JP2019101025A - Fluorescence-labeled polylysine and observation method using the same - Google Patents

Fluorescence-labeled polylysine and observation method using the same Download PDF

Info

Publication number
JP2019101025A
JP2019101025A JP2018205587A JP2018205587A JP2019101025A JP 2019101025 A JP2019101025 A JP 2019101025A JP 2018205587 A JP2018205587 A JP 2018205587A JP 2018205587 A JP2018205587 A JP 2018205587A JP 2019101025 A JP2019101025 A JP 2019101025A
Authority
JP
Japan
Prior art keywords
polylysine
pll
fluorescently labeled
stratum corneum
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018205587A
Other languages
Japanese (ja)
Other versions
JP7197827B2 (en
Inventor
平尾 哲二
Tetsuji Hirao
哲二 平尾
山下 裕司
Yuji Yamashita
裕司 山下
伊藤 敬史
Takashi Ito
敬史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Kake Educational Institution
Original Assignee
JNC Corp
Kake Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Kake Educational Institution filed Critical JNC Corp
Publication of JP2019101025A publication Critical patent/JP2019101025A/en
Application granted granted Critical
Publication of JP7197827B2 publication Critical patent/JP7197827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To allow for observing a target such as stratum corneum cells with high precision through simple manipulation without using an expensive analysis device.SOLUTION: Observation is done by attaching fluorescence-labeled polylysine labeled with a fluorescent dye compound to a target.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光色素化合物で標識した蛍光標識ポリリジン、及びこれを用いる対象の観察方法に関する。   The present invention relates to a fluorescently labeled polylysine labeled with a fluorescent dye compound, and a method of observing an object using the same.

皮膚外用薬や化粧料を効率的よく開発するため、生体表面組織の状態を精度よく観察することが重要である。従来その一般的な方法として、細胞採取用ブラシやテープストリッピング等の公知の手法により採取した生体材料を染色剤で染色したのち、顕微観察することが行われている。
このうち皮膚角層細胞の観察を目的とする場合には、例えば頬部や上腕内側部よりテープストリッピング法にて採取された角層細胞を、ゲンチアナバイオレット−ブリリアントグリーン染色、ローダミンB−メチレンブルー染色、ヘマトキシリン−エオジン染色などの染色方法で角層細胞を染色したのち、顕微鏡観察する方法が広く行われている。
しかしながら、これらの染色方法は操作手順が煩雑で、かつ染色に時間がかかるうえ測定者の技量に負うところが大きく、しばしば染色が不十分となり安定した顕微鏡観察が行えない問題があった。
In order to develop skin external preparations and cosmetics efficiently, it is important to observe the condition of the surface tissue of the living body with high accuracy. Conventionally, as a general method, microscopic observation is performed after a biological material collected by a known method such as a cell collection brush or tape stripping is stained with a staining agent.
Among them, for the purpose of observation of stratum corneum cells, for example, stratum corneum cells collected from the cheek or the upper arm by tape stripping method are stained with gentian violet-brilliant green, rhodamine B-methylene blue, After stratum corneum cells are stained by a staining method such as hematoxylin-eosin staining, a method of microscopic observation is widely used.
However, these staining methods require complicated operation procedures, take a long time for staining, are largely dependent on the skill of the measurer, and often suffer from insufficient staining so that stable microscopic observation can not be performed.

この解決策として、例えば特許文献1では、上記した染色法と併せて、タンニン酸、クロム塩類、アルミニウム塩類、グルタールアルデヒド、ホルマリンの群から選ばれる一種または二種以上を媒染剤として使用した角層細胞の染色方法が提案されている。また、特許文献2では、染色剤を水と混和可能な有機溶剤を含有する溶媒に溶解したのち、角層細胞の染色に供する方法が提案されている。   As this solution, for example, in Patent Document 1, a stratum corneum using, as a mordant, one or more selected from the group of tannic acid, chromium salts, aluminum salts, glutaraldehyde and formalin in combination with the above-mentioned staining method Methods for staining cells have been proposed. Further, Patent Document 2 proposes a method in which a staining agent is dissolved in a solvent containing an organic solvent miscible with water and then used for staining of stratum corneum cells.

これらの他に、染色剤を用いずに角層細胞を直接観察する方法も提案されている。例えば、特許文献3では、紫外線下、顕微鏡乃至はビデオマイクロスコープを介して観察する方法が、特許文献4ではテープストリッピングにて採取した角層細胞を共焦点レーザー顕微鏡で観察する方法が提案されている。   Besides these, methods for directly observing stratum corneum cells without using a staining agent have also been proposed. For example, Patent Document 3 proposes a method of observing through a microscope or a video microscope under ultraviolet light, and Patent Document 4 proposes a method of observing a stratum corneum cell collected by tape stripping with a confocal laser microscope. There is.

ところで、ε−ポリ−L−リジンは、L−リジンのε位のアミノ基とカルボキシル基とがペプチド結合により直鎖状に連なったポリマーである。ε−ポリ−L−リジンは、抗菌作用を示すことが知られており、保存料として食品添加物や化粧品原料等に実用化されている(非特許文献1)。また、ε−ポリ−L−リジンは、正電荷を帯びていることから、負に帯電している物と相互作用する。そして、角層細胞等にも吸着することが示唆されていたが、その吸着挙動については明らかではなかった。   By the way, ε-poly-L-lysine is a polymer in which an amino group at the ε-position of L-lysine and a carboxyl group are linearly linked by a peptide bond. ε-poly-L-lysine is known to exhibit an antibacterial action, and has been put to practical use as a food additive, a cosmetic raw material and the like as a preservative (Non-patent Document 1). Also, since ε-poly-L-lysine is positively charged, it interacts with negatively charged substances. And, it has been suggested that it also adsorbs to stratum corneum cells etc., but its adsorption behavior was not clear.

特開2000−125854号公報JP 2000-125854 A 特開2003−202336号公報Unexamined-Japanese-Patent No. 2003-202336 特開2003−315331号公報Unexamined-Japanese-Patent No. 2003-315331 特開2017−111065号公報JP, 2017-111065, A

Hiraki, J. Antibact. Antifung. Agents, Vol. 23, No.6, pp.349-354, 1995Hiraki, J. Antibact. Antifung. Agents, Vol. 23, No. 6, pp. 349-354, 1995

角層細胞の観察方法に関して、特許文献1及び2の方法では、従来の染色方法を改良しながらも依然として操作手順は煩雑である。また、特許文献3及び4の方法では、高価な光学機器を要するため、大学等の小規模な研究室では利用が困難である。
このような問題に鑑み、本発明の課題は、操作が簡便で、かつ高価な分析機器を使用しなくても、高い精度で角層細胞を始めとする生体組織の観察方法を提供することである。
With regard to the method of observing stratum corneum cells, the methods of Patent Documents 1 and 2 are still complicated in operation procedure while improving the conventional staining method. Further, the methods of Patent Documents 3 and 4 require expensive optical equipment, so that they are difficult to use in a small laboratory such as a university.
In view of such problems, it is an object of the present invention to provide a method for observing living tissue including stratum corneum cells with high accuracy without using an analytical instrument which is easy to operate and which is expensive. is there.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、蛍光化合物で標識した蛍光標識ポリリジンを対象に吸着させることにより、蛍光染色された対象を容易に蛍光顕微鏡で観察できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that by allowing fluorescently labeled polylysine labeled with a fluorescent compound to adsorb to the object, the fluorescently stained object can be easily observed with a fluorescence microscope. The present invention has been completed.

すなわち、本発明は以下の通りである。
[1]蛍光色素化合物で標識した蛍光標識ポリリジン。
[2]蛍光色素化合物が、3,6−ジアミノ−9−[2,4−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム/3,6−ジアミノ−9−[2,5−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム又はその誘導体である、[1]に記載の蛍光標識ポリリジン。
[3]蛍光色素化合物が、9−[2−カルボキシ−4(オア5)−[[(2,5−ジオキソ−1−ピロリジニル)オキシ]−カルボニル]フェニル]−3,6−ビス−(ジメチル
アミノ)−キサンチリウム インナーソルト又はその誘導体である、[1]に記載の蛍光
標識ポリリジン。
[4]蛍光色素化合物の導入率が蛍光標識ポリリジン全量の0.1〜10重量%である、[1]〜[3]のいずれかに記載の蛍光標識ポリリジン。
[5]ポリリジンが、ε−ポリリジン及び/又はその塩である、[1]〜[4]のいずれかに記載の蛍光標識ポリリジン。
[6][1]〜[5]のいずれかに記載の蛍光標識ポリリジンを含有する、観察用試薬。[7][1]〜[5]のいずれかに記載の蛍光標識ポリリジンを対象に吸着させる工程を含む、対象の観察方法。
[8]対象が角層細胞、毛髪、微生物、及び繊維製品からなる群から選択される、[7]に記載の観察方法。
[9]吸着工程がpH6〜8の条件下で行われる、[7]又は[8]に記載の観察方法。[10]対象がダメージ毛髪である、[8]又は[9]に記載の観察方法。
That is, the present invention is as follows.
[1] Fluorescently labeled polylysine labeled with a fluorescent dye compound.
[2] The fluorescent dye compound is 3,6-diamino-9- [2,4-bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium / 3,6-diamino [9] The fluorescently labeled polylysine according to [1], which is -9- [2,5-bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium or a derivative thereof.
[3] The fluorescent dye compound is 9- [2-carboxy-4 (or 5)-[[(2,5-dioxo-1-pyrrolidinyl) oxy] -carbonyl] phenyl] -3,6-bis- (dimethyl) [10] The fluorescently labeled polylysine according to [1], which is an amino) -xanthylium inner salt or a derivative thereof.
[4] The fluorescently labeled polylysine according to any one of [1] to [3], wherein the introduction rate of the fluorescent dye compound is 0.1 to 10% by weight of the total amount of fluorescently labeled polylysine.
[5] The fluorescently labeled polylysine according to any one of [1] to [4], wherein the polylysine is ε-polylysine and / or a salt thereof.
[6] An observation reagent comprising the fluorescently labeled polylysine according to any one of [1] to [5]. [7] A method of observing a subject, comprising the step of adsorbing the fluorescently labeled polylysine according to any one of [1] to [5] to the subject.
[8] The observation method according to [7], wherein the subject is selected from the group consisting of stratum corneum cells, hair, microorganisms, and textiles.
[9] The observation method according to [7] or [8], wherein the adsorption step is performed under conditions of pH 6-8. [10] The observation method according to [8] or [9], wherein the subject is damaged hair.

本発明の蛍光標識ポリリジンを用いれば、煩雑な染色操作や高価な分析機器を用いることなく、簡便な操作で精度よく、角層細胞を始めとする生体細胞や毛髪等の生体組織、微生物、天然繊維や化学繊維及び合成繊維等の繊維素材、天然樹脂や合成樹脂等の工業素材の状態を、観察することができる。   When the fluorescently labeled polylysine of the present invention is used, biological tissues such as keratinocytes and living tissues such as hair, microorganisms, and natural tissues can be accurately and easily by simple operations without using complicated staining procedures and expensive analytical instruments. The state of fiber materials such as fibers, chemical fibers and synthetic fibers, and industrial materials such as natural resins and synthetic resins can be observed.

蛍光標識ポリリジンの概略図。Schematic of fluorescence labeled polylysine. 蛍光標識ポリリジンの概略図。Schematic of fluorescence labeled polylysine. 実施例2の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 2. 実施例3の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 3. 実施例4の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 4. The ratio represents an amino group molar concentration ratio. 実施例5の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 5. The ratio represents an amino group molar concentration ratio. 実施例6の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 6. 実施例7の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 7. 実施例8の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 8. The ratio represents an amino group molar concentration ratio. 実施例8の、蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph under a fluorescence microscope of the stratum corneum cells stained with fluorescently labeled polylysine of Example 8. The ratio represents an amino group molar concentration ratio. 実施例9の蛍光標識ポリリジンで染色した毛髪の蛍光顕微鏡による観察写真。A photograph observed with a fluorescence microscope of hair stained with fluorescence labeled polylysine of Example 9. 実施例10の蛍光標識ポリリジンで染色した毛髪の蛍光顕微鏡による観察写真。A photograph observed by a fluorescence microscope of hair stained with the fluorescently labeled polylysine of Example 10. 実施例11の蛍光標識ポリリジンで染色した毛髪の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph observed with a fluorescence microscope of hair stained with fluorescence labeled polylysine of Example 11. The ratio represents an amino group molar concentration ratio. 実施例12の蛍光標識ポリリジンで染色した毛髪の蛍光顕微鏡による観察写真。A photograph observed with a fluorescence microscope of hair stained with fluorescence labeled polylysine of Example 12. 実施例13の蛍光標識ポリリジンで染色した微生物の蛍光顕微鏡による観察写真。A photograph observed with a fluorescence microscope of a microorganism stained with the fluorescently labeled polylysine of Example 13. 実施例14の蛍光標識ポリリジンで染色した微生物の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph observed with a fluorescence microscope of a microorganism stained with the fluorescently labeled polylysine of Example 14. The ratio represents an amino group molar concentration ratio. 実施例16の蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。A photograph under a fluorescence microscope of the stratum corneum cells stained with the fluorescently labeled polylysine of Example 16. 実施例17の蛍光標識ポリリジンで染色した角層細胞の蛍光顕微鏡による観察写真。比率はアミノ基モル濃度比を表す。A photograph under a fluorescence microscope of a stratum corneum cell stained with the fluorescently labeled polylysine of Example 17. The ratio represents an amino group molar concentration ratio. 実施例18の蛍光標識ポリリジンで染色した毛髪の蛍光顕微鏡による観察写真。A photograph observed by a fluorescence microscope of hair stained with the fluorescently labeled polylysine of Example 18.

本発明の一の形態は、蛍光色素化合物で標識した蛍光標識ポリリジンである。すなわちポリリジンに蛍光色素化合物が結合したものであり、かかる結合は共有結合、イオン結合、配位結合、水素結合等特に限定されない。   One aspect of the present invention is fluorescently labeled polylysine labeled with a fluorescent dye compound. That is, the fluorescent dye compound is bonded to polylysine, and such bond is not particularly limited, such as covalent bond, ionic bond, coordinate bond, hydrogen bond and the like.

本発明において、ポリリジンはα−ポリリジン、ε−ポリリジンのいずれでもよく特に限定されるものではないが、毒性の低さ、入手の容易さからε−ポリリジンが好ましい。また、通常はL−リジンのポリマーである。
また、ポリリジンは、通常はリジンのホモポリマーであるが、本発明の効果を損なわない限りにおいて、他のアミノ酸をモノマーとして含んでもよい。
また、ポリリジンの大きさは、特に限定されないが、重量平均分子量が好ましくは3000以上、より好ましくは4000以上であり、好ましくは10000以下、より好ましくは8000以下、さらに好ましくは6000以下であり、3000〜6000の範囲が特に好ましい。なお、ここで重量平均分子量は、GPC−LALLS法により測定された値である。
In the present invention, polylysine may be either α-polylysine or ε-polylysine and is not particularly limited. However, ε-polylysine is preferable from the viewpoint of low toxicity and easy availability. Also, it is usually a polymer of L-lysine.
Polylysine is usually a homopolymer of lysine, but may contain other amino acids as monomers as long as the effects of the present invention are not impaired.
Further, the size of polylysine is not particularly limited, but the weight average molecular weight is preferably 3000 or more, more preferably 4000 or more, preferably 10000 or less, more preferably 8000 or less, still more preferably 6000 or less, The range of -6000 is particularly preferred. Here, the weight average molecular weight is a value measured by the GPC-LALLS method.

ε−ポリリジンは、例えば特許第1245361号に記載の方法で製造することができる。具体的には、ストレプトマイセス・アルプラス・サブスピーシーズ・リジノポリメラスを、その組成が、グルコース5重量%、酵母エキス0.5重量%、硫酸アンモニウム1重量%、リン酸水素二カリウム0.08重量%、リン酸二水素カリウム0.136重量%、硫酸マグネシウム・7水和物0.05重量%、硫酸亜鉛・7水和物0.004重量%、
及び硫酸鉄・7水和物0.03重量%であり、pHが6.8に調整された培地にて培養し、得られた培養物からε−ポリリジンを分離・回収する。
他にも、化学的手法によりポリリジンを製造してもよい。
ε-polylysine can be produced, for example, by the method described in Patent No. 1245361. Specifically, Streptomyces alpras subspecies lizinopolymers, the composition of which is 5 wt% glucose, 0.5 wt% yeast extract, 1 wt% ammonium sulfate, 0.08 wt% dipotassium hydrogen phosphate 0.136% by weight of potassium dihydrogen phosphate, 0.05% by weight of magnesium sulfate heptahydrate, 0.004% by weight of zinc sulfate heptahydrate
And, it is cultured in a medium which is 0.03 wt% of iron sulfate heptahydrate and adjusted to pH 6.8, and ε-polylysine is separated and recovered from the obtained culture.
Alternatively, polylysine may be produced by a chemical method.

また、ε−ポリリジンは、遊離の形であってもよいし、塩酸、硫酸、リン酸及び臭化水素酸から選ばれた少なくとも1種の無機酸、または酢酸、プロピオン酸、フマル酸、リンゴ酸及びクエン酸から選ばれた少なくとも1種の有機酸の塩の形であってもよい。
ポリリジン塩は常法により製造される。例えば含水メタノール溶液に前記ε−ポリリジンを溶解させ、これに前記酸を加え、溶液が中和点を過ぎたところで、冷アセトンを加えて沈澱した塩を乾燥させることによって得られる。
Also, ε-polylysine may be in free form, or at least one inorganic acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and hydrobromic acid, or acetic acid, propionic acid, fumaric acid, malic acid And at least one organic acid salt selected from citric acid.
Polylysine salts are prepared by conventional methods. For example, it can be obtained by dissolving the 含水 -polylysine in a water-containing methanol solution, adding the acid thereto, and adding cold acetone when the solution has passed the neutralization point to dry the precipitated salt.

本発明において、蛍光色素化合物は、ポリリジンと結合するものであれば特に限定されず、任意のものを用いればよい。
蛍光色素化合物の例としては、Alexa類、フルオレセインイソチオシアネート(FITC)又はその誘導体、TAMRA、Cy3、Cy5、ローダミン6G(R6G)又はその誘導体(例えば、テトラメチルローダミン(TMR))、テキサスレッド、BODIPY類、ROX、Hex、JOE、BHQ類等が挙げられる。これらのうち、3,6−ジアミノ−9−[2,4−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム/3,6−ジアミノ−9−[2,5−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム(商品名Alexa Fluor488(Thermo Fisher Scientific社製))またはその誘導体、及び9−[2−カルボキシ−4(オア5)−[[(2,5−ジオキソ−1−ピロリジニル)オキシ]−カルボニル]フェニル]−3,6−ビス−(ジメチルアミノ
)−キサンチリウム インナーソルト(商品名NHS-Rhodamine(Therrmo Fisher Scientific社製))又はその誘導体が、入手のし易さ、取り扱いの簡便さから、好ましい。これら
の蛍光色素化合物は常法によりポリリジンに反応させることにより、共有結合、イオン結合、配位結合、又は水素結合等でポリリジンを蛍光標識する。これらの蛍光色素化合物はポリリジンの有するアミノ基を介して錯体を形成し、蛍光標識ポリリジンを得ることができる(図1及び図2)。
In the present invention, the fluorescent dye compound is not particularly limited as long as it binds to polylysine, and any desired one may be used.
Examples of fluorochrome compounds include Alexa, fluorescein isothiocyanate (FITC) or derivatives thereof, TAMRA, Cy3, Cy5, rhodamine 6G (R6G) or derivatives thereof (eg tetramethylrhodamine (TMR)), Texas red, BODIPY And ROX, Hex, JOE, BHQs and the like. Among these, 3,6-diamino-9- [2,4-bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium / 3,6-diamino-9- [ 2,5-bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium (trade name Alexa Fluor 488 (manufactured by Thermo Fisher Scientific)) or a derivative thereof, and 9- [2- Carboxy-4 (or 5)-[[(2,5-dioxo-1-pyrrolidinyl) oxy] -carbonyl] phenyl] -3,6-bis- (dimethylamino) -xanthylium inner salt (brand name NHS-Rhodamine ( Therrmo Fisher Scientific)) or a derivative thereof is preferred in view of easy availability and ease of handling. These fluorescent dye compounds fluorescently label polylysine by covalent bond, ionic bond, coordinate bond, hydrogen bond or the like by reacting with polylysine by a conventional method. These fluorescent dye compounds can form a complex via the amino group possessed by polylysine to obtain fluorescently labeled polylysine (FIGS. 1 and 2).

本発明において、蛍光色素化合物のポリリジンへの導入率は、蛍光標識ポリリジン全量の好ましくは0.1〜10重量%であり、より好ましくは0.3〜3重量%である。この範囲より導入率が小さいと蛍光検出をし難い場合があり、またこの範囲より大きいとポリリジンの対象への吸着が困難になる場合がある。   In the present invention, the rate of introduction of the fluorescent dye compound into polylysine is preferably 0.1 to 10% by weight, more preferably 0.3 to 3% by weight of the total amount of fluorescently labeled polylysine. If the introduction rate is smaller than this range, it may be difficult to detect fluorescence, and if it is larger than this range, it may be difficult to adsorb polylysine to a target.

ポリリジンは塩基性アミノ酸L−リジンのホモポリマーであり、等電点以下の水中では側鎖アミノ基が正電荷を帯びることから、負電荷を帯びた物質に電気的に吸着してイオン複合体を形成する。また、炭化水素リッチな構造から、疎水性相互作用による対象への吸着も生じ得る。
そのため、本発明の蛍光標識ポリリジンは、ポリリジンが吸着し得る対象の観察用試薬として好適に用いることができる。かかる対象としては、特に限定されないが、角層細胞を始めとする生体細胞や毛髪等の生体組織、微生物、天然繊維や化学繊維及び合成繊維等の繊維素材、天然樹脂や合成樹脂等の工業素材などを好適に挙げられる。
Polylysine is a homopolymer of the basic amino acid L-lysine, and in water below the isoelectric point, the side chain amino group bears a positive charge, so it is electrically adsorbed to a negatively charged substance to form an ionic complex. Form. Also, hydrocarbon-rich structures can result in adsorption to objects via hydrophobic interactions.
Therefore, the fluorescently labeled polylysine of the present invention can be suitably used as an observation reagent for an object to which polylysine can be adsorbed. Such objects are not particularly limited, but biological tissues such as horny cells and biological tissues such as hair, microorganisms, fiber materials such as natural fibers, chemical fibers and synthetic fibers, and industrial materials such as natural resins and synthetic resins Etc. are mentioned suitably.

本発明の他の形態は、本発明の蛍光標識ポリリジンを対象に吸着させる工程を含む、対象の観察方法である。前記吸着工程は、通常は水溶液の態様で蛍光標識ポリリジンを対象に接触させることにより行われる。
吸着工程を行う条件は、特に限定されないが、pH6〜8が好ましい。また、温度は4〜40℃が好ましい。また、蛍光標識ポリリジンは0.001〜0.01重量%の濃度の水溶液で適用することが好ましい。かかる適用時間は、前記濃度にもよるが、5〜60分
間で十分に吸着が行われる。
Another aspect of the present invention is a method of observing a target, comprising the step of adsorbing the fluorescently labeled polylysine of the present invention to the target. The adsorption step is usually carried out by contacting the fluorescently labeled polylysine with the object in the form of an aqueous solution.
The conditions for performing the adsorption step are not particularly limited, but pH 6 to 8 is preferable. Moreover, as for temperature, 4-40 degreeC is preferable. In addition, it is preferable to apply the fluorescently labeled polylysine in an aqueous solution with a concentration of 0.001 to 0.01% by weight. The application time depends on the concentration, but the adsorption is sufficiently performed in 5 to 60 minutes.

通常は、蛍光標識ポリリジンを対象に接触させて吸着した後、余剰の蛍光標識ポリリジンを洗浄等により除去した後に、蛍光顕微鏡や蛍光観察用デジタルマイクロスコープ等にて蛍光検出することにより、ポリリジンの対象上での分布状況を観察する。
観察対象は、特に限定されないが、角層細胞を始めとする生体細胞や毛髪等の生体組織、微生物、天然繊維や化学繊維及び合成繊維等の繊維素材、天然樹脂や合成樹脂等の工業素材などを好適に挙げられる。
Usually, after the fluorescent labeled polylysine is brought into contact with the target and adsorbed, the excess fluorescent labeled polylysine is removed by washing etc. Then, the target of the polylysine is detected by fluorescence detection with a fluorescent microscope, a digital microscope for fluorescent observation, etc. Observe the distribution above.
The object to be observed is not particularly limited, but biological tissues such as stratum corneum cells and biological tissues such as hair, microorganisms, fiber materials such as natural fibers, chemical fibers and synthetic fibers, and industrial materials such as natural resins and synthetic resins Are preferably mentioned.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will next be described in detail by way of examples, which should not be construed as limiting the invention thereto.

<実施例1>蛍光標識ポリリジンの調製1
ε−L−ポリリジン(以降「PLL」と記す、Mn:4090、Mw:4700、10質量%水溶液、JNC株式会社製)を0.1M NaHCO(pH9.0)溶液で希釈
して10mg/mLとした。これに、Alexa Fluor 488 5-TFP ester (Thermo Fisher Scientific)100μg/100μLを加えて室温にて1時間反応させた。反応液を遠心限外ろ過(Amicon Ultra 3K)に供し、未反応の蛍光色素を除去し、蛍光標識されたポリリ
ジンAlexa Fluor 488-PLL(AF−PLL)を得た。得られたAF−PLLは精製水で所
定の濃度に希釈して、以降の吸着実験に供した。
Example 1 Preparation of Fluorescently Labeled Polylysine 1
10 mg / mL of ε-L-polylysine (hereinafter referred to as “PLL”, Mn: 4090, Mw: 4700, 10% by mass aqueous solution, manufactured by JNC Co., Ltd.) diluted with 0.1 M NaHCO 3 (pH 9.0) solution And To this, 100 μg / 100 μL of Alexa Fluor 488 5-TFP ester (Thermo Fisher Scientific) was added and allowed to react at room temperature for 1 hour. The reaction solution was subjected to centrifugal ultrafiltration (Amicon Ultra 3K) to remove unreacted fluorescent dye to obtain fluorescently labeled polylysine Alexa Fluor 488-PLL (AF-PLL). The obtained AF-PLL was diluted to a predetermined concentration with purified water and subjected to the subsequent adsorption experiment.

<実施例2>角層細胞への吸着1
角質チェッカー(日本アッシュ)を用いたテープストリッピングにより、健常人上腕内側より最外層角層の角層細胞を非侵襲的に採取した。これにAF−PLL水溶液(50μg/mL)を添加し、室温にて所定の時間インキュベートした。反応後、水洗した後に、角層に吸着したAF−PLLを蛍光顕微鏡EVOS−FL(Thermo Fisher Scientific)により観察した。
反応時間ごとの染色結果を図3に示す。AF−PLLにより角層細胞が均一に染色された。また、反応時間に依存して蛍光強度が大きくなり吸着量が増加し、約60分でほぼ飽和した。
Example 2 Adsorption to Corneal Cells 1
The stratum corneum cells of the outermost stratum corneum were noninvasively collected from the inside of the upper arm of a healthy subject by tape stripping using a horny checker (Nippon Ashe). To this was added AF-PLL aqueous solution (50 μg / mL) and incubated at room temperature for a predetermined time. After the reaction, after washing with water, AF-PLL adsorbed to the stratum corneum was observed with a fluorescence microscope EVOS-FL (Thermo Fisher Scientific).
The staining results for each reaction time are shown in FIG. The stratum corneum cells were uniformly stained by AF-PLL. Also, depending on the reaction time, the fluorescence intensity increased and the adsorption amount increased, and was almost saturated in about 60 minutes.

<実施例3>濃度依存性1
AF−PLL水溶液の濃度を変えて(0〜100μg/mL)、実施例2と同様に角層細胞を染色し(室温、2時間)、観察した。
結果を図4に示す。AF−PLLの濃度に依存して、蛍光強度の増大が認められた。
Example 3 Concentration Dependence 1
The concentration of the AF-PLL aqueous solution was changed (0 to 100 μg / mL), and the stratum corneum cells were stained as in Example 2 (room temperature, 2 hours) and observed.
The results are shown in FIG. Depending on the concentration of AF-PLL, an increase in fluorescence intensity was observed.

<実施例4>非標識PLLによる競合阻害1
AF−PLLと非標識PLLとを所定の割合で含有する水溶液(AF−PLL濃度:50μg/mL)を角層細胞に添加し、実施例2と同様に角層細胞を染色(室温、2時間)した後、観察した。
結果を図5に示す。AF−PLLの角層細胞への吸着は、非標識PLLにより競合的に阻害された。この結果から、蛍光検出により観察されるのがPLLの角層細胞への吸着挙動であることが確認された。
Example 4 Competitive Inhibition by Unlabeled PLL 1
An aqueous solution (AF-PLL concentration: 50 μg / mL) containing AF-PLL and unlabeled PLL at a predetermined ratio is added to the stratum corneum cells, and the stratum corneum cells are stained as in Example 2 (room temperature, 2 hours) ) Was observed.
The results are shown in FIG. The adsorption of AF-PLL to stratum corneum cells was competitively inhibited by unlabeled PLL. From this result, it was confirmed that what is observed by fluorescence detection is the adsorption behavior of PLL on stratum corneum cells.

<実施例5>L−リジンモノマーの影響
AF−PLLとL−リジンとを所定の割合で含有する水溶液(AF−PLL濃度:50μg/mL)を角層細胞に添加し、実施例2と同様に角層細胞を染色(室温、2時間)した後、観察した。
結果を図6に示す。100倍濃度のL−リジンモノマー共存下でもAF−PLLの吸着
はほとんど阻害されなかった。
Example 5 Influence of L-Lysine Monomer As in Example 2, an aqueous solution (AF-PLL concentration: 50 μg / mL) containing AF-PLL and L-lysine in a predetermined ratio was added to the stratum corneum cells, as in Example 2. The stratum corneum cells were stained (room temperature, 2 hours) and then observed.
The results are shown in FIG. The adsorption of AF-PLL was hardly inhibited even in the presence of 100-fold concentration of L-lysine monomer.

<実施例6>pH依存性
種々の緩衝剤を用いてAF−PLL水溶液(50μg/mL)のpHを2.5〜9.0に調整し、実施例2と同様に角層細胞を染色(室温、2時間)した後、観察した。
結果を図7に示す。酸性領域(pH2.5〜5.0)では蛍光が検出されず、AF−PLLの吸着は阻害されていた。一方、中性領域(pH6.0〜8.0)ではAF−PLL
の吸着は阻害されなかった。アルカリ性領域(pH9.0)では吸着は阻害される傾向であったが、用いる緩衝液により吸着挙動が異なっていた。
Example 6 pH Dependence The pH of the aqueous AF-PLL solution (50 μg / mL) was adjusted to 2.5 to 9.0 using various buffers, and the stratum corneum cells were stained as in Example 2 ( It observed after room temperature and 2 hours).
The results are shown in FIG. In the acidic region (pH 2.5 to 5.0), no fluorescence was detected, and the adsorption of AF-PLL was inhibited. On the other hand, AF-PLL in the neutral range (pH 6.0 to 8.0)
Adsorption was not inhibited. In the alkaline region (pH 9.0), adsorption tended to be inhibited, but the adsorption behavior was different depending on the buffer used.

<実施例7>塩濃度の影響
NaClを0〜1.0mol/Lで含有するAF−PLL水溶液(50μg/mL)を調製し、実施例2と同様に角層細胞を染色(室温、2時間)した後、観察した。
結果を図8に示す。0.1mol/L以上ではNaCl濃度に依存して蛍光強度の減弱が認められ、1mol/Lではほぼ完全に吸着が阻害された。
実施例6及び7の結果から、ポリリジンと角層細胞との間の相互作用の少なくとも一部は、ポリリジンのアミノ基とのイオン結合を介したものであると推測できる。
<Example 7> Influence of salt concentration AF-PLL aqueous solution (50 μg / mL) containing NaCl at 0 to 1.0 mol / L is prepared, and the stratum corneum cells are stained as in Example 2 (room temperature, 2 hours) ) Was observed.
The results are shown in FIG. At 0.1 mol / L or more, the fluorescence intensity was reduced depending on the NaCl concentration, and at 1 mol / L, the adsorption was almost completely inhibited.
From the results of Examples 6 and 7, it can be inferred that at least a part of the interaction between polylysine and stratum corneum cells is through an ionic bond with the amino group of polylysine.

<実施例8>カチオン化合物の影響
種々のカチオン性界面活性剤を含有するAF−PLL水溶液(50μg/mL)を調製し、実施例2と同様に角層細胞を染色(室温、2時間)した後、観察した。
結果を表1並びに図9及び10に示す。いずれのカチオン性界面活性剤においても、炭素鎖長が長くなるほど、蛍光強度の減弱が認められ、ポリリジンと角層細胞との相互作用が阻害されることが認められた。
<Example 8> Influence of cationic compound An AF-PLL aqueous solution (50 μg / mL) containing various cationic surfactants was prepared, and the stratum corneum cells were stained (room temperature, 2 hours) in the same manner as Example 2. I observed it later.
The results are shown in Table 1 and Figures 9 and 10. In any of the cationic surfactants, as the carbon chain length increased, the fluorescence intensity decreased, and it was found that the interaction between polylysine and stratum corneum cells was inhibited.

<実施例9>毛髪への吸着1
市販のテスト用毛束(ビューラックス)、および健常人より採取した毛髪を角質チェッカー(日本アッシュ)に瞬間接着剤で固定したのち、精製水またはAF−PLL水溶液(100μg/mL)を添加し、室温にて2時間インキュベートした。反応後、水洗した後に、毛髪に吸着したAF−PLLを蛍光顕微鏡EVOS−FL(Thermo Fisher Scientific)により観察した。
染色結果を図11に示す。AF−PLLにより毛髪が均一に染色された。なお、毛髪には自家蛍光を示すものもあり、精製水においてもわずかに蛍光が観察された。
Example 9 Adsorption to Hair 1
After fixing a commercially available test hair bundle (Bureuxx) and hair collected from a healthy subject on a horniness checker (Nippon Ash) with a superglue, add purified water or an aqueous AF-PLL solution (100 μg / mL), Incubate for 2 hours at room temperature. After the reaction, after washing with water, AF-PLL adsorbed to the hair was observed with a fluorescence microscope EVOS-FL (Thermo Fisher Scientific).
The staining results are shown in FIG. Hair was uniformly dyed by AF-PLL. Some hairs showed auto-fluorescence, and a slight fluorescence was observed in purified water.

<実施例10>濃度依存性2
AF−PLL水溶液の濃度を変えて(0〜100μg/mL)、実施例9と同様に毛髪を染色し(室温、2時間)、観察した。
結果を図12に示す。AF−PLLの濃度に依存して、蛍光強度の増大が認められた。
Example 10 Concentration Dependence 2
The concentration of the aqueous AF-PLL solution was changed (0 to 100 μg / mL), and the hair was dyed as in Example 9 (room temperature, 2 hours) and observed.
The results are shown in FIG. Depending on the concentration of AF-PLL, an increase in fluorescence intensity was observed.

<実施例11>非標識PLLによる競合阻害2
AF−PLLと非標識PLLとを所定の割合で含有する水溶液(AF−PLL濃度:100μg/mL)を毛髪に添加し、実施例9と同様に毛髪を染色(室温、2時間)した後、観察した。
結果を図13に示す。AF−PLLの毛髪への吸着は、非標識PLLにより競合的に阻害された。この結果から、蛍光検出により観察されるのがPLLの毛髪への吸着挙動であることが確認された。
Example 11 Competition inhibition by unlabeled PLL 2
An aqueous solution (AF-PLL concentration: 100 μg / mL) containing AF-PLL and unlabeled PLL in a predetermined ratio is added to the hair, and the hair is dyed (room temperature, 2 hours) as in Example 9, I observed it.
The results are shown in FIG. The adsorption of AF-PLL to hair was competitively inhibited by unlabeled PLL. From these results, it was confirmed that what is observed by fluorescence detection is the adsorption behavior of PLL on hair.

<実施例12>ダメージ毛髪への吸着1
ダメージ毛髪は、市販のテスト用毛束をブリーチ処理して作製した。ブリーチ剤処理は、使用直前に1剤(アルカリ剤)と2剤(酸化剤)を混合して、テスト用毛束に塗布した。30分程放置し、水洗した後、実施例9と同様に毛髪を染色(室温、2時間)した後、観察した。
結果を図14に示す。ダメージ毛髪ではAF−PLLにより蛍光輝度の顕著な上昇が認められた。また、ダメージ毛髪では自家蛍光の増加も観察された。
Example 12 Adsorption to Damaged Hair 1
Damaged hair was prepared by bleaching commercially available test hair bundles. The bleaching agent treatment mixed 1 agent (alkaline agent) and 2 agents (oxidizing agent) immediately before use, and applied to the test hair bundle. After leaving it to stand for about 30 minutes and washing with water, the hair was dyed (room temperature, 2 hours) in the same manner as in Example 9 and observed.
The results are shown in FIG. In the damaged hair, a marked increase in fluorescence intensity was observed by AF-PLL. In addition, an increase in autofluorescence was also observed in the damaged hair.

<実施例13>微生物への吸着
サブロー平板培地にて25℃/3日培養したSaccharomyces cerevisiae(NBRC10217)
を、滅菌綿棒を用いて、リン酸緩衝生理食塩水(PBS)6mLに懸濁し、〜10 CFU/mLの微生物懸濁液を得た。得られた微生物懸濁液を滅菌ピペットで適当量採取して、1.5mL容マイクロチューブ(Eppendorf製)に分注した後、10 mg/mL A
F−PLLを50 μL加え(最終濃度が500μg/mL)、トータル1mLの反応液を調製した。比較対照のため、AF−PLL水溶液に代えて同量の精製水を添加した試験区を調製した。これらを室温にて2時間インキュベートした後、遠心分離機(Eppendorf製
)にて遠心分離(5000rpm、10分)して上清を除去した。沈殿の菌体に1mLのPBSを加えて懸濁し、再度遠心分離し上清液を除去した。これを更に2回繰り返して洗浄した後、微生物に吸着したAF−PLLを蛍光顕微鏡EVOS−FL(Thermo Fisher Scientific)により観察した。
染色結果を図15に示す。AF−PLLを作用させることにより、微生物の形に沿うように蛍光が検出され、AF−PLLにより微生物が染色されることが観察された。
<Example 13> Adsorption to microorganisms Saccharomyces cerevisiae (NBRC 10217) cultured at 25 ° C./3 days in subrow plate medium
Was suspended in 6 mL of phosphate buffered saline (PBS) using a sterile cotton swab to obtain a microbial suspension of ̃10 7 CFU / mL. Obtain an appropriate volume of the obtained microbial suspension with a sterile pipette, and dispense it into a 1.5 mL microtube (manufactured by Eppendorf), then 10 mg / mL A
50 μL of F-PLL was added (final concentration is 500 μg / mL) to prepare a total of 1 mL of reaction solution. As a control for comparison, a test section was prepared in which the same amount of purified water was added instead of the AF-PLL aqueous solution. After incubating these at room temperature for 2 hours, they were centrifuged (5000 rpm, 10 minutes) in a centrifuge (manufactured by Eppendorf) to remove the supernatant. The precipitated cells were suspended by adding 1 mL of PBS, centrifuged again, and the supernatant was removed. After washing this twice more, AF-PLL adsorbed to the microorganism was observed with a fluorescence microscope EVOS-FL (Thermo Fisher Scientific).
The staining results are shown in FIG. By causing AF-PLL to act, fluorescence was detected along the shape of the microorganism, and it was observed that the microorganism was stained by AF-PLL.

<実施例14>非標識PLLによる競合阻害3
実施例13と同様の方法で〜10CFU/mLに調製した微生物懸濁液を950μL
取り、10 mg/mLのAF−PLLを10 μL(最終濃度100μg/mL)と250
mg/mLの非標識PLLを40 μL(最終濃度10 mg/mL)それぞれ加え(標識
ポリリジン:非標識ポリリジン=1:100)、実施例13と同様に微生物を染色(室温、2時間)した後、観察した。
結果を図16に示す。AF−PLLの微生物への吸着は、非標識PLLにより競合的に阻害された。この結果から、蛍光検出により観察されるのがPLLの微生物への吸着挙動であることが確認された。
Example 14 Competitive Inhibition by Unlabeled PLL 3
950 μL of the microbial suspension prepared to ̃10 7 CFU / mL in the same manner as in Example 13.
Take 10 μL of 10 mg / mL AF-PLL (final concentration 100 μg / mL) and 250
After adding 40 μL of unlabeled PLL (mg / mL final concentration 10 mg / mL) (labeled polylysine: unlabeled polylysine = 1: 100) and staining the microorganism as in Example 13 (room temperature, 2 hours) , Observed.
The results are shown in FIG. The adsorption of AF-PLL to microorganisms was competitively inhibited by unlabeled PLL. From this result, it was confirmed that what is observed by fluorescence detection is the adsorption behavior of PLL to the microorganism.

<実施例15>蛍光標識ポリリジンの調製2
蛍光色素化合物をNHS-Rhodamineとした以外は実施例1と同様の処理を行い、蛍光標識
されたポリリジンRhodamine-PLL(Rho−PLL)を得た。得られたRho−PLLは
精製水で所定の濃度に希釈して、以降の吸着実験に供した。
Example 15 Preparation of Fluorescently Labeled Polylysine 2
The same treatment as in Example 1 was carried out except that the fluorescent dye compound was changed to NHS-Rhodamine, to obtain fluorescently labeled polylysine Rhodamine-PLL (Rho-PLL). The obtained Rho-PLL was diluted to a predetermined concentration with purified water and subjected to the subsequent adsorption experiment.

<実施例16>角層細胞への吸着2
蛍光標識されたポリリジンをRho−PLL水溶液(濃度0〜200μg/mL)とした以外は、実施例2と同様に角層細胞を染色(室温、2時間)した。反応後、水洗した後に、角層に吸着したRho−PLLを、蛍光顕微鏡EVOS−FL(RFPフィルター装着)により観察した。
結果を図17に示す。前述したAF−PLL同様に、Rho−PLLの濃度に依存して蛍光強度の増大が認められた。
Example 16 Adsorption to Corneal Cells 2
The stratum corneum cells were stained (room temperature, 2 hours) in the same manner as in Example 2 except that the fluorescently labeled polylysine was changed to an aqueous solution of Rho-PLL (concentration 0 to 200 μg / mL). After the reaction, after washing with water, Rho-PLL adsorbed to the stratum corneum was observed with a fluorescence microscope EVOS-FL (equipped with an RFP filter).
The results are shown in FIG. Similar to the above-mentioned AF-PLL, an increase in fluorescence intensity was observed depending on the concentration of Rho-PLL.

<実施例17>非標識PLLによる競合阻害4
Rho−PLLと非標識PLLとを所定の割合で含有する水溶液(Rho−PLL濃度:20μg/mL、および200μg/mL)を角層細胞に添加し、実施例2と同様に角層細胞を染色(室温、2時間)した後、蛍光顕微鏡EVOS−FL(RFPフィルター装着)により観察した。
結果を図18に示す。前述したAF−PLL同様に、Rho−PLLの角層細胞への吸着は、非標識PLLにより競合的に阻害された。この結果から、蛍光検出により観察されるのがPLLの角層細胞への吸着挙動であることが確認された。
Example 17 Competition Inhibition by Unlabeled PLL 4
An aqueous solution (Rho-PLL concentration: 20 μg / mL and 200 μg / mL) containing Rho-PLL and unlabeled PLL in a predetermined ratio is added to the stratum corneum cells, and the stratum corneum cells are stained as in Example 2. After (room temperature, 2 hours), it observed by fluorescence microscope EVOS-FL (RFP filter installation).
The results are shown in FIG. Similar to the above-mentioned AF-PLL, the adsorption of Rho-PLL to stratum corneum cells was competitively inhibited by unlabeled PLL. From this result, it was confirmed that what is observed by fluorescence detection is the adsorption behavior of PLL on stratum corneum cells.

<実施例18>ダメージ毛髪への吸着2
蛍光標識されたポリリジンをRho−PLL水溶液(Rho−PLL濃度;100μg/mL)とした以外は、実施例12と同様に毛髪を染色(室温、2時間)した後、蛍光顕微鏡EVOS−FL(RFPフィルター装着)により観察した。
結果を図19に示す。ダメージ毛髪では、前述したAF−PLL同様に、Rho−PLLにより蛍光輝度の顕著な上昇が認められた。しかしながら、Rho−PLLではAF−PLLとは異なり、毛髪自身の自家蛍光はほとんど観察されず安定した観察が可能であった。
Example 18 Adsorption to Damaged Hair 2
A hair was stained (room temperature, 2 hours) in the same manner as in Example 12 except that the fluorescently labeled polylysine was changed to an aqueous Rho-PLL solution (Rho-PLL concentration; 100 μg / mL), and then a fluorescence microscope EVOS-FL (RFP It observed by the filter installation.
The results are shown in FIG. In damaged hair, as in the above-described AF-PLL, a marked increase in fluorescence intensity was observed by Rho-PLL. However, unlike Rho-PLL, unlike the AF-PLL, almost no auto-fluorescence of the hair itself was observed and stable observation was possible.

本発明の蛍光標識ポリリジンを用いれば、煩雑な染色操作や高価な分析機器を用いることなく、簡便な操作で精度よく、角層細胞を始めとする生体細胞や毛髪等の生体組織、微生物、天然繊維や化学繊維及び合成繊維等の繊維素材、天然樹脂や合成樹脂等の工業素材の状態を、観察することができるため、非常に有用である。   When the fluorescently labeled polylysine of the present invention is used, biological tissues such as keratinocytes and living tissues such as hair, microorganisms, and natural tissues can be accurately and easily by simple operations without using complicated staining procedures and expensive analytical instruments. It is very useful because it can observe the state of fiber materials such as fibers, chemical fibers and synthetic fibers, and industrial materials such as natural resins and synthetic resins.

Claims (10)

蛍光色素化合物で標識した蛍光標識ポリリジン。   Fluorescently labeled polylysine labeled with a fluorescent dye compound. 蛍光色素化合物が、3,6−ジアミノ−9−[2,4−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム/3,6−ジアミノ−9−[2,5−ビス(リチオオキシカルボニル)フェニル]−4−(リチオオキシスルホニル)−5−スルホナトキサンチリウム又はその誘導体である、
請求項1に記載の蛍光標識ポリリジン。
The fluorescent dye compound is 3,6-diamino-9- [2,4-bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium / 3,6-diamino-9-. [2,5-Bis (lithiooxycarbonyl) phenyl] -4- (lithiooxysulfonyl) -5-sulfonatoxanthylium or a derivative thereof,
The fluorescently labeled polylysine according to claim 1.
蛍光色素化合物が、9−[2−カルボキシ−4(オア5)−[[(2,5−ジオキソ−1−ピロリジニル)オキシ]−カルボニル]フェニル]−3,6−ビス−(ジメチルアミ
ノ)−キサンチリウム インナーソルト又はその誘導体である、請求項1に記載の蛍光標
識ポリリジン。
The fluorescent dye compound is 9- [2-carboxy-4 (or 5)-[[(2,5-dioxo-1-pyrrolidinyl) oxy] -carbonyl] phenyl] -3,6-bis- (dimethylamino)- The fluorescently labeled polylysine according to claim 1, which is a xanthylium inner salt or a derivative thereof.
蛍光色素化合物の導入率が蛍光標識ポリリジン全量の0.1〜10重量%である、請求項1〜3のいずれか一項に記載の蛍光標識ポリリジン。   The fluorescently labeled polylysine according to any one of claims 1 to 3, wherein the introduction rate of the fluorescent dye compound is 0.1 to 10% by weight of the total amount of fluorescently labeled polylysine. ポリリジンが、ε−ポリリジン及び/又はその塩である、請求項1〜4のいずれか一項に記載の蛍光標識ポリリジン。   The fluorescently labeled polylysine according to any one of claims 1 to 4, wherein the polylysine is ε-polylysine and / or a salt thereof. 請求項1〜5のいずれか一項に記載の蛍光標識ポリリジンを含有する、観察用試薬。   An observation reagent comprising the fluorescently labeled polylysine according to any one of claims 1 to 5. 請求項1〜5のいずれか一項に記載の蛍光標識ポリリジンを対象に吸着させる工程を含む、対象の観察方法。   A method of observing an object, comprising the step of adsorbing the fluorescently labeled polylysine according to any one of claims 1 to 5 to the object. 対象が角層細胞、毛髪、微生物、及び繊維製品からなる群から選択される、請求項7に記載の観察方法。   The observation method according to claim 7, wherein the subject is selected from the group consisting of stratum corneum cells, hair, microorganisms, and fiber products. 吸着工程がpH6〜8の条件下で行われる、請求項7又は8に記載の観察方法。   The observation method according to claim 7 or 8, wherein the adsorption step is performed under conditions of pH 6-8. 対象がダメージ毛髪である、請求項8又は9に記載の観察方法。   The observation method according to claim 8 or 9, wherein the subject is damaged hair.
JP2018205587A 2017-11-30 2018-10-31 Fluorescence-labeled polylysine and observation method using the same Active JP7197827B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229783 2017-11-30
JP2017229783 2017-11-30

Publications (2)

Publication Number Publication Date
JP2019101025A true JP2019101025A (en) 2019-06-24
JP7197827B2 JP7197827B2 (en) 2022-12-28

Family

ID=66976811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018205587A Active JP7197827B2 (en) 2017-11-30 2018-10-31 Fluorescence-labeled polylysine and observation method using the same

Country Status (1)

Country Link
JP (1) JP7197827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236120A (en) * 2021-11-29 2022-03-25 桂林理工大学 Novel background fluorescence immunochromatographic test strip for coronavirus N antigen and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058285A (en) * 2006-07-31 2008-03-13 Olympus Corp Method for detecting biological substance
JP2009023993A (en) * 2007-06-19 2009-02-05 Okayama Univ Cartilage marker
US20100143258A1 (en) * 2008-12-05 2010-06-10 General Electric Company Tumor margin imaging agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058285A (en) * 2006-07-31 2008-03-13 Olympus Corp Method for detecting biological substance
JP2009023993A (en) * 2007-06-19 2009-02-05 Okayama Univ Cartilage marker
US20100143258A1 (en) * 2008-12-05 2010-06-10 General Electric Company Tumor margin imaging agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KADLECOVA, Z. ET AL.: "DNA delivery with hyperbranched polylysine: A comparative study with linear and dendritic polylysine", JOURNAL OF CONTROLLED RELEASE, vol. 169, JPN6022037803, 2013, pages 276 - 288, XP028567394, ISSN: 0004872257, DOI: 10.1016/j.jconrel.2013.01.019 *
STRAND, B. L. ET AL.: "Visualization of alginate-poly-L-lysine alginate microcapsules by confocal laser scanning microscopy", BIOTECHNOLOGY AND BIOENGINEERING, vol. 82, no. 4, JPN6022037802, 20 May 2003 (2003-05-20), pages 386 - 394, ISSN: 0004872256 *
佐々木千鶴 ほか: "アゾ色素修飾ε-ポリリジンの会合挙動", 日本化学会講演予稿集, vol. 85, no. 2, JPN6022037804, 11 March 2005 (2005-03-11), pages 1448, ISSN: 0004872255 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236120A (en) * 2021-11-29 2022-03-25 桂林理工大学 Novel background fluorescence immunochromatographic test strip for coronavirus N antigen and preparation method thereof

Also Published As

Publication number Publication date
JP7197827B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
Gupta et al. Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections
Chen et al. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy
Bai et al. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities
Gao et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides
Zhao et al. Nanoengineered peptide-grafted hyperbranched polymers for killing of bacteria monitored in real time via intrinsic aggregation-induced emission
Wang et al. When worlds collide: interactions at the interface between biological systems and synthetic cationic conjugated polyelectrolytes and oligomers
EP3380536B1 (en) A polymeric composition
US10274490B2 (en) Magnetic labeling of bacteria
Zhai et al. Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections
JP2011504526A (en) Cationic betaine precursors to zwitterionic betaines with controlled biological properties
Zhou et al. A purpurin-peptide derivative for selective killing of Gram-positive bacteria via insertion into cell membrane
Qiu et al. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro
Qiao et al. Synthesis and evaluation of an amphiphilic deferoxamine: gallium-conjugated cationic random copolymer against a murine wound healing infection model of Pseudomonas aeruginosa
US20220184115A1 (en) Polymer nanoparticle, polymer composition, method of making a polymer nanoparticle, method for treatment of bacterial biofilms, and method for detection of bacterial biofilms
Xu et al. Photoactive silver nanoagents for backgroundless monitoring and precision killing of multidrug-resistant bacteria
JP7197827B2 (en) Fluorescence-labeled polylysine and observation method using the same
Bonvicini et al. Improved eradication efficacy of a combination of newly identified antimicrobial agents in C. albicans and S. aureus mixed-species biofilm
CN105101796B (en) Antibacterial victory peptide derived from hepatitis B virus nucleoprotein arginine compact district
Rumbaugh et al. In vivo models of biofilm infection
Huang et al. A highly efficient bactericidal surface based on the co-capture function and photodynamic sterilization
Francius et al. Impacts of mechanical stiffness of bacteriophage-loaded hydrogels on their antibacterial activity
Ren et al. Quaternary ammonium functionalized cationic polythiophene for the detection and imaging of gram-positive bacteria
Moroz et al. Disorders in the morphology and nanostructure of erythrocyte membranes after long-term storage of erythrocyte suspension: atomic force microscopy study
CN115873233A (en) Multifunctional polypeptide polymer and preparation method and application thereof
Singh et al. Impact of infectious Candida albicans biofilm on biomaterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7197827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150