JP2019100867A - Cell for measuring physical property of particle and instrument for measuring physical property of particle using the same - Google Patents

Cell for measuring physical property of particle and instrument for measuring physical property of particle using the same Download PDF

Info

Publication number
JP2019100867A
JP2019100867A JP2017232327A JP2017232327A JP2019100867A JP 2019100867 A JP2019100867 A JP 2019100867A JP 2017232327 A JP2017232327 A JP 2017232327A JP 2017232327 A JP2017232327 A JP 2017232327A JP 2019100867 A JP2019100867 A JP 2019100867A
Authority
JP
Japan
Prior art keywords
cell
window plate
light
window
physical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017232327A
Other languages
Japanese (ja)
Other versions
JP7097175B2 (en
Inventor
森 哲也
Tetsuya Mori
哲也 森
足立 正之
Masayuki Adachi
正之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2017232327A priority Critical patent/JP7097175B2/en
Publication of JP2019100867A publication Critical patent/JP2019100867A/en
Application granted granted Critical
Publication of JP7097175B2 publication Critical patent/JP7097175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

To provide a cell for measuring physical properties of particles, capable of reducing a measurement error due to reflected light without applying a reflective coating film when a detection object with high concentration or large absorption coefficient is optically measured without dilution.SOLUTION: A cell for measuring physical properties of particles, includes a first aperture plate having a first outer face and a first inner face opposite to the first outer face, a second aperture plate having a second inner face and a second outer face opposite to the second inner face and arranged so that the second inner face is opposite to the first inner face, and a gap formed between the first inner face and the second inner face for storing a detection object. In a light transmitting area where light penetrates at least the first aperture plate and the second aperture plate, at least one face of the first outer face, the first inner face, the second inner face and the second outer face is inclined to a part or all of faces of the others.SELECTED DRAWING: Figure 1

Description

本発明は、粒子物性測定用セル及びこれを用いた粒子物性測定装置に関するものである。   The present invention relates to a cell for measuring particle physical properties and a particle physical property measuring device using the same.

粒子物性測定装置として被検対象に含まれる粒子の粒子径分布を測定する粒子径分布測定装置がある。従来の粒子径分布測定装置では、特許文献1に示されるように、例えばインクの原液等の高濃度かつ低粘度の被検対象を測定する場合に、一対の平行平板状に形成された窓板の間にスペーサを挟んで構成された粒子物性測定用セルを用いている。   As a particle physical property measuring device, there is a particle diameter distribution measuring device which measures the particle diameter distribution of particles contained in a test object. In the conventional particle size distribution measuring apparatus, as shown in Patent Document 1, for example, in the case of measuring a high concentration and low viscosity test object such as a stock solution of ink, between a pair of parallel plate-shaped window plates The cell for measuring the physical properties of particles, which is configured by sandwiching a spacer, is used.

ここで、例えば高濃度の被検対象を希釈することなく粒子径分布を測定するためには、粒子物性測定用セルに収容された被検対象の厚みを小さくして、所定の透過率となるように光路長を例えば数μmから数十μmオーダとなるように短くする必要がある。また、被検対象の濃度が小さくても吸光係数の値が大きい場合に、希釈なしで粒子径分布を測定するためには、同様に光路長を短くしなくてはならない。   Here, for example, in order to measure the particle size distribution without diluting a high concentration test target, the thickness of the test target stored in the particle physical property measurement cell is reduced to obtain a predetermined transmittance. Thus, it is necessary to shorten the optical path length to, for example, several micrometers to several tens of micrometers. In addition, when the value of the light absorption coefficient is large even if the concentration of the test object is small, in order to measure the particle size distribution without dilution, it is also necessary to shorten the optical path length.

ところで、図7(a)に示すように、平行平板状の各窓板21A、22Aの間に非常に短い隙間を形成すると、各窓板の界面で一部の光について反射が繰り返され、図7(b)に示すように、検出器5Bであるリングディテクタ上において透過光によるスポットP1だけでなく、反射光の干渉により別のスポットP2が発生してしまうことがある。このように反射光の干渉が検出器5Bによって検出されてしまうと、測定誤差として表れてしまう。   By the way, as shown in FIG. 7A, when a very short gap is formed between the parallel flat plate-like window plates 21A and 22A, reflection of part of the light is repeated at the interface of each window plate, as shown in FIG. As shown in 7 (b), not only the spot P1 of the transmitted light but also another spot P2 may be generated on the ring detector which is the detector 5B due to the interference of the reflected light. If the interference of the reflected light is thus detected by the detector 5B, it will appear as a measurement error.

このため、従来の被検対象が高濃度であったり、吸光係数の大きかったりする場合に用いられるいわゆる高濃度セルでは、上述したような干渉光の影響を抑えるために、窓材の内面又は外面に対して反射防止コーティングが施されている。   For this reason, in the case of a so-called high concentration cell used when the conventional test object has a high concentration or a large absorption coefficient, the inner surface or the outer surface of the window material in order to suppress the influence of the interference light as described above. Anti-reflective coating is applied.

しかしながら、窓材に対して反射防止コーティング処理を施す分だけ製造コストが上昇し、また、窓材に使用できる材質も反射防止コーティングを施すことができるものに限定されてしまう。さらに、反射防止膜を溶かしてしまうような液体を隙間内に導入することはできず、測定できるサンプルにも制限が発生してしまう。   However, the manufacturing cost is increased as much as the anti-reflection coating process is applied to the window material, and the materials that can be used for the window material are also limited to those capable of providing the anti-reflection coating. Furthermore, it is not possible to introduce a liquid that would dissolve the anti-reflection film into the gap, and the sample that can be measured is also limited.

特許第2910596号公報Patent No. 2910596

本発明は、上述したような問題を鑑みてなされたものであり、例えば濃度が高い、あるいは、モル吸光係数の大きい被検対象を希釈なしで光学的な測定を行う際に、反射コーティング膜を施さなくても、反射光による測定誤差を低減できる粒子物性測定用セル、及び、これを用いた粒子物性測定装置を提供することを目的とする。   The present invention has been made in view of the problems as described above, and for example, when performing optical measurement without dilution of a test subject having a high concentration or a large molar absorption coefficient, An object of the present invention is to provide a particle physical property measuring cell capable of reducing a measurement error due to reflected light without being applied, and a particle physical property measuring device using the same.

すなわち、本発明に係る粒子物性測定用セルは、第1外面、及び、前記第1外面に対向する第1内面を有する第1窓板と、第2内面、及び、前記第2内面に対向する第2内面を有し、前記第1内面に対して前記第2内面が対向するように配置された第2窓板と、前記第1内面と前記第2内面との間に形成され、被検対象が収容される隙間と、を備えた粒子物性測定用セルであって、少なくとも前記第1窓板、及び、前記第2窓板において光が通過する光通過領域では、前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、他の一部の面、又は、他の全部の面に対して傾斜していることを特徴とする。   That is, the cell for measuring particle physical properties according to the present invention faces a first window plate having a first outer surface and a first inner surface facing the first outer surface, a second inner surface, and the second inner surface. A second window plate which has a second inner surface and is disposed so as to face the first inner surface, and is formed between the first inner surface and the second inner surface. A particle physical property measuring cell comprising a gap for containing an object, wherein at least the first window plate and the second window plate in a light passing region through which light passes, the first outer surface, At least one of the first inner surface, the second inner surface, or the second outer surface is characterized by being inclined with respect to some other surface or all other surfaces. .

このようなものであれば、前記第1窓板、及び、前記第2窓板を通過する光が界面において反射したとしても、傾斜している少なくとも1つの面によって反射方向を測定対象としたい透過光や散乱光の進行方向とは異なる方向にすることができる。   If it is such, even if the light passing through the first window plate and the second window plate is reflected at the interface, at least one surface that is inclined makes the reflection direction a measurement target. The direction of travel of light or scattered light can be different.

したがって、反射光による干渉を生じにくくすることができ、例えば粒子径分布測定等の粒子物性を光に基づいて測定する場合に測定誤差を低減できる。   Therefore, interference due to reflected light can be made less likely to occur, and measurement errors can be reduced, for example, when particle physical properties such as particle size distribution measurement are measured based on light.

また、前記第1窓板と前記第2窓板の各界面において反射光が生じてもよいので、従来のように前記第1内面、又は、前記第2内面に反射防止コーティング膜を形成する必要がない。このため、前記第1窓板、及び、前記第2窓板の材質には反射防止コーティング処理による制約が発生せず、種々のものを選択できる。   In addition, since reflected light may be generated at each interface between the first window plate and the second window plate, it is necessary to form an anti-reflection coating film on the first inner surface or the second inner surface as in the prior art. There is no Therefore, the material of the first window plate and the second window plate is not restricted by the anti-reflection coating process, and various materials can be selected.

さらに、反射防止コーティング膜が侵されるような性質を有する被検対象であるため従来、測定が困難であったものも、本発明によれば精度よく測定する事が可能となる。   Furthermore, according to the present invention, it is possible to measure with high accuracy according to the present invention, because it is an object to be examined which has the property that the antireflective coating film is corroded.

前記第1窓板、又は、前記第2窓板自体の構造によって、各面の内の少なくとも1つの面を他の面に対して傾斜させて、反射光が検出器に到達しないようにするには、前記第1窓板、又は、前記第2窓板が、ウェッジ基板であればよい。   At least one of the faces is inclined relative to the other by the structure of the first pane or the second pane itself so that the reflected light does not reach the detector The first window plate or the second window plate may be a wedge substrate.

粒子物性測定用セルに対して光が入射する位置が多少ずれたとしても、被検対象中を光が通過する光路長には変化が表れにくくしつつ、反射光が検出器に到達しないようにするには、前記第1内面と前記第2内面とが、互いに平行となるように配置されており、前記第1外面が前記第1内面に対して傾斜しているとともに、前記第2外面が前記第2内円に対して傾斜しており、前記第1外面と前記第2外面とが、互いに平行とならないように配置されていればよい。   Even if the position at which light is incident on the particle physical property measurement cell is slightly shifted, the change in the optical path length through which light passes through the test object is less likely to appear, and the reflected light does not reach the detector. For this purpose, the first inner surface and the second inner surface are disposed parallel to each other, the first outer surface is inclined to the first inner surface, and the second outer surface is inclined. It may be inclined with respect to the second inner circle, and the first outer surface and the second outer surface may be disposed so as not to be parallel to each other.

前記第1窓材と前記第2窓材において少なくとも1つの面を他の面に対して傾斜させる構成を安価に製造できるようにするには、前記第1窓板が、前記第1外面と前記第1内面とが平行に配置された平行平板であり、前記第2窓板が、前記第2外面と前記第2内面とが平行に配置された平行平板であり、前記第1窓板と、前記第2窓板との間に設けられた、くさび形状のスペーサをさらに備えたものであればよい。   In order to be able to inexpensively manufacture a configuration in which at least one surface of the first window material and the second window material is inclined with respect to the other surface, the first window plate has the first outer surface and the first surface. A parallel plate in which the first inner surface is disposed in parallel, and the second window plate is a parallel plate in which the second outer surface and the second inner surface are disposed in parallel; What is necessary is just to further provide a wedge-shaped spacer provided between the second window plate.

例えば前記第1窓材を前記第2窓材に対して傾斜させる場合にその傾斜角度を高精度に実現できるようにするには、前記スペーサが、前記第1内面、又は、前記第2内面に蒸着され、面板方向に沿って進むに連れてその厚みが大きくなるように形成されたものであればよい。   For example, in order to be able to realize the inclination angle with high accuracy when the first window member is inclined with respect to the second window member, the spacer may be provided on the first inner surface or the second inner surface. What is necessary is just to be vapor-deposited and formed so that the thickness may become large as it goes along the face plate direction.

また、本発明に係る粒子物性測定用セルについて別の表現をすると、本発明は、第1外面、及び、前記第1外面に対向する第1内面を有する第1窓板と、第2内面、及び、前記第2内面に対向する第2内面を有し、前記第1内面に対して前記第2内面が対向するように配置された第2窓板と、前記第1内面と前記第2内面との間に形成され、被検対象が収容される隙間と、を備え、前記隙間に収容される被検対象の吸光係数をε、前記隙間に収容される被検対象の分散質濃度をc、εとcの積である吸光特性値をfとした場合に、前記被検対象の吸光特性値fが、1×10−1≦f≦2×10−1である粒子物性測定用セルであって、前記隙間の少なくとも一部が、被検対象中の光路長Lが0.1μm≦L≦1000μmとなるように構成されており、少なくとも前記第1窓板、及び、前記第2窓板において光が通過する光通過領域では、前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、他の一部の面、又は、他の全部の面に対して傾斜するように構成されていることを特徴とする。 In addition, in another expression of the cell for measuring particle physical properties according to the present invention, the present invention has a first outer surface and a first window plate having a first inner surface facing the first outer surface, and a second inner surface, And a second window plate having a second inner surface opposed to the second inner surface, the second window plate being arranged such that the second inner surface is opposed to the first inner surface, the first inner surface and the second inner surface And a gap in which the test subject is accommodated, the absorption coefficient of the test subject housed in the gap is ε, and the dispersoid concentration of the test subject housed in the gap is c. And the light absorption characteristic value f of the subject is 1 × 10 2 m −1 ≦ f ≦ 2 × 10 5 m −1 where the light absorption characteristic value which is the product of ε and c is f. In the measurement cell, at least a part of the gap is such that the optical path length L in the test object is 0.1 μm ≦ L ≦ 1000 μm The first outer surface, the first inner surface, the second inner surface, or the second inner surface, at least in the first window plate and the light passing region through which light passes in the second window plate. It is characterized in that at least one surface of the outer surface is configured to be inclined with respect to some other surface or all other surfaces.

このようなものであれば、吸光特性値fが大きい被検対象について希釈なして光学測定を行った場合でも、反射光による干渉が生じにくく、測定精度を従来よりも向上させることができる。   With such a configuration, even when the optical measurement is performed by diluting the test object having a large light absorption characteristic value f, interference due to the reflected light is less likely to occur, and the measurement accuracy can be improved as compared with the conventional case.

いわゆる高濃度サンプルとよばれるような吸光特性値fが大きく、希釈無しの測定では光路長Lを小さくしなくてはならないにもかかわらず、反射防止コーティング膜を侵してしまうような被検対象は、従来反射光の干渉により測定誤差が発生し、正確な粒子特性を得ることが困難であった。このような被検対象でも、精度のよい測定が可能となる、より好ましい構成としては、前記被検対象の吸光特性値fが、1×10−1≦f≦1×10−1であり、前記隙間の少なくとも一部が、被検対象の光路長Lが1μm≦L≦500μmとなるように構成されているものが挙げられる。 Although the light absorption characteristic value f is so large that it is called a so-called high concentration sample, it is necessary to reduce the optical path length L in the measurement without dilution, but the object to be examined which invades the antireflective coating is Conventionally, interference of reflected light causes a measurement error, making it difficult to obtain accurate particle characteristics. As a more preferable configuration that enables accurate measurement even with such a test subject, the light absorption characteristic value f of the test subject is 1 × 10 3 m −1 ≦ f ≦ 1 × 10 4 m − 1 and at least a part of the gap is configured such that the optical path length L of the test object is 1 μm ≦ L ≦ 500 μm.

例前記第1窓材を前記第2窓材に対して傾斜させつつ、粒子物性測定用セルを通過する光の透過率が所望の値となるようにするには、前記第1窓板が、前記第1外面と前記第1内面とが平行に配置された平行平板であり、前記第2窓板が、前記第2外面と前記第2内面とが平行に配置された平行平板であり、前記第1窓板と、前記第2窓板との間に設けられた、くさび形状のスペーサをさらに備え、前記第1内面と前記第2内面とがなす角であるウェッジ角をθ、前記第1窓板及び前記第2窓板の平板方向の外径寸法を2R、被検対象中の光路長をL,被検対象の吸光特性値をf、目標透過率をTとした場合に、前記スペーサの形状が、θ≦−2sin―1(logT/2fR)を満たすように構成されていればよい。 Example In order to make the transmittance of light passing through the cell for measuring particle physical properties to have a desired value while inclining the first window member relative to the second window member, the first window plate is The parallel plate in which the first outer surface and the first inner surface are arranged in parallel, and the second window plate is a parallel plate in which the second outer surface and the second inner surface are arranged in parallel, A wedge-shaped spacer provided between the first window plate and the second window plate, the wedge angle being an angle between the first inner surface and the second inner surface being θ, When the outer diameter dimension of the window plate and the second window plate is 2R, the optical path length in the test object is L, the absorption characteristic value of the test object is f, and the target transmittance is T, the spacer The shape of X may be configured to satisfy θ ≦ −2 sin −1 (log T / 2 f R).

界面で発生した反射光が検出器に入らないようにするには、粒子物性測定用セルと、前記第2窓板を通過した光が検出される位置との間の距離をL、光が検出される位置における検出可能半径をrとした場合に、前記スペーサの形状が、(1/2)tan−1(r/L)<θを満たすように構成されていればよい。 In order to prevent the reflected light generated at the interface from entering the detector, the distance between the cell for measuring the particle property of the particle and the position where the light passing through the second window plate is detected is L, and the light is detected. The shape of the spacer may be configured to satisfy (1/2) tan −1 (r / L) <θ, where r is the detectable radius at the position where the sensor is to be positioned.

本発明の効果が顕著となる面の傾斜のさせ方としては、前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、前記光の光軸と垂直な仮想平面に対してなす角をφとした場合に、0.024°≦φ≦0.11°を満たすように構成されているものが挙げられる。   As a method of inclining the surface where the effects of the present invention become remarkable, at least one surface of the first outer surface, the first inner surface, the second inner surface, or the second outer surface is the light When an angle formed with respect to a virtual plane perpendicular to the optical axis is φ, one configured to satisfy 0.024 ° ≦ φ ≦ 0.11 ° may be mentioned.

本発明に係る粒子物性測定用セルと、前記粒子物性測定用セルに対して光を照射する光源と、前記粒子物性測定用セルを通過した光を検出する検出器と、を備えた粒子物性測定装置であれば、例えば吸光特性値fが大きく、希釈なしでは測定が難しいもので、かつ、反射防止コーティング膜を侵してしまうような特性を有しているために従来測定が困難であったものについても希釈なしで粒子物性について精度のよい測定が可能となる。   A particle physical property measurement comprising: a cell for measuring particle physical properties according to the present invention, a light source for irradiating light to the cell for measuring particle physical properties, and a detector for detecting light having passed through the cell for measuring particle physical properties In the case of an apparatus, for example, the light absorption characteristic value f is large, it is difficult to measure without dilution, and it is difficult to measure conventionally because it has such a property as to attack the antireflective coating film. Also, it is possible to accurately measure particle physical properties without dilution.

このように本発明に係る、粒子物性測定用セルによれば、前記第1窓材、又は、前記第2窓材の少なくとも1つの面が、他の面に対して傾斜しており、反射光の進行方向を散乱光や透過光の進行方向と異ならせることができる。したがって、測定に影響を与えるような反射光については検出器においてほとんど検出されないようにすることができる。   As described above, according to the cell for measuring physical properties of particles according to the present invention, at least one surface of the first window material or the second window material is inclined with respect to the other surface, and the reflected light is reflected. Can be made different from the traveling direction of the scattered light or the transmitted light. Therefore, the reflected light that affects the measurement can be hardly detected by the detector.

また、粒子物性測定用セルにおいて反射光が発生しても、測定誤差が発生しないようにできるので、従来のように反射防止コーティング膜を設ける必要がない。このため、窓材の材質についても制約が少なくなり、反射防止コーティング膜を侵すような被検対象でも測定が可能となる。   Further, even if reflected light is generated in the particle physical property measuring cell, a measurement error can be prevented from occurring, so it is not necessary to provide an antireflective coating film as in the prior art. For this reason, the restriction on the material of the window material is reduced, and measurement can be performed even on an object to be inspected that corrodes the antireflective coating film.

本発明の第1実施形態に係る粒子物性測定用セル、及び、粒子物性測定装置の構成を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS The cell for particle physical-property measurement which concerns on 1st Embodiment of this invention, and the schematic diagram which shows the structure of a particle physical-property measurement apparatus. 第1実施形態における粒子物性測定用セルの模式的斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The typical perspective view of the cell for particle physical-property measurement in 1st Embodiment. 第1実施形態における粒子物性測定用セルの窓材の構成を示す模式的断面図。Typical sectional drawing which shows the structure of the window material of the cell for particle physical-property measurement in 1st Embodiment. 本発明の第2実施形態に係る粒子物性測定用セルの構成を示す模式図。The schematic diagram which shows the structure of the cell for particle physical-property measurement which concerns on 2nd Embodiment of this invention. 第2実施形態におけるウェッジ角θと反射光の進行方向のとの関係を示す模式図。The schematic diagram which shows the relationship between wedge angle (theta) in 2nd Embodiment, and the advancing direction of reflected light. 本発明のその他の実施形態に係る粒子物性測定用セルを示す模式図。The schematic diagram which shows the cell for particle physical-property measurement which concerns on other embodiment of this invention. 従来の粒子物性測定用セルにおいて生じる反射光による干渉の問題を示す模式図。The schematic diagram which shows the problem of the interference by the reflected light which arises in the conventional cell for particle physical-property measurement.

本発明に係る粒子物性測定用セルを用いた粒子物性測定装置の第1実施形態について図面を参照して説明する。   A first embodiment of a particle physical property measuring device using a particle physical property measuring cell according to the present invention will be described with reference to the drawings.

本実施形態に係る粒子物性測定装置100は、粒子に光を照射した際に生じる回折/散乱光の拡がり角に応じた光強度分布が、MIE散乱理論から粒子径によって定まることを利用し、前記回折/散乱光を検出することによって粒子径分布を測定する粒子径分布測定装置である。   The particle physical property measuring device 100 according to the present embodiment uses the fact that the light intensity distribution according to the spread angle of the diffracted / scattered light generated when the particles are irradiated with light is determined by the particle diameter from the MIE scattering theory. This particle size distribution measuring device measures particle size distribution by detecting diffracted / scattered light.

具体的に粒子物性測定装置100は、図1及び図2に示すように、セルホルダ7にセットされた例えばバッチ式の粒子物性測定用セル2と、粒子物性測定用セル2内の被検対象Xにレンズ3を介してレーザ光を照射する光源たるレーザ装置4と、レーザ光の照射により生じる回折/散乱光の光強度を拡がり角に応じて検出する複数の光検出器5A、5と、各光検出器5A、5から出力された光強度信号を受信して被検対象Xに含まれる粒子の粒子径分布を算出する演算装置6とを備えている。なお、レーザ光の光軸上に設けられ、粒子物性測定用セル2を透過した光を検出可能な位置に配置されている光検出器5Aは、例えばリングディテクタである。   Specifically, as shown in FIG. 1 and FIG. 2, the particle physical property measuring device 100 is, for example, a batch type cell 2 for particle physical property measurement set in a cell holder 7 and an object X to be detected in the cell 2 for particle physical property measurement. And a plurality of light detectors 5A, 5 for detecting the light intensity of the diffracted / scattered light generated by the irradiation of the laser light according to the spread angle, and the laser device 4 serving as a light source for irradiating the laser light through the lens 3 The arithmetic unit 6 is provided to receive the light intensity signals output from the light detectors 5A and 5 and calculate the particle size distribution of the particles contained in the test object X. The photodetector 5A provided on the optical axis of the laser beam and disposed at a position where the light transmitted through the particle physical property measuring cell 2 can be detected is, for example, a ring detector.

なお、本実施形態の粒子物性測定装置100では、セルホルダ7がレール8上をスライドするスライド部材9上に設けられており、セルホルダ7にセットされた粒子物性測定用セル2が光路上に位置する光照射位置と、光路上から退避した退避位置との間で移動可能に構成されている。図1において、スライド部材9上には粒子物性測定用セル2がセットされた複数のセルホルダ7が設けられた例を示している。その他、スライド部材9上には、粒子物性測定用セル2とは複数種類の異なる測定セル(乾式セル又は湿式フローセル等)がセットされたセルホルダを設けてもよい。   In the particle physical property measuring apparatus 100 of the present embodiment, the cell holder 7 is provided on the slide member 9 sliding on the rail 8, and the particle physical property measuring cell 2 set in the cell holder 7 is positioned on the light path. It is configured to be movable between a light irradiation position and a retracted position retracted from the light path. In FIG. 1, an example in which a plurality of cell holders 7 in which cells 2 for measuring particle physical properties are set is provided on a slide member 9 is shown. In addition, on the slide member 9, a cell holder in which plural kinds of measurement cells (dry cell, wet flow cell or the like) different from the particle physical property measurement cell 2 may be provided.

このスライド部材9を有する構成を生かして以下のようにしてもよい。   It may be as follows taking advantage of the configuration having the slide member 9.

例えば、分散媒のみを収容し、光路長が1μmに設定された粒子物性測定用セル2を保持した第1セルホルダ7と、分散媒及び分散質である粒子からなる被検対象Xを収容し、光路長が1μmに設定された粒子物性測定用セル2を保持した第2セルホルダ7と、をスライド部材9上にセットする。その他のセルホルダ7を有するものであってもよい。   For example, the first cell holder 7 holding only the dispersion medium and holding the cell 2 for measuring particle physical properties whose optical path length is set to 1 μm, and the test object X consisting of particles that are the dispersion medium and the dispersoid, The second cell holder 7 holding the particle physical property measuring cell 2 whose optical path length is set to 1 μm is set on the slide member 9. It may have another cell holder 7.

そして、第1セルホルダ7の粒子物性測定用セル2を光照射位置に移動させてバックグラウンド測定(透過光測定)を行う。その後、第2セルホルダ7の粒子物性測定用セル2を光照射位置に移動させて透過光測定を行う。   Then, the cell 2 for measuring particle physical properties of the first cell holder 7 is moved to the light irradiation position to perform background measurement (transmission light measurement). Thereafter, the particle physical property measuring cell 2 of the second cell holder 7 is moved to the light irradiation position to measure the transmitted light.

次に、粒子物性測定用セル2について、図2及び図3を参照しながら説明する。なお、図3では説明を明確にするために、各部材の厚みや一部の面の傾斜角を誇張して示している。   Next, the particle physical property measuring cell 2 will be described with reference to FIGS. 2 and 3. In addition, in FIG. 3, in order to clarify description, the inclination angle of the thickness of each member or the one part surface is exaggerated and shown.

粒子物性測定用セル2は、所定の粘性を有する被検対象Xを収容するバッチ式のものである。本実施形態の粒子物性測定用セル2は、インクなどの高濃度、かつ、低粘度の試料を収容するものであり、例えば0.1cP〜100cPの粘度を有する被検対象Xを分析するために用いられる。別の表現をすると、この粒子物性測定用セル2は、被検対象Xがいわゆる高濃度試料であり、希釈なしで粒子径分布を測定できるように光路長が例えばμm単位で構成されているものである。また、被検対象Xは、被検対象Xの吸光係数をε、被検対象Xの分散質濃度をc、εとcの積を吸光特性値fとした場合に、当該被検対象Xの吸光特性値fが1×10−1≦f≦1×10−1を有するものである。その他、粒子物性測定用セル2は、アルコールや有機溶媒を収容するものであってもよい。 The particle physical property measuring cell 2 is a batch type that accommodates the test target X having a predetermined viscosity. The cell for measuring particle physical properties 2 of the present embodiment is for containing a sample with high concentration and low viscosity such as ink, and for example, to analyze the test object X having a viscosity of 0.1 cP to 100 cP. Used. In other words, this cell for measuring particle physical properties 2 is a so-called high concentration sample to be tested X, and the optical path length is, for example, in μm so that the particle size distribution can be measured without dilution. It is. The test target X is the test target X when the absorption coefficient of the test target X is ε, the dispersoid concentration of the test target X is c, and the product of ε and c is the light absorption characteristic value f. The light absorption characteristic value f has 1 × 10 2 m −1 ≦ f ≦ 1 × 10 5 m −1 . In addition, the cell 2 for measuring particle physical properties may contain an alcohol or an organic solvent.

具体的に粒子物性測定用セル2は、図2に示すように一対の窓板であり、それぞれの内面が対向して隙間Sを形成するように設けられた第1窓板21、第2窓板22と、各窓板21、22を外側から挟み込んで保持する挟持機構23と、を備えている。第1窓板21には、厚み方向に貫通させた隙間S内に被検対象Xを導入するための孔が2つ形成してあり、2つの孔28はそれぞれ栓29により蓋がされている。以下の説明で用いる図3では、挟持機構23、孔28、栓29については省略し、第1窓板21と第2窓板22とそれぞれの間に設けられているスペーサ24のみを記載している。   Specifically, as shown in FIG. 2, the particle physical property measuring cell 2 is a pair of window plates, and the first window plate 21 and the second window provided so that their inner surfaces face each other to form a gap S. A plate 22 and a holding mechanism 23 for holding and holding the window plates 21 and 22 from the outside are provided. In the first window plate 21, two holes for introducing the test object X are formed in the gap S penetrated in the thickness direction, and the two holes 28 are covered with plugs 29 respectively. . In FIG. 3 used in the following description, the holding mechanism 23, the hole 28, and the plug 29 are omitted, and only the spacer 24 provided between the first window plate 21 and the second window plate 22 is described. There is.

第1窓板21、第2窓板22は、光源4から照射されたレーザ光を透過する例えば石英ガラス(SiO)製のものである。図3に示すように第1窓板21と第2窓板22は、それぞれウェッジを有したウェッジ基板である。 The first window plate 21 and the second window plate 22 are made of, for example, quartz glass (SiO 2 ) that transmits the laser light emitted from the light source 4. As shown in FIG. 3, the first window plate 21 and the second window plate 22 are wedge substrates each having a wedge.

第1窓板21は、レーザ光の入射側に配置される窓材であり、レーザ光が外部から入射する第1外面21bと、被検対象Xが収容される隙間Sを第2窓板22に対して対向して隙間Sを形成する第1内面21aとを具備している。図3に示すように、第1窓板21は、その縦断面が第2窓板22に対向する側の脚が上底と下底に対して垂直に交差する台形状であり、平円筒の一方の端面を斜めにカットした形状を有している。すなわち、第1内面21aに対して第1外面21bは所定のウェッジ角θだけ傾斜している。   The first window plate 21 is a window member disposed on the incident side of the laser beam, and the first outer surface 21 b on which the laser beam is incident from the outside and the gap S in which the test target X is accommodated is a second window plate 22. And a first inner surface 21a that forms a gap S. As shown in FIG. 3, the first window plate 21 has a trapezoidal shape in which the leg on the side facing the second window plate 22 in the longitudinal cross section vertically intersects the upper bottom and the lower bottom. It has a shape in which one end face is cut obliquely. That is, the first outer surface 21b is inclined by a predetermined wedge angle θ with respect to the first inner surface 21a.

一方、第2窓板22は、被検対象Xを通過したレーザ光が射出される側に配置される窓材であり、第1窓板21に対して対向して隙間Sを形成する第2内面22aと、被検対象Xを通過した光が外部へと射出される第2外面22bとを具備している。第2窓板22も、第1窓板21と同形状のものであり、第2内面22aに対して第2外面22bは所定のウェッジ角θだけ傾斜している。すなわち、第2窓板22は、第1内面21aと第2内面22bとがそれぞれ平行となるように所定平面を基準として第1窓板21に対して左右対称となるように配置されている。また、第1外面21b及び第2外面22bはレーザ光が垂直に入射しないように光軸に対して傾斜するように構成されている。   On the other hand, the second window plate 22 is a window material disposed on the side from which the laser light having passed through the test object X is emitted, and the second window plate 22 faces the first window plate 21 to form a gap S. An inner surface 22a and a second outer surface 22b from which light having passed through the subject X is emitted to the outside are provided. The second window plate 22 also has the same shape as the first window plate 21. The second outer surface 22b is inclined by a predetermined wedge angle θ with respect to the second inner surface 22a. That is, the second window plate 22 is disposed so as to be laterally symmetrical with respect to the first window plate 21 with reference to a predetermined plane so that the first inner surface 21a and the second inner surface 22b are parallel to each other. Further, the first outer surface 21 b and the second outer surface 22 b are configured to be inclined with respect to the optical axis so that the laser light does not enter vertically.

平行に配置された第1内面21aと第2内面22aとの間の隙間Sは、図2に示すように、高濃度試料である被検対象Xを希釈なしで測定する際に例えば透過率Tが80%〜95%となる光路長Lに設定されている。言い換えると、第1実施形態では、図3に示す各窓板21、22の中央部においてレーザ光が通過するレーザ光通過領域については、隙間Sの幅寸法である光路長Lが2.2μm≦L≦9.7μmを満たすように設定されている。   The gap S between the first inner surface 21a and the second inner surface 22a arranged in parallel is, for example, the transmittance T when measuring the test target X which is a high concentration sample without dilution, as shown in FIG. Is set to an optical path length L where 80% to 95%. In other words, in the first embodiment, the optical path length L, which is the width dimension of the gap S, is 2.2 μm ≦ for the laser beam passing region through which the laser beam passes in the central portion of each window plate 21 and 22 shown in FIG. It is set to satisfy L ≦ 9.7 μm.

また、第1窓板21と第2窓板22との間において、外周部には全周にわたって光路長Lとほぼ同じ一定の厚みを有するスペーサ24が設けられており、挟持機構23に第1窓材21と第2窓材22が挟持された状態で光路長Lの隙間Sが形成される。   Further, between the first window plate 21 and the second window plate 22, a spacer 24 having a constant thickness substantially the same as the optical path length L is provided over the entire circumference on the outer peripheral portion. In the state in which the window material 21 and the second window material 22 are held, the gap S of the optical path length L is formed.

なお、第1実施形態では隙間S内においてレーザ光通過領域には第1内面21a、第2内面22aともに反射防止コーティング膜は形成されていない。   In the first embodiment, no anti-reflection coating film is formed on the laser light passing region in the gap S for both the first inner surface 21a and the second inner surface 22a.

このように構成された第1実施形態の粒子物性測定用セル2によれば、第1窓材21、及び、第2窓材22がウェッジ基板で形成されており、所定のウェッジ角θで内面に対して外面が傾斜しているので、第1窓板21、及び、第2窓板22の界面を通過する際に反射光が発生しても、反射せずに通過するレーザ光とは進行方向を異ならせることができる。   According to the particle physical property measuring cell 2 of the first embodiment configured as described above, the first window member 21 and the second window member 22 are formed of a wedge substrate, and the inner surface at a predetermined wedge angle θ Since the outer surface is inclined with respect to the above, even if the reflected light is generated when passing through the interface between the first window plate 21 and the second window plate 22, the laser beam passing without being reflected proceeds The directions can be different.

したがって、第1窓板21、及び、第2窓板22で発生する反射光により干渉が生じなくすることができ、また、特にリングディテクタである検出器5Aにおいて複数点のスポットが表れて粒子径分布の測定結果に測定誤差が発生するのを防ぐことができる。すなわち、反射光については検出器5Aに入射せず、検出されないようにできるので、粒子径分布を算出するのに必要な光のみを検出することが可能となる。   Therefore, interference can be prevented from occurring due to the reflected light generated by the first window plate 21 and the second window plate 22, and a plurality of spots appear especially in the detector 5A which is a ring detector, and the particle diameter It is possible to prevent the occurrence of measurement errors in the measurement results of the distribution. That is, the reflected light can be prevented from entering the detector 5A and not being detected, so that only light necessary to calculate the particle size distribution can be detected.

さらに、第1窓板21及び第2窓板22がウェッジ基板で形成されており、片面だけにウェッジを形成しているので、第1内面21aと第2内面22aとを平行に対向させて、レーザ光通過領域全体に一定の離間距離を形成し、光路長Lで一定に保つことができる。このため、粒子物性測定用セル2の設置位置がずれてレーザ光の入射点が多少変化したとしても、設計通りの光路長Lを実現できる。したがって、粒子物性測定用セル2の設置誤差に対する測定誤差の感度を小さくすることができる。   Furthermore, since the first window plate 21 and the second window plate 22 are formed of a wedge substrate and a wedge is formed only on one side, the first inner surface 21a and the second inner surface 22a are opposed in parallel, A fixed separation distance can be formed over the entire laser light passage area, and the light path length L can be kept constant. For this reason, even if the installation position of the particle physical property measurement cell 2 is shifted and the incident point of the laser light is slightly changed, the designed optical path length L can be realized. Therefore, the sensitivity of the measurement error to the installation error of the particle physical property measurement cell 2 can be reduced.

次に、第2実施形態の粒子物性測定用セル2について図4を参照しながら説明する。なお、第1実施形態において説明した部材に対応する部材には同じ符号を付すこととする。   Next, the cell for measuring particle physical properties 2 of the second embodiment will be described with reference to FIG. In addition, suppose that the same code | symbol is attached to the member corresponding to the member demonstrated in 1st Embodiment.

第2実施形態の粒子物性測定用セル2は、第1窓板21と第2窓板22がそれぞれ平行平板であり、第1窓板21と第2窓板22との間に設けられるスペーサ24をくさび状にすることで、粒子物性測定用セル2としてウェッジが形成されている。   In the particle physical property measuring cell 2 of the second embodiment, the first window plate 21 and the second window plate 22 are parallel flat plates, respectively, and the spacer 24 provided between the first window plate 21 and the second window plate 22. Is wedge-shaped to form a wedge as the cell 2 for measuring particle physical properties.

すなわち、図4に示すようにくさび状に形成されたスペーサ24は、第1窓板21、及び、第2窓板22の傾斜を決定するウェッジ角θと、光路長Lの2つのパラメータを規定するものである。第2実施形態では、第1内面21aと第2内面22aのなす角をウェッジ角として定義し、光路長はレーザ光の光軸に沿った方向の第1内面21aと第2内面22aとの離間距離として定義される。この第2実施形態でも、測定対象である被検対象Xは、分散質濃度をc、εとcの積を吸光特性値fとした場合に、当該被検対象Xの吸光特性値fが1×10−1≦f≦1×10−1を満たす高い吸光特性を有するものである。このような特性を有する被検対象Xであっても、希釈なしで粒子物性を測定できるようにするために、粒子物性測定用セル2は以下のような条件を満たすように構成してある。ここで、第1実施形態におけるウェッジ角θは、光軸に対して垂直な仮想平面PLに対して第1窓板21、第2窓板22がそれぞれなす角φと同じ角となる。 That is, as shown in FIG. 4, the spacer 24 formed in a wedge shape defines two parameters of the wedge angle θ which determines the inclination of the first window plate 21 and the second window plate 22 and the optical path length L. It is In the second embodiment, the angle formed by the first inner surface 21a and the second inner surface 22a is defined as a wedge angle, and the optical path length is the distance between the first inner surface 21a and the second inner surface 22a in the direction along the optical axis of laser light. Defined as a distance. Also in this second embodiment, when the dispersoid concentration is c and the product of ε and c is the light absorption characteristic value f, the light absorption characteristic value f of the test object X is 1 × satisfy 10 2 m -1 ≦ f ≦ 1 × 10 5 m -1 and has a high absorption characteristics. In order to be able to measure the particle physical properties without dilution even in the case of the test object X having such characteristics, the particle physical property measuring cell 2 is configured to satisfy the following conditions. Here, the wedge angle θ in the first embodiment is the same angle as the angle φ formed by the first window plate 21 and the second window plate 22 with respect to the virtual plane PL perpendicular to the optical axis.

まず、第1窓材21又は第2窓材22の半径をR、すなわち、平板方向に沿った外径寸法を2R,光路長をL、ウェッジ角をθとし、レーザ光が第1窓材21及び第2窓材22の中心を通過するとした場合、図4に示すような幾何学的な関係からL=2Rsin(θ/2)・・・(1)が成り立つ。また、レーザ光の目標透過率をT、被検対象Xの吸光係数をε、被検対象Xの分散質濃度をc、光路長をLとした場合、Lambert-Beerの法則から、log10T=−εcLが・・・(2)成り立つ。 First, the radius of the first window material 21 or the second window material 22 is R, that is, the outer diameter dimension along the flat plate direction is 2R, the optical path length is L, the wedge angle is θ, and the laser light is the first window material 21 When passing through the center of the second window member 22, L = 2R sin (θ / 2) (1) holds from the geometrical relationship as shown in FIG. 4. Also, assuming that the target transmittance of the laser light is T, the absorption coefficient of the test object X is ε, the dispersoid concentration of the test object X is c, and the optical path length is L, from the Lambert-Beer law, log 10 T =-Ε c L is satisfied (2).

ここで、粒子物性の測定を実現するために目標透過率Tよりも大きい透過率を実現しようとすると、L≦−(log10T)/(εc)・・・(3)でなければならない。 Here, in order to realize the transmittance larger than the target transmittance T in order to realize the measurement of the particle physical property, it is necessary to satisfy L ≦ − (log 10 T) / (εc) (3).

したがって、(1)〜(3)をウェッジ角θについて解くと、θ≦―2Rsin−1((log10T)/(2fR))・・・(4)が得られる。すなわち、ウェッジ角θは、目標透過率Tと、被検対象Xの吸光特性値fが決まると、(4)の不等式により上限が定まる。 Therefore, solving (1) to (3) for the wedge angle θ yields θ ≦ −2R sin −1 ((log 10 T) / (2 fR)) (4). That is, when the target transmittance T and the light absorption characteristic value f of the test target X are determined, the upper limit of the wedge angle θ is determined by the inequality (4).

また、スペーサ24の形状を決定するウェッジ角θの下限値については、第1窓材21で反射された光が検出器5Aに入射しないようにウェッジ角θを定めることで決定されている。すなわち、第2窓材22を出てから検出器5Aまでの距離をD、検出器5Aの検出半径をrとすると、粒子物性測定用セル2内で各内面に2回反射されて検出器5A側へ出てきた場合の反射光の光軸が光源4の光軸に対してなす角度は2θとなるので、幾何学的な条件から、Dtan2θ>rであれば、反射光は検出器5Aに入射しないことになる。したがって、第2実施形態では、(1/2)tan−1(r/D)<θ・・・(5)を満たすようにウェッジ角θが設定されている。 The lower limit value of the wedge angle θ which determines the shape of the spacer 24 is determined by determining the wedge angle θ so that the light reflected by the first window member 21 does not enter the detector 5A. That is, assuming that the distance from the second window member 22 to the detector 5A is D, and the detection radius of the detector 5A is r, the particle physical property measuring cell 2 reflects twice on each inner surface and the detector 5A The angle formed by the optical axis of the reflected light when coming out to the side is 2θ with respect to the optical axis of the light source 4. From the geometrical condition, if Dtan 2θ> r, the reflected light is sent to the detector 5A. It will not be incident. Therefore, in the second embodiment, the wedge angle θ is set to satisfy (1⁄2) tan −1 (r / D) <θ (5).

すなわち、ウェッジ角θが(1/2)tan−1(r/D)<θ≦―2Rsin−1((log10T)/2fR))を満たすようにスペーサ24が形成されている。 That is, the spacer 24 is formed such that the wedge angle θ satisfies (1⁄2) tan −1 (r / D) <θ ≦ −2R sin −1 ((log 10 T) / 2 fR).

このようなウェッジ角θを有したスペーサ24を形成するために第2窓材22の第2内面22aに対して面板方向に沿って進むほど厚さが大きくなるようにSiO等を蒸着することでスペーサ24が形成されている。 In order to form the spacer 24 having such a wedge angle θ, vapor deposition of SiO 2 or the like so that the thickness becomes larger as it proceeds along the surface plate direction with respect to the second inner surface 22 a of the second window member 22 Spacer 24 is formed.

このように第2実施形態の光学セルであれば、第1窓材21及び第2窓材22自体にウェッジ基板を用いなくてもよく、汎用的な平行平板を用いてウェッジ角θを形成することができるので、第1実施形態と比較して安価に製造する事が可能となる。   As described above, in the case of the optical cell according to the second embodiment, the wedge substrate may not be used for the first window member 21 and the second window member 22 themselves, and the wedge angle θ is formed using a general parallel plate. As compared with the first embodiment, it can be manufactured at low cost.

また、このようなものであっても光学測定セル2で発生する反射光は上記式(5)の範囲のウェッジ角θで形成することにより、反射光が検出器5Aに入射するのを防ぎつつ、被検対象Xを通過するレーザ光の透過率は、粒子物性を測定するのに適した範囲内に収めることができる。   Moreover, even if it is such a thing, the reflected light which generate | occur | produces in the optical measurement cell 2 is formed by wedge angle (theta) of the range of said Formula (5), and it prevents that reflected light injects into detector 5A. The transmittance of the laser light passing through the test object X can be within the range suitable for measuring particle physical properties.

したがって、例えば粒子径分布の測定等において反射光による測定誤差をなくした測定を実現できる。   Therefore, it is possible to realize, for example, measurement in which the measurement error due to the reflected light is eliminated in the measurement of the particle size distribution or the like.

また、粒子物性測定用セル2には、反射防止コーティング膜を形成する必要がなく、窓材の材質についても制約が少なくなるので、例えば、高い吸光特性値fを有しており、かつ、反射防止コーティング膜や窓材自体を侵してしまうために粒子物性を測定する事が難しかった測定対象についても粒子物性の測定が可能となる。   In addition, it is not necessary to form an anti-reflection coating film on the cell 2 for measuring particle physical properties, and the restriction on the material of the window material is also reduced, so for example, it has a high light absorption characteristic value f and reflection It becomes possible to measure the particle physical properties even for an object to be measured whose particle physical properties have been difficult to measure because the protective coating film and the window material itself are attacked.

なお、第2実施形態の粒子物性測定用セル2において、例えば100m−1≦f≦2.4×10−1の吸光特性値を有する被検対象Xに対する透過率Tが少なくとも0.1以上を満たしつつ、粒子物性測定用セル2で生じた反射光が検出器5Aに検出されないようにするには、0.048°<θ≦0.22°となるように構成すればよい。言い換えると、第1平板21及び第2平板22の各面の少なくともいずれかと、光軸に対して垂直な仮想平面PLに対してなす角φが0.024°<φ≦0.11°となるように構成すればよい。これは第2実施形態における幾何学的関係からθがφの2倍となるからである。また、例えば100m−1≦f≦2.4×10の吸光特性値を有する被検対象Xに対する透過率Tが0.7以上を満たすようにするには、0.08°≦φ≦0.9°となるように構成すればよい。なお、φについては第1実施形態のようなウェッジ基板を用いている場合も同様である。 In the particle physical property measuring cell 2 of the second embodiment, the transmittance T to the test object X having an absorption characteristic value of 100 m −1 ≦ f ≦ 2.4 × 10 4 m −1 is at least 0.1. In order to prevent the detector 5A from detecting the reflected light generated by the particle physical property measuring cell 2 while satisfying the above, it may be configured to satisfy 0.048 ° <θ ≦ 0.22 °. In other words, the angle φ formed by at least one of the surfaces of the first flat plate 21 and the second flat plate 22 with the virtual plane PL perpendicular to the optical axis is 0.024 ° <φ ≦ 0.11 °. It should be configured as follows. This is because θ is twice as large as φ according to the geometrical relationship in the second embodiment. Further, for example, in order to satisfy the transmittance T of 0.7 or more for the object X having an absorption characteristic value of 100 m −1 ≦ f ≦ 2.4 × 10 4 , 0.08 ° ≦ φ ≦ 0 It may be configured to be 9 °. The same applies to the case where a wedge substrate as in the first embodiment is used for φ.

その他の実施形態について説明する。   Other embodiments will be described.

本発明に係る粒子物性測定用セル2については、第1外面21b、第1内面21a、第2内面22a、第2外面22bの少なくとも1つの面が、他の面に対して傾斜するように構成されていればよい。例えば図6(a)に示すように第1窓材21についてはウェッジ基板で形成して、第2窓材22については平行平板で形成して、第1外面21bのみが他の3つの面に対して傾斜するように構成してもよい。   In the particle physical property measuring cell 2 according to the present invention, at least one surface of the first outer surface 21b, the first inner surface 21a, the second inner surface 22a, and the second outer surface 22b is configured to be inclined with respect to the other surface. It should be done. For example, as shown in FIG. 6A, the first window member 21 is formed of a wedge substrate, and the second window member 22 is formed of parallel flat plates, and only the first outer surface 21b is formed on the other three surfaces. You may comprise so that it may incline with respect to it.

また、図6(b)に示すように、ウェッジ基板を用いて第1窓板21、第2窓板22を形成している場合において、ウェッジが形成されている面を第1内面21a、第2内面22aとして用いても良い。この場合には、第2実施形態において説明したようにスペーサ24自体がウェッジを有するようにくさび状に形成すればよい。スペーサ24の形状については、リング状の部材を斜めに切断した形状にすれば、第1窓材21及び第2窓材22の外縁全周にわたって封止しながら各面にウェッジを形成することができる。   Further, as shown in FIG. 6B, when the first window plate 21 and the second window plate 22 are formed using a wedge substrate, the surface on which the wedge is formed is referred to as the first inner surface 21a, the first You may use as 2 inner surface 22a. In this case, as described in the second embodiment, the spacer 24 itself may be formed in a wedge shape so as to have a wedge. With regard to the shape of the spacer 24, if the ring-shaped member is cut obliquely, it is possible to form a wedge on each surface while sealing the entire outer periphery of the first window member 21 and the second window member 22. it can.

さらに、第2実施形態の粒子物性測定用セル2では、レーザ光が第1外面21bに対して斜めに入射するように粒子物性測定用セル2を配置していたが、図6(c)に示すように第1外面21bに対して垂直にレーザ光が入射するように配置しても構わない。   Furthermore, in the particle physical property measuring cell 2 according to the second embodiment, the particle physical property measuring cell 2 is disposed so that the laser light is obliquely incident on the first outer surface 21b, as shown in FIG. As shown, the laser light may be arranged to be incident perpendicularly to the first outer surface 21 b.

また、傾斜しているのは第1外面21b、第1内面21a、第2内面22a、第2外面22bの全体でなくてもよく、例えば光の通過領域のみが他の面に対して傾斜しているように構成してもよい。   In addition, it is not necessary that the first outer surface 21b, the first inner surface 21a, the second inner surface 22a, and the second outer surface 22b are all inclined. It may be configured as follows.

第1窓材21、及び、第2窓際22の厚みについてはそれぞれ同じにしてもよいし、異ならせても良い。例えば一方を薄く形成して、温度変化が生じやすくし、放射温度計等によって粒子物性測定用セル2における温度を検出しやすくしてもよい。   The thicknesses of the first window member 21 and the second window edge 22 may be the same or different. For example, one of them may be thinly formed to easily cause a temperature change, and the temperature in the particle physical property measuring cell 2 may be easily detected by a radiation thermometer or the like.

スペーサ24は、蒸着法を用いて形成された蒸着膜、スパッタ法を用いて形成されたスパッタ膜、めっき法を用いて形成されためっき膜、印刷法を用いて形成された印刷膜であっても構わない。すなわち、厚みを連続的に変化させられるものであればよい。   The spacer 24 is a vapor deposition film formed using a vapor deposition method, a sputtered film formed using a sputtering method, a plating film formed using a plating method, and a printed film formed using a printing method. I don't care. That is, it is sufficient that the thickness can be changed continuously.

本発明に係る光学測定セル2は、例えば吸光特性値fが1×10−1≦f≦2×10−1である粒子物性測定用セルであって、隙間Sの少なくとも一部が、被検対象中の光路長Lが0.11μm≦L≦0.48μmとなるように構成されているものであってもよい。言い換えると、このような用途であっても本発明に係る光学測定セル2であれば、希釈なしで測定誤差を低減しながら粒子物性を得ることが可能となる。 The optical measurement cell 2 according to the present invention is, for example, a particle physical property measurement cell having an absorption characteristic value f of 1 × 10 2 m −1 ≦ f ≦ 2 × 10 5 m −1 and at least a part of the gap S However, the optical path length L in the test subject may be configured to be 0.11 μm ≦ L ≦ 0.48 μm. In other words, even in such applications, the optical measurement cell 2 according to the present invention can obtain particle physical properties while reducing measurement errors without dilution.

各実施形態に記載した粒子物性測定用セル2はバッチ式のものであったが、フロー式のものであってもよい。この場合、孔28から被検対象Xを連続的に導入することによってフロー式にすることができる。   The particle physical property measuring cell 2 described in each embodiment is a batch type, but may be a flow type. In this case, the flow type can be obtained by continuously introducing the test object X from the hole 28.

加えて、前記実施形態の粒子径分布測定装置100は、いわゆる回折/散乱式のものであったが、粒子物性測定用セル内の被検対象にレーザ光を照射して、その際にサンプル中の粒子のブラウン運動に起因して発生する散乱光の揺らぎを解析することにより粒子径分布を測定するように構成された、いわゆる動的光散乱式のものであっても構わない。また、被検対象は分散媒と分散質からなる被検液に限られず、隙間に収容された状態で粒子と気体のみからなるものであっても構わない。   In addition, although the particle size distribution measuring device 100 of the above embodiment is of the so-called diffraction / scattering type, the object to be detected in the cell for measuring particle physical properties is irradiated with laser light, and at that time the sample is It may be a so-called dynamic light scattering type configured to measure the particle size distribution by analyzing fluctuations of the scattered light generated due to the Brownian motion of the particles of. Further, the object to be detected is not limited to the liquid to be detected which includes the dispersion medium and the dispersoid, and may be formed of only the particles and the gas in the state of being accommodated in the gap.

さらに、本発明に係る粒子物性測定用セルは、粒子径分布測定装置のほか、例えば赤外分光法などを利用した光学分析装置に用いても良い。   Furthermore, the cell for measuring physical properties of particles according to the present invention may be used for an optical analysis device using, for example, infrared spectroscopy, in addition to the particle diameter distribution measurement device.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で各実施形態同士を組み合わせたり、種々の変形を行ったりすることが可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above embodiments, and that each embodiment can be combined or various modifications can be made without departing from the scope of the invention.

100・・・粒子物性測定装置
2・・・粒子物性測定用セル
21・・・第1窓板
22・・・第2窓板
21a・・・第1内面
22a・・・第2内面
21b・・・第1外面
22b・・・第2外面
24・・・スペーサ
28・・・孔
29・・・栓
100 ... particle physical property measuring device 2 ... cell for particle physical property measurement 21 ... first window plate 22 ... second window plate 21 a ... first inner surface 22 a ... second inner surface 21 b ... First outer surface 22b Second outer surface 24 Spacer 28 Hole 29 Plug

Claims (11)

第1外面、及び、前記第1外面に対向する第1内面を有する第1窓板と、
第2内面、及び、前記第2内面に対向する第2内面を有し、前記第1内面に対して前記第2内面が対向するように配置された第2窓板と、
前記第1内面と前記第2内面との間に形成され、被検対象が収容される隙間と、を備えた粒子物性測定用セルであって、
少なくとも前記第1窓板、及び、前記第2窓板において光が通過する光通過領域では、前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、他の一部の面、又は、他の全部の面に対して傾斜していることを特徴とする粒子物性測定用セル。
A first window plate having a first outer surface and a first inner surface opposite to the first outer surface;
A second window plate having a second inner surface and a second inner surface opposite to the second inner surface, the second window panel being disposed such that the second inner surface faces the first inner surface;
It is a particle | grain physical-property measurement cell provided with the clearance gap formed between the said 1st inner surface and the said 2nd inner surface and in which a test subject is accommodated, Comprising:
At least the first window plate and the light passing region through which light passes in the second window plate, at least one of the first outer surface, the first inner surface, the second inner surface, or the second outer surface A cell for measuring particle properties of particles characterized in that one surface is inclined with respect to some other surface or all other surfaces.
前記第1窓板、又は、前記第2窓板が、ウェッジ基板である請求項1記載の粒子物性測定用セル。   The cell for measuring particle physical properties according to claim 1, wherein the first window plate or the second window plate is a wedge substrate. 前記第1内面と前記第2内面とが、互いに平行となるように配置されており、
前記第1外面が前記第1内面に対して傾斜しているとともに、前記第2外面が前記第2内円に対して傾斜しており、
前記第1外面と前記第2外面とが、互いに平行とならないように配置されている請求項2記載の粒子物性測定用セル。
The first inner surface and the second inner surface are disposed parallel to each other,
The first outer surface is inclined to the first inner surface, and the second outer surface is inclined to the second inner circle,
The cell for measuring particle physical properties according to claim 2, wherein the first outer surface and the second outer surface are arranged not to be parallel to each other.
前記第1窓板が、前記第1外面と前記第1内面とが平行に配置された平行平板であり、
前記第2窓板が、前記第2外面と前記第2内面とが平行に配置された平行平板であり、
前記第1窓板と、前記第2窓板との間に設けられた、くさび形状のスペーサをさらに備えた請求項1記載の粒子物性測定用セル。
The first window plate is a parallel flat plate in which the first outer surface and the first inner surface are disposed in parallel,
The second window plate is a parallel flat plate in which the second outer surface and the second inner surface are disposed in parallel,
The cell for measuring particle physical properties according to claim 1, further comprising a wedge-shaped spacer provided between the first window plate and the second window plate.
前記スペーサが、前記第1内面、又は、前記第2内面に蒸着され、面板方向に沿って進むに連れてその厚みが大きくなるように形成されたものである請求項4記載の粒子物性測定用セル。   5. The particle physical property measurement according to claim 4, wherein the spacer is vapor-deposited on the first inner surface or the second inner surface and formed so as to increase in thickness as it proceeds along the face plate direction. cell. 第1外面、及び、前記第1外面に対向する第1内面を有する第1窓板と、
第2内面、及び、前記第2内面に対向する第2内面を有し、前記第1内面に対して前記第2内面が対向するように配置された第2窓板と、
前記第1内面と前記第2内面との間に形成され、被検対象が収容される隙間と、を備え、前記隙間に収容される被検対象の吸光係数をε、前記隙間に収容される被検対象の分散質濃度をc、εとcの積である吸光特性値をfとした場合に、前記被検対象の吸光特性値fが、1×10−1≦f≦2×10−1である粒子物性測定用セルであって、
前記隙間の少なくとも一部が、被検対象中の光路長Lが0.1μm≦L≦1000μmとなるように構成されており、
少なくとも前記第1窓板、及び、前記第2窓板において光が通過する光通過領域では、前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、他の一部の面、又は、他の全部の面に対して傾斜するように構成されていることを特徴とする粒子物性測定用セル。
A first window plate having a first outer surface and a first inner surface opposite to the first outer surface;
A second window plate having a second inner surface and a second inner surface opposite to the second inner surface, the second window panel being disposed such that the second inner surface faces the first inner surface;
A gap formed between the first inner surface and the second inner surface and containing the object to be detected, the absorption coefficient of the object to be detected contained in the gap being ε, the member is accommodated in the gap The light absorption characteristic value f of the test object is 1 × 10 2 m −1 ≦ f ≦ 2 × where the light absorption characteristic value f which is the product of c and ε and c is the dispersoid concentration of the test object. A cell for measuring the physical properties of particles, which is 10 5 m −1 ,
At least a part of the gap is configured such that the optical path length L in the test target is 0.1 μm ≦ L ≦ 1000 μm,
At least the first window plate and the light passing region through which light passes in the second window plate, at least one of the first outer surface, the first inner surface, the second inner surface, or the second outer surface A cell for measuring particle properties of particles, wherein one surface is configured to be inclined with respect to some other surface or all other surfaces.
前記被検対象の吸光特性値fが、1×10−1≦f≦1×10−1であり、
前記隙間の少なくとも一部が、被検対象の光路長Lが1μm≦L≦500μmとなるように構成されている請求項6記載の粒子物性測定用セル。
The light absorption characteristic value f of the test object is 1 × 10 3 m −1 ≦ f ≦ 1 × 10 4 m −1 ,
The cell for measuring particle physical properties according to claim 6, wherein at least a part of the gap is configured such that an optical path length L of the test object is 1 μm ≦ L ≦ 500 μm.
前記第1窓板が、前記第1外面と前記第1内面とが平行に配置された平行平板であり、
前記第2窓板が、前記第2外面と前記第2内面とが平行に配置された平行平板であり、
前記第1窓板と、前記第2窓板との間に設けられた、くさび形状のスペーサをさらに備え、
前記第1内面と前記第2内面とがなす角であるウェッジ角をθ、前記第1窓板及び前記第2窓板の平板方向の外径寸法を2R、被検対象中の光路長をL,被検対象の吸光特性値をf、目標透過率をTとした場合に、
前記スペーサの形状が、θ≦−2sin―1(logT/2fR)を満たすように構成されている請求項1記載の粒子物性測定用セル。
The first window plate is a parallel flat plate in which the first outer surface and the first inner surface are disposed in parallel,
The second window plate is a parallel flat plate in which the second outer surface and the second inner surface are disposed in parallel,
And a wedge-shaped spacer provided between the first window plate and the second window plate,
The wedge angle, which is the angle between the first inner surface and the second inner surface, is θ, the outer diameter of the first window plate and the second window plate in the flat plate direction is 2R, and the optical path length in the test object is L , Where f is the light absorption characteristic value of the test object, and T is the target transmittance,
The cell for measuring particle physical properties according to claim 1, wherein the shape of the spacer is configured to satisfy θ ≦ −2 sin −1 (log T / 2 fR).
粒子物性測定用セルと、前記第2窓板を通過した光が検出される位置との間の距離をD、光が検出される位置における検出可能半径をrとした場合に、
前記スペーサの形状が、(1/2)tan−1(r/D)<θを満たすように構成されている請求項8記載の粒子物性測定用セル。
When the distance between the cell for measuring particle physical properties and the position where light passing through the second window plate is detected is D, and the detectable radius at the position where light is detected is r.
9. The cell for measuring particle physical properties according to claim 8, wherein the shape of the spacer is configured to satisfy (1/2) tan −1 (r / D) <θ.
前記第1外面、前記第1内面、前記第2内面、又は、前記第2外面のうちの少なくとも1つの面が、前記光の光軸と垂直な仮想平面に対してなす角をφとした場合に、0.024°≦φ≦0.11°を満たすように構成されている請求項1乃至9いずれかに記載の粒子物性測定用セル。   When at least one of the first outer surface, the first inner surface, the second inner surface, or the second outer surface makes an angle φ with an imaginary plane perpendicular to the optical axis of the light The cell for measuring particle physical properties according to any one of claims 1 to 9, wherein 0.024 ° ≦ φ40.11 ° is satisfied. 請求項1乃至10いずれかに記載の粒子物性測定用セルと、
前記粒子物性測定用セルに対して光を照射する光源と、
前記粒子物性測定用セルを通過した光を検出する検出器と、を備えた粒子物性測定装置。
A cell for measuring particle physical properties according to any one of claims 1 to 10.
A light source for irradiating light to the cell for measuring particle physical properties;
And a detector for detecting light that has passed through the particle physical property measuring cell.
JP2017232327A 2017-12-04 2017-12-04 A cell for measuring particle physical properties and a particle physical property measuring device using the cell. Active JP7097175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232327A JP7097175B2 (en) 2017-12-04 2017-12-04 A cell for measuring particle physical properties and a particle physical property measuring device using the cell.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232327A JP7097175B2 (en) 2017-12-04 2017-12-04 A cell for measuring particle physical properties and a particle physical property measuring device using the cell.

Publications (2)

Publication Number Publication Date
JP2019100867A true JP2019100867A (en) 2019-06-24
JP7097175B2 JP7097175B2 (en) 2022-07-07

Family

ID=66973423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232327A Active JP7097175B2 (en) 2017-12-04 2017-12-04 A cell for measuring particle physical properties and a particle physical property measuring device using the cell.

Country Status (1)

Country Link
JP (1) JP7097175B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946093A (en) * 1998-08-19 1999-08-31 Met One, Inc. Particle detection system and method employing an upconversion laser
JPH11295220A (en) * 1998-04-13 1999-10-29 Kdk Corp Liquid sample inspection method and device
JP2000266661A (en) * 1999-03-18 2000-09-29 Rion Co Ltd Flow cell and particle-measuring apparatus using the same
JP2000346794A (en) * 1999-03-31 2000-12-15 Tokyo Gas Co Ltd Optical cell apparatus
JP2003526082A (en) * 1998-03-07 2003-09-02 ウォードロウ、スチーブン、シー How to count blood cells
US20040207852A1 (en) * 2003-04-21 2004-10-21 Bechtel Kate L. Brewster's angle flow cell for cavity ring-down spectroscopy
JP2006071379A (en) * 2004-08-31 2006-03-16 Horiba Ltd Particle size distribution measuring instrument
JP2006300614A (en) * 2005-04-18 2006-11-02 Ohara Inc Refractive index measuring appliance, refractive index measuring instrument and refractive index measuring method
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2012504769A (en) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー Optical path length sensor and method for optimal absorbance measurement
JP2012195337A (en) * 2011-03-15 2012-10-11 Sony Corp Laser irradiation device and fine particle measuring apparatus
JP2013190423A (en) * 2012-02-16 2013-09-26 Univ Of Tsukuba Sample-transmitted light detection method and sample-transmitted light detection apparatus
JP2013253875A (en) * 2012-06-07 2013-12-19 Osaka Flow Meter Manufacturing Co Ltd Particle size measurement cell, particle size measurement method using particle size measurement cell, particle size measurement apparatus, and particle size correction method
US20150138551A1 (en) * 2011-09-14 2015-05-21 David Michael Spriggs Apparatus and method for measuring particle size distribution by light scattering

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526082A (en) * 1998-03-07 2003-09-02 ウォードロウ、スチーブン、シー How to count blood cells
JPH11295220A (en) * 1998-04-13 1999-10-29 Kdk Corp Liquid sample inspection method and device
US5946093A (en) * 1998-08-19 1999-08-31 Met One, Inc. Particle detection system and method employing an upconversion laser
JP2000266661A (en) * 1999-03-18 2000-09-29 Rion Co Ltd Flow cell and particle-measuring apparatus using the same
JP2000346794A (en) * 1999-03-31 2000-12-15 Tokyo Gas Co Ltd Optical cell apparatus
US20040207852A1 (en) * 2003-04-21 2004-10-21 Bechtel Kate L. Brewster's angle flow cell for cavity ring-down spectroscopy
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2006071379A (en) * 2004-08-31 2006-03-16 Horiba Ltd Particle size distribution measuring instrument
JP2006300614A (en) * 2005-04-18 2006-11-02 Ohara Inc Refractive index measuring appliance, refractive index measuring instrument and refractive index measuring method
JP2012504769A (en) * 2008-10-03 2012-02-23 ナノドロップ テクノロジーズ リミテッド ライアビリティ カンパニー Optical path length sensor and method for optimal absorbance measurement
JP2012195337A (en) * 2011-03-15 2012-10-11 Sony Corp Laser irradiation device and fine particle measuring apparatus
US20150138551A1 (en) * 2011-09-14 2015-05-21 David Michael Spriggs Apparatus and method for measuring particle size distribution by light scattering
JP2013190423A (en) * 2012-02-16 2013-09-26 Univ Of Tsukuba Sample-transmitted light detection method and sample-transmitted light detection apparatus
JP2013253875A (en) * 2012-06-07 2013-12-19 Osaka Flow Meter Manufacturing Co Ltd Particle size measurement cell, particle size measurement method using particle size measurement cell, particle size measurement apparatus, and particle size correction method

Also Published As

Publication number Publication date
JP7097175B2 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP2763770B2 (en) Light scattering characteristics measurement method
US3850525A (en) Simultaneous multiple measurements in laser photometers
US3822098A (en) Multispectral sensor means measuring depolarized radiation
US6535283B1 (en) Apparatus for spectroscopic analysis of a fluid medium by attenuated reflection
US8705039B2 (en) Surface plasmon resonance sensor using vertical illuminating focused-beam ellipsometer
US9841376B2 (en) High sensitivity metamaterial nano-sensing system with ultra-narrow line width spectral response
CN103499391B (en) Spectral measurement system
US8976353B2 (en) Multiwell plate lid for improved optical measurements
KR101857950B1 (en) High accuracy real-time particle counter
JP4895109B2 (en) Shape inspection method and shape inspection apparatus
US6801317B2 (en) Plasmon resonance sensor
JP2008076159A (en) Method and device for inspecting internal defect
Mauricio-Iglesias et al. Raman depth-profiling characterization of a migrant diffusion in a polymer
KR100865755B1 (en) Multi-channel biosensor using surface plasmon resonance
CN101592598B (en) Trace substance analysis device based on near-field optical traveling-wave absorption
CN105092426A (en) Measuring method for nanoparticle 90-degree scattering spectrum
Doyle Absorbance linearity and repeatability in cylindrical internal reflectance FT-IR spectroscopy of liquids
JP2019100867A (en) Cell for measuring physical property of particle and instrument for measuring physical property of particle using the same
US9823192B1 (en) Auto-calibration surface plasmon resonance biosensor
Zhou et al. Effect of spectral power distribution on the resolution enhancement in surface plasmon resonance
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
Chakraborty et al. A model for interpreting depth profiles of confocal Raman measurements in reflective and transmitting materials
Martinez-Perdiguero et al. Optimized sample addressing in prism-coupled surface plasmon resonance experiments
RU2491533C1 (en) Method to determine depth of penetration of field of terahertz surface plasmons into environment
US20240142372A1 (en) Adulteration and authenticity analysis method of organic substances and materials by terahertz spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7097175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150