JP2019098219A - Discharge electrode of diesel engine exhaust treating electric dust collector - Google Patents

Discharge electrode of diesel engine exhaust treating electric dust collector Download PDF

Info

Publication number
JP2019098219A
JP2019098219A JP2017229506A JP2017229506A JP2019098219A JP 2019098219 A JP2019098219 A JP 2019098219A JP 2017229506 A JP2017229506 A JP 2017229506A JP 2017229506 A JP2017229506 A JP 2017229506A JP 2019098219 A JP2019098219 A JP 2019098219A
Authority
JP
Japan
Prior art keywords
electrode
discharge
exhaust gas
discharge electrode
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017229506A
Other languages
Japanese (ja)
Inventor
宗勝 古堅
Munekatsu Furukata
宗勝 古堅
滝川 一儀
Kazuyoshi Takigawa
一儀 滝川
市川 順一
Junichi Ichikawa
順一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2017229506A priority Critical patent/JP2019098219A/en
Publication of JP2019098219A publication Critical patent/JP2019098219A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a discharge electrode of exhaust treating electric dust collector of marine diesel engine which can reliably collect PM, secures applied voltage, can lower discharge current and can perform reduction of power consumption.SOLUTION: A discharge electrode of a diesel engine exhaust treating electric dust collector has a tubular collection part of a predetermined length which constitutes a discharge electrode for charging particulate substance contained in exhaust and a dust collecting electrode for collecting charged particulate substance contained in exhaust. Therein, the discharge electrode is a discharge electrode of a diesel engine exhaust treating electric dust collector provided with electric dust collecting means which is arranged on an electrode cylinder provided on a main electrode arranged in a pipe axial direction in the tubular collection part or on an electrode cylinder provided on the main electrode, has a base part erected on the main electrode or electrode cylinder and has at least one protrusion part of a desirable length on the exhaust gas flow direction downstream side or upstream side on a tip in a radial direction of the base part.SELECTED DRAWING: Figure 4

Description

本発明は、船舶用、発電用、一般産業用エンジン等のディーゼルエンジンにおけるコロナ放電を利用した排気ガスの電気式処理技術に係り、特に重油を燃料として使用する高い温度の排気ガスを排出するディーゼルエンジンの排ガス処理用電気集塵装置の放電電極に関する。   The present invention relates to an electric treatment technology of exhaust gas using corona discharge in diesel engines such as marine engines, power generation engines and general industrial engines, and more particularly to a diesel exhausting high temperature exhaust gas using heavy oil as fuel The present invention relates to a discharge electrode of an electrostatic precipitator for exhaust gas treatment of an engine.

各種船舶や発電機並びに大型建機、さらには各種自動車等の動力源としてディーゼルエンジンが広範囲に採用されているが、このディーゼルエンジンから排出される排気ガスに含まれるカーボンを主体とする粒状物質(Particulate Matter:以下、説明の便宜上「PM」と称する)は、周知の通り大気汚染をきたすのみならず、人体に極めて有害な物質であるため、その排気ガスの浄化は極めて重要である。このため、ディーゼルエンジンの燃焼方式の改善や各種排気ガスフィルタの採用、コロナ放電を利用して電気的に処理する方法等、既に数多くの提案がなされ、その一部は実用に供されている。   Although diesel engines are widely used as power sources for various ships, generators, large construction machines, and various automobiles, particulate matter mainly composed of carbon contained in exhaust gas emitted from these diesel engines ( Particulate Matter (hereinafter referred to as "PM" for convenience of explanation) not only causes air pollution as well known, but also is a substance extremely harmful to human body, so purification of the exhaust gas is extremely important. For this reason, a number of proposals have already been made, such as improvement of the combustion system of a diesel engine, adoption of various exhaust gas filters, and a method of electrical treatment using corona discharge, and some of them have been put to practical use.

コロナ放電を利用して、ディーゼルエンジンから排出される排気ガスに含まれるPMを電気的に処理する技術としては、例えば特許文献1、2に記載された装置が本出願人により提案されている。
特許文献1に記載されている、高濃度に硫黄成分を含有する重油等の低質燃料を使用するディーゼルエンジン排ガス処理装置は、図11にその構成例を示すように大きく分けてPM粒子を捕集するために設ける電気集塵部101とサイクロン方式の分別捕集手段102とから構成され、電気集塵部101は管状捕集部111−1の集塵電極を構成する単一径で所定長さの主捕集管101−1、小径捕集管111−1A−1、中径捕集管111−1B−1、及び主捕集管101−1と共通の大径捕集管111−1C−1と、排ガス中に含まれるPMに帯電させる放電電極101−2を備えた小径捕集部111−1A、中径捕集部111−1B、大径捕集部111−1Cよりなる3段の捕集モジュールよりなっている。集塵電極を構成する主捕集管101−1には、上流側の端部に排ガス導入管部101−1aを有し、下流側の端部の軸心付近にPMの低濃度排ガス導出管103を、下流側の端部の内周面付近にPMの高濃度排ガス導出部101−1bをそれぞれ連設している。
As a technique for electrically treating PM contained in exhaust gas discharged from a diesel engine by using corona discharge, for example, devices described in Patent Documents 1 and 2 have been proposed by the present applicant.
The diesel engine exhaust gas treatment apparatus using low quality fuel such as heavy oil which contains sulfur component at high concentration described in Patent Document 1 roughly divides PM particles as shown in FIG. The electrostatic precipitator 101 is provided with an electrostatic precipitator 101 and a cyclone type separation and collection means 102. The electrostatic precipitator 101 has a single diameter that constitutes the precipitating electrode of the tubular trapping portion 111-1 and has a predetermined length. Main collection pipe 101-1, small diameter collection pipe 111-1A-1, medium diameter collection pipe 111-1B-1, and large diameter collection pipe 111-1C common to the main collection pipe 101-1. 3 and a small diameter collecting portion 111-1A provided with a discharge electrode 101-2 charged to PM contained in exhaust gas, a medium diameter collecting portion 111-1B, and a large diameter collecting portion 111-1C It consists of a collection module. The main collection pipe 101-1 constituting the dust collection electrode has an exhaust gas introduction pipe portion 101-1a at the upstream end, and a low concentration exhaust gas lead-out pipe of PM near the axial center of the downstream end. A high concentration exhaust gas lead-out portion 101-1 b of PM is continuously provided near the inner circumferential surface of the downstream end portion.

又、前記排ガスの流れ方向における電気集塵部101の下流側と上流側間に設けられたサイクロン方式の分別捕集手段102は、分別手段としてのサイクロン捕集部102−1と、該サイクロン捕集部102−1からの還流配管102−2とで構成されている。このサイクロン捕集部102−1は、電気集塵部101の主捕集管101−1の下流側の内周面付近に設けた高濃度排ガス導出部101−1bに連通管105−1及び高濃度排ガス配管105−2を介して接続された1台の接線式サイクロン102−1aで構成され、さらに該接線式サイクロン102−1aと、電気集塵部101の主捕集管101−1の上流側の排ガス導入管101−1aとの間に、接線式サイクロン102−1a通過後の浄化ガスを排ガス導入管101−1a内を流れる排ガスに合流させるための還流配管102−2及び連通管105−3を配設している。ブロアー107は前記連通管105−1と接線式サイクロン102−1a間の高濃度排ガス配管105−2に設け、排ガス流に対して運動エネルギーを付与して昇圧・増速させて排ガス導入管101−1aに確実に圧送・還流させるために設けている。前記低濃度排ガス導出管103には、接線式サイクロン102−1aへの高濃度排ガス流入量及び流入速度と低濃度排ガス放出量の流量調整を行うためのダンパー108を設けている。   The cyclone type separation and collection means 102 provided between the downstream side and the upstream side of the electric dust collection part 101 in the flow direction of the exhaust gas is a cyclone collection part 102-1 as separation means, and the cyclone collection part 102-1. It is comprised by the reflux piping 102-2 from the collection | recovery part 102-1. The cyclone collection portion 102-1 is connected to the high concentration exhaust gas lead-out portion 101-1b provided near the inner peripheral surface on the downstream side of the main collection tube 101-1 of the electric dust collection portion 101 and the communication tube 105-1 Consisting of a tangential cyclone 102-1a connected via a concentration exhaust gas pipe 105-2, and further upstream of the tangential cyclone 102-1a and the main collection pipe 101-1 of the electrostatic precipitator 101. Between the exhaust gas inlet pipe 101-1a on the side and the return pipe 102-2 for connecting the purified gas after passing through the tangential cyclone 102-1a to the exhaust gas flowing in the exhaust gas inlet pipe 101-1a and the communication pipe 105- 3 is provided. A blower 107 is provided in the high concentration exhaust gas pipe 105-2 between the communication pipe 105-1 and the tangential cyclone 102-1a, and kinetic energy is given to the exhaust gas flow to boost and accelerate the exhaust gas introduction pipe 101-. It is provided to ensure that the pump 1a is pumped and refluxed. The low concentration exhaust gas lead-out pipe 103 is provided with a damper 108 for adjusting the flow rate of the high concentration exhaust gas inflow and inflow speed to the tangential cyclone 102-1a and the low concentration exhaust gas discharge amount.

上記ディーゼルエンジン排ガス処理装置の各捕集モジュール内に設置される各電極の形態としては、例えば前記図11に示す一本の共通の電極棒101−2aに放射状に突設する電極針101−2bで構成された放電電極、図12aに示す一本の共通の電極棒101−2aに突設するほぼ二等辺三角形を呈する鋸刃状の放電板101−2cで構成された放電電極、図12bに示す一本の共通の電極棒101−2aに突設する、鋸刃状の放電板部(山部)101−2eが基板部101−2fと一体に設けられた鋸刃状放電電極板101−2dで構成された放電電極等各種あるが、いずれも電極(電極針101−2b、鋸刃状放電板電極板101−2d等)の軸方向間隔が一定に設けられている。   As a form of each electrode installed in each collection module of the above-mentioned diesel engine exhaust gas processing equipment, for example, electrode needle 101-2b which is projected radially from one common electrode rod 101-2a shown in the above-mentioned FIG. 12b, a discharge electrode composed of a sawtooth discharge plate 101-2c exhibiting a substantially isosceles triangle projecting from a common electrode bar 101-2a shown in FIG. 12a, FIG. 12b A saw blade-shaped discharge electrode plate 101-in which a saw blade-shaped discharge plate portion (peak portion) 101-2 e is provided integrally with a substrate portion 101-2 f projecting on a common electrode bar 101-2 a shown. There are various types such as discharge electrodes configured as 2d, but the axial intervals of the electrodes (electrode needle 101-2b, sawtooth discharge plate electrode plate 101-2d, etc.) are all provided constant.

又、管状捕集部の捕集管の外径が大径化しても電極針の軽量化と形状維持をはかる技術として、例えば特許文献2に記載されたディーゼルエンジン排ガス処理用電気集塵装置が知られている。このディーゼルエンジン排ガス処理用電気集塵装置は、図13にその構成例を示すように、主捕集管201内に配置する管状捕集モジュールを管状捕集部の上流側より小径捕集部201−1、中径捕集部201−2、大径捕集部201−3の3段式となした多段型集塵壁構造のディーゼルエンジン排ガス処理装置において、小径捕集部201−1を除く中径捕集部201−2及び大径捕集部201−3に、それぞれ前記と同様の短尺の放電電極針あるいは低高さ鋸刃状放電電極板とで構成された放電電極201−2A−1、201−3A−1を配置して構成し、中径捕集部201−2の中径捕集管201−2A内に配置される放電電極201−2A−1は、主電極(電極棒)202の外周に周方向及び管軸方向に放射状に配置した放電電極針201−2A−1cを有する放電電極支持筒201−2A−1dとからなり、該放電電極支持筒201−2A−1dは複数のステー201−2A−1eを介して主電極202と同心に取着して構成され、大径捕集部201−3の主捕集管201と共通の大径捕集管201−3A内に配置される放電電極201−3A−1は、前記中径捕集管201−2A内に配置された放電電極201−2A−1の放電電極支持筒201−2A−1dと同様に、主電極(電極棒)202の外周に周方向及び管軸方向に放射状に配置した放電電極針201−3A−1cを有する放電電極支持筒201−3A−1dとからなり、該放電電極支持筒201−3A−1dも複数のステー201−3A−1eを介して主電極202と同心に取着して構成されている。なお、小径捕集部201−1の小径捕集管201−1A内に配置される放電電極201−1A−1は、主電極202の外周に放射状に配置した短尺の放電電極針201−1A−1cが設けられて構成されている。   Further, as a technique for reducing the weight and maintaining the shape of the electrode needle even if the outer diameter of the collection tube of the tubular collection portion is increased, for example, an electric dust collector for diesel engine exhaust gas processing described in Patent Document 2 Are known. As shown in the configuration example of this diesel engine exhaust gas processing electrostatic precipitator, as shown in FIG. 13, the small diameter collecting portion 201 of the tubular collecting module disposed in the main collecting tube 201 is arranged from the upstream side of the tubular collecting portion. -1, in a diesel engine exhaust gas treatment apparatus of a multistage dust collection wall structure having a three-stage type of a medium-diameter collecting unit 201-2 and a large-diameter collecting unit 201-3, excluding the small-diameter collecting unit 201-1 A discharge electrode 201-2A- constituted of the medium-diameter collecting portion 201-2 and the large-diameter collecting portion 201-3 respectively with the same short discharge electrode needle or low-height saw blade-like discharge electrode plate as described above. 1, the discharge electrode 201-2A-1 disposed and configured in the middle diameter collecting tube 201-2A of the middle diameter collecting portion 201-2 is a main electrode (electrode rod ) Discharge electrode needles disposed radially in the circumferential direction and in the tube axis direction on the outer periphery of 202) The discharge electrode support cylinder 201-2A-1d includes an electric discharge electrode support cylinder 201-2A-1d, and the discharge electrode support cylinder 201-2A-1d is concentrically attached to the main electrode 202 through a plurality of stays 201-2A-1e. And the discharge electrode 201-3A-1 disposed in the large diameter collecting tube 201-3A common to the main collecting tube 201 of the large diameter collecting portion 201-3 is the medium diameter collecting tube. Similar to the discharge electrode support cylinder 201-2 A- 1 d of the discharge electrode 201-2 A- 1 arranged in 201-2 A, they were radially arranged in the circumferential direction and the tube axis direction on the outer periphery of the main electrode (electrode rod) 202 A discharge electrode support cylinder 201-3A-1d having a discharge electrode needle 201-3A-1c, which is also concentric with the main electrode 202 via a plurality of stays 201-3A-1e. Attached to the The discharge electrode 201-1A-1 disposed in the small diameter collection tube 201-1A of the small diameter collection portion 201-1 is a short discharge electrode needle 201-1A- radially disposed on the outer periphery of the main electrode 202. 1c is provided and comprised.

しかしながら、前記した従来のディーゼルエンジン排ガス処理装置(多段式)の各捕集モジュール内に設置される各電極の形態としては、例えば前記図11に示す一本の共通の電極棒101−2aに放射状に突設する電極針101−2bで構成された放電電極、図12aに示す一本の共通の電極棒101−2aに突設するほぼ二等辺三角形を呈する鋸刃状の放電板101−2cで構成された放電電極、図12bに示す一本の共通の電極棒101−2aに突設する、鋸刃状の放電板部(山部)101−2eが基板部101−2fと一体に設けられた鋸刃状放電電極板101−2dで構成された放電電極等各種あるが、いずれの電極の形態もほぼ二等辺三角形を呈する鋸刃状であるためその先端はいずれも前記した小径捕集管111−1A−1、中径捕集管111−1B−1、及び主捕集管101−1と共通の大径捕集管111−1C−1又は例えば前記図13に示す小径捕集管201−1A、中径捕集管201−2A、主捕集管201と共通の大径捕集管201−3Aの内面を指向して各々ほぼ二等辺三角形を呈して尖っており、ディーゼルエンジン排ガス処理装置の稼働に伴うカーボンを主体とする粒状物質(PM)を多量に含有する排気ガス流との連続した接触によりその鋸刃状放電電極板の尖った先端部にカーボンが付着しこぶ状(塊)あるいは団子状に堆積し塊となり、このカーボンの塊がスパーク発生の要因となっていた。   However, as a form of each electrode installed in each collection module of the above-mentioned conventional diesel engine exhaust gas processing system (multistage type), for example, it radiates to one common electrode rod 101-2a shown in the above-mentioned FIG. A discharge electrode composed of an electrode needle 101-2b protruding from the bottom, and a sawtooth discharge plate 101-2c exhibiting a substantially isosceles triangle protruding from a common electrode bar 101-2a shown in FIG. 12a. A saw-tooth shaped discharge plate portion (peak portion) 101-2e is provided integrally with the substrate portion 101-2f so as to project from the configured discharge electrode, one common electrode rod 101-2a shown in FIG. 12b. There are various types such as discharge electrodes composed of a saw blade-like discharge electrode plate 101-2d, but the form of any of the electrodes is a saw blade having a substantially isosceles triangle shape, so that its tip is the small diameter collecting tube mentioned above 111-1A-1, Diameter collection pipe 111-1B-1 and large collection pipe 111-1C-1 common to the main collection pipe 101-1 or small diameter collection pipe 201-1A shown in FIG. 13, for example, medium diameter collection The inner surface of the large diameter collecting pipe 201-3 A common to the pipe 201-2 A and the main collecting pipe 201 is pointed in a substantially isosceles triangle and pointed, and the carbon accompanying the operation of the diesel engine exhaust gas processing device is By continuous contact with the exhaust gas flow containing a large amount of particulate matter (PM) as the main component, carbon adheres to the pointed end of the saw-like discharge electrode plate and deposits in the form of bumps or lumps. It became a lump, and this lump of carbon was the cause of spark generation.

特開2014−238086号公報JP 2014-238086 A 特開2017−000952号公報Unexamined-Japanese-Patent No. 2017-000952

本発明は、前記した従来のディーゼルエンジン排ガス浄化装置の放電電極に由来する問題点を解決するためになされたもので、該放電電極が主電極又は該主電極に設けられた電極筒の外表面から径方向に立設する基部の径方向の先端に排気ガスの流れ方向下流側もしくは上流側に突出する突出部を少なくとも一つ有していることにより、該突出部により前記放電電極先端への排気ガス中に含有されるPMの塊状(団子状)付着を抑制して印加電圧を確保しかつ放電電流を低下させて消費電力の削減を可能とする、省エネルギー性に優れたディーゼルエンジンの排ガス処理用電気集塵装置の放電電極を提供しようとするものである。   The present invention has been made to solve the problems arising from the discharge electrode of the above-described conventional diesel engine exhaust gas purification apparatus, and the outer surface of the main electrode or the electrode cylinder provided with the main electrode is the discharge electrode. By having at least one projecting portion projecting to the downstream or upstream side in the flow direction of the exhaust gas at the radial tip of the base erected in the radial direction from the above, the projecting portion to the tip of the discharge electrode Exhaust gas treatment of a diesel engine with excellent energy saving, which suppresses blocky (dump-like) adhesion of PM contained in exhaust gas to secure applied voltage and reduce discharge current to enable reduction of power consumption. It is an object of the present invention to provide a discharge electrode of an electrostatic precipitator.

本発明者等は、PMの捕集を確実にすると共に印加電圧を確保しかつ放電電流を低下させて消費電力の削減を実施することが可能な舶用ディーゼルエンジンの排ガス処理用電気集塵装置の放電電極を見出すための基礎実験を行った。この基礎実験では、舶用ディーゼルエンジンの排ガス処理用電気集塵装置の放電電極の形態の相違に伴うカーボンの付着状況とスパークの発生状況を観察し、消費電力の傾向を調べた。以下に、その基礎実験について説明する。   The inventors of the present invention have achieved an electrostatic precipitator for exhaust gas treatment of a marine diesel engine capable of securing PM collection and securing applied voltage and reducing discharge current to reduce power consumption. Basic experiments were conducted to find a discharge electrode. In this basic experiment, the tendency of power consumption was examined by observing the adhesion of carbon and the generation of sparks caused by the difference in the form of discharge electrodes of the electrostatic precipitator for exhaust gas treatment of marine diesel engines. The basic experiment is described below.

≪[あ]PM付着塊(団子状)のスパークへの影響調査≫
<1>調査方法:
・舶用ディーゼルエンジンを表1に示す条件で以下の試験を実施し、ディーゼルエンジン排ガス処理装置搭載の鋸刃状放電電極のカーボンの付着状況を観察する。
«[A] Investigation of the effect of PM deposits (dango-like) on sparks»
<1> Survey method:
-Conduct the following tests under the conditions shown in Table 1 for the marine diesel engine, and observe the adhesion of carbon on the sawtooth discharge electrode mounted on the diesel engine exhaust gas treatment device.

Figure 2019098219
Figure 2019098219

(1)評価電極形状(図1):SUS製、板厚t=1mm、高さh=20mm、先端半径r=0.5mm、ピッチP=25mmの鋸刃状放電電極。図中、Eは放電電極、E1は電極先端部である。
(2)放電電極先端部のPMの付着状況(図2)
・電界の強い放電電極先端の前後ではグラジエント力(粒子が電界強度の強い方向へ引き寄せられる力)によりPMが団子状に付着しPM塊Paを形成している。このPM塊Paは主に排ガス流の前後方向に付着するが、排ガス流の直角方向にも付着する。図中、P1は上流側のPM塊、P2は下流側のPM塊、SEは強電界部である。
・PM塊の付着形状は排ガス流のよどみ部に対応しているように見える。
・放電電極先端は排気ガスが常時高速で流れるのでPMは厚くは付着しない。
<2>鋸刃状放電電極のカーボン付着に伴う耐スパーク性等の評価実験仕様:
(1)スパーク実験装置:放電電極間ギャップを25mmに設定し、放電電極を断熱ガラスカバーで覆い、さらに装置全体を金網ケージに収め、ヒーターにて試験雰囲気温度を25℃又は105℃に調整し、最高電圧60kVまでの電圧を印加し負荷電流を計測し、コロナ放電の発生状況とスパークの発生状況を観察する。
(2)放電電極:SUS製、板厚t=1.5mm、先端半径r=1mm。電極先端部にPM塊の無いもの(PM塊なし)と、電極先端部にPM塊を付着させたもの(PM塊あり)の、2種類を作製し、コロナ放電の発生状況を観察する。なお、この実験に用いたPM塊は、PM粉と糊を混合したものを使用した。
<3>評価実験結果:
(1)コロナ放電の発生状況(試験雰囲気温度25℃)
(a) PM塊なしの放電電極:40kV印加時にコロナ放電が電極先端部に集中して発生した。
(b) PM塊ありの放電電極:38kV印加時にコロナ放電がPM塊からも発生した。なおこの実験により、PM塊が存在すると電極先端部のみにはコロナ放電は集中して発生しないことが確認された。
(2)電極先端部のPM塊の有無と、試験雰囲気温度25℃と105℃における印加電圧(V)−放電電流(I)特性を図3に示す。
図3の特性図より明らかなように、放電電極先端部にPM塊が付着しているとスパークが発生し易いことが判明し、スパーク対策としてPM塊が付着しにくい放電電極が必要であることを知見した。
(1) Evaluation electrode shape (FIG. 1): Saw-tooth shaped discharge electrode made of SUS, plate thickness t = 1 mm, height h = 20 mm, tip radius r = 0.5 mm, pitch P = 25 mm. In the figure, E is a discharge electrode, and E1 is an electrode tip.
(2) Adhesion of PM on the tip of the discharge electrode (Fig. 2)
Before and after the discharge electrode tip where the electric field is strong, PM adheres in the form of dumplings by the gradient force (force that the particles are drawn in the direction of high electric field strength) to form PM lump Pa. The PM lumps Pa mainly adhere in the front-rear direction of the exhaust gas flow, but also adhere in the perpendicular direction of the exhaust gas flow. In the figure, P1 is an upstream PM block, P2 is a downstream PM block, and SE is a strong electric field portion.
The adhesion shape of the PM lumps seems to correspond to the stagnation portion of the exhaust gas flow.
-PM does not adhere thickly because the exhaust gas always flows at high speed at the discharge electrode tip.
<2> Evaluation of spark resistance etc. due to carbon adhesion of sawtooth discharge electrode Experimental specification:
(1) Spark test device: Set the gap between discharge electrodes to 25 mm, cover the discharge electrodes with a heat insulating glass cover, store the entire device in a wire mesh cage, adjust the test atmosphere temperature to 25 ° C or 105 ° C with a heater. Apply a voltage up to a maximum voltage of 60kV, measure the load current, and observe the occurrence of corona discharge and the occurrence of spark.
(2) Discharge electrode: made of SUS, thickness t = 1.5 mm, tip radius r = 1 mm. Two types are prepared, one with no PM lump at the tip of the electrode (no PM lump) and one with the PM lump attached to the electrode tip (with PM lump), and the occurrence of corona discharge is observed. In addition, the PM lump used for this experiment used what mixed PM powder and the glue.
<3> Evaluation test results:
(1) Occurrence of corona discharge (test atmosphere temperature 25 ° C)
(a) Discharge electrode without PM lumps: Corona discharge occurred concentrated at the tip of the electrode when 40 kV was applied.
(b) Discharge electrode with PM lump: When 38 kV was applied, corona discharge was also generated from PM lump. According to this experiment, it was confirmed that corona discharge was not generated intensively only at the tip of the electrode when PM lumps were present.
(2) The presence or absence of PM lumps at the tip of the electrode and the applied voltage (V) -discharge current (I) characteristics at test atmosphere temperatures of 25 ° C. and 105 ° C. are shown in FIG.
As apparent from the characteristic diagram of FIG. 3, it is found that when PM lumps adhere to the tip of the discharge electrode, sparks are easily generated, and a discharge electrode to which PM lumps are difficult to adhere is required as a countermeasure against sparks. Found out.

≪[い]鋸刃状放電電極周辺の排気ガス流の流れ解析とPM付着機構の推察≫
<1>流速10m/sでの、従来の鋸刃状放電電極周辺の排気ガスの流れ解析:
・下流側に流速が遅くよどみの強い部分ができる。
・鋸刃状放電電極の上流側表面、下流側表面とも表面の流速は遅くなる。
・電界が強いとグラジエント力が強くなり、PMは電極に付着し易くなる。
・鋸刃状放電電極の先端部は尖っており強電界部分ではあるが、その電極先端部の突端表面の流速は速いため、当該突端表面にPMは厚くは付着しない。
・一方、強電界部分である鋸刃状放電電極先端部の、突端表面を除く排気ガス流の流速が遅い上流側表面及び下流側表面共にPMが厚く付着することとなる。
・従って、鋸刃状放電電極先端部表面の上流側表面及び下流側表面に付着するPMは、鋸刃状放電電極先端部が強電界部分であることと上流側表面及び下流側表面の排気ガス流の流速が遅いことの二つの理由により、付着したPMが徐々に積層されて塊(団子)状に成長し形成されることが予想される。
・このことから、積層されて塊(団子)状に成長し形成されたPM塊をその先端部に有する鋸刃状放電電極は、低い電圧でスパークを発生して通電を一時的に遮断し供給電圧を低下させる必要に迫られることとなりPM捕集に有効な高い放電電圧を確保できず、ディーゼルエンジン排気ガス処理用電気集塵装置としてのPM捕集率の低下や、放電電圧を確保するために高い放電電流を必要として装置電源の消費電力が大きくなって省エネルギー性に劣ることが危惧される。
<2>流速10m/sでの、前記従来の放電電極とは異なる本願発明の基本となる、基部の径方向先端に排気ガスの流れ方向下流側に突出する突出部を有する放電電極周辺の排気ガスの流れ解析:
・放電電極の突出部の捕集壁との対向表面は流速が速い。
・突出部の下流側先端の突端表面に流速が遅いよどみ部分が発生するが、そのよどみ度合いは強くなく弱い。
・突出部の上流側表面及び下流側表面共に表面の流速は遅くなるが、下流側先端の突端表面は面積が小さいので流速が遅い部分の表面積も小さい(狭い)。
・グラジエント力によりPMが電極に付着し易くなる強い電界の発生する部分は突出部の捕集壁との対向表面と、面積が小さい突出部の突端表面の下流側先端のみであり、上流側表面は強い電界の発生する部分ではない。
・従って、突出部の捕集壁との対向表面、上流側表面及び下流側先端の突端表面共にその表面にはPMは付着はするものの、付着したPMが積層されて塊(団子)状に成長することはないことが予想される。
・このことから、排気ガスの流れ方向下流側に突出する突出部を有する放電電極の場合は、突出部の上流側表面及び下流側先端の突端表面は低い電圧でスパークを発生することがないので通電を一時的に遮断する必要がなくPM捕集に有効な高い放電電圧を確保することが可能となり、ディーゼルエンジン排ガス処理用電気集塵装置としてのPM捕集率の向上がはかられるとともに、低い放電電流で高い放電電圧を確保できるので装置用直流高圧電源の消費電力も低減され省エネルギー性に優れることが期待できる。
«[I] Flow analysis of exhaust gas flow around sawtooth discharge electrode and inference of PM adhesion mechanism»
Flow analysis of exhaust gas around conventional sawtooth discharge electrode at <1> flow velocity 10m / s:
・ There is a slow flow velocity at the downstream side and a part with strong stagnation.
-The flow velocity on the surface of both the upstream surface and the downstream surface of the sawtooth discharge electrode is reduced.
• If the electric field is strong, the gradient force will be strong, and PM will easily adhere to the electrode.
-Although the tip of the sawtooth discharge electrode is sharp and in a strong electric field, the flow velocity of the tip surface of the tip of the electrode is high, so PM does not adhere to the tip surface thickly.
On the other hand, PM is attached thickly to both the upstream surface and the downstream surface where the flow velocity of the exhaust gas flow excluding the tip end surface is slow, at the tip of the sawtooth discharge electrode which is the strong electric field.
Therefore, PM adhering to the upstream surface and the downstream surface of the sawtooth discharge electrode tip surface is determined by the fact that the sawtooth discharge electrode tip is a strong electric field portion and exhaust gas of the upstream surface and the downstream surface For two reasons, the flow velocity of the flow is slow, it is expected that the adhered PMs will be gradually stacked to grow and form as a lump (dango).
-From this, the saw blade-like discharge electrode having the PM lumps formed in the form of lumps (denseballs) stacked and formed at its tip generates sparks at a low voltage and temporarily shuts off the current supply. It is necessary to lower the voltage, and a high discharge voltage effective for PM collection can not be secured, and a drop in PM collection rate as an electrostatic precipitator for diesel engine exhaust gas treatment and a discharge voltage are secured. It is feared that the power consumption of the power supply of the apparatus becomes large due to the need for a high discharge current and the energy saving performance is poor.
<2> Exhaust gas around the discharge electrode having a protrusion projecting to the downstream in the flow direction of the exhaust gas at the radial tip of the base, which is the basis of the present invention different from the conventional discharge electrode at a flow velocity of 10 m / s. Gas flow analysis:
The flow velocity of the surface facing the collection wall of the protrusion of the discharge electrode is high.
A stagnation portion with a low flow velocity is generated on the tip surface of the downstream end of the projection, but the degree of the stagnation is not strong and weak.
-Although the flow velocity of the surface on both the upstream surface and the downstream surface of the protrusion is low, the tip surface of the downstream tip has a small area, so the surface area of the low velocity portion is small (narrow).
The part where the strong electric field where PM easily adheres to the electrode due to the gradient force is only the surface facing the collection wall of the protrusion and the downstream tip of the tip surface of the protrusion with a small area, the upstream surface Is not a part where a strong electric field is generated.
・ Therefore, although PM adheres to the surface of the protrusion facing the collection wall, the upstream surface, and the tip surface of the downstream tip, the deposited PM is laminated and grows into a lump (dango) It is expected that there will not be.
-From this, in the case of a discharge electrode having a projection projecting to the downstream side in the flow direction of the exhaust gas, sparks are not generated at a low voltage on the upstream surface of the projection and the tip surface of the downstream tip. It is not necessary to temporarily shut off the energization, and it is possible to secure a high discharge voltage effective for PM collection, and it is possible to improve the PM collection rate as an electrostatic precipitator for diesel engine exhaust gas treatment, Since a high discharge voltage can be secured with a low discharge current, it is expected that the power consumption of the DC high-voltage power supply for the device is also reduced and the energy saving performance is excellent.

≪[う]放電電極の電界強度解析≫
<1>対向する捕集壁と放電電極間に10kVの直流電圧を印加した場合の電界強度の解析:
・捕集壁は平面状とし、放電電極は比較する形状の複数の電極を列状に設け、その電極列を平行に複数列配置し、捕集壁と放電電極の間にギャップを設けた状態で解析する。
・該ギャップ間において電界強度は放電電極先端が最大電界となりスパーク発生の指標となる。
・該ギャップ間で捕集壁に近づくほど電界が弱くなり捕集壁表面が平均電界となりPM捕集の指標となる。
<2>鋸刃状放電電極の電界解析:
・放電電極;SUS製、板厚t=1.5mm、先端半径r=1mm
・平均電界=0.15kV/mm、最大電界=0.94kV/mm
・先端部の突端表面付近では最大電界が高く、排ガス流の前後方向の表面では電界は突端表面より低くなり排ガス流速の遅いことと相まってPMが排ガス流の前後方向の表面に堆積してPM塊(団子)が形成されることとなりスパークの発生が危惧されると共に、捕集壁での平均電界が低くPM捕集率向上は図れない。
<3>排気ガスの流れ方向下流側にL字状に突出した板材による放電電極の電界解析:
・放電電極;SUS製、板厚t=1.5mm、板幅w=3mm、先端半径r=0.5mm
・平均電界=0.17kV/mm、最大電界=0.73kV/mm
・捕集壁表面の平均電界が高くなることによりPMの捕集率が上昇している。
・放電電極の最大電界は低くなっており、このことと、L字状に突出した放電電極の排気ガスの下流側突出部先端の突端表面及び上流側表面の排ガス流速の低い部分の表面積が小さいこととが相まってPM塊(団子)の形成が抑制されてスパーク発生の危惧が減少する。
<4>排気ガスの流れ方向下流側にL字状に突出した棒材による放電電極の電界解析:
・放電電極;SUS製、棒径d=2mm、先端半径r=0.5mm
・平均電界=0.17kV/mm、最大電界=1.25kV/mm
・捕集壁表面の平均電界が高くなることによりPMの捕集率が上昇している。
・放電電極の最大電界は高くなっているが、最大電界が高くなっている部位が放電電極のL字状に突出した突出部先端の突端に在る球面状でエッジ部の無い湾曲した表面であり、排気ガスの下流側表面及び上流側表面のガス流速の遅い部分の表面積が小さいことによってPM塊(団子)の形成が抑制されてスパーク発生の危惧が減少する。
«[う] electric field strength analysis of discharge electrode»
<1> Analysis of electric field intensity when a DC voltage of 10 kV is applied between the collection wall and the discharge electrode facing each other:
The collection wall has a flat surface, and the discharge electrodes have a plurality of electrodes of the shape to be compared in a row, a plurality of electrode rows are arranged in parallel, and a gap is provided between the collection wall and the discharge electrode Analyze with
The electric field strength between the gaps becomes the maximum electric field at the tip of the discharge electrode and becomes an index of spark generation.
The electric field becomes weaker as the gap is closer to the collection wall, the surface of the collection wall becomes an average electric field, and becomes an index of PM collection.
Electric field analysis of <2> sawtooth discharge electrode:
· Discharge electrode: made of SUS, plate thickness t = 1.5 mm, tip radius r = 1 mm
・ Average electric field = 0.15kV / mm, maximum electric field = 0.94kV / mm
· The maximum electric field is high near the tip surface of the tip, and the electric field is lower than the tip surface on the front-rear surface of the exhaust gas flow, and PM is deposited on the surface in the front-rear direction of the exhaust gas flow in combination with the low exhaust gas flow velocity. (Dango) is formed, which may cause sparks to be generated, and the average electric field at the collecting wall is low, and the PM collection rate can not be improved.
<3> Electric field analysis of the discharge electrode by the plate material protruding in the L-shape downstream of the flow direction of the exhaust gas:
· Discharge electrode: made of SUS, plate thickness t = 1.5 mm, plate width w = 3 mm, tip radius r = 0.5 mm
・ Average electric field = 0.17kV / mm, maximum electric field = 0.73kV / mm
The PM collection rate is increased by the increase of the average electric field on the surface of the collection wall.
· The maximum electric field of the discharge electrode is low, and the surface area of the tip surface of the tip of the downstream side protrusion of the discharge electrode of the discharge electrode protruding in a L-shape and the low surface of the exhaust gas flow velocity on the upstream surface is small As a result, the formation of PM lumps (dango) is suppressed and the risk of spark generation is reduced.
<4> Electric field analysis of the discharge electrode by the rod material projecting in the L shape on the downstream side of the flow direction of the exhaust gas:
· Discharge electrode: made of SUS, rod diameter d = 2 mm, tip radius r = 0.5 mm
・ Average electric field = 0.17kV / mm, maximum electric field = 1.25kV / mm
The PM collection rate is increased by the increase of the average electric field on the surface of the collection wall.
The maximum electric field of the discharge electrode is high, but the portion where the maximum electric field is high is a spherical surface with no edge and a curved surface at the tip of the tip of the L-shaped protrusion of the discharge electrode Since the surface area of the downstream portion of the exhaust gas and the slow surface portion of the upstream surface of the exhaust gas is small, the formation of PM lumps (dango) is suppressed and the risk of spark generation is reduced.

本発明に係るディーゼルエンジン排ガス処理用電気集塵装置の放電電極は、上記基礎実験の結果に基づいて見出されたもので、その要旨は、重油を使用するディーゼルエンジンの排ガス中に含まれる粒状物質に帯電させる放電電極、及び帯電された前記粒状物質を捕集する集塵電極を構成する所定長さの管状捕集部を有し、かつ前記放電電極は管状捕集部内に管軸方向に配設された主電極又は該主電極に設けられた電極筒に配設され径方向大径に突出する電極によって構成された電気集塵手段を備えたディーゼルエンジン排ガス処理用電気集塵装置の放電電極であって、該放電電極が前記主電極又は該主電極に設けられた電極筒の外表面から径方向に立設する基部を有しかつ該基部の径方向の先端に排気ガスの流れ方向下流側もしくは上流側に突出しかつ前記主電極又は前記電極筒の軸方向に所望長さの突出部を少なくとも一つ有して構成されていることを特徴とするものである。   The discharge electrode of the electrostatic precipitator for diesel engine exhaust gas treatment according to the present invention was found based on the result of the above basic experiment, the gist of which is the particulate matter contained in the exhaust gas of a diesel engine using heavy oil. A discharge electrode for charging a substance, and a tubular collection portion of a predetermined length constituting a collection electrode for collecting the charged particulate matter, and the discharge electrode is disposed in the tube collection portion in the axial direction of the tube Discharge of a diesel engine exhaust gas treating electrostatic precipitator comprising an electrostatic precipitating means constituted of a main electrode disposed or an electrode disposed on an electrode cylinder provided on the main electrode and projecting to a large diameter in the radial direction An electrode, the discharge electrode having a base radially erected from an outer surface of the main electrode or an electrode cylinder provided on the main electrode, and a flow direction of exhaust gas at a radial tip of the base Downstream or upstream And it is characterized in that it is configured to have at least one protrusion of the desired length protruding and in the axial direction of the main electrode or the electrode tube.

又、前記放電電極の突出部は、排気ガスの流れ方向下流側及び上流側に突出する突出部で構成されていることを好ましい態様とするものである。   Further, according to a preferred aspect of the present invention, the projection of the discharge electrode is configured by a projection projecting to the downstream side and the upstream side in the flow direction of the exhaust gas.

さらに、前記放電電極の基部及び突出部は、軸方向断面がL字状、逆L字状、もしくはT字状の棒状材、板状材もしくはこれらを組み合わせた部材により構成されていることを好ましい態様とするものである。   Furthermore, it is preferable that the base and the projection of the discharge electrode be formed of an L-shaped, inverted L-shaped or T-shaped rod-shaped member, a plate-shaped member or a member combining them in the axial direction. It is an aspect.

本発明の前記放電電極は又、前記基部の基端部より前記突出部軸心までの高さhが10〜30mmで、かつ前記基部の軸心から前記突出部までの長さlが10〜30mmであることを好ましい態様とするものである。   In the discharge electrode of the present invention, the height h from the base end of the base to the axis of the projection is 10 to 30 mm, and the length l from the axis of the base to the projection is 10 to 10 mm. The preferred embodiment is 30 mm.

さらに、前記放電電極の突出部は、中心角10〜40°の三角形状でその先端が円弧状を呈して構成されるか、あるいは立体角10〜40°の円錐状でその先端が球面状を呈して構成されていることを好ましい態様とするものである。   Furthermore, the projecting portion of the discharge electrode is formed in a triangular shape with a central angle of 10 to 40 ° and the tip is formed in an arc shape, or a conical shape with a solid angle of 10 to 40 ° It is a preferred embodiment to be configured as a display.

本発明のディーゼルエンジン排ガス処理用電気集塵装置の放電電極は、以下に記載する優れた効果を奏する。
・放電電極は主電極の外周表面に直接又は電極筒の外表面から径方向に立設する基部を有し、その基部の径方向の先端に排気ガスの流れ方向下流もしくは上流側に突出しかつ前記主電極又は前記電極筒の軸方向に所望長さの突出部を少なくとも一つ有しているので、前記突出部の上流側表面及び下流側表面ともに排気ガスの流速が遅くなる部分が存在するが、上流側及び下流側突出部先端の面積が小さいので排気ガスの流速が遅い部分の表面積も小さく(狭く)なる。そして、グラジエント力によりPMが電極に付着し易くなる部分は強い電界の発生する部分であるが、排気ガスの流れ方向の下流側もしくは上流側に突出しかつ前記主電極又は前記電極筒の軸方向に所望長さの突出部の先端部にあっては、当該先端部の突端は表面積が小さくなり突出部の上流側及び下流側先端のみが強い電界の発生する部分となる。従って、突出部突端の上流側表面及び下流側表面のどちらにもPMは付着するが、両表面の排気ガス流速の遅い部分の表面積が他の部分より小さい(狭い)という相違から電界強さが強いとはいうものの各々の表面への付着度合いは他の表面と同程度で極端な大きさの塊状(団子状)に成長することにはならない。
・これにより排気ガスの流れ方向下流側に例えばL字状に突出した板材による放電電極にあっては、突出部の上流側は電界が低く、下流側の突出部は電界は高いが突出部先端の突端の放電電極表面の排気ガス流の流速の遅い部分の表面積が極めて小さく、当該表面積の部分には積層されて塊状(団子状)に成長したPM塊が形成されることがなく、よって低い電圧でスパークが発生することがないので通電を一時的に遮断する必要がなく捕集壁表面の平均電界が高いことと相まってPM捕集に有効な高い放電電圧を確保できて、ディーゼルエンジン排ガス処理用電気集塵装置として高いPM捕集率が確保され、また低い放電電流で高い放電電圧を確保することができるので当該電気集塵装置の消費電力を削減できるという優れた効果を奏する。
なお、かかる作用効果は、排気ガスの流れ方向下流側にL字状に突出する板材による放電電極に限らず、軸方向断面がL字状、逆L字状、もしくはT字状の棒状材、板状材及びこれらを組み合わせた部材により構成された基部及び突出部を有する放電電極においても同様に奏することはいうまでもない。
The discharge electrode of the electrostatic precipitator for diesel engine exhaust gas treatment of the present invention exhibits the excellent effects described below.
· The discharge electrode has a base erected in the radial direction directly on the outer peripheral surface of the main electrode or from the outer surface of the electrode cylinder, and protrudes radially downstream of the base in the flow direction downstream or upstream of the exhaust gas Since at least one protrusion of a desired length is provided in the axial direction of the main electrode or the electrode cylinder, there is a portion where the flow velocity of the exhaust gas is slow on both the upstream surface and the downstream surface of the protrusion. Since the area of the upstream and downstream protrusions is small, the surface area of the portion where the flow velocity of the exhaust gas is slow is also small (narrowed). The portion where PM easily adheres to the electrode due to the gradient force is a portion where a strong electric field is generated, but it protrudes to the downstream or upstream side in the flow direction of the exhaust gas and in the axial direction of the main electrode or the electrode cylinder At the tip of the desired length of the protrusion, the tip of the tip has a small surface area, and only the upstream and downstream tips of the protrusion become a part where a strong electric field is generated. Therefore, although PM adheres to both the upstream surface and the downstream surface of the projection tip, the electric field strength is different from the difference that the surface area of the exhaust gas flow velocity in both surfaces is smaller (narrower) than the other part. The degree of adhesion to each surface, though strong, does not result in the formation of lumps (ball-like particles) of the same size as the other surfaces and in an extremely large size.
· With this, in the case of a discharge electrode made of a plate material that protrudes in the L-shape, for example, on the downstream side in the flow direction of exhaust gas, the electric field is low on the upstream side of the projection and the electric field is high on the downstream side The surface area of the slow part of the flow rate of the exhaust gas flow on the surface of the discharge electrode at the tip of the tip is extremely small, and no PM lumps are formed in a lump (dough-like form) stacked on the part of the surface area. Since no spark is generated by voltage, it is not necessary to temporarily shut off current conduction, and combined with the high average electric field on the collection wall surface, high discharge voltage effective for PM collection can be secured, and diesel engine exhaust gas treatment Since a high PM collection rate is secured as an electrostatic precipitator for an electric discharger, and a high discharge voltage can be ensured with a low discharge current, the excellent effect of reducing the power consumption of the electrostatic precipitator can be achieved.
In addition, such an effect is not limited to the discharge electrode by the plate material protruding in the L-shape on the downstream side in the flow direction of the exhaust gas, but the rod-shaped member having an L-shaped, inverted L-shaped or T-shaped axial cross section It goes without saying that the same can be said for a discharge electrode having a base portion and a projecting portion constituted by a plate-like member and a member combining them.

本発明者等が行った基礎実験に用いた鋸刃状放電電極の形状を示す概略側面図である。It is a schematic side view which shows the shape of the saw blade-like discharge electrode used for the basic experiment which the present inventors performed. 図1に示す鋸刃状放電電極の先端部にPM塊が付着している状態を示す説明図である。FIG. 6 is an explanatory view showing a state in which PM lumps adhere to the tip end portion of the sawtooth discharge electrode shown in FIG. 1; 本発明者等が行った基礎実験で得た電極先端部のPM塊の有無と、試験温度25℃と105℃における印加電圧(V)−放電電流(I)特性を示すグラフである。It is a graph which shows the presence or absence of PM lump of the electrode tip part obtained by the basic experiment which the present inventors performed, and the applied voltage (V) -discharge current (I) characteristic in test temperature 25 ° C and 105 ° C. 本発明に係るディーゼルエンジン排ガス処理用電気集塵装置の放電電極の第1実施例を示す要部概略縦断面図である。It is a principal part schematic longitudinal cross-sectional view which shows 1st Example of the discharge electrode of the electrostatic precipitator for diesel engine waste gas processing which concerns on this invention. 図4に示すディーゼルエンジン排ガス処理用電気集塵装置の最上流側の第1段目の管状捕集モジュールの放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode of the tubular collection module of the 1st step of the most upstream side of the electrostatic precipitator for diesel engine waste gas processing shown in FIG. 図5aに示す放電電極の突出部の一部をさらに拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows a part of protrusion part of the discharge electrode shown to FIG. 5 a. 図4に示すディーゼルエンジン排ガス処理用電気集塵装置の第2段目の管状捕集モジュールの放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode of the 2nd stage tubular collection module of the electrostatic precipitator for diesel engine waste gas processing shown in FIG. 図6aに示す放電電極の突出部の一部をさらに拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows a part of protrusion part of the discharge electrode shown to FIG. 6 a. 図4に示すディーゼルエンジン排ガス処理用電気集塵装置の最下流側の第3段目の管状捕集モジュールの放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode of the tubular collection module of the 3rd step most downstream of the electrostatic precipitator for diesel engine waste gas processing shown in FIG. 図7aに示す放電電極の突出部の一部をさらに拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows a part of protrusion part of the discharge electrode shown to FIG. 7 a. 本発明に係るディーゼルエンジン排ガス処理用電気集塵装置の放電電極の第2実施例における放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode in 2nd Example of the discharge electrode of the electrostatic precipitator for diesel engine waste gas processing which concerns on this invention. 本発明に係るディーゼルエンジン排ガス処理用電気集塵装置の放電電極の第3実施例における放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode in 3rd Example of the discharge electrode of the electrostatic precipitator for diesel engine exhaust gas processing which concerns on this invention. 本発明に係るディーゼルエンジン排ガス処理用電気集塵装置の放電電極の第4実施例における放電電極の要部を拡大して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which expands and shows the principal part of the discharge electrode in 4th Example of the discharge electrode of the electrostatic precipitator for diesel engine waste gas processing which concerns on this invention. 従来のディーゼルエンジン排ガス処理用電気集塵装置の全体構成の一例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the whole structure of the conventional electrostatic precipitator for diesel engine waste gas processing. 図11に示すディーゼルエンジン排ガス処理用電気集塵装置の各捕集モジュール内に設置される各電極の形態の一例を示す概略図である。It is the schematic which shows an example of the form of each electrode installed in each collection module of the electrostatic precipitator for diesel engine waste gas processing shown in FIG. 同じく図11に示すディーゼルエンジン排ガス処理用電気集塵装置の各捕集モジュール内に設置される各電極の形態の他の例を示す概略図である。It is the schematic which shows the other example of the form of each electrode installed in each collection module of the electrostatic precipitator for diesel engine waste gas processing similarly shown in FIG. 従来のディーゼルエンジン排ガス処理用電気集塵装置の他の構成例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the other structural example of the conventional electrostatic precipitator for diesel engine waste gas processing.

ここに示すディーゼルエンジン排ガス処理装置は、管状捕集モジュールを多段式となしてPMを濃縮し、サイクロンを使用してPMを捕集する方式を例示したもので、ここでは管状捕集モジュールを管状捕集部の上流側より小径捕集部、中径捕集部、大径捕集部の3段式のディーゼルエンジン排ガス処理装置における放電電極を例にとり説明する。   The diesel engine exhaust gas processing apparatus shown here is an example of a system in which a tubular collection module is formed in multiple stages to concentrate PM and a PM is collected using a cyclone, and here, the tubular collection module is tubular The discharge electrode in the three-stage type diesel engine exhaust gas treatment apparatus having a small diameter collecting portion, a medium diameter collecting portion, and a large diameter collecting portion from the upstream side of the collecting portion will be described as an example.

重油を使用するディーゼルエンジンの排ガス中に含まれる粒状物質に帯電させる放電電極、及び帯電された前記粒状物質を捕集する集塵電極よりなる捕集モジュールを組合せて構成する管状捕集部を有し、管状捕集部から剥離した粒状物質を分別して捕集するサイクロン又は衝突式慣性力粒子分離器の分別捕集手段を備えたディーゼルエンジン排ガス処理装置は、管状捕集部の下流側の内面付近に設けた粒状物質の高濃度排ガス導出部からの配管にサイクロンで構成したサイクロン捕集手段を設け、高濃度排ガス導出部より排出される高濃度排ガス流をサイクロンへ導入して大径粒子を捕集・処理する方式となすとともに、前記サイクロン又は衝突式慣性力粒子分離式の捕集部で大径粒子を捕集後、除去できなかった細径粒を含有する流れをブロアーにて運動エネルギーを付与して昇圧・増速し、管状捕集部の下流側の中央付近に設けた粒状物質の低濃度排ガス導出管に圧送・混流させる構成となしたものであり、特にエンジンの高負荷時には大量の排気ガスが高速で流れるため、流速を低下させてPMへの帯電を確実化させるように、導入管(排気管)に対して大径化されている捕集管の間にテーパー管(レジューサー)を設けるのが一般的である。   There is a tubular collection unit configured by combining a collection module consisting of a discharge electrode for charging particulate matter contained in the exhaust gas of a diesel engine using heavy oil, and a collection electrode for collecting the charged particulate matter. The diesel engine exhaust gas processing device provided with a cyclone or collision type inertial particle separator fraction collection means for separating and collecting particulate matter separated from the tubular collection portion is an inner surface on the downstream side of the tube collection portion. The piping from the high concentration exhaust gas lead-out part of the particulate matter provided in the vicinity is provided with a cyclone collection means composed of a cyclone, and the high concentration exhaust gas flow discharged from the high concentration exhaust gas lead-out part is introduced into the cyclone to make large diameter particles In addition to the method of collecting and processing, a flow containing small-diameter particles which could not be removed after collecting large-diameter particles in the collection part of the cyclone or collision type inertial particle separation type, In this system, kinetic energy is applied at the lower side to increase pressure and speed, and the low density exhaust gas discharge pipe of particulate matter provided near the center on the downstream side of the tubular collection section is pumped and mixed, especially At the time of high load on the engine, a large amount of exhaust gas flows at a high speed, so that the diameter of the collection pipe is increased relative to the introduction pipe (exhaust pipe) so as to reduce the flow velocity to ensure charging of PM. It is common to provide a tapered tube (reducer) between them.

図4〜図7bに示す本発明の第1実施例装置を例にとり具体的に説明すると、サイクロンを使用した方式のディーゼルエンジン排ガス処理装置は、大きく分けてPM粒子を捕集するために設ける電気集塵部1とサイクロン方式の分別捕集手段2とから構成され、電気集塵部1は管状捕集部11−1の集塵電極を構成する単一径で所定長さの主捕集管1−1、小径捕集管11−1A−1、中径捕集管11−1B−1、大径捕集管11−1C−1と、排ガス中に含まれるPMに帯電させる放電電極として排気ガスの上流側より下流側に向けて配置した放電電極1−3A、1−3B、1−3Cより構成させて備えた3段の捕集モジュールよりなる。11−1B−2、11−1C−2は電極筒である。集塵電極を構成する主捕集管1−1には、上流側(ディーゼルエンジン側)の端部に排ガス導入管部(排気管)1−1aを有し、下流側の端部の軸心付近にPMの低濃度排ガス導出管3を、下流側の端部の内周面付近にPMの高濃度排ガス導出部1−1bをそれぞれ連設している。放電電極は、集塵電極を構成する単一径で所定長さの主捕集管1−1の軸心付近をほぼ全長にわたって延びる電極棒(主電極)1−2aと、該電極棒1−2aに直接又はステーで導電されて設けられている電極筒11−1B−2、11−1C−2の外周表面に放電電極1−3A、1−3B、1−3Cが周方向に直接または間接に所望の間隔を隔てて径方向大径で管軸方向に所望の間隔を隔てて複数配置されて構成されている。このように構成された放電電極1−3A、1−3B、1−3Cを設けた電極棒1−2aは、主捕集管1−1の排ガス導入管部1−1a側に設けたシールエアー導入管部1−1cと、低濃度排ガス導出管3の入口部位に設けたシールエアー導入管部1−1cに垂設した支持体4を介してその両端部が支持されている。   The first embodiment of the present invention shown in FIGS. 4 to 7b will be described in detail by way of example. A diesel engine exhaust gas treatment apparatus of a type using a cyclone is roughly divided into electricity provided for collecting PM particles. A dust collecting part 1 and a separation collecting means 2 of a cyclone type, and the electric dust collecting part 1 is a main collecting pipe having a single diameter and a predetermined length constituting a dust collecting electrode of a tubular collecting part 11-1. 1-1, small diameter collection tube 11-1A-1, medium diameter collection tube 11-1B-1, large diameter collection tube 11-1C-1, and exhaust gas as a discharge electrode to charge PM contained in exhaust gas It consists of a three-stage collection module comprised from discharge electrode 1-3A, 1-3B, and 1-3C arrange | positioned toward the downstream rather than the upstream side of gas. 11-1B-2 and 11-1C-2 are electrode cylinders. An exhaust gas introduction pipe (exhaust pipe) 1-1a is provided at the end of the upstream side (diesel engine side) of the main collection pipe 1-1 constituting the dust collection electrode, and the axial center of the end of the downstream side A low concentration exhaust gas lead-out pipe 3 for PM is connected in the vicinity, and a high concentration exhaust gas lead-out part 1-1b for PM is continuously provided near the inner peripheral surface of the downstream end. The discharge electrode is an electrode rod (main electrode) 1-2a extending substantially the entire length around the axis of the main collecting tube 1-1 having a single diameter and a predetermined length constituting the dust collection electrode; The discharge electrodes 1-3A, 1-3B, and 1-3C are directly or indirectly in the circumferential direction on the outer peripheral surface of the electrode cylinder 11-1B-2 and 11-1C-2 provided to be electrically conducted by the stay 2a or by the stay. And a plurality of radial intervals with a desired diameter and a plurality of radial intervals with a desired diameter in the axial direction of the tube. The electrode rod 1-2a provided with the discharge electrodes 1-3A, 1-3B, and 1-3C configured in this manner is a seal air provided on the side of the exhaust gas introduction tube portion 1-1a of the main collection tube 1-1. Both ends thereof are supported via a support 4 vertically provided to the introduction pipe portion 1-1c and the seal air introduction pipe portion 1-1c provided at the inlet portion of the low concentration exhaust gas discharge pipe 3.

一方、前記排ガスの流れ方向における電気集塵部1の下流側の高濃度排ガス導出部1−1bとPMの低濃度排ガス導出管3間に設けられたサイクロン方式の分別捕集手段2は、分別手段としてのサイクロン捕集部2−1と、サイクロン捕集部2−1からの排出管2−2とで構成されている。このサイクロン捕集部2−1は、電気集塵部1の主捕集管1−1の下流側の内面周付近に設けた高濃度排ガス導出部1−1bに連通管5−1及び高濃度排ガス配管5−2を介して接続された1台の接線式サイクロン2−1aで構成され、さらに該サイクロン2−1aと、電気集塵部1の主捕集管1−1の下流側の低濃度導出管3との間に、サイクロン2−1a通過後の浄化ガスを、低濃度導出管3内を流れる低濃度排ガスに合流させて混流させるための排出管2−2を配設している。又、ブロアー7は前記高濃度排ガス配管5−2の接線式サイクロン2−1a上流もしくは排出管2−2に設ける。このブロアー7は排ガス流に対して運動エネルギーを付与して昇圧・増速させて接線式サイクロン2−1aでの捕集率の向上並びにサイクロン2−1aで除去できなかった細径粒子を含有する排ガス流を、排出管2−2を経由して低濃度導出管3内を流れる低濃度排ガスに確実に圧送・混合させるために設けている。なお、図示しないが、高濃度排ガス配管5−2又は排出管2−2に設けたブロアー7に替えて、高気体噴出ノズルを設けて高圧気体(通常は圧縮空気)を噴出させる等により排ガス流に対して運動エネルギーを付与してもよい。さらに、前記低濃度排ガス導出管3には、接線式サイクロン2−1aへの高濃度排ガス流入量及び流入速度と低濃度排ガス放出量の流量調整を行うためのダンパー8を設けている。   On the other hand, the cyclone type separation and collection means 2 provided between the high concentration exhaust gas lead-out part 1-1 b downstream of the electrostatic precipitator 1 and the low concentration exhaust gas lead pipe 3 of PM in the flow direction of the exhaust gas It is comprised by the cyclone collection part 2-1 as a means, and the discharge pipe 2-2 from the cyclone collection part 2-1. The cyclone collection unit 2-1 includes the communication tube 5-1 and the high concentration in the high concentration exhaust gas lead-out unit 1-1b provided in the vicinity of the inner peripheral surface of the main collection tube 1-1 of the electric dust collection unit 1 on the downstream side. It consists of a single tangential cyclone 2-1a connected via an exhaust gas pipe 5-2, and the cyclone 2-1a and the lower side of the main collection pipe 1-1 of the electric dust collecting part 1 A discharge pipe 2-2 is disposed between the concentration lead-in pipe 3 and the low-concentration exhaust gas flowing in the low concentration lead-in pipe 3 for merging the purified gas after passing through the cyclone 2-1a. . Further, the blower 7 is provided on the upstream side of the tangential cyclone 2-1a or the discharge pipe 2-2 of the high concentration exhaust gas pipe 5-2. The blower 7 imparts kinetic energy to the exhaust gas flow to pressurize and accelerate it to improve the collection rate in the tangential cyclone 2-1a and contains fine particles which could not be removed by the cyclone 2-1a. The exhaust gas flow is provided to reliably pump and mix the low concentration exhaust gas flowing in the low concentration lead-out pipe 3 via the discharge pipe 2-2. Although not illustrated, the exhaust gas flow is provided by providing a high gas jet nozzle instead of the blower 7 provided in the high concentration exhaust gas pipe 5-2 or the discharge pipe 2-2 to eject high pressure gas (usually compressed air) or the like. May be given kinetic energy. Furthermore, the low concentration exhaust gas lead-out pipe 3 is provided with a damper 8 for adjusting the flow rate of the high concentration exhaust gas inflow and inflow speed to the tangential cyclone 2-1a and the low concentration exhaust gas discharge amount.

図4に示す本発明の2段の管状捕集モジュールを組合せて管状捕集部11−1を3段の捕集モジュール式となしたサイクロンを使用した方式のディーゼルエンジン排ガス処理装置は、単一径で所定長さの主捕集管1−1より小外径に配置された放電電極及び集塵電極よりなる管状捕集モジュールを軸方向に組み合わせて構成した小、中と径の異なる2つの管状捕集モジュールと大径の捕集モジュールとを上流側から下流側にかけて順に配置した構成となしたもので、第1段目、第2段目の管状捕集モジュールをそれぞれ小径、中径、3段目の捕集モジュールを大径とする。   The diesel engine exhaust gas treatment system of the type using a cyclone in which the two-stage tubular collection module of the present invention shown in FIG. Two small, medium and different diameters constructed by combining in the axial direction a tubular collection module consisting of a discharge electrode and a dust collection electrode arranged at a smaller outer diameter than the main collection tube 1-1 of a predetermined length and length. A tubular collection module and a large diameter collection module are arranged in order from the upstream side to the downstream side, and the small diameter, medium diameter, and small diameter tubular collection modules of the first stage and the second stage, respectively. Make the third stage collection module a large diameter.

即ち、図4の一部を拡大した図5a、図5bに示すように最上流側の第1段目の小径の管状捕集モジュールは、集塵電極である小径捕集管11−1A−1を図示しないステーで主捕集管1−1に導電状態で固定してその内部に小径捕集管11−1A−1との間に放電間隔を保持して電極棒(主電極)1−2aの外表面から径方向に立設する基部1−3A−1を設け、該基部1−3A−1の径方向先端に排気ガスの流れ方向下流側に突出しかつ前記主電極の軸方向に、例えば長さl=10mm、幅w=2mm、先端に中心角α=40°、先端の半径r=1mm、電極棒1−2aの外表面からの高さh=20mmの突出部1−3A−2を厚さt=1mmのステンレス製板にて前記基部1−3A−1と一体化したL字状に形成した放電電極1−3Aを複数個、それぞれ軸方向に所望間隔を有して列状に且つ前記電極棒(主電極)1−2aの周面に所望中心角度を有して放射状に複数列設けている。これにより前記突出部1−3A−2と前記小径捕集管11−1A−1との間にコロナ放電が良好に発生し、このコロナ放電によってコロナ電子は排気ガス中のPM表面に付着・帯電し、又、捕集面からあまり離れていないPMあるいは堆積・剥離により表面積が大きくなっているPMも十分なクーロン力を得ることとなって捕集面への再付着力を獲得し、確実に集塵電極の捕集面に移動し再付着して堆積し、その後この剥離・付着・堆積を繰返すジャンピング現象を呈してPM粒子の塊の濃度を高めながら第2段目の中径の管状捕集モジュールを構成する集塵電極である中径捕集管11−1B−1内に流出する。この基部1−3A−1の径方向先端に排気ガスの流れ方向下流側に突出しかつ前記主電極1−2aの軸方向に突出部1−3A−2をL字状に形成した放電電極の場合は、前記基礎実験で明らかなように、突出部1−3A−2の先端部の突端表面に対するPM塊の形成が抑制されて該突出部1−3A−2の先端部からのスパーク発生の危惧が減少し、スパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏する。   That is, as shown in FIGS. 5a and 5b where a part of FIG. 4 is enlarged, the small diameter tubular collecting module of the first stage on the most upstream side is a small diameter collecting tube 11-1A-1 which is a collecting electrode. Are fixed in a conductive state to the main collection pipe 1-1 in a stay not shown, and a discharge interval is held therein with the small diameter collection pipe 11-1A-1 to hold the electrode bar (main electrode) 1-2a A base 1-3A-1 erected in the radial direction from the outer surface of the base, and protruding in the flow direction downstream of the exhaust gas at the radial tip of the base 1-3A-1 and in the axial direction of the main electrode, for example Length l = 10 mm, width w = 2 mm, center angle α = 40 ° at tip, radius r = 1 mm at tip, protrusion 1-3A-2 with height h = 20 mm from outer surface of electrode rod 1-2a A discharge electrode 1-3A formed in an L-shape in which the base portion 1-3A-1 is integrated with a stainless steel plate having a thickness t = 1 mm A plurality of rows are provided in a row at desired intervals in the axial direction, and a plurality of rows are radially provided on the peripheral surface of the electrode rod (main electrode) 1-2a at a desired center angle. As a result, a corona discharge is favorably generated between the projecting portion 1-3A-2 and the small-diameter collecting tube 11-1A-1, and corona electrons adhere and charge on the PM surface in the exhaust gas by the corona discharge. Also, PM that is not very far from the collection surface or PM whose surface area is increased due to deposition and exfoliation also obtains sufficient coulomb force to obtain re-adhesion to the collection surface, and surely It moves to the collection surface of the collection electrode, reattaches and deposits, and then it exhibits a jumping phenomenon that repeats this peeling, adhesion and deposition to increase the concentration of the mass of PM particles, and the second diameter medium diameter tubular catch It flows out into inside diameter collection pipe 11-1B-1 which is a dust collection electrode which constitutes a collection module. In the case of a discharge electrode in which the radial direction end of the base portion 1-3A-1 protrudes downstream in the flow direction of the exhaust gas and the protrusion portion 1-3A-2 is formed in an L shape in the axial direction of the main electrode 1-2a As apparent from the basic experiment, the formation of PM lumps on the tip surface of the tip of the protrusion 1-3A-2 is suppressed, and there is a risk of spark generation from the tip of the protrusion 1-3A-2. To prevent a temporary interruption of the current flow due to the occurrence of sparks and a drop in the discharge voltage thereafter to maintain a high discharge voltage effective for PM collection to ensure a high PM collection rate and a low discharge current. The high discharge voltage can be maintained, and the power consumption of the electrostatic precipitator can be reduced.

次いで、図4の一部を拡大した図6a、図6bに示す様に第2段目の中径の管状捕集モジュールは、集塵電極である中径捕集管11−1B−1を同じく図示しないステーで主捕集管1−1に導電状態で固定してその内部に中径捕集管11−1B−1との間に放電間隔を保持して電極棒1−2aに図示しないステーで導電状態に固定されている電極筒11−1B−2の外表面から径方向に立設する基部1−3B−1を設け、該基部1−3B−1の径方向先端に排気ガスの流れ方向下流側に突出し、かつ前記主電極の軸方向に、例えば所望長さl=10mm、棒径d=φ2mm、先端に立体角α=40°、先端の半径r=1mm、電極筒11−1B−2の外表面からの高さh=20mmの突出部1−3B−2をφ2mmのステンレス製丸棒をL字状に屈曲させて前記基部1−3B−1と一体に形成した放電電極1−3Bを複数個、それぞれ軸方向に所望間隔を有して列状に且つ前記電極筒11−1B−2の周面に所望中心角度を有して放射状に複数列設けている。これにより前記突出部1−3B−2と前記中径捕集管11−1B−1との間にコロナ放電が良好に発生し、このコロナ放電によってコロナ電子は排気ガス中のPM表面に付着・帯電し、又、捕集面からあまり離れていないPMあるいは堆積・剥離により表面積が大きくなっているPMも十分なクーロン力を得ることとなって捕集面への再付着力を獲得し、確実に集塵電極の捕集面に移動し再付着して堆積し、その後この剥離・付着・堆積を繰返すジャンピング現象を呈してPM粒子の塊の濃度をさらに高めながら第3段目の大径の管状捕集モジュールを構成する集塵電極である大径捕集管11−1C−1内に流出する。この基部1−3B−1の径方向先端に排気ガスの流れ方向下流側に突出しかつ前記主電極の軸方向に突出部1−3B−2をL字状に形成した放電電極の場合も、前記図5a、図5bに示す放電電極と同様に、突出部1−3B−2の先端部の突端表面に対するPM塊の形成が抑制されて該突出部1−3B−2の先端部からのスパーク発生の危惧が減少し、スパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏する。なお、前記突出部1−3B−2の棒径d=φ2mm、先端に立体角α=40°、先端の半径r=1mmを例に示したが、棒径dがφ1mm程度の細径の場合は前記突出部1−3B−2の先端は必ずしも先細り状とする必要は無く、例えステンレス製丸棒の軸芯に対し直角な平端面であったとしても下流側先端の流速が遅いよどみ部分が発生する面積は小さいので突出部1−3B−2の先端部表面に対するPM塊の形成が抑制されて該突出部1−3B−2の先端部からのスパーク発生危惧の減少など大径の棒材を先細り状とした場合と略同様の効果が得られる。   Next, as shown in FIGS. 6a and 6b, which is an enlarged view of a part of FIG. 4, the second stage middle diameter tubular collection module is similar to the middle diameter collection tube 11-1B-1 which is a dust collection electrode. The conductive tube is fixed to the main collecting tube 1-1 in a conductive state by a stay not shown, and a discharge interval is held between the medium collecting tube 11-1B-1 and the stay not shown on the electrode rod 1-2a. The base 1-3B-1 is provided in the radial direction from the outer surface of the electrode cylinder 11-1B-2 fixed in the conductive state, and the flow of exhaust gas at the radial tip of the base 1-3B-1 In the axial direction of the main electrode, for example, desired length l = 10 mm, rod diameter d = φ2 mm, solid angle α = 40 ° at the tip, radius r = 1 mm at the tip, electrode cylinder 11-1B -2 projecting portion 1-3B-2 with height h = 20 mm from outer surface of L-shaped stainless steel round rod of φ 2 mm A plurality of discharge electrodes 1-3B which are bent and integrally formed with the base portion 1-3B-1 are arranged in a row with desired intervals in the axial direction, respectively, on the circumferential surface of the electrode cylinder 11-1B-2. A plurality of radial rows are provided with a desired central angle. Thereby, a corona discharge is favorably generated between the projecting portion 1-3B-2 and the medium-diameter collecting tube 11-1B-1, and corona electrons adhere to the PM surface in the exhaust gas by the corona discharge. Also, PM that is charged and that is not very far from the collecting surface, or PM whose surface area is large due to deposition and exfoliation also obtains sufficient coulomb force to obtain re-adhesion to the collecting surface, ensuring Move to the collection surface of the dust collection electrode, deposit again, and then exhibit a jumping phenomenon that repeats this peeling, adhesion, and deposition to further increase the concentration of the mass of PM particles while the concentration of the mass of PM particles is further increased. It flows out into large diameter collection pipe 11-1C-1 which is a dust collection electrode which constitutes a tubular collection module. Also in the case of the discharge electrode which protrudes in the flow direction downstream of exhaust gas from the radial direction tip of the base portion 1-3B-1 and in which the protrusion 1-3B-2 is formed in an L shape in the axial direction of the main electrode. Similar to the discharge electrode shown in FIGS. 5a and 5b, the formation of PM lumps on the tip surface of the tip of the protrusion 1-3B-2 is suppressed, and spark generation from the tip of the protrusion 1-3B-2 is suppressed. Concerns are reduced, and temporary interruption of energization due to spark generation and the subsequent drop in discharge voltage are prevented to maintain a high discharge voltage effective for PM collection to ensure a high PM collection rate and low discharge. The high discharge voltage can be maintained by the current, and the power consumption of the electrostatic precipitator can be reduced. The rod diameter d of the projection 1-3B-2 is 2 mm, the solid angle α is 40 ° at the end, and the radius r of 1 mm at the end, but the rod diameter d is as small as φ1 mm. It is not necessary for the tip of the projection 1-3B-2 to be tapered, for example, even if it is a flat end face perpendicular to the axis of the stainless steel round rod, the stagnation portion of the downstream tip has a low flow velocity. Since the area to be generated is small, the formation of PM lumps on the tip surface of the protrusion 1-3B-2 is suppressed, and a rod material having a large diameter, such as a decrease in danger of spark generation from the tip of the protrusion 1-3B-2. The same effect as in the case of tapering can be obtained.

さらに、図4の一部を拡大した図7a、図7bに示す様に最下流側の第3段目の最大径の捕集モジュールは、集塵電極である主捕集管1−1と共通の大径捕集管11−1C−1を捕集管としてその内部に該大径捕集管11−1C−1との間に放電間隔を保持して電極棒1−2aに図示しないステーで導電状態に固定されている電極筒11−1C−2の外表面から径方向に立設する基部1−3C−1を設け、該基部1−3C−1の径方向先端に排気ガスの流れ方向の上下流両方向側に突出し、かつ前記主電極の軸方向に、例えば長さ2l=20mm、棒径d=φ2mm、先端に立体角α=40°、先端の半径r=1mm、電極筒11−1C−2の外表面からの高さh=20mmの突出部1−3C−2をφ2mmのステンレス製丸棒をT字状に前記基部1−3C−1と一体化させて形成した放電電極1−3Cを複数個、それぞれ軸方向に所望間隔を有して列状に且つ前記電極筒11−1C−2の周面に所望中心角度を有して放射状に複数列設けている。
これにより前記突出部1−3C−2と前記大径捕集管11−1C−1との間にコロナ放電が良好に発生し、このコロナ放電によってコロナ電子は排気ガス中のPM表面に付着・帯電し、又、捕集面からあまり離れていないPMあるいは堆積・剥離により表面積が大きくなっているPMも十分なクーロン力を得ることとなって捕集面への再付着力を獲得し、確実に集塵電極の捕集面に移動し再付着して堆積し、その後この剥離・付着・堆積を繰返すジャンピング現象を呈しながら集塵電極付近の流れにPM粒子の塊の濃度をさらに一層高めて濃くして下流側へ流れて高濃度ガス導出(排出)部1−1bへ達し、連通管5−1、高濃度排ガス配管5−2を経てサイクロン2−1a(又は図示しない衝突式慣性力粒子分離器)からなるサイクロン捕集部2−1に導出する。そして、この基部1−3C−1の径方向先端に排気ガスの流れ方向の上下両方向に突出しかつ前記主電極の軸方向に突出部1−3C−2をT字状に形成した放電電極の場合も、前記図5a、図5b、図6a、図6bに示す放電電極と同様に、突出部1−3C−2の先端部の突端表面に対するPM塊の形成が抑制されて該突出部1−3C−2の先端部からのスパーク発生の危惧が減少し、スパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏する。
Furthermore, as shown in FIGS. 7a and 7b where a part of FIG. 4 is enlarged, the collection module of the third stage largest diameter on the most downstream side is in common with the main collection pipe 1-1 which is a collection electrode. The large-diameter collection tube 11-1C-1 is used as a collection tube and the discharge interval is held between the large-diameter collection tube 11-1C-1 and the large-diameter collection tube 11-1C-1 in a stay not shown on the electrode rod 1-2a. A base 1-3C-1 erected in the radial direction from the outer surface of the electrode cylinder 11-1C-2 fixed in the conductive state is provided, and the flow direction of the exhaust gas is provided at the radial tip of the base 1-3C-1. In the axial direction of the main electrode, for example, length 21 = 20 mm, rod diameter d = φ2 mm, solid angle α = 40 ° at tip, radius r = 1 mm at tip, electrode cylinder 11 − Protruding part 1-3C-2 with a height h = 20 mm from the outer surface of 1C-2 in the shape of a T-shaped stainless steel round rod of φ 2 mm A plurality of discharge electrodes 1-3 C integrally formed with the portion 1-3 C-1 are formed in rows with desired intervals in the axial direction, respectively, and a desired center on the circumferential surface of the electrode cylinder 11-1 C- 2 A plurality of radial rows are provided at an angle.
As a result, a corona discharge is favorably generated between the projecting portion 1-3C-2 and the large-diameter collecting tube 11-1C-1, and corona electrons adhere to the PM surface in the exhaust gas by this corona discharge. Also, PM that is charged and that is not very far from the collecting surface, or PM whose surface area is large due to deposition and exfoliation also obtains sufficient coulomb force to obtain re-adhesion to the collecting surface, ensuring Move to the collecting surface of the dust collection electrode, deposit again, and then further increase the concentration of the mass of PM particles in the flow near the dust collection electrode while exhibiting a jumping phenomenon that repeats this peeling, adhesion, and deposition. It becomes dense and flows downstream and reaches the high concentration gas discharge (discharge) part 1-1b, passes through the communicating pipe 5-1, the high concentration exhaust gas pipe 5-2, and then passes through the cyclone 2-1a (or collision type inertial force particles not shown) Cyclone capture To derive in part 2-1. And in the case of the discharge electrode which protruded in the up-and-down both directions of the flow direction of exhaust gas from the diameter direction tip of this base 1-3C-1, and formed the projection part 1-3C-2 in the shape of T in the axial direction of the said main electrode. Similarly to the discharge electrodes shown in FIGS. 5a, 5b, 6a, and 6b, the formation of PM lumps on the tip surface of the tip end portion of the protrusion 1-3C-2 is suppressed, and thus the protrusion 1-3C The risk of spark generation from the tip of -2 is reduced, and temporary interruption of the current flow due to spark generation and the subsequent drop in discharge voltage are prevented to maintain high discharge voltage effective for PM collection, and high PM It is possible to maintain a high collection rate and maintain a high discharge voltage with a low discharge current, which has the excellent effect of reducing the power consumption of the electrostatic precipitator.

なお、電極棒1−2a又は電極筒11−1B−2、11−1C−2の外表面から突出部1−3A−2、1−3B−2、1−3C−2までの高さhは10〜30mmが好ましく、10mm未満では表層の電界強度が高くなりにくく、又、30mmを超えるとコロナ放電によりクーロン力の得られる排気ガス流量の減少をきたし、又、前記突出部1−3A−2、1−3B−2、1−3C−2の主電極の軸方向の長さlは10mm〜30mmの長さが好ましく、10mm未満では各放電電極間に生ずる非電極部長さの積算されたトータル長さが長くなって放電量が減少し、又、30mmを超えると放電電極の剛性が低下し振動や熱応力などに対する耐久性が低下し、さらに突出部1−3A−2、1−3B−2、1−3C−2先端の中心角又は立体角αは10°〜40°が好ましく、10°未満では傾斜部が長くなり過ぎかつ先端が尖って形状を維持し難く、40°を超えると先端の強電界域のガス流速の遅い部分の表面積が増加してPMが積層されはじめることが危惧され、又、突出部1−3A−2、1−3B−2、1−3C−2先端の半径rは0.5mm〜1.5mmが好ましく、0.5mm未満では尖り過ぎて取扱い上危険であり、1.5mmを超えると先端の強電界域のガス流速の遅い部分の表面積が増加してPMが積層されはじめることが危惧される。   The height h from the outer surface of the electrode rod 1-2a or the electrode cylinder 11-1B-2 or 11-1C-2 to the projection 1-3A-2, 1-3B-2 or 1-3C-2 is If it is less than 10 mm, the electric field strength of the surface layer is unlikely to be high. If it exceeds 30 mm, the exhaust gas flow rate at which the Coulomb force can be obtained decreases due to corona discharge, and the protrusion 1-3A-2 The length l of the main electrode of 1-3B-2 and 1-3C-2 in the axial direction is preferably 10 mm to 30 mm, and if less than 10 mm, the integrated total of the non-electrode lengths generated between the discharge electrodes The length becomes longer and the amount of discharge decreases, and if it exceeds 30 mm, the rigidity of the discharge electrode decreases and the durability against vibration, thermal stress, etc. decreases, and further, the protrusions 1-3A-2, 1-3B- 2, 1-3C-2 tip central angle or solid angle The angle is preferably 10 ° to 40 °. If the angle is less than 10 °, the slope is too long and the tip is sharp and difficult to maintain the shape, and if it exceeds 40 °, the surface area of the slow gas flow rate in the strong electric field at the tip increases. It is feared that PM starts to be laminated, and the radius r of the tips of the protrusions 1-3A-2, 1-3B-2, and 1-3C-2 is preferably 0.5 mm to 1.5 mm, 0. If it is less than 5 mm, it is too sharp and dangerous for handling, and if it exceeds 1.5 mm, it is feared that the surface area of the slow portion of the gas flow rate in the strong electric field of the tip increases and PM starts to be deposited.

捕集壁面を構成する集塵電極は、波板等の凹凸を有する板を筒状に成形して環状もしくはスパイラル状の凸条及び/又は凹条を有した筒状壁面にて構成することができる。集塵電極をこれらの筒状壁面により構成することにより、コロナ放電により帯電されてイオン風に乗ったPM粒子の集塵電極への流れが環状もしくはスパイラル状の凸条及び/又は凹条の存在により筒状壁面付近にて乱れあるいは停滞・滞留して付着率を向上させることができる。又、最終段の捕集モジュール以外の捕集部である管状捕集モジュールにおける捕集壁面を構成する集塵電極は、エキスパンドメタル・パンチングメタル・平織/綾織金網・ワイヤーネット等、多数の貫孔や網目状貫通孔とその網目状貫通孔周縁に厚さ方向の凹凸を有する網目状貫通孔を有した筒状壁面にて構成するとよい。最終段の管状捕集部以外の捕集部の集塵電極をこれらの筒状壁面により構成することにより、コロナ放電により帯電されてイオン風に乗ったPM粒子が捕集壁面としての筒状壁面に達した時に、該筒状壁面の内壁面に多数の貫孔や網目状貫通孔とその網目状貫通孔周縁に厚さ方向の凹凸を有する網目状貫通孔が設けられていることによって、筒状壁面の内壁面によって跳ね返されて筒状壁面の軸心方向に戻されて逆流する現象を防止もしくはほとんど発生させることがないので、前記貫孔からイオン風に乗ったPM粒子の一部が貫通してその外側を流れる流れに合流することにより外側を流れる流れのPM粒子の塊濃度をより濃くすることができて、よりPM粒子濃度の濃い流れを高濃度ガス導出(排出)部へ導出することができる。   The dust collection electrode constituting the collection wall surface may be formed by forming a plate having irregularities such as a corrugated plate into a tubular shape and forming a tubular wall surface having annular or spiral convex and / or concave streaks. it can. By configuring the dust collection electrode with these cylindrical wall surfaces, the flow of PM particles charged by corona discharge and carried on the ion wind to the dust collection electrode has an annular or spiral convex and / or concave streak As a result, the adhesion rate can be improved by disturbance or stagnation / retention near the cylindrical wall surface. In addition, the dust collection electrode that constitutes the collection wall surface in the tubular collection module, which is the collection section other than the final stage collection module, has a large number of through holes such as expanded metal, punching metal, plain weave / twill woven wire mesh, wire net, etc. It is preferable to form a reticulated through hole and a cylindrical wall surface having a reticulated through hole having irregularities in the thickness direction at the periphery of the reticulated through hole. By forming the dust collection electrodes of the collection portion other than the tubular collection portion of the final stage with these cylindrical wall surfaces, the PM wall charged with corona discharge and caught on the ion wind as a cylindrical wall surface as a collection wall surface When the inner wall surface of the cylindrical wall surface is provided with a large number of through holes, a mesh-like through hole, and a mesh-like through hole having unevenness in the thickness direction around the mesh-like through hole, Since the phenomenon of being bounced back by the inner wall surface of the cylindrical wall and returned back in the axial direction of the cylindrical wall to prevent backflow is hardly caused, a part of PM particles on the ion wind penetrates from the through hole By consolidating with the flow flowing outward, it is possible to make the mass concentration of PM particles in the flow flowing outward higher, and the flow with a higher concentration of PM particles is led out to the high concentration gas discharge (discharge) portion be able to.

次に、本発明の第2実施例に係る放電電極について説明する。
図8に示す本発明の第2実施例は、電極棒1−2a又は電極筒11−1B−2、11−1C−2の表面に設ける放電電極1−3Dを、ステンレス製の板材からのプレス、レーザービームカット、ワイヤーカット、ウォータジェット切断等で一体状態で成形の又はステンレス製の棒材の溶接等により複数の基部1−3D―1を設けて突出部1−3D−2を形成したものであり、前記図5a、図5b、図6a、図6b、図7a、図7bに示す放電電極と同様に、突出部1−3D−2の先端部の突端表面に対するPM塊の形成が抑制されてスパーク発生の危惧が減少してスパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏するのみならず、製作性に優れると共に剛性が高く振動や熱応力等に対する耐久性も優れる。
Next, a discharge electrode according to a second embodiment of the present invention will be described.
In the second embodiment of the present invention shown in FIG. 8, the discharge electrode 1-3D provided on the surface of the electrode rod 1-2a or the electrode cylinder 11-1B-2, 11-1C-2 is pressed from a plate material made of stainless steel Laser beam cut, wire cut, water jet cutting, etc. to form a plurality of base portions 1-3D-1 by welding or the like of integrally formed or stainless steel rods to form the projecting portion 1-3D-2 Similarly to the discharge electrodes shown in FIGS. 5a, 5b, 6a, 6b, 7a and 7b, the formation of PM lumps on the tip surface of the tip of the projecting portion 1-3D-2 is suppressed. To prevent the temporary interruption of the current flow and the subsequent decrease of the discharge voltage due to the reduction of sparking hazards, thereby maintaining a high discharge voltage effective for PM collection and securing a high PM collection rate High discharge with low discharge current Not only an excellent effect that it can maintain the pressure can reduce the power consumption of the electrostatic precipitator, excellent durability against high stiffness vibration or thermal stress or the like is excellent in manufacturability.

又、本発明の第3実施例に係る放電電極は、図9に示すごとく、電極棒1−2a又は電極筒11−1B−2、11−1C−2の表面に設ける放電電極1−3Eを、ステンレス製の板材より複数の基部1−3E−1及び複数の突出部1−3E−2を共通の基盤部1−3E−3に一体に設けた放電電極1−3Eをプレス、レーザービームカット、ワイヤーカット、ウォータジェット切断等で製作したものであり、前記図5a、図5b、図6a、図6b、図7a、図7b、図8に示す放電電極と同様に、突出部1−3E−2の先端部の突端表面に対するPM塊の形成が抑制されてスパーク発生の危惧が減少してスパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏するのみならず、製作性に優れると共に剛性が高く振動や熱応力等に対する耐久性も優れる。   In addition, as shown in FIG. 9, the discharge electrode according to the third embodiment of the present invention has a discharge electrode 1-3E provided on the surface of the electrode rod 1-2a or the electrode cylinder 11-1B-2 or 11-1C-2. , A discharge electrode 1-3E in which a plurality of base portions 1-3E-1 and a plurality of projecting portions 1-3E-2 are integrally provided on a common base portion 1-3E-3 from a stainless steel plate, a laser beam is cut 5A, 5b, 6a, 6b, 7a, 7b, and 8 as well as the discharge electrode shown in FIGS. 5a, 5b, 6a, 6b, 7a, 7b. The formation of PM lumps on the end surface of the tip of the tip of 2 is suppressed and the risk of spark generation is reduced, and temporary interruption of current flow accompanying spark generation and the subsequent drop in discharge voltage are prevented, which is effective for PM collection Maintain high discharge voltage and high PM collection rate Not only is it possible to maintain the high discharge voltage with a low discharge current and also reduce the power consumption of the electrostatic precipitator, it is excellent in manufacturability and has high rigidity and durability against vibration, thermal stress, etc. It is also excellent.

さらに、本発明の第4実施例に係る放電電極は、図10に示すごとく、電極棒1−2a、又は電極筒11−1B−2、11−1C−2の表面に設ける放電電極1−3Fを、ステンレス製の板材からのプレス、レーザービームカット、ワイヤーカット、ウォータジェット切断等で一体状態で成形、又はステンレス製の棒材の溶接等により逆L字状突出部1−3F−2の先細り状先端部を排気ガスの流れ方向上流側に指向させて基部1−3F−1に設けて形成したもので、この第4実施例に係る放電電極も前記第2〜第3実施例の放電電極と同様に、突出部1−3F−2の先端部の突端表面に対するPM塊の形成が抑制されてスパーク発生の危惧が減少してスパーク発生に伴う通電の一時的遮断及びその後の放電電圧の低下を防止してPM捕集に有効な高い放電電圧を維持して高いPM捕集率を確保すると共に低い放電電流で高い放電電圧の維持ができて電気集塵装置の消費電力を削減できるという優れた効果を奏するのみならず、製作性に優れると共に剛性が高く振動や熱応力等に対する耐久性も優れる。   Furthermore, as shown in FIG. 10, the discharge electrode according to the fourth embodiment of the present invention is a discharge electrode 1-3F provided on the surface of the electrode rod 1-2a or the electrode cylinder 11-1B-2 or 11-1C-2. Is formed integrally with a stainless steel plate by pressing, laser beam cutting, wire cutting, water jet cutting or the like, or by tapering of the reverse L-shaped protruding portion 1-3F-2 by welding a stainless steel bar or the like The discharge electrode according to the fourth embodiment is the discharge electrode according to the second to third embodiments, and the discharge electrode according to the fourth embodiment is formed with the tip end portion directed to the upstream side in the flow direction of the exhaust gas and provided on the base 1-3F-1. Similarly to the above, the formation of PM lumps on the tip surface of the tip of the protrusion 1-3F-2 is suppressed, the risk of spark generation is reduced, and temporary interruption of energization accompanying spark generation and subsequent decrease in discharge voltage To prevent PM collection Not only has the excellent effect of maintaining a high PM collection rate while maintaining a high effective discharge voltage and maintaining a high discharge voltage with a low discharge current, thereby reducing the power consumption of the electrostatic precipitator. It is excellent in manufacturability, high in rigidity, and excellent in durability against vibration, thermal stress and the like.

1 電気集塵部
1−1 主捕集管
1−1a 排ガス導入管部
1−1b PMの高濃度排ガス導出部
1−1c シールエアー導入管部
1−2a 電極棒(主電極)
1−3A、1−3B、1−3C、1−3E、1−3F 放電電極
1−3A−1、1−3B−1、1−3C−1、1−3D−1、1−3E−1、1−3E−3、1−3F−1 基部
1−3A−2 1−3B−2、1−3C−2、1−3D−2、1−3E−2、1−3F−2 突出部
2 分別捕集手段
2−1 サイクロン捕集部
2−1a 接線式サイクロン
2−2 排出管
3 低濃度導出管
4 支持体
5−1 連通管
5−2 高濃度排ガス配管
7 ブロアー
8 ダンパー
11−1 管状捕集部
11−1A−1 小径捕集管
11−1B−1 中径捕集管
11−1C−1 大径捕集管
11−1B−2、11−1C−2 電極筒
d 棒径
t 板厚
w 板幅
l 長さ
h 高さ
r 先端半径
α 中心角、立体角
P ピッチ
Pa PM塊
P1 上流側のPM塊
P2 下流側のPM塊
SE 強電界部
E 放電電極
E1 電極先端部
DESCRIPTION OF SYMBOLS 1 Electrostatic collection part 1-1 Main collection pipe | tube 1-1a Exhaust gas introduction pipe part 1-1b High concentration exhaust-gas derivation | leading-out part of PM 1-1c Seal air introduction pipe part 1-2a Electrode rod (main electrode)
1-3A, 1-3B, 1-3C, 1-3E, 1-3F Discharge electrode 1-3A-1, 1-3B-1, 1-3C-1, 1-3D-1, 1-3E-1 , 1-3E-3, 1-3F-1 base part 1-3A-2 1-3B-2, 1-3C-2, 1-3D-2, 1-3E-2, 1-3F-2 protrusion part 2 Fraction collection means 2-1 Cyclone collection part 2-1a Tangential cyclone 2-2 Discharge pipe 3 Low concentration outlet pipe 4 Support body 5-1 Communication pipe 5-2 High concentration exhaust gas pipe 7 Blower 8 Damper 11-1 Tubular Collection part 11-1A-1 Small diameter collection pipe 11-1B-1 Medium diameter collection pipe 11-1C-1 Large diameter collection pipe 11-1B-2, 11-1C-2 Electrode cylinder d Rod diameter t Plate Thickness w Plate width l Length h Height r Tip radius α Center angle, solid angle P Pitch Pa PM lump P1 upstream PM lump P2 downstream PM lump S E High electric field E E discharge electrode E1 tip

Claims (5)

重油を使用するディーゼルエンジンの排ガス中に含まれる粒状物質に帯電させる放電電極、及び帯電された前記粒状物質を捕集する集塵電極を構成する所定長さの管状捕集部を有し、かつ前記放電電極は管状捕集部内に管軸方向に配設された主電極又は該主電極に設けられた電極筒に配設され径方向大径に突出する電極によって構成された電気集塵手段を備えたディーゼルエンジン排ガス処理用電気集塵装置の放電電極であって、該放電電極が前記主電極又は該主電極に設けられた電極筒の外表面から径方向に立設する基部を有しかつ該基部の径方向の先端に排気ガスの流れ方向下流側もしくは上流側に突出しかつ前記主電極又は前記電極筒の軸方向に所望長さの突出部を少なくとも一つ有して構成されていることを特徴とするディーゼルエンジン排ガス処理用電気集塵装置の放電電極。   A discharge electrode for charging particulate matter contained in exhaust gas of a diesel engine using heavy oil; and a tubular collection portion having a predetermined length constituting a dust collection electrode for collecting the charged particulate matter, and The discharge electrode may be a main electrode disposed in the axial direction of the tube in the tubular collection portion, or an electrostatic precipitator including an electrode disposed on an electrode cylinder provided on the main electrode and protruding to a large diameter in the radial direction. A discharge electrode of a diesel engine exhaust gas processing electrostatic precipitator according to claim 1, wherein the discharge electrode has a base erected radially from an outer surface of the main electrode or an electrode cylinder provided on the main electrode. The tip of the base in the radial direction protrudes downstream or upstream in the flow direction of the exhaust gas, and has at least one protrusion of a desired length in the axial direction of the main electrode or the electrode cylinder. Is characterized by Discharge electrodes Gin exhaust gas processing electrostatic precipitator. 前記放電電極の突出部は、排気ガスの流れ方向下流側及び上流側に突出する突出部で構成されていることを特徴とする請求項1に記載のディーゼルエンジン排ガス処理用電気集塵装置の放電電極。   The discharge part of the discharge electrode according to claim 1, wherein the protrusion part of the discharge electrode is constituted by a protrusion part protruding to the downstream side and the upstream side in the flow direction of the exhaust gas. electrode. 前記放電電極の基部及び突出部は、軸方向断面がL字状、逆L字状、もしくはT字状の棒状材、板状材もしくはこれらを組み合わせた部材により構成されていることを特徴とする請求項1又は2に記載のディーゼルエンジン排ガス処理用電気集塵装置の放電電極。   The base and the projection of the discharge electrode are characterized in that the axial cross section is constituted by a rod-like member having an L-shape, an inverted L-shape or a T-shape, a plate-like member or a combination thereof. The discharge electrode of the electrostatic precipitator for diesel engine exhaust gas processing of Claim 1 or 2. 前記放電電極は、前記基部の基端部より前記突出部の軸心までの高さhが10〜30mmで、かつ前記基部の軸心から前記突出部先端までの長さlが10〜30mmであることを特徴とする請求項1〜3のいずれか1項に記載のディーゼルエンジン排ガス処理用電気集塵装置の放電電極。   The height h of the discharge electrode from the base end of the base to the axis of the protrusion is 10 to 30 mm, and the length l from the axis of the base to the tip of the protrusion is 10 to 30 mm The discharge electrode of the electrostatic precipitator for diesel engine exhaust gas processing of any one of Claims 1-3 characterized by the above-mentioned. 前記放電電極の突出部は、中心角10〜40°の三角形状でその先端が円弧状を呈して構成されるか、あるいは立体角10〜40°の円錐状でその先端が球面状を呈して構成されていることを特徴とする請求項1〜4のいずれか1項に記載のディーゼルエンジン排ガス処理用電気集塵装置の放電電極。   The protruding portion of the discharge electrode is formed in a triangular shape with a central angle of 10 to 40 ° and the tip thereof exhibits an arc shape, or a conical shape with a solid angle of 10 to 40 ° and a tip of the spherical surface. The discharge electrode of the electrostatic precipitator for diesel engine exhaust gas processing according to any one of claims 1 to 4, which is configured.
JP2017229506A 2017-11-29 2017-11-29 Discharge electrode of diesel engine exhaust treating electric dust collector Pending JP2019098219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229506A JP2019098219A (en) 2017-11-29 2017-11-29 Discharge electrode of diesel engine exhaust treating electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229506A JP2019098219A (en) 2017-11-29 2017-11-29 Discharge electrode of diesel engine exhaust treating electric dust collector

Publications (1)

Publication Number Publication Date
JP2019098219A true JP2019098219A (en) 2019-06-24

Family

ID=66975078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229506A Pending JP2019098219A (en) 2017-11-29 2017-11-29 Discharge electrode of diesel engine exhaust treating electric dust collector

Country Status (1)

Country Link
JP (1) JP2019098219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622868A (en) * 2020-06-10 2020-09-04 安徽腾达汽车科技有限公司 Functional exhaust gas circulating valve
CN113530640A (en) * 2021-08-19 2021-10-22 无锡威孚力达催化净化器有限责任公司 Method, device and storage medium for triggering DPF regeneration based on pressure difference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622868A (en) * 2020-06-10 2020-09-04 安徽腾达汽车科技有限公司 Functional exhaust gas circulating valve
CN113530640A (en) * 2021-08-19 2021-10-22 无锡威孚力达催化净化器有限责任公司 Method, device and storage medium for triggering DPF regeneration based on pressure difference

Similar Documents

Publication Publication Date Title
JP6172714B2 (en) Exhaust gas treatment equipment for marine diesel engines using heavy oil
JP2014238086A5 (en)
WO2018221207A1 (en) Discharge electrode of electrostatic precipitator for treating diesel engine exhaust gas
US20070000236A1 (en) Exhaust gas processing method and exhaust gas processing system
JP2006136766A (en) Diesel engine exhaust gas purifying apparatus
RU2552566C2 (en) Electric screening device for structures near high-voltage parts of electrostatic precipitators
JP2011069268A (en) Exhaust gas treatment device
JP2018202297A5 (en)
JP2019098219A (en) Discharge electrode of diesel engine exhaust treating electric dust collector
US20160144380A1 (en) Composite dust collector
JP5267989B2 (en) Barbed discharge wire and wet electrostatic precipitator using the same
US11484890B2 (en) Electrostatic precipitator
JPH1028897A (en) Electric precipitator
JP2019115874A (en) Discharge electrode of electric dust collector for diesel engine exhaust gas treatment
Niewulis et al. Collection efficiency in narrow electrostatic precipitators with a longitudinal or transverse wire electrode
US9333512B2 (en) Electrostatic screen device and method for emission control
JP7139120B2 (en) Electrostatic precipitator
KR20230173018A (en) Electric dust-collection apparatus
EP3133264A1 (en) Filtration device with electrostatic precipitator for gas turbine engines
JPH11267547A (en) Electrostatic precipitator for tunnel
CN209866326U (en) High-voltage electrostatic dust-collecting module smoke discharging and purifying device
JP6529408B2 (en) Electric dust collector for diesel engine exhaust gas treatment
CN212215905U (en) Novel discharge cathode structure and wet-type electric dust collector
KR20150098463A (en) all-in-one dust collector
CN114007752A (en) System for purifying particles present in flue gases and exhaust gases during combustion