PO 4, and a binder, further optional components as necessary. Examples of optional components include, for example, conductive materials, thickeners, pH adjusters, and the like. Examples of the conductive material include carbon materials such as carbon black such as acetylene black and ketjen black, activated carbon, graphite, and carbon fibers. As a thickener, celluloses, such as carboxymethylcellulose (CMC), are mentioned, for example. Examples of pH adjusters include acidic substances such as phosphoric acid.

正極活物質層全体(100質量%)に占める正極活物質の割合は、概ね50〜95質量%、例えば80〜90質量%とするとよい。正極活物質層全体に占めるLiPOの割合は、概ね0.1〜20質量%、例えば0.5〜10質量%、好ましくは1〜10質量%とするとよい。LiPOの割合が所定値以上であると、LiPOの添加の効果をより良く発揮することができる。LiPOの割合が所定値以下であると、正極の内部抵抗をより良く低減することができる。 The ratio of the positive electrode active material to the entire positive electrode active material layer (100% by mass) may be approximately 50 to 95% by mass, for example, 80 to 90% by mass. The proportion of Li 3 PO 4 in the entire positive electrode active material layer may be approximately 0.1 to 20% by mass, for example, 0.5 to 10% by mass, preferably 1 to 10% by mass. When the ratio of Li 3 PO 4 is equal to or higher than the predetermined value, it is possible to better secure the effect of the addition of Li 3 PO 4. When the ratio of Li 3 PO 4 is equal to or less than a predetermined value, it is possible to better reduce the internal resistance of the positive electrode.

ここに開示される技術において、正極活物質層では、LiPOの含有量のバラつき(4σバラつき)は、1.89〜58.91%である。上記4σバラつきを1.89%以上とすることで、LiPOが所定のバラつきをもって正極活物質層内に分散される。このことにより、驚くべきことに、電池の出力特性を向上することができる。かかる観点からは、上記4σバラつきが、概ね5%以上、例えば10%以上であってもよい。また、上記4σバラつきを58.91%以下とすることで、LiPOの含有量のバラつき(偏在化)が抑えられる。このことにより、LiPOの添加の効果が適切に発揮されて、過充電時の電池温度の上昇を抑制することができる。かかる観点からは、上記4σバラつきが、概ね50%以下、例えば40%以下、好ましくは20%以下であってもよい。なお、4σバラつきは、典型的には、正極ペーストの混練条件や乾燥条件、例えば正極ペーストの固形分、混練時間、剪断速度、粘度、乾燥温度、乾燥速度等によって調整することができる。また、4σバラつきの算出方法については、後述する試験例で詳しく説明する。 In the technology disclosed herein, in the positive electrode active material layer, the variance (4σ variance) of the content of Li 3 PO 4 is 1.89 to 58.91%. By setting the above 4σ variance to 1.89% or more, Li 3 PO 4 is dispersed in the positive electrode active material layer with a predetermined variance. This can surprisingly improve the output characteristics of the battery. From this point of view, the 4σ variation may be approximately 5% or more, for example, 10% or more. Also, by setting the above-mentioned 4σ variance to 58.91% or less, the variance (localization) of the content of Li 3 PO 4 can be suppressed. This allows the effect of addition of Li 3 PO 4 is properly exerted, to suppress an increase in battery temperature during overcharge. From this point of view, the 4σ variation may be approximately 50% or less, for example, 40% or less, preferably 20% or less. The 4σ variation can be typically adjusted by the kneading conditions and drying conditions of the positive electrode paste, for example, the solid content of the positive electrode paste, the kneading time, the shear rate, the viscosity, the drying temperature, the drying rate and the like. The calculation method of the 4σ variation will be described in detail in the test example described later.

負極は、従来と同様でよく特に限定されない。負極は、典型的には、負極集電体と、負極集電体の上に固着された負極活物質層と、を備えている。負極集電体としては、導電性の良好な金属製のシート、例えば銅箔が好適である。負極活物質層は、多孔質構造である。負極活物質層は、少なくとも、電荷担体を可逆的に吸蔵及び放出可能な負極活物質を含んでいる。負極活物質の好適例としては、例えば、黒鉛等の炭素材料が挙げられる。負極活物質層は、負極活物質以外の任意成分、例えば結着剤や増粘剤等をさらに含んでいてもよい。   The negative electrode is the same as in the prior art and is not particularly limited. The negative electrode typically includes a negative electrode current collector and a negative electrode active material layer fixed on the negative electrode current collector. As the negative electrode current collector, a metal sheet having good conductivity, for example, a copper foil is suitable. The negative electrode active material layer has a porous structure. The negative electrode active material layer contains at least a negative electrode active material capable of reversibly absorbing and desorbing charge carriers. As a suitable example of a negative electrode active material, carbon materials, such as graphite, are mentioned, for example. The negative electrode active material layer may further contain optional components other than the negative electrode active material, such as a binder and a thickener.

非水電解質は、従来と同様でよく特に限定されない。非水電解質は、典型的には支持塩と非水溶媒とを含み、室温(25℃)で液体状態を示す非水電解液である。支持塩は、非水溶媒中で解離して電荷担体を生成する。支持塩としては、典型的にはリチウム塩、例えば、LiPF、LiBF等のフッ素含有リチウム塩を好適に用いることができる。非水溶媒としては、例えば、非フッ素またはフッ素化のカーボネートを好適に用いることができる。カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、モノフルオロエチレンカーボネート(FEC)等の環状カーボネートや、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、メチル−2,2,2−トリフルオロエチルカーボネート(MTFEC)等の鎖状カーボネートが挙げられる。 The non-aqueous electrolyte is the same as in the prior art and is not particularly limited. The non-aqueous electrolyte is a non-aqueous electrolyte that typically contains a support salt and a non-aqueous solvent and exhibits a liquid state at room temperature (25 ° C.). The supporting salt dissociates in the non-aqueous solvent to form a charge carrier. As a supporting salt, typically, a lithium salt, for example, a fluorine-containing lithium salt such as LiPF 6 or LiBF 4 can be suitably used. As the non-aqueous solvent, for example, non-fluorinated or fluorinated carbonate can be suitably used. Examples of the carbonate include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and monofluoroethylene carbonate (FEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl-2,2, And linear carbonates such as 2-trifluoroethyl carbonate (MTFEC).

本実施形態の非水系二次電池では、正極活物質層内のLiPOの含有量のバラつき(4σバラつき)が上記範囲を満たすことによって、正極活物質層内に良好な導電パスが形成され、安定して内部抵抗を低く抑えることができる。したがって、通常使用時には優れた電池性能、例えば優れた出力特性を発揮することができる。さらに、過充電時には電池温度の上昇を抑制して、優れた過充電耐性を発揮することができる。 In the non-aqueous secondary battery of the present embodiment, when the variance (4σ variance) of the content of Li 3 PO 4 in the positive electrode active material layer satisfies the above range, a good conductive path is formed in the positive electrode active material layer Internal resistance can be kept low. Therefore, excellent battery performance, for example, excellent output characteristics can be exhibited during normal use. Furthermore, at the time of overcharge, a rise in battery temperature can be suppressed, and excellent overcharge resistance can be exhibited.

本実施形態の非水系二次電池は、例えばハイレート充放電を繰り返す使用態様が想定される用途で好ましく用いることができる。例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載されるモーター駆動のための動力源として、好ましく用いることができる。   The non-aqueous secondary battery of the present embodiment can be preferably used, for example, in applications in which the usage mode in which high rate charge and discharge are repeated is assumed. For example, it can be preferably used as a power source for driving a motor mounted in a vehicle such as a plug-in hybrid vehicle, a hybrid vehicle, an electric vehicle, and the like.

以下、本発明に関する試験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending limiting this invention to what is shown to this specific example.

本実施例では、混練条件の異なる13種類の正極ペーストを調製し、正極を作製した。そして、得られた正極を用いてリチウムイオン二次電電池を構築し、電池の性能を評価した。   In this example, 13 types of positive electrode pastes having different kneading conditions were prepared to prepare a positive electrode. And the lithium ion secondary battery was constructed | assembled using the obtained positive electrode, and the performance of the battery was evaluated.

<正極の作製>
まず、正極活物質としてのリチウムニッケルコバルトマンガン含有複合酸化物(LiNi1/3Co1/3Mn1/3)と、リン酸三リチウム(LPO、LiPO)と、結着剤としてのポリフッ化ビニリデン(PVdF)と、導電材としてのアセチレンブラック(AB)と、有機溶媒としてのN−メチル−2−ピロリドン(NMP)とを混練して、正極ペーストを調製した。なお、正極ペーストの混練時には、固形分を50〜65%の範囲で調整し、粘度を2000〜30000mPa・sの範囲で調整するようにした。そして、得られた正極ペーストをアルミニウム箔(正極集電体)の表面に塗布し、乾燥させることによって、13種類の正極を作製した。なお、正極ペーストの乾燥時には、乾燥温度を100〜200℃の範囲で調整するようにした。
<Fabrication of positive electrode>
First, lithium nickel cobalt manganese-containing composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) as a positive electrode active material, trilithium phosphate (LPO, Li 3 PO 4 ), and a binder A positive electrode paste was prepared by kneading polyvinylidene fluoride (PVdF) as a mixture, acetylene black (AB) as a conductive material, and N-methyl-2-pyrrolidone (NMP) as an organic solvent. In addition, at the time of kneading | mixing of a positive electrode paste, solid content was adjusted in 50 to 65%, and the viscosity was adjusted in 2000 to 30000 mPa * s. And 13 types of positive electrodes were produced by apply | coating the obtained positive electrode paste on the surface of aluminum foil (positive electrode collector), and making it dry. At the time of drying of the positive electrode paste, the drying temperature was adjusted in the range of 100 to 200 ° C.

<正極活物質層のバラつきの評価>
以下の手順で、正極活物質層におけるLiPOの含有量のバラつき(4σバラつき)をそれぞれ評価した。
・手順1:打ち抜きポンチを用いて、Φ40mmの大きさで、正極から正極活物質層を合計8つ打ち抜いた。なお、図2に示すように、正極活物質層を打ち抜く位置は、正極ペーストの塗布方向において、塗り始め側で4か所、塗り終わり側で4か所とした。すなわち、塗布方向に最も離れた位置から、塗布方向の中間位置を基準とする線対称となるようにサンプリングを行った。
・手順2:Φ40mmの大きさで打ち抜いた正極活物質層を、酸性溶媒(例えば硫酸)にそれぞれ浸漬させて、酸性溶媒中にリン原子を抽出した。
・手順3:誘導結合プラズマ発光分光法(ICP−OES:Inductively Coupled Plasma−Optical Emission Spectrometry)で上記酸性溶媒の全量を分析し、それぞれリン原子を定量した。なお、分析装置としては、ここでは、株式会社島津製作所製のICP発光分析装置、型式「ICPS-8100」を使用した。
・手順4:まず、上記リン原子の定量結果に基づいて上記LiPOの含有量を算出した。LiPOの含有量は、正極活物質の単位質量あたりに対する割合(質量部)として算出した。次に、測定点数8で、LiPOの含有量の算術平均値と4σ値とを算出した。次に、上記4σ値を上記算術平均値で除すことにより、LiPOの含有量のバラつき(4σバラつき)を算出した。なお、上記4σ値は、上記算術平均値を基準(100%)として、単位を%で表している。
<Evaluation of the variation of the positive electrode active material layer>
According to the following procedure, the variance (4σ variance) of the content of Li 3 PO 4 in the positive electrode active material layer was evaluated.
Procedure 1: Using a punching punch, a total of eight positive electrode active material layers were punched from the positive electrode with a size of Φ 40 mm. In addition, as shown in FIG. 2, the position which pierce | punched the positive electrode active material layer was made into four places by the application start side of a positive electrode paste, and four places by the application finish side. That is, sampling was performed so as to be line symmetrical with respect to the middle position in the coating direction from the position farthest in the coating direction.
Procedure 2: The positive electrode active material layer punched out with a size of 40 40 mm was immersed in an acidic solvent (for example, sulfuric acid) to extract phosphorus atoms in the acidic solvent.
Procedure 3: The total amount of the above-mentioned acidic solvent was analyzed by inductively coupled plasma-emission spectroscopy (ICP-OES: Inductively Coupled Plasma-Optical Emission Spectroscopy) to quantify each phosphorus atom. Here, as an analyzer, an ICP emission analyzer manufactured by Shimadzu Corporation, model "ICPS-8100" was used.
Procedure 4: First, the content of Li 3 PO 4 was calculated based on the results of quantification of the phosphorus atom. The content of Li 3 PO 4 was calculated as the ratio (parts by mass) with respect to per unit mass of the positive electrode active material. Next, the arithmetic mean value and the 4σ value of the content of Li 3 PO 4 were calculated by using 8 measurement points. Next, a variance (4σ variance) of the content of Li 3 PO 4 was calculated by dividing the 4σ value by the arithmetic mean value. The 4σ value is expressed in% as a unit (100%) based on the arithmetic mean value.

<リチウムイオン二次電電池の構築>
まず、上記作製した正極と、負極活物質としての天然黒鉛を含んだ負極とを、樹脂製のセパレータ(ポリオレフィン樹脂製、シャットダウン温度135℃)を介して積層し、電極体を作製した。また、非水電解液として、環状カーボネートと鎖状カーボネートとを含む混合溶媒中に、リチウム塩としてのLiPFを1mol/Lの濃度となるように溶解させたものを用意した。そして、上記電極体と上記非水電解液とを電池ケースに収容し、13種類の4V級のリチウムイオン二次電池を構築した。
<Construction of lithium ion secondary battery>
First, the prepared positive electrode and a negative electrode containing natural graphite as a negative electrode active material were laminated via a resin separator (made of polyolefin resin, shutdown temperature 135 ° C.) to produce an electrode body. Further, as a non-aqueous electrolytic solution, a mixed solvent containing cyclic carbonate and linear carbonate was prepared by dissolving LiPF 6 as a lithium salt to a concentration of 1 mol / L. And the said electrode body and the said non-aqueous electrolyte were accommodated in the battery case, and 13 types of 4V class lithium ion secondary batteries were constructed | assembled.

<初期充放電>
次に、各リチウムイオン二次電池に対して、25℃の温度環境下で、以下の充放電操作:電池電圧が4.1Vとなるまで0.2Cのレートで定電流充電した後、電流が0.01Cのレートになるまで定電圧充電する;電池電圧が3.0Vとなるまで0.2Cのレートで定電流放電した後、電流が0.01Cのレートになるまで定電圧放電する;を行った。
<Initial charge and discharge>
Next, for each lithium ion secondary battery, in the temperature environment of 25 ° C., the following charge / discharge operation: after constant current charge at a rate of 0.2 C until the battery voltage becomes 4.1 V, the current becomes Constant-voltage charge to a rate of 0.01 C; constant-current discharge at a rate of 0.2 C until the battery voltage is 3.0 V, and then constant-voltage discharge to a rate of 0.01 C; went.

<25℃、SOC56%での出力測定>
25℃の温度環境下で、上記作製したリチウムイオン二次電池をSOC(State of Charge)56%の状態に調整した。次に、SOC56%に調整した電池に対して、25℃の温度環境下で、10Cのレートで10秒間の定電流放電を行った。そして、放電開始から10秒後の電圧値と電流値との積から、出力(W)を算出した。結果を図3に示す。
<Output measurement at 25 ° C, 56% SOC>
Under the temperature environment of 25 ° C., the lithium ion secondary battery prepared above was adjusted to a state of SOC (State of Charge) 56%. Next, constant current discharge was performed for 10 seconds at a rate of 10 C in a temperature environment of 25 ° C. for the battery adjusted to 56% SOC. Then, the output (W) was calculated from the product of the voltage value and the current value 10 seconds after the start of discharge. The results are shown in FIG.

図3に示すように、LiPOの含有量のバラつき(4σバラつき)を1.89%以上とすることで、出力を1000W以上とすることができ、4σバラつきが1.89%未満の場合に比べて、相対的に高い出力を実現することができた。この理由として、4σバラつきが1.89%未満の場合は、正極ペーストの調製において、凝集を解砕するために混練条件を変更した結果、バインダのマイグレーションが発生したことが考えられる。 As shown in FIG. 3, by setting the variance (4σ variance) of the content of Li 3 PO 4 to 1.89% or more, the output can be 1000 W or more, and the 4σ variance is less than 1.89%. Relatively high output could be realized compared to the case. As a reason for this, when the 4σ variation is less than 1.89%, it is considered that as a result of changing the kneading conditions in order to break up the aggregation in the preparation of the positive electrode paste, the migration of the binder occurs.

<過充電時の温度上昇の測定>
上記リチウム二次電池の外表面に熱電対を取り付け、−10℃の恒温槽に設置した。次に、−10℃の温度環境下において、上記リチウム二次電池を過充電状態になるまで定電流充電した。これにより、正極と負極とを導通させて、電池をシャットダウン(SD)させた。そして、シャットダウンから30秒間の温度上昇量ΔT(℃)を測定した。結果を図4に示す。
<Measurement of temperature rise during overcharge>
The thermocouple was attached to the outer surface of the said lithium secondary battery, and it installed in the -10 degreeC thermostat. Next, in a temperature environment of −10 ° C., the lithium secondary battery was subjected to constant current charging until it was overcharged. As a result, the positive electrode and the negative electrode were conducted, and the battery was shut down (SD). Then, the temperature rise amount ΔT (° C.) was measured for 30 seconds after the shutdown. The results are shown in FIG.

図4に示すように、LiPOの含有量のバラつき(4σバラつき)を58.91%以下とすることで、温度上昇量ΔTを6.0℃以下とすることができ、4σバラつきが58.91%を超える場合に比べて、相対的に温度上昇を小さく抑えることができた。この理由として、4σバラつきが58.91%を超える場合は、LiPOが正極活物質層内に偏在しており、局所的にLiPOの添加の効果が薄くなったことが考えられる。 As shown in FIG. 4, by setting the variance (4σ variance) of the content of Li 3 PO 4 to 58.91% or less, the temperature increase ΔT can be 6.0 ° C. or less, and the 4σ variance is As compared with the case of exceeding 58.91%, the temperature rise could be suppressed relatively small. As the reason for this, it is considered that Li 3 PO 4 is unevenly distributed in the positive electrode active material layer when the 4σ variation exceeds 58.91%, and the effect of the addition of Li 3 PO 4 is locally reduced. Be

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   The present invention has been described in detail above, but the above embodiments and examples are merely examples, and the invention disclosed herein includes various modifications and alterations of the specific example described above.

Claims (1)

正極と、負極と、非水電解質と、を備え、
前記正極は、正極集電体と、前記正極集電体の上に固着された正極活物質層と、を備え、
前記正極活物質層は、
正極活物質と、LiPOと、結着剤と、を含み、
以下の(手順1)〜(手順4)で求められる前記LiPOの含有量のバラつき(4σバラつき)が、1.89%以上58.91%以下である、非水系二次電池。

(手順1)前記正極活物質層を、Φ40mmの大きさで、合計8つ切り出す。
(手順2)切り出した前記正極活物質層を、酸性溶媒にそれぞれ浸漬させて、前記酸性溶媒中にリン原子を抽出する。
(手順3)誘導結合プラズマ発光分光法で前記酸性溶媒を分析し、前記リン原子をそれぞれ定量する。
(手順4)前記リン原子の定量結果に基づいて、前記LiPOの含有量の算術平均値と4σ値とを算出し、前記4σ値を前記算術平均値で除すことにより、前記LiPOの含有量のバラつき(4σバラつき)を算出する。
A positive electrode, a negative electrode, and a non-aqueous electrolyte,
The positive electrode includes a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector,
The positive electrode active material layer is
Containing a positive electrode active material, Li 3 PO 4 and a binder,
Following (Step 1) and (Step 4) In the Li 3 PO 4 content of variation obtained (4 [sigma] variation) is, at 58.91% or less 1.89% or more, a non-aqueous secondary battery.

(Procedure 1) A total of eight pieces of the positive electrode active material layer are cut out with a size of 40 40 mm.
(Procedure 2) The cut out positive electrode active material layer is immersed in an acidic solvent to extract a phosphorus atom in the acidic solvent.
(Procedure 3) The above-mentioned acidic solvent is analyzed by inductively coupled plasma emission spectroscopy, and the above-mentioned phosphorus atoms are quantified respectively.
(Procedure 4) The arithmetic mean value and the 4σ value of the content of the Li 3 PO 4 are calculated based on the determination result of the phosphorus atom, and the Li value is divided by the arithmetic mean value to calculate the Li 3 Calculate the variance of the content of PO 4 (4σ variance).
JP2017229592A 2017-11-29 2017-11-29 Non-aqueous secondary battery Active JP6895083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229592A JP6895083B2 (en) 2017-11-29 2017-11-29 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229592A JP6895083B2 (en) 2017-11-29 2017-11-29 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2019102189A true JP2019102189A (en) 2019-06-24
JP6895083B2 JP6895083B2 (en) 2021-06-30

Family

ID=66977078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229592A Active JP6895083B2 (en) 2017-11-29 2017-11-29 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6895083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560282A (en) * 2020-12-24 2021-03-26 清华大学 Method for screening design results of battery electrode layer and computer equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228282A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2016197563A (en) * 2015-04-06 2016-11-24 トヨタ自動車株式会社 Positive plate for nonaqueous electrolytic solution secondary battery, nonaqueous electrolytic solution secondary battery and method of manufacturing nonaqueous electrolytic solution secondary battery
WO2017187637A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228282A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2016197563A (en) * 2015-04-06 2016-11-24 トヨタ自動車株式会社 Positive plate for nonaqueous electrolytic solution secondary battery, nonaqueous electrolytic solution secondary battery and method of manufacturing nonaqueous electrolytic solution secondary battery
WO2017187637A1 (en) * 2016-04-28 2017-11-02 日産自動車株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560282A (en) * 2020-12-24 2021-03-26 清华大学 Method for screening design results of battery electrode layer and computer equipment

Also Published As

Publication number Publication date
JP6895083B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP5858295B2 (en) Nonaqueous electrolyte secondary battery
JP5786255B2 (en) Active material for composite electrode of lithium secondary battery for improving output and lithium secondary battery including the same
JP6187830B2 (en) Lithium secondary battery and method for producing the battery
JP5678936B2 (en) Method for producing lithium ion secondary battery
JP7251959B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
CN109904516B (en) Non-aqueous electrolyte secondary battery
US10897064B2 (en) Nonaqueous electrolyte secondary cell including negative electrode active material made of amorphous-coated graphite and electrolytic solution including lithium fluorosulfonate
JP6354991B2 (en) Non-aqueous electrolyte secondary battery
JP2020126723A (en) Negative electrode of lithium ion secondary battery
JP7484725B2 (en) Electric storage element and method for manufacturing the same
JP5626183B2 (en) Positive electrode conductive material paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6902206B2 (en) Lithium ion secondary battery
JP2019040721A (en) Lithium ion secondary battery
JP6895083B2 (en) Non-aqueous secondary battery
JP2020129479A (en) Negative electrode for lithium ion secondary battery
JP2020080255A (en) Non-aqueous electrolyte secondary battery
JP6818236B2 (en) Non-aqueous secondary battery
JP6895078B2 (en) Lithium ion secondary battery
JP6982779B2 (en) Manufacturing method of non-water-based secondary battery
JP6774634B2 (en) Non-aqueous secondary battery
JP6774632B2 (en) Non-aqueous electrolyte secondary battery
JP6323723B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and battery assembly
JP6770689B2 (en) Non-aqueous secondary battery
JP2020119867A (en) Non-aqueous electrolyte for lithium secondary battery
JP6245470B2 (en) Manufacturing method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210519

R151 Written notification of patent or utility model registration

Ref document number: 6895083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151