JP2019098713A - Heat insulation material - Google Patents

Heat insulation material Download PDF

Info

Publication number
JP2019098713A
JP2019098713A JP2017235639A JP2017235639A JP2019098713A JP 2019098713 A JP2019098713 A JP 2019098713A JP 2017235639 A JP2017235639 A JP 2017235639A JP 2017235639 A JP2017235639 A JP 2017235639A JP 2019098713 A JP2019098713 A JP 2019098713A
Authority
JP
Japan
Prior art keywords
resin
heat insulating
insulating material
water
composite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017235639A
Other languages
Japanese (ja)
Other versions
JP7029589B2 (en
Inventor
日野 裕久
Hirohisa Hino
裕久 日野
太一 中村
Taichi Nakamura
太一 中村
一摩 及川
Kazuma Oikawa
一摩 及川
茂昭 酒谷
Shigeaki Sakatani
茂昭 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017235639A priority Critical patent/JP7029589B2/en
Priority to US16/198,236 priority patent/US20190177911A1/en
Priority to CN201811448520.3A priority patent/CN109898332B/en
Priority to DE102018131025.0A priority patent/DE102018131025A1/en
Publication of JP2019098713A publication Critical patent/JP2019098713A/en
Application granted granted Critical
Publication of JP7029589B2 publication Critical patent/JP7029589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/12Gel
    • B32B2266/126Aerogel, i.e. a supercritically dried gel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/04Insulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/02Treating compositions in the form of solgel or aerogel
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/065Insulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide a heat insulation material preventing powder drop of a composite sheet of an unwoven fabric and a silica aerogel.SOLUTION: There is provided a heat insulation material having a composite layer 110 including a silica aerogel in an unwoven fabric, and a coating layer 111 containing a water-soluble resin 112 and a lipophilic resin 113 and covering a surface of the composite layer 110. In the coating layer 111, The lipophilic resin 113 exists as a plurality of island shape in the water-soluble resin 112. The water-soluble resin 112 is a water-soluble polyester resin and the lipophilic resin 113 is an epoxy resin.SELECTED DRAWING: Figure 2

Description

本発明は、断熱材に関するものである。特に、表面がコーティング膜を有する断熱材に関する。 The present invention relates to a heat insulating material. In particular, the present invention relates to a heat insulating material whose surface has a coating film.

近年、モバイル機器の小型化、薄型化、高性能化が進んでいる。モバイル機器は、人が長時間、手で持ち操作する場合が多い。そのため、モバイル機器の表面の温度を低く抑えることは重要である。   BACKGROUND In recent years, mobile devices have become smaller, thinner and higher in performance. Mobile devices are often held and operated by people for long periods of time. Therefore, it is important to keep the temperature of the surface of the mobile device low.

そのためモバイル機器の表面の温度上昇を防ぐ方法として、モバイル機器中の発熱部品の直上に断熱材を設置する事が行われている。世の中には各種の断熱材があるが、断熱性能が高い素材としてシリカエアロゲルがある。   Therefore, as a method of preventing the temperature rise of the surface of the mobile device, it is practiced to place a heat insulating material directly above the heat generating component in the mobile device. There are various thermal insulation materials in the world, but there is silica airgel as a material with high thermal insulation performance.

シリカエアロゲルは、90%以上の空隙率を有するナノ多孔体として知られている。また経年劣化や耐熱性の観点から、既存の断熱材よりも優れており、15mW/mK前後の優れた熱伝導率を有していることが知られている。しかしながら、シリカエアロゲルは、数10nmオーダーの微細なシリカ粒子が点接触で繋がったネットワーク構造であるため、機械的強度があまり大きくない。そこで、及川他は、その脆弱性を克服するために、シリカエアロゲルを繊維や不織布、そして樹脂などと複合化し、シート化することで、強度を向上することを提案している。   Silica airgel is known as a nanoporous body having a porosity of 90% or more. Moreover, it is known from the viewpoint of aged deterioration and heat resistance that it is superior to existing heat insulating materials and has an excellent thermal conductivity of about 15 mW / mK. However, since the silica airgel is a network structure in which fine silica particles of several tens of nm are connected by point contact, the mechanical strength is not very high. Therefore, Oikawa et al. Have proposed that the strength be improved by combining the silica airgel with fibers, non-woven fabrics, and resins, etc. to form a sheet in order to overcome the fragility.

ところで、その微小サイズのシリカエアロゲルのネットワーク構造は、本質的に脆弱性があるため、個々の粒子がシリカエアロゲルのネットワーク構造から外れてしまう恐れがある。そして、その外れたシリカエアロゲル粒子がモバイル機器の内部で浮遊することで、モバイル機器の故障を引き起こすことになる。   By the way, since the network structure of the micro-sized silica airgel is inherently fragile, there is a risk that individual particles may deviate from the network structure of the silica airgel. The floating silica airgel particles float inside the mobile device, which causes the failure of the mobile device.

それを防止するためには、一般的にシリカエアロゲルの複合化シートをフィルムラミネートして覆い、袋とじ形状(以下、ラミネートパッキングと称する)にするなどの対策を実施している。しかしながら、様々な形状・サイズに適応したラミネートパッキングを行うことは、カスタムメイドとなるため、非常にコスト高になり、モバイル機器のコストアップに繋がり、商品の競争力を損なう一因となってきている。更には、ラミネートパッキングは、シリカエアロゲルの複合化シートを袋閉じ構造で密封しているが、シートとラミネートフィルムの間に空間があるため、放熱効果が減少するという機能面の課題も顕著になっている。   In order to prevent this, generally, a composite sheet of silica airgel is film-laminated and covered, and a countermeasure such as forming a bag-like shape (hereinafter, referred to as laminate packing) is implemented. However, laminate packing adapted to various shapes and sizes is very custom-made, resulting in extremely high cost, which leads to an increase in the cost of mobile devices, and is a factor that impairs the competitiveness of products. There is. Furthermore, although the laminate packing seals the composite sheet of the silica airgel in a bag-closing structure, there is a space between the sheet and the laminate film, which makes the functional problem that the heat radiation effect is reduced become remarkable. ing.

そこで低コストでシリカエアロゲルの複合化シートの粉落ちを防止し、且つ汎用性に富み、断熱性能も落とさない形態が望まれている。   Then, the form which prevents the powder fall off of the composite sheet of a silica airgel at low cost, and is versatile is also desired, and the form which does not drop an insulation performance is desired.

特許第6064149号公報Patent No. 6064149

図1は、従来のラミネートパッキングしたシリカエアロゲルの断熱材101の断面を示す図である。不織布106にシリカエアロゲル105を担持し複合化した複合層102と、その外側にシリカエアロゲル層103とで複層化した構造の断熱材であり、これをラミネートフィルム104で袋閉じした構造をとっている。この構造ではラミネートフィルム104は、シリカエアロゲルの複合化シートを袋閉じして覆うことで、粉落ちしたシリカエアロゲル微粒子が周囲に飛び散り拡散することを防止できる。   FIG. 1 is a cross-sectional view of a conventional laminate-packed silica airgel insulation 101. It is a heat insulating material with a structure in which the composite layer 102 is formed by supporting the silica aerogel 105 on the non-woven fabric 106 to form a composite, and the silica aerogel layer 103 on the outside thereof. There is. In this structure, the laminated film 104 can be closed by covering and closing the composite sheet of the silica airgel so that the powdery silica airgel fine particles can be prevented from being scattered and diffused around.

しかし、ラミネートフィルム104とシリカエアロゲル層103は、密着していないため、その間に空気層が出来てしまう。そのためモバイル機器等の断熱効果が、弱くなってしまうという課題を有している。   However, since the laminate film 104 and the silica airgel layer 103 are not in close contact with each other, an air layer is formed therebetween. Therefore, it has the subject that the heat insulation effect, such as a mobile apparatus, will become weak.

本発明は、従来の課題を解決するもので、シリカエアロゲルの複合化シートの粉落ちを防止した断熱材の被覆構造を提供することを目的とする。   An object of the present invention is to solve the conventional problems, and it is an object of the present invention to provide a coating structure of a heat insulating material in which powdering of a composite sheet of silica airgel is prevented.

上記目的を達成するために、不織布にシリカエアロゲルを内包した複合層と、親水性樹脂と親油性樹脂とを含み、上記複合層の表面を被覆するコーティング膜と、を有する断熱材を用いる。   In order to achieve the above object, a heat insulating material having a composite layer in which a silica airgel is included in a non-woven fabric, and a coating film which contains a hydrophilic resin and a lipophilic resin and covers the surface of the composite layer is used.

以上のように、本発明の不織布及びシリカエアロゲル複合層の被覆構造は、シリカエアロゲルの複合層表面への塗料コーティングにより、塗布部の形状にとらわれずシリカエアロゲルの複合層に保護膜ができる。この膜は、高い密着性を有する。それにより、優れた断熱性を兼ね備えた断熱材と、その断熱材を用いた機器、その断熱材のコーティング構造形成の方法を提供することをすることができる。   As described above, the coating structure of the non-woven fabric and the silica airgel composite layer of the present invention is not limited by the shape of the coated part by the paint coating on the surface of the silica airgel composite layer, and a protective film can be formed on the silica airgel composite layer. This film has high adhesion. Thus, it is possible to provide a heat insulating material having excellent heat insulating properties, an apparatus using the heat insulating material, and a method of forming a coating structure of the heat insulating material.

従来のフィルムラミネートした断熱材の断面を示す図Figure showing a cross section of a conventional film laminated insulation (a)実施の形態の塗料コーティングにより形成された断熱材の断面図、(b)実施の形態のコーティング膜の平面図(A) Cross section of heat insulating material formed by paint coating of embodiment, (b) Plan view of coating film of embodiment 実施の形態のコーティング膜の外観を示す図The figure which shows the external appearance of the coating film of embodiment

以下本発明の実施の形態について、図面を参照しながら説明する。
図2は、実施の形態の塗料コーティングがされた断熱材110の断面を示す。図2(b)に実施の形態のコーティング膜の平面図を示す。図3に実施の形態のコーティング膜の外観を示す図
断熱材110は、不織布106及びシリカエアロゲル105からなる複合層102の周囲に、コーティング膜111が形成された構造である。複合層102からはみ出している不織布106の繊維は、コーティング膜111中の水溶性樹脂112や反応性の親油性樹脂113と密着している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the cross section of the heat insulating material 110 with the paint coating of the embodiment. The top view of the coating film of embodiment is shown in FIG.2 (b). The figure which shows the external appearance of the coating film of embodiment in FIG. 3 The heat insulating material 110 is the structure in which the coating film 111 was formed around the composite layer 102 which consists of the nonwoven fabric 106 and the silica airgel 105. FIG. The fibers of the non-woven fabric 106 protruding from the composite layer 102 are in close contact with the water-soluble resin 112 in the coating film 111 and the reactive lipophilic resin 113.

<複合層102>
複合層102は、厚み0.05〜1.0mmの不織布106に、ナノサイズの多孔質構造を有するシリカエアロゲル105を内包させたシートである。熱伝導率は、0.01〜0.1W/mKである。
<Complex Layer 102>
The composite layer 102 is a sheet in which a silica airgel 105 having a nano-sized porous structure is included in a non-woven fabric 106 having a thickness of 0.05 to 1.0 mm. The thermal conductivity is 0.01 to 0.1 W / mK.

通常、不織布106の熱伝導率は、0.030〜0.060W/mKであり、この値は不織布106の固体熱伝導成分と不織布の空隙に存在している空気(窒素分子)の伝熱成分のほぼ総和と見なせる。6
この空隙に低熱伝導率材料(一般に0.010〜0.015W/mKといわれる)としてシリカエアロゲル105を内包させることで上記低熱伝導率を実現できる。
Usually, the thermal conductivity of the non-woven fabric 106 is 0.030 to 0.060 W / mK, which is the heat transfer component of air (nitrogen molecules) present in the solid heat-conductive component of the non-woven fabric 106 and the voids of the non-woven fabric. It can be regarded as a total sum of 6
The low thermal conductivity can be realized by including the silica airgel 105 in the air gap as a low thermal conductivity material (generally referred to as 0.010 to 0.015 W / mK).

一般に、常温における静止空気の熱伝導率は、0.026W/mK前後といわれており、不織布106の熱伝導率はこの静止空気の値よりも大きい。   Generally, the thermal conductivity of stationary air at normal temperature is said to be around 0.026 W / mK, and the thermal conductivity of the non-woven fabric 106 is larger than the value of this stationary air.

複合層102の特徴は、その熱伝導率が、静止空気の熱伝導率よりも小さいシートであることである。   The feature of the composite layer 102 is that it is a sheet whose thermal conductivity is smaller than that of the stationary air.

複合層102は、断熱性の他に、撥水性、吸音性を有しており、不織布106の種類を選べば、耐熱性や難燃性を付与することができる。   The composite layer 102 has water repellency and sound absorption as well as heat insulation, and heat resistance and flame retardancy can be imparted if the type of the non-woven fabric 106 is selected.

本実施の形態では耐熱性や難燃性を付与する為に、不織布106として酸化アクリルを用いたが、他にもガラス繊維紙を用いてもよい。   Although acrylic oxide is used as the non-woven fabric 106 in the present embodiment in order to impart heat resistance and flame retardancy, glass fiber paper may be used as well.

<複合層102の熱伝導率>
本実施の形態において使用する複合層102の熱伝導率は、0.01〜0.1W/m・Kの範囲内にある。複合層102の熱伝導率は、低ければ低いほどその断熱効果が高くなり、同じ断熱効果を得るために必要な複合層102の厚さを薄くすることができる。
Thermal Conductivity of Composite Layer 102
The thermal conductivity of the composite layer 102 used in the present embodiment is in the range of 0.01 to 0.1 W / m · K. The lower the thermal conductivity of the composite layer 102, the higher its thermal insulation effect, and the thickness of the composite layer 102 required to obtain the same thermal insulation effect can be reduced.

他方、熱伝導率が0.1W/m・Kより大きくなれば断熱効果が低下し、必要な断熱効果を得るためには複合層102の厚さを増大しなくてはならないので好ましくない。   On the other hand, if the thermal conductivity is greater than 0.1 W / m · K, the heat insulating effect is reduced, and the thickness of the composite layer 102 must be increased to obtain the necessary heat insulating effect, which is not preferable.

<複合層102の厚さ>
複合層102の厚さは0.05mm〜2mmの範囲内にあり、好ましくは0.5mm〜1mmの範囲内にある。複合層102の厚さが0.05mmよりも薄い場合には厚さ方向の断熱効果が低下するので、熱伝導率が(現在存在し得ない程の)かなり低い低熱伝導材料を選択しなければその一面から他面への厚さ方向の伝熱を良好に低減させ得ない。
<Thickness of Composite Layer 102>
The thickness of the composite layer 102 is in the range of 0.05 mm to 2 mm, preferably in the range of 0.5 mm to 1 mm. If the thickness of the composite layer 102 is less than 0.05 mm, the thermal insulation effect in the thickness direction is reduced, so if a low thermal conductivity material (having a temperature that can not be present at present) is selected too low The heat transfer in the thickness direction from one side to the other side can not be favorably reduced.

<複合層102の製造方法>
複合層102の製造方法の一例を示す。
<Method of Manufacturing Composite Layer 102>
An example of the manufacturing method of the composite layer 102 is shown.

(1)原料混合:高モル珪酸ソーダ(珪酸水溶液、Si濃度14%)に触媒として濃塩酸(12N)を1.4wt%添加し攪拌し、ゾル溶液を調合する。   (1) Raw material mixing: 1.4 wt% of concentrated hydrochloric acid (12 N) as a catalyst is added to high molar sodium silicate (silicic acid aqueous solution, Si concentration 14%) and stirred to prepare a sol solution.

(2)含浸:不織布106(材質:酸化アクリル、厚み:0.4um、目付50g/m2、寸法12mm角)にゾル溶液を注ぎ、ロールでゾル溶液を不織布106に押し込んで含浸させる。   (2) Impregnation: The sol solution is poured into the non-woven fabric 106 (material: acrylic oxide, thickness: 0.4 μm, basis weight 50 g / m 2, size 12 mm square), and the sol solution is pressed into the non-woven fabric 106 to impregnate it with a roll.

(3)ゾル溶液を含浸させた不織布をPPフィルム(厚み40um×2枚)に挟み、室温23℃で約20分放置してゾルをゲル化させる。   (3) The non-woven fabric impregnated with the sol solution is sandwiched between PP films (thickness 40 μm × 2 sheets), and left at room temperature at 23 ° C. for about 20 minutes to gel the sol.

(4)厚み規制:ゲル化を確認後、ギャップを650um(フィルム厚込み)に設定した2軸ロールにフィルムごと含浸された不織布106を通して、不織布106から余分なゲルを絞りだして厚み700um狙いで規制する。   (4) Thickness control: After confirming gelation, pass through the non-woven fabric 106 impregnated with the whole film into a biaxial roll with a gap set to 650 um (film thickness included), draw excess gel from the non-woven fabric 106 and aim at 700 μm thickness. regulate.

(5)養生:容器にフィルムごとゲルシートを入れて、乾燥防止のために85℃/85RH%の恒温恒湿槽に3時間入れて、シリカ粒子を成長(シラノールの脱水縮合反応)させて多孔質構造を形成させる。   (5) Curing: Put the gel sheet together with the film in a container, put it in a constant temperature and humidity chamber at 85 ° C / 85RH% for 3 hours to prevent drying, and grow silica particles (dehydration condensation reaction of silanol) to make porous Form the structure.

(6)フィルム剥がし:養生容器からシートを取り出して、フィルムを剥がす。   (6) Film peeling: Remove the sheet from the curing container and peel off the film.

(7)疎水化1(塩酸浸漬工程):ゲルシートを塩酸(6〜12規定)に浸漬後、常温23℃で1時間放置してゲルシートの中に塩酸を取り込む。   (7) Hydrophobization 1 (hydrochloric acid immersion step): After immersing the gel sheet in hydrochloric acid (6 to 12 N), the gel sheet is allowed to stand at normal temperature 23 ° C. for 1 hour to incorporate hydrochloric acid into the gel sheet.

(8)疎水化2(シロキサン処理工程):ゲルシートを例えば、シリル化剤であるオクタメチルトリシロキサンと両親媒性溶剤である2−プロパノール(IPA)の混合液に浸漬させて、55℃の恒温槽に入れて2時間反応させる。トリメチルシロキサン結合が形成され始めると、ゲルシートから塩酸水が排出され、2液分離する(上層にシリル化剤、下層に塩酸水)。   (8) Hydrophobization 2 (siloxane treatment step): A gel sheet is immersed in, for example, a mixed solution of octamethyltrisiloxane which is a silylating agent and 2-propanol (IPA) which is an amphiphilic solvent, and a constant temperature of 55 ° C. Place in tank and let react for 2 hours. When a trimethylsiloxane bond starts to form, the gel sheet is drained from hydrochloric acid water and separated into two parts (a silylating agent in the upper layer, and a hydrochloric acid water in the lower layer).

(9)乾燥:ゲルシートを150℃の恒温槽に移して2時間乾燥させる。   (9) Drying: The gel sheet is transferred to a thermostat at 150 ° C. and dried for 2 hours.

<複合層102へのコーティング>
複合層102は、不織布106とシリカエアロゲル105の複合体であるが、表層部及び端部では、不織布106の繊維の一部が表層や端部から飛び出している物を用いる。複合層102から、不織布106の繊維が飛び出した構造を形成する方法としては、どのような方法でもよく、限定はしない。
<Coating to Composite Layer 102>
The composite layer 102 is a composite of the non-woven fabric 106 and the silica airgel 105. In the surface layer portion and the end portion, a material in which a part of the fibers of the non-woven fabric 106 protrudes from the surface layer or the edge portion is used. Any method may be used to form a structure in which the fibers of the non-woven fabric 106 jump out of the composite layer 102, and is not limited.

一例としては、上記複合層102の製造方法で示した(1)から(9)の工程を終えて出来上がった複合層102の表面や端部を粘着ローラーやブラシ等で荒らして、繊維を露出せるなどが上げられる。または、ゲルシートの製造工程で、不織布106の繊維を露出するようにシリカエアロゲル105の厚みや不織布106の厚みを最適設定することで、削らなくても繊維が飛び出ている複合層102を作成してもよい。   As an example, the surface and the end of the composite layer 102 finished after the steps (1) to (9) described in the method for producing the composite layer 102 described above are roughened with an adhesive roller, a brush or the like to expose the fibers. Etc. are raised. Alternatively, in the gel sheet manufacturing process, the thickness of the silica airgel 105 and the thickness of the non-woven fabric 106 are optimally set so as to expose the fibers of the non-woven fabric 106 to create the composite layer 102 in which the fibers fly out without scraping. It is also good.

<コーティング塗料>
コーティング塗料は、少なくとも水溶性のベース塗料と、熱硬化性の親油性樹脂113で構成されている。
<Coating paint>
The coating paint is composed of at least a water-soluble base paint and a thermosetting lipophilic resin 113.

ベース塗料は、水溶性塗料で、水溶媒の中に粒子状の水溶性樹脂112を分散させたものが主流となっている。本実施の形態のシリカエアロゲル105は、疎水化することで特異の構造形態を取っているため、逆に、親油性の樹脂とは非常に馴染み性がよく、親油性樹脂と馴染むことで、その独自のネットワーク構造が破壊されてしまう。そのため、コーティング塗料は、基本的には、水溶性のものであることが必須となる。   The base paint is a water-soluble paint in which a particulate water-soluble resin 112 is dispersed in a water solvent. Since the silica airgel 105 of the present embodiment takes a specific structural form by hydrophobization, conversely, it is very compatible with the lipophilic resin, and by being compatible with the lipophilic resin, Your own network structure will be destroyed. Therefore, the coating paint is basically required to be water soluble.

水溶性塗料は、水溶媒への馴染みを良いことが必要であり、水溶性樹脂112の骨格に親水性の官能基をもった自己乳化タイプや、乳化剤を用いて樹脂を強制的に分散させた強制乳化タイプ分類できる。また用いられるベースとなる水溶性樹脂112の種類は、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。   The water-soluble paint needs to be well compatible with the water solvent, and the resin is forcibly dispersed using a self-emulsification type having a hydrophilic functional group in the skeleton of the water-soluble resin 112 or an emulsifier. Forced emulsification type classification is possible. Further, as a type of the water-soluble resin 112 to be used as the base, acrylic resin, polyurethane resin, polyester resin, epoxy resin, silicone resin, fluorine resin and the like can be mentioned.

それぞれの水溶性樹脂112の特徴は、一般的には、アクリル樹脂は、耐光性,耐候性が良い、モノマーの種類が多い、比較的安価、無色透明であり光沢が良好などの特徴を有している。   The characteristics of each water-soluble resin 112 are that, in general, acrylic resin has characteristics such as good light resistance, good weather resistance, many types of monomers, relatively inexpensive, transparent and colorless, and good gloss. ing.

また、ポリウレタン樹脂は、その内部にウレタン結合、ウレア結合等を有することから、強く凝集したハードセグメントとフレキシブルなソフトセグメントから構成されているため、基材に対する密着性に優れる、塗膜硬度が高く、高弾で耐摩耗性が良好、耐久性がよい、耐水性、耐薬品性がよいなどの特徴がある。   Further, since the polyurethane resin has a urethane bond, a urea bond, etc. in its interior, it is composed of a hard coagulated hard segment and a flexible soft segment, so it has excellent adhesion to a substrate, high coating hardness. It has features such as high impact resistance, good wear resistance, good durability, good water resistance, and good chemical resistance.

また、ポリエステル樹脂は、結晶性を抑えた共重合ポリエステルやポリエステル主鎖に脂肪酸側鎖をエステル結合でもつアルキド樹脂が用いられる。主鎖骨格中にカルボキシル基と水酸基の反応でできるエステル結合を有していて、基材への高い密着性,高い塗膜強度、耐熱性が優れている。   Further, as the polyester resin, a copolyester having reduced crystallinity and an alkyd resin having a fatty acid side chain as an ester bond in the polyester main chain are used. It has an ester bond formed by the reaction of a carboxyl group and a hydroxyl group in the main chain skeleton, and has high adhesion to a substrate, high coating strength, and heat resistance.

これらの水系樹脂をベースとした塗料は、通常の溶剤系の塗料と比較すると、一般的な課題として、(1)分子量(網目構造)が比較的小さいため、塗膜物性が弱い。(2)親水性基をベースとした膜の性質上、耐水性が弱い。(3)架橋反応が行われないため、Tgが低く、密着性が低い。などが挙げられる。   Coatings based on these water-based resins, as a general problem, have relatively low molecular weight (network structure) as compared with ordinary solvent-based coatings, and thus the coating film properties are weak. (2) Water resistance is weak due to the nature of membranes based on hydrophilic groups. (3) Since the crosslinking reaction is not performed, Tg is low and adhesion is low. Etc.

そこで、本実施の形態では、これらの課題の対策として、コーティング塗料において、熱硬化性の親油性樹脂113を水溶性樹脂112中に加えて、“海島構造”の島のように微細に分散させた独自の塗料を用いる。   Therefore, in the present embodiment, as a countermeasure for these problems, in the coating paint, a thermosetting lipophilic resin 113 is added to the water-soluble resin 112, and finely dispersed like islands of "sea-island structure". Use their own paint.

熱硬化性の親油性樹脂113は、撥水性の不織布106の繊維と馴染みが良いため、接合し熱硬化反応をすることで、強い密着性を発揮することを見出した。なお、水溶性樹脂112のベース塗料中に、親油性(=撥水性)の熱硬化性の親油性樹脂113を小さく分散させるためには、水溶性樹脂112と親油性樹脂113の両方に馴染みを向上させることの出来る各種の界面活性剤やアルコール等に、効果があると判明した。特に、各種アルコールのうち、2−プロパノール(IPA)は、両親媒性溶剤であり、これが熱硬化性の親油性樹脂113の粒子径を制御することが出来て、この粒子径が小さい方が、不織布106の繊維との密着力が向上することも発見した。   Since the thermosetting lipophilic resin 113 is well compatible with the fibers of the water repellent non-woven fabric 106, it has been found that by bonding and performing a thermosetting reaction, it exhibits strong adhesion. In order to disperse the lipophilic (= water repellent) thermosetting lipophilic resin 113 small in the base paint of the water-soluble resin 112, it should be compatible with both the water-soluble resin 112 and the lipophilic resin 113. It turned out that various surfactants, alcohols, etc. which can be improved are effective. In particular, among various alcohols, 2-propanol (IPA) is an amphiphilic solvent, which can control the particle diameter of the thermosetting lipophilic resin 113, and the smaller particle diameter is It has also been discovered that the adhesion of the non-woven fabric 106 to the fibers is improved.

本実施の形態の親油性樹脂113を水溶性樹脂112中に、“海島構造”の島のように分散させた塗料(以降は、この構造を『海島構造』と呼ぶ)に用いる水溶性樹脂112としては、水性アクリル樹脂、水性ウレタン樹脂、水性ポリエステル樹脂が適しており、更には、水性ポリエステル樹脂が最も適している。   A water-soluble resin 112 used for a paint in which the lipophilic resin 113 of the present embodiment is dispersed like a "sea-island structure" in a water-soluble resin 112 (hereinafter, this structure is referred to as a "sea-island structure") As the water-soluble resin, an aqueous acrylic resin, an aqueous urethane resin, and an aqueous polyester resin are suitable, and further, an aqueous polyester resin is most suitable.

親油性樹脂113としては、反応性のある一液性エポキシ樹脂が適していることを見出した。通常、親油性樹脂113を水性塗料に添加する場合は、相溶性の良い水溶性タイプの樹脂が使われるが一般的であるが、本実施の形態では、複合層102から飛び出した不織布106の繊維と密着し、コーティング膜111との密着性を上げることを目的にしているため、それぞれの繊維をピンポイントで接着補強するめには、水性塗料に溶け込まないことが重要となる。そのため、親油性の一液性エポキシ樹脂を選定し、水性塗料中に海島構造状に微細分散させることが必要となる。   As the lipophilic resin 113, it has been found that a reactive one-component epoxy resin is suitable. In general, when the lipophilic resin 113 is added to the water-based paint, a compatible water-soluble resin is generally used, but in the present embodiment, the fibers of the non-woven fabric 106 protruding from the composite layer 102 In order to adhere to each other and to increase the adhesion to the coating film 111, it is important not to dissolve in the water-based paint in order to adhere and reinforce each fiber at a pinpoint. Therefore, it is necessary to select a lipophilic one-component epoxy resin and finely disperse it in an aqueous paint in a sea-island structure.

<海島構造>
塗料コーティングにて形成された断熱材110の構造は、不織布106にシリカエアロゲル105が凝集接合し一体化した複合層102の表面層に不織布106の繊維が飛び出した構造になっている。
Sea-island structure
The structure of the heat insulating material 110 formed by the paint coating has a structure in which the fibers of the non-woven fabric 106 fly out to the surface layer of the composite layer 102 in which the silica airgel 105 is cohesively bonded to the non-woven fabric 106 and integrated.

その繊維とコーティング塗料が接着しており、コーティング膜111には、親油性樹脂113が海島構造で点在して分散した形状の断熱材110を形成している。コーティング膜111の厚みは、1〜100μmが好ましく、更には、10〜30μmが好ましい。膜厚が1μmより薄いと膜強度が弱いため、破れたりし易くなる。また、100μmより厚いと、断熱性能が悪くなる。   The fiber and the coating paint adhere to each other, and the coating film 111 forms a heat insulating material 110 having a shape in which the lipophilic resin 113 is dispersed in a sea-island structure. The thickness of the coating film 111 is preferably 1 to 100 μm, and more preferably 10 to 30 μm. If the film thickness is smaller than 1 μm, the film strength is weak, so it is easily broken. If the thickness is more than 100 μm, the heat insulation performance is degraded.

また、親油性樹脂113の粒子径は、0.1〜50μが好ましく、エポキシの添加量は、コーティング膜中に5〜50重量%が好ましい。   The particle diameter of the lipophilic resin 113 is preferably 0.1 to 50 μ, and the amount of the epoxy added is preferably 5 to 50% by weight in the coating film.

粒子径が0.1μmより小さいと、親水性が強くなるため、膜強度が下がってしまう。また、粒子径が50μmより大きいと、不織布の繊維との接着ポンイトが少なくなるため密着性が低くなる。   If the particle size is smaller than 0.1 μm, the hydrophilicity is increased, and the film strength is reduced. If the particle diameter is larger than 50 μm, the adhesion points with the fibers of the non-woven fabric decrease, and the adhesion is lowered.

エポキシの添加量は、コーティング膜中に5重量%より少なくなると、不織布106の繊維との接触ポンイトが少なくなるため密着性が低くなる。また50重量%より多くなると、親油性のシリカエアロゲル105との馴染みが良くなるため、シリカエアロゲル105微細構造が破壊されてしまい、その結果、断熱性が悪くなる。さらに、好ましくは、10〜30重量%が好ましい。   If the amount of the epoxy added is less than 5% by weight in the coating film, the contact point with the fibers of the non-woven fabric 106 decreases, resulting in poor adhesion. If the content is more than 50% by weight, the compatibility with the lipophilic silica airgel 105 is improved, so that the fine structure of the silica airgel 105 is broken, and as a result, the heat insulating property is deteriorated. Furthermore, preferably, 10 to 30% by weight is preferable.

本実施の形態で用いた水溶性樹脂112と熱硬化性の親油性樹脂113の実施例を示す。なお、本実施の形態にて提示の断熱材構造は、これら例示の材料のみに限定はされるものではない。   Examples of the water-soluble resin 112 and the thermosetting lipophilic resin 113 used in the present embodiment are shown. In addition, the heat insulating material structure shown by this Embodiment is not limited only to these illustrated materials.

水溶性樹脂112としては、水溶性ポリエステル樹脂「プラスコートZ−880」(互応化学工業株式会社)を用いた。また、熱硬化性の親油性樹脂113としては、「ノバキュアHX3941HP」(旭化成株式会社)を用いた。また相溶化剤として、両親媒性溶剤である2−プロパノール(IPA)を用いた。   As the water-soluble resin 112, a water-soluble polyester resin "PLUSCOAT Z-880" (Hyoto Chemical Industry Co., Ltd.) was used. Further, as the thermosetting lipophilic resin 113, “Novacua HX3941HP” (Asahi Kasei Corporation) was used. Moreover, 2-propanol (IPA) which is an amphiphilic solvent was used as a compatibilizer.

(1)海島構造形成するコーティング塗料の組成例
(a)水溶性樹脂112:水性ポリエステル樹脂:プラスコートZ−880(固形分25wt%):100部
(b)親油性樹脂113:一液性エポキシ樹脂:ノバキュアHX3941HP(イミダゾール比率は、1/3wt%、エポキシ比率は、2/3wt%) :10部
(c)相溶化剤:2−プロパノール(IPA):10部
(2)コーティング塗料の作製
各(a)〜(c)を秤量し、ディスパーにて15分間攪拌混合して、海島構造形成用のコーティング塗料を作成した。
(1) Composition example of coating paint forming sea island structure (a) Water-soluble resin 112: Water-based polyester resin: Plus coat Z-880 (solid content 25 wt%): 100 parts (b) Lipophilic resin 113: One-component epoxy Resin: Novac HX 3941 HP (imidazole ratio 1/3 wt%, epoxy ratio 2/3 wt%): 10 parts (c) Compatibilizer: 2-propanol (IPA): 10 parts (2) Preparation of coating paints (A) to (c) were weighed and stirred and mixed for 15 minutes with a disper to prepare a coating paint for forming a sea-island structure.

(3)コーティング塗料の塗工:不織布106の繊維が、表層部にはみ出した形状の複合層102に、印刷マスクとスキージを用いてコーティング塗料印刷塗布する。塗布した後、加熱硬化することでコーティング膜111を形成する。   (3) Coating of coating paint: The coating paint is applied by coating using a printing mask and a squeegee to the composite layer 102 in a shape in which the fibers of the non-woven fabric 106 protrude to the surface portion. After the application, the coating film 111 is formed by heat curing.

なお、コーティング膜111は、複合層102の端部も覆う様に塗布することで、複合層102の全体を覆うことが出来る。これを両面、及び端部への塗布を繰り返すことで、全面を塗料コーティングすることが出来る。   The coating film 111 can be applied to cover the end of the composite layer 102 to cover the entire composite layer 102. The entire surface can be coated by coating this on both sides and by repeating the application to the end.

なお、塗布面積が小さいばあいは、ディッピング法にて、複合層102全体を塗料の中に全体浸漬する方法を取っても良い。   When the application area is small, the entire composite layer 102 may be entirely immersed in the paint by dipping.

(4)コーティング塗料の硬化:コーティング塗料を両面に塗工した複合層102を120℃の恒温槽にて15分乾燥することで、水を揮発させると共に親油性樹脂113であるエポキシ樹脂粒子の粒子を反応硬化させて、コーティング膜111を完成させることが出来る。   (4) Curing of coating paint: particles of epoxy resin particles, which are lipophilic resin 113 and volatilize water, by drying the composite layer 102 coated with the coating paint on both sides in a 120 ° C. thermostatic bath for 15 minutes Can be reacted and cured to complete the coating film 111.

(5)コーティング膜111の形状:塗膜の厚みは、厚み30μm、熱硬化性の親油性樹脂113の粒子径は、5μm、熱硬化性の親油性樹脂113の粒子比率は、約20%であった。   (5) Shape of the coating film 111: The thickness of the coating film is 30 μm thick, the particle diameter of the thermosetting lipophilic resin 113 is 5 μm, and the particle ratio of the thermosetting lipophilic resin 113 is about 20%. there were.

<コーティング塗料にてコーティングした複合層102の構造と特性>
複合層102の不織布106は、その繊維が複合層102の表面層から突き出ており、その繊維と最表層部のコーティング膜111の親油性樹脂113とが、親油性同士で馴染みがよく、強い接着反応することで優れた高密着性を発揮する。
<Structure and Properties of Composite Layer 102 Coated with Coating Paint>
The fibers of the non-woven fabric 106 of the composite layer 102 protrude from the surface layer of the composite layer 102, and the fibers and the oleophilic resin 113 of the coating film 111 of the outermost layer are compatible with each other in lipophilicity and have strong adhesion It exhibits excellent high adhesion by reacting.

更に、コーティング膜111には、反応性の親油性樹脂113が“海島構造”の島のように分散されており、不織布106の繊維と化学反応することで、強い密着性を発揮する。   Furthermore, in the coating film 111, the reactive lipophilic resin 113 is dispersed like an island of “sea-island structure”, and exhibits strong adhesion by chemically reacting with the fibers of the non-woven fabric 106.

断熱材110は、発熱部品の曲面表面に覆い被せて断熱効果を付与する場合があるが、ベースのポリエステル樹脂は可撓性があり、かつ上記の構造により高密着性を発揮するため、複合層102コーティング樹脂膜との剥がれが起こらず、断熱材110は、優れた断熱性能を発揮することができる。また、複合層102に内包されるシリカエアロゲル105微粒子が露出することも防ぐことが出来る。   The heat insulating material 110 may cover the curved surface of the heat generating component to provide a heat insulating effect, but the polyester resin of the base has flexibility and exhibits high adhesion by the above structure, so the composite layer Peeling with the coating resin film 102 does not occur, and the heat insulating material 110 can exhibit excellent heat insulating performance. Moreover, it can also prevent that the silica airgel 105 microparticles | fine-particles included in the composite layer 102 are exposed.

<複合層102と、コーティング樹脂膜との密着力>
複合層102にコーティング樹脂膜を幅10mm、厚み30μmの膜を形成し、90度ピール法で引っ張り強度を測定した。
<Adhesive Force between Composite Layer 102 and Coating Resin Film>
A coating resin film having a width of 10 mm and a thickness of 30 μm was formed on the composite layer 102, and the tensile strength was measured by a 90 ° peel method.

(a)不織布106の繊維が出ていない場合:0.7N、(b)不織布106の繊維が出ていない場合:5.5N、(c)(b)で熱硬化性樹脂が入ってない場合:2.3N
<断熱材110の熱伝導率>
複合層102にコーティング膜111を30μm厚みでコーティングした断熱材110の熱伝導率は、0.07W/m・Kであった。これは、複合層102単独と比較しても遜色の無い優れた断熱性能を発揮していることを確認出来た。
(A) When the fibers of the non-woven fabric 106 do not go out: 0.7 N, (b) When the fibers of the non-woven fabric 106 do not go out: 5.5 N, (c) (b) when the thermosetting resin is not contained : 2.3 N
<Thermal conductivity of the heat insulating material 110>
The thermal conductivity of the heat insulating material 110 in which the coating layer 111 was coated to a thickness of 30 μm on the composite layer 102 was 0.07 W / m · K. It could be confirmed that this exhibited excellent heat insulation performance comparable to that of the composite layer 102 alone.

本実施の形態の断熱材は、シリカエアロゲル粒子の粉落ちを防止し、かつ、断熱性能も落とさず、モバイル機器等の断熱用途にも適用出来る。   The heat insulating material of the present embodiment prevents the powder of the silica airgel particles from falling off and does not lower the heat insulating performance, and can be applied to heat insulating applications such as mobile devices.

101 断熱材
102 複合層
103 シリカエアロゲル層
104 ラミネートフィルム
105 シリカエアロゲル
106 不織布
110 断熱材
111 コーティング膜
112 水溶性樹脂
113 親油性樹脂
DESCRIPTION OF SYMBOLS 101 Heat insulation material 102 Composite layer 103 Silica airgel layer 104 Laminated film 105 Silica airgel 106 Non-woven fabric 110 Heat insulation material 111 Coating film 112 Water-soluble resin 113 Lipophilic resin

Claims (10)

不織布にシリカエアロゲルを内包した複合層と、
親水性樹脂と親油性樹脂とを含み、前記複合層の表面を被覆するコーティング膜と、を有する断熱材。
Composite layer containing silica airgel in nonwoven fabric,
A heat insulating material comprising a hydrophilic resin and a lipophilic resin, and a coating film covering the surface of the composite layer.
前記コーティング膜に、前記不織布が位置する請求項1記載の断熱材。 The heat insulating material according to claim 1, wherein the non-woven fabric is located on the coating film. 前記親水性樹脂中に前記親油性樹脂が複数の島状で存在する請求項1または2記載の断熱材。 The heat insulating material according to claim 1 or 2, wherein the lipophilic resin is present in the form of a plurality of islands in the hydrophilic resin. 前記島状の親油性樹脂に親油性の前記不織布が位置する請求項3記載の断熱材。 The heat insulating material according to claim 3, wherein the non-woven fabric having lipophilicity is located on the island-like lipophilic resin. 前記親水性樹脂は、水溶性塗料ベースの樹脂である請求項1〜4のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the hydrophilic resin is a water-soluble paint-based resin. 前記親油性樹脂は、熱硬化性樹脂である請求項1〜5のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 1 to 5, wherein the lipophilic resin is a thermosetting resin. 前記親水性樹脂は、水溶性ポリエステル樹脂であり、
前記親油性樹脂は、エポキシ樹脂である請求項1〜6のいずれか1項に記載の断熱材。
The hydrophilic resin is a water-soluble polyester resin,
The heat insulating material according to any one of claims 1 to 6, wherein the lipophilic resin is an epoxy resin.
前記コーティング膜の厚みは、1〜100μmである請求項1〜7のいずれか1項に記載の断熱材。 The thickness of the said coating film is 1-100 micrometers, The heat insulating material of any one of Claims 1-7. 前記複数の島状の径は、0.1〜50μである請求項3〜8のいずれか1項に記載の断熱材。 The heat insulating material according to any one of claims 3 to 8, wherein the diameter of the plurality of islands is 0.1 to 50μ. 前記親油性樹脂は、前記コーティング膜中に5〜50%重量%である請求項1〜9のいずれか1項に記載の断熱材。
The heat insulating material according to any one of claims 1 to 9, wherein the lipophilic resin is 5 to 50% by weight in the coating film.
JP2017235639A 2017-12-08 2017-12-08 Insulation Active JP7029589B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017235639A JP7029589B2 (en) 2017-12-08 2017-12-08 Insulation
US16/198,236 US20190177911A1 (en) 2017-12-08 2018-11-21 Heat insulator
CN201811448520.3A CN109898332B (en) 2017-12-08 2018-11-29 Heat insulation material
DE102018131025.0A DE102018131025A1 (en) 2017-12-08 2018-12-05 thermal insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235639A JP7029589B2 (en) 2017-12-08 2017-12-08 Insulation

Publications (2)

Publication Number Publication Date
JP2019098713A true JP2019098713A (en) 2019-06-24
JP7029589B2 JP7029589B2 (en) 2022-03-04

Family

ID=66629275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235639A Active JP7029589B2 (en) 2017-12-08 2017-12-08 Insulation

Country Status (4)

Country Link
US (1) US20190177911A1 (en)
JP (1) JP7029589B2 (en)
CN (1) CN109898332B (en)
DE (1) DE102018131025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358366B2 (en) 2020-05-27 2022-06-14 Panasonic Intellectual Property Management Co., Ltd. Aerogel structure body and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229071A (en) * 1990-03-29 1993-09-07 Minnesota Mining & Mfg Co <3M> Surface finishing nonwoven material reinforced with polymer supporting layer and production thereof
JP2005097425A (en) * 2003-09-25 2005-04-14 Toyobo Co Ltd Polyester film with high moisture permeability, and laminate of the same
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
WO2015016730A2 (en) * 2013-08-02 2015-02-05 Active Aerogels, Unipessoal, Lda. Method for production of flexible panels of hydrophobic aerogel reinforced with fibre felts
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015068465A (en) * 2013-09-30 2015-04-13 パナソニックIpマネジメント株式会社 Heat insulation sheet and heat insulation material
JP2015528071A (en) * 2012-06-26 2015-09-24 キャボット コーポレイションCabot Corporation Flexible insulating structure and method for making and using the same
CN106079689A (en) * 2016-06-13 2016-11-09 江苏德威节能有限公司 A kind of low temperature nano silicon aerogel blanket and preparation method thereof
JP2019503292A (en) * 2016-01-27 2019-02-07 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Laminates containing reinforced airgel composites

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064149A (en) 1983-09-17 1985-04-12 Brother Ind Ltd Instrument equipped with filter
DE19548428C1 (en) * 1995-12-22 1997-08-28 Hoechst Ag 2-alkylmerkapto-4- (trifluoromethyl) benzoic acid ester and a process for its preparation
KR101241054B1 (en) * 2011-04-29 2013-03-19 주식회사 산청 A preparation method for composite sheet for insulation using aerogel
CN103821239B (en) * 2014-03-13 2016-04-27 北京科技大学 A kind of fire-retardant nano-pore SiO 2multistage composite thermal insulation slab and preparation method thereof
JP6435507B2 (en) * 2014-07-18 2018-12-12 パナソニックIpマネジメント株式会社 COMPOSITE SHEET, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE USING COMPOSITE SHEET
CN106663987B (en) * 2014-08-01 2019-07-30 松下知识产权经营株式会社 The forming method of the heat insulating component of the thermal insulation construction of electronic equipment, the motor with the thermal insulation construction and electronic equipment
JP6600808B2 (en) * 2015-07-03 2019-11-06 パナソニックIpマネジメント株式会社 Insulating material, manufacturing method thereof, and electronic equipment using the insulating material
CN106739232B (en) * 2016-11-22 2018-05-11 湖北硅金凝节能减排科技有限公司 A kind of preparation method of aeroge non-woven fabrics

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229071A (en) * 1990-03-29 1993-09-07 Minnesota Mining & Mfg Co <3M> Surface finishing nonwoven material reinforced with polymer supporting layer and production thereof
JP2005097425A (en) * 2003-09-25 2005-04-14 Toyobo Co Ltd Polyester film with high moisture permeability, and laminate of the same
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP2015528071A (en) * 2012-06-26 2015-09-24 キャボット コーポレイションCabot Corporation Flexible insulating structure and method for making and using the same
WO2015016730A2 (en) * 2013-08-02 2015-02-05 Active Aerogels, Unipessoal, Lda. Method for production of flexible panels of hydrophobic aerogel reinforced with fibre felts
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015068465A (en) * 2013-09-30 2015-04-13 パナソニックIpマネジメント株式会社 Heat insulation sheet and heat insulation material
JP2019503292A (en) * 2016-01-27 2019-02-07 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Laminates containing reinforced airgel composites
CN106079689A (en) * 2016-06-13 2016-11-09 江苏德威节能有限公司 A kind of low temperature nano silicon aerogel blanket and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358366B2 (en) 2020-05-27 2022-06-14 Panasonic Intellectual Property Management Co., Ltd. Aerogel structure body and method of manufacturing the same
JP7422346B2 (en) 2020-05-27 2024-01-26 パナソニックIpマネジメント株式会社 Airgel structure and its manufacturing method

Also Published As

Publication number Publication date
DE102018131025A1 (en) 2019-06-13
US20190177911A1 (en) 2019-06-13
JP7029589B2 (en) 2022-03-04
CN109898332B (en) 2021-10-15
CN109898332A (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN103380184B (en) The coating method of heat converter structure, the heat converter structure of coating and application thereof
KR102662565B1 (en) Silicone foam sheet and method of manufacturing the same
KR102301276B1 (en) Hydrophobic article
US20120107581A1 (en) Composition for forming an optically transparent, superhydrophobic coating
JP5328005B2 (en) Release agent composition for adhesive tape and release liner
JP5677144B2 (en) Water repellent member, manufacturing method thereof, and air conditioner outdoor unit
JP2017054125A (en) Optical member and manufacturing method of optical member
Ramakrishna et al. Long-living, stress-and pH-tolerant superhydrophobic silica particles via fast and efficient urethane chemistry; facile preparation of self-recoverable SH coatings
CN103224408A (en) Reinforcement material for preservation of cultural relics, and preparation method and application thereof
JP7452416B2 (en) laminated film
JP2002210876A (en) Water repellent layer supporting structure and its manufacturing method
JP2019098713A (en) Heat insulation material
JP2004051644A5 (en)
JP2012214588A (en) Water- and oil-repellent resin composition and coated product
JP4512883B2 (en) Photocatalyst carrier
JP4842599B2 (en) Water-based paint for architectural civil engineering
Ha et al. Hydrophobic and Superhydrophobic Organic‐Inorganic Nano‐Hybrids
CN108884263B (en) Adsorption temporary fixing material
JPWO2017038769A1 (en) Airgel laminate and heat insulating material
JPH11302561A (en) Water-repelling composite particle and water-repelling coating film
JP4779151B2 (en) Flexible substrate
Fu et al. Study on surface wetting property regulation of greenhouse film and its antifogging performance
JP2019064892A (en) Aerogel complex powder and water repellent material
CN114985234A (en) Super-hydrophobic coating and preparation method thereof
CN111164172B (en) Temporary fixing sheet for adsorption

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R151 Written notification of patent or utility model registration

Ref document number: 7029589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151