JP2019095569A - Map information processing device, map information processing method and map information processing program - Google Patents

Map information processing device, map information processing method and map information processing program Download PDF

Info

Publication number
JP2019095569A
JP2019095569A JP2017224128A JP2017224128A JP2019095569A JP 2019095569 A JP2019095569 A JP 2019095569A JP 2017224128 A JP2017224128 A JP 2017224128A JP 2017224128 A JP2017224128 A JP 2017224128A JP 2019095569 A JP2019095569 A JP 2019095569A
Authority
JP
Japan
Prior art keywords
map information
data
unit
map
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017224128A
Other languages
Japanese (ja)
Other versions
JP6586146B2 (en
Inventor
博昭 関山
Hiroaki Sekiyama
博昭 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imics Inc
Micware Co Ltd
Original Assignee
Imics Inc
Micware Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imics Inc, Micware Co Ltd filed Critical Imics Inc
Priority to JP2017224128A priority Critical patent/JP6586146B2/en
Priority to EP18881072.5A priority patent/EP3614366A4/en
Priority to PCT/JP2018/043027 priority patent/WO2019103049A1/en
Priority to CN201880039595.8A priority patent/CN110914888A/en
Publication of JP2019095569A publication Critical patent/JP2019095569A/en
Application granted granted Critical
Publication of JP6586146B2 publication Critical patent/JP6586146B2/en
Priority to US16/688,891 priority patent/US10760920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instructional Devices (AREA)
  • Navigation (AREA)

Abstract

To provide a map information processing device that can easily determine road shape change.SOLUTION: A map information processing device comprises: a trajectory information acquisition unit that acquires respective trajectory information on a plurality of mobile objects; a map information storage unit that stores map information represented by vector data and including information on a location and shape of a road; a map information conversion unit that converts the map information to scalar data from the vector data; a difference extraction unit that extracts difference data representing a difference between a movement trajectory image plotted from the trajectory information and a map image of the road in the map information converted to the scalar data; and a road shape change determination unit that determines whether the difference data is a road shape change by machine learning.SELECTED DRAWING: Figure 3

Description

本発明は、複数の移動体の軌跡情報から地図情報の道路形状が変化したか否かの判定を行う地図情報処理装置、地図情報処理方法および地図情報処理プログラムに関する。   The present invention relates to a map information processing apparatus, a map information processing method, and a map information processing program for determining whether or not the road shape of map information has changed from locus information of a plurality of moving objects.

現状、道路の情報は、国、県、市、区などの行政区画単位で管理されており、道路形状の変化(以下、「道路形状変化」とも称する)の情報は一元化されていない。道路地図を作成するために道路形状変化を把握するためには、新たな道路がどこでどのような形状で形成されたのかを、個別の道路ごとに調べなければならない。   At present, information on roads is managed in units of administrative divisions such as countries, prefectures, cities, and wards, and information on changes in road shape (hereinafter also referred to as "road shape change") is not centralized. In order to understand the road shape change in order to create a road map, it is necessary to examine where and in what shape a new road is formed for each individual road.

そのため、例えば国土地理院などから発行されているデジタル地図と、車両端末から取得したプローブデータ(Probe Data:軌跡情報)と、に基づいて、道路形状がどのように変化したかを判定し、道路地図の更新を行う方法が考えられる。   Therefore, it is judged how the road shape has changed based on, for example, a digital map issued by the Geographical Survey Institute etc. and probe data (Probe Data: trajectory information) acquired from the vehicle terminal, and the road is determined. One possible way is to update the map.

この種の地図情報を生成する装置として、車載端末が取得した位置情報に基づいて、道路接続状況を正しく推定して、更新地図を生成する構成が知られている(例えば、特許文献1)。   As an apparatus for generating map information of this type, there is known a configuration in which a road connection state is correctly estimated based on position information acquired by an on-vehicle terminal, and an updated map is generated (for example, Patent Document 1).

特開2017−97088号公報JP, 2017-97088, A

しかしながら、道路形状は、十字路形状からロータリー形状に変更される場合など、複雑で様々なパターンがあるため、地図情報と位置情報から単純に更新地図を生成することが難しい場合もある。   However, since there are complicated and various patterns, such as when the road shape is changed from a crossroad shape to a rotary shape, it may be difficult to simply generate an updated map from map information and position information.

したがって、特許文献1に記載されている構成だけでは十分ではなく、更なる改良が求められている。
本発明はこのような課題に鑑みてなされたものであり、道路形状変化の判定を、より容易に行うことを目的とする。
Therefore, the configuration described in Patent Document 1 is not sufficient, and further improvements are required.
The present invention has been made in view of such problems, and it is an object of the present invention to more easily determine a road shape change.

本発明の一態様によれば、本発明の地図情報処理装置は、軌跡情報取得部と、地図情報記憶部と、地図情報変換部と、差分抽出部と、道路形状変化判定部と、を備える。上記軌跡情報取得部は、複数の移動体それぞれの軌跡情報を取得する。上記地図情報記憶部は、ベクトルデータで表された地図情報を記憶する。上記ベクトルデータで表された地図情報は、道路の位置および形状を示す情報を含んでいる。上記地図情報変換部は、上記地図情報をベクトルデータからスカラーデータに変換する。上記差分抽出部は、差分データを抽出する。上記差分データは、上記軌跡情報から描画された移動軌跡画像と、上記スカラーデータに変換された地図情報中の道路の地図画像との差分を表す。上記道路形状変化判定部は、機械学習により上記差分データが道路形状変化であるか否かを判定する。   According to one aspect of the present invention, a map information processing apparatus according to the present invention includes a locus information acquisition unit, a map information storage unit, a map information conversion unit, a difference extraction unit, and a road shape change determination unit. . The locus information acquisition unit acquires locus information of each of a plurality of moving objects. The map information storage unit stores map information represented by vector data. The map information represented by the vector data includes information indicating the position and shape of the road. The map information conversion unit converts the map information from vector data to scalar data. The difference extraction unit extracts difference data. The difference data represents the difference between the movement locus image drawn from the locus information and the map image of the road in the map information converted to the scalar data. The road shape change determination unit determines whether the difference data is a road shape change by machine learning.

本発明は、道路形状変化の判定を、より容易に行うことができる。   The present invention can more easily determine the road shape change.

図1は、本実施形態の地図情報処理システムの一例を示す図である。FIG. 1 is a diagram showing an example of a map information processing system according to the present embodiment. 図2は、本実施形態の地図情報処理装置と車載端末との関係の一例を示す図である。FIG. 2 is a view showing an example of the relationship between the map information processing apparatus of the present embodiment and the on-vehicle terminal. 図3は、本実施形態の地図情報処理装置の機能の一例を示す機能ブロック図である。FIG. 3 is a functional block diagram showing an example of the function of the map information processing apparatus of the present embodiment. 図4Aは、移動画像描画部により車両の移動軌跡画像を描画する方法の一例を示す図である。FIG. 4A is a diagram illustrating an example of a method of drawing a moving track image of a vehicle by the moving image drawing unit. 図4Bは、移動画像描画部により車両の移動軌跡画像を描画する方法の一例を示す図である。FIG. 4B is a diagram showing an example of a method of drawing a moving track image of a vehicle by the moving image drawing unit. 図5Aは、差分抽出部により、移動軌跡画像および地図画像から差分データを抽出する方法の一例を示す図である。FIG. 5A is a diagram showing an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit. 図5Bは、差分抽出部により、移動軌跡画像および地図画像から差分データを抽出する方法の一例を示す図である。FIG. 5B is a diagram showing an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit. 図5Cは、差分抽出部により、移動軌跡画像および地図画像から差分データを抽出する方法の一例を示す図である。FIG. 5C is a diagram illustrating an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit. 図5Dは、差分抽出部により、移動軌跡画像および地図画像から差分データを抽出する方法の一例を示す図である。FIG. 5D is a diagram illustrating an example of a method of extracting difference data from the movement trajectory image and the map image by the difference extraction unit. 図6は、機械学習により道路形状変化を判定する方法の一例を示す図である。FIG. 6 is a diagram showing an example of a method of determining a road shape change by machine learning. 図7は、道路形状変化判定処理プログラムによる道路形状変化判定処理の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of road shape change determination processing by the road shape change determination processing program. 図8は、道路形状変化判定処理の一例を示す図である。FIG. 8 is a diagram showing an example of road shape change determination processing. 図9は、道路形状変化判定処理プログラムによる地図情報更新処理の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of map information update processing by the road shape change determination processing program. 図10Aは、地図情報更新処理の一例を示す図である。FIG. 10A is a diagram showing an example of the map information update process. 図10Bは、地図情報更新処理の一例を示す図である。FIG. 10B is a diagram showing an example of the map information update process. 図10Cは、地図情報更新処理の一例を示す図である。FIG. 10C is a diagram showing an example of the map information update process. 図10Dは、地図情報更新処理の一例を示す図である。FIG. 10D is a diagram showing an example of the map information update process. 図10Eは、地図情報更新処理の一例を示す図である。FIG. 10E is a diagram showing an example of the map information update process.

実施形態の地図情報処理システム1を図1に基づいて説明する。本実施形態の地図情報処理システム1は、地図を作成する上で道路形状変化の判定を容易に行うために使用される。地図情報処理システム1は、図1に示すように、地図情報処理装置2と、複数の車載端末3と、を含んで構成されている。以下、本実施形態の地図情報処理システム1における各構成について詳細に説明する。   A map information processing system 1 according to an embodiment will be described based on FIG. The map information processing system 1 of the present embodiment is used to easily determine a road shape change when creating a map. The map information processing system 1 is comprised including the map information processing apparatus 2 and the some vehicle-mounted terminal 3, as shown in FIG. Hereinafter, each composition in map information processing system 1 of this embodiment is explained in detail.

車載端末3は、道路を走行する車両4に搭載される。車載端末3は、例えば、カーナビゲーション装置より構成される。地図情報処理装置2と車載端末3とは、互いに無線通信により接続することができるように構成されている。図1では、日本を走行する車両4と地図情報処理装置2との無線通信を片矢印で例示している。地図情報処理システム1では、車載端末3からプローブデータが地図情報処理装置2へ送信される。   The on-vehicle terminal 3 is mounted on a vehicle 4 traveling on a road. The on-vehicle terminal 3 includes, for example, a car navigation device. The map information processing apparatus 2 and the on-vehicle terminal 3 are configured to be able to connect to each other by wireless communication. In FIG. 1, wireless communication between a vehicle 4 traveling in Japan and the map information processing apparatus 2 is illustrated by a single arrow. In the map information processing system 1, probe data is transmitted from the on-vehicle terminal 3 to the map information processing apparatus 2.

プローブデータは、例えば、車載端末3が搭載される車両4の自車位置(以下、「軌跡情報」ともいう)および時刻の情報を含んでいる。プローブデータは、自車位置および時刻の情報に加え、例えば、走行距離、走行速度、加速度、角速度といった車両4の走行履歴(属性情報(attribute))の情報を含んでいる。プローブデータの作成は、例えば、車両4に搭載された車載端末3を用いて行われる。車載端末3は、車両4に搭載されたGPS(Global Positioning System)モジュール、ジャイロセンサ、加速度センサから各種のセンサ情報を入手することができる。自車位置の情報は、例えば、カーナビゲーション装置のGPSモジュールから出力されるGPSデータにより算出される。すなわち、自車位置の情報は、GPSなどの衛星測位システムの機能を用いて取得される。
自車位置の情報は、ある時刻における車両4の位置座標を表す。
The probe data includes, for example, information of the vehicle position (hereinafter, also referred to as “locus information”) of the vehicle 4 on which the on-vehicle terminal 3 is mounted and the time. The probe data includes, for example, information of travel history (attribute information (attribute)) of the vehicle 4 such as travel distance, travel speed, acceleration, and angular velocity, in addition to the information of the vehicle position and time. Creation of probe data is performed, for example, using the on-vehicle terminal 3 mounted on the vehicle 4. The on-vehicle terminal 3 can obtain various sensor information from a GPS (Global Positioning System) module mounted on the vehicle 4, a gyro sensor, and an acceleration sensor. The information of the own vehicle position is calculated by, for example, GPS data output from the GPS module of the car navigation device. That is, the information on the vehicle position is acquired using the function of the satellite positioning system such as GPS.
The information on the vehicle position indicates the position coordinates of the vehicle 4 at a certain time.

車載端末3は、図2に示すように、通信端末5を介して、地図情報処理装置2と通信することができるように構成されている。車載端末3は、通信端末5を介して、車両4の軌跡情報を含むプローブデータを地図情報処理装置2へ送信する。車載端末3は、有線、若しくは無線により通信端末5と接続されていればよい。車載端末3は、通信端末5と物理的に別体に構成されていてもよいし、通信端末5が内蔵されて一体的に構成されていてもよい。通信端末5は、例えば、通信ユニット、携帯電話、若しくはスマートフォンである。通信端末5は、スマートフォンの場合、例えば、BLUETOOTH(登録商標)若しくはWi-Fiの通信規格で車載端末3と通信できるように接続される。通信端末5は、スマートフォンの場合、例えば、通信ネットワークを介して地図情報処理装置2と通信できるように接続される。   The on-vehicle terminal 3 is configured to be able to communicate with the map information processing apparatus 2 via the communication terminal 5 as shown in FIG. The on-vehicle terminal 3 transmits probe data including trajectory information of the vehicle 4 to the map information processing apparatus 2 via the communication terminal 5. The on-vehicle terminal 3 may be connected to the communication terminal 5 by wire or wireless. The on-vehicle terminal 3 may be physically configured separately from the communication terminal 5 or may be integrally configured with the communication terminal 5 built therein. The communication terminal 5 is, for example, a communication unit, a mobile phone, or a smartphone. In the case of a smartphone, the communication terminal 5 is connected so as to be able to communicate with the on-vehicle terminal 3 according to, for example, the BLUETOOTH (registered trademark) or Wi-Fi communication standard. In the case of a smart phone, the communication terminal 5 is connected, for example, to be able to communicate with the map information processing apparatus 2 via a communication network.

地図情報処理装置2は、各車載端末3から送信されたプローブデータを受信して、プローブデータに含まれる軌跡情報を取得する。地図情報処理装置2は、軌跡情報に基づいて、機械学習により、地図情報に含まれる道路形状が変化しているか否かを判定する。この判定の詳細については後述する。地図情報処理装置2は、道路形状が変化していると判定した場合には、地図情報を更新する。そして、地図情報処理装置2は、更新した地図情報を車載端末3へ送信する。   The map information processing apparatus 2 receives the probe data transmitted from each on-vehicle terminal 3, and acquires locus information included in the probe data. The map information processing apparatus 2 determines whether the road shape included in the map information has changed by machine learning based on the locus information. Details of this determination will be described later. The map information processing device 2 updates the map information when it is determined that the road shape is changing. Then, the map information processing device 2 transmits the updated map information to the on-vehicle terminal 3.

上述の実施形態においては、車載端末3は、カーナビゲーション装置により構成しているがこの限りではない。車載端末3は、カーナビゲーション装置だけに限られず、各種の端末装置であってもよい。端末装置としては、例えば、携帯電話、スマートフォン、ノートパソコン、若しくはタブレットパソコンが挙げられる。即ち、車載端末3は、車両4に持ち込まれたスマートフォン単体だけであってもよい。また、本実施形態の車両4は、車載端末3が搭載される4輪自動車で例示している。車両4は4輪自動車だけに限られず、3輪自動車、自動二輪車、若しくは自転車でもよい。言い換えれば、車両4は、移動体である。   In the above-mentioned embodiment, although the vehicle-mounted terminal 3 is comprised by the car navigation apparatus, it is not this limitation. The in-vehicle terminal 3 is not limited to the car navigation device, but may be various terminal devices. As a terminal device, a mobile telephone, a smart phone, a notebook computer, or a tablet personal computer is mentioned, for example. That is, the on-vehicle terminal 3 may be only a single smartphone brought into the vehicle 4. Moreover, the vehicle 4 of this embodiment is illustrated by the four-wheeled vehicle in which the vehicle-mounted terminal 3 is mounted. The vehicle 4 is not limited to a four-wheeled vehicle, and may be a three-wheeled vehicle, a motorcycle, or a bicycle. In other words, the vehicle 4 is a moving body.

次に、本実施形態の地図情報処理装置2について、図3を用いて説明する。
本実施形態の地図情報処理装置2は、地図情報記憶部21と、軌跡情報取得部22と、移動画像描画部23と、地図情報変換部24と、差分抽出部25と、道路形状変化判定部26と、地図情報更新部27とを含む。地図情報記憶部21は、地図情報を記憶する。地図情報記憶部21は、複数の縮尺毎に地図情報を記憶しておくことが好ましい。
Next, the map information processing apparatus 2 of the present embodiment will be described using FIG.
The map information processing apparatus 2 according to the present embodiment includes a map information storage unit 21, a trajectory information acquisition unit 22, a moving image drawing unit 23, a map information conversion unit 24, a difference extraction unit 25, and a road shape change determination unit. 26 and a map information updating unit 27. The map information storage unit 21 stores map information. The map information storage unit 21 preferably stores map information for each of a plurality of scales.

地図情報とは、地図を構成する情報である。地図情報は、ベクトルデータで構成されている。地図情報は、3次元のベクトルデータにより構成されていることがより好ましい。ベクトルデータとしては、道路の位置および道路の形状を示す情報を含んでいる。より具体的には、地図情報は、例えば、道路の形状を示す地図画像情報、地図画像情報に紐付いた地図画像上のノードやリンクの情報、一般道路か高速道路かを示す属性情報を有している。ノードは、交差点その他道路網表現上の結節などを示す。リンクは、ノードとノードの間の道路区間を示す。また、地図情報は、一定の緯度・経度の間隔で矩形に分離されたメッシュ単位で構成されている。さらに各メッシュは、所定の単位で分離された縮尺の異なる複数の階層から構成されている。メッシュは、日本の場合、例えば、総務省により定められた標準地域メッシュの規格を採用することができる。標準地域メッシュは、1次メッシュ、2次メッシュ、3次メッシュの順に約10分の1の面積比で構成される。さらに、メッシュは、1次〜3次メッシュより細分化した分割地域メッシュを、メッシュ単位として採用することができる。地図情報は、メッシュ単位毎に分割される場合、それぞれメッシュ番号と、対応する緯度および経度の情報とを有する。   Map information is information which comprises a map. Map information is composed of vector data. More preferably, the map information is composed of three-dimensional vector data. The vector data includes information indicating the position of the road and the shape of the road. More specifically, the map information has, for example, map image information indicating the shape of a road, information of nodes and links on the map image linked to the map image information, and attribute information indicating whether it is a general road or a highway. ing. The nodes indicate intersections and other nodules on the road network representation. A link indicates a road section between nodes. Further, the map information is configured in mesh units separated into rectangles at fixed latitude and longitude intervals. Furthermore, each mesh is composed of a plurality of layers of different scales separated by a predetermined unit. In the case of Japan, for example, the mesh can adopt the standard area mesh standard defined by the Ministry of Internal Affairs and Communications. The standard area mesh is composed of an area ratio of about 1/10 in the order of primary mesh, secondary mesh and tertiary mesh. Furthermore, the mesh can employ | adopt the division area mesh subdivided from the 1st-3rd mesh as a mesh unit. When the map information is divided into mesh units, the map information has mesh numbers and corresponding latitude and longitude information.

軌跡情報取得部22は、車両データ受信部28と、データ記憶部29と、を含む。車両データ受信部28は、複数の車両4それぞれの車載端末3から送信されたプローブデータを受信する。データ記憶部29は、車両データ受信部28が受信したプローブデータを記憶する。軌跡情報取得部22は、各車載端末3からプローブデータを受信することにより、プローブデータに含まれる各車両4の軌跡情報を取得することができる。軌跡情報は、緯度・経度により表された座標である。   The locus information acquisition unit 22 includes a vehicle data reception unit 28 and a data storage unit 29. The vehicle data receiving unit 28 receives probe data transmitted from the on-vehicle terminals 3 of the plurality of vehicles 4. The data storage unit 29 stores probe data received by the vehicle data receiving unit 28. The locus information acquisition unit 22 can acquire locus information of each vehicle 4 included in the probe data by receiving the probe data from each on-vehicle terminal 3. Trajectory information is coordinates expressed by latitude and longitude.

移動画像描画部23は、軌跡情報取得部22によって取得された所定の範囲にある複数の車両4の軌跡情報に基づいて移動軌跡画像をまとめて描画する。所定の範囲は、例えば、道路情報を構成する任意の縮尺のメッシュを採用する。   The moving image drawing unit 23 draws movement locus images together based on the locus information of the plurality of vehicles 4 in the predetermined range acquired by the locus information acquisition unit 22. The predetermined range adopts, for example, a mesh of any scale that constitutes road information.

以下、移動画像描画部23が車両4の移動軌跡画像を描画する例について説明する。移動画像描画部23は、車両データ受信部28が受信した複数のプローブデータに含まれる軌跡情報の座標、時刻、走行速度、加速度、角速度の情報に基づいて、図4Aに示すように、連続するm個の一群のプローブデータを取得する。例えば、移動画像描画部23は、プローブデータのうち、所定の時間間隔で、連続する座標を有するプローブデータ群を一群のプローブデータとして取得する。移動画像描画部23は、一群のプローブデータに含まれるm個の軌跡情報の座標をデータ記憶部29から取得する。移動画像描画部23は、取得した座標を点P1、P2、P3〜Pmとしてプロットする。移動画像描画部23は、図4Bに示すように、プロットした点P1、P2、P3〜Pm同士を線で繋いで1つの移動軌跡画像Lとして描画する。これにより、移動画像描画部23は、軌跡情報の他に、時刻、走行距離、走行速度、加速度、角速度の情報を含んだベクトル形式のプローブデータからスカラー形式の移動軌跡画像を生成することができる。   Hereinafter, an example in which the moving image drawing unit 23 draws the movement trajectory image of the vehicle 4 will be described. The moving image drawing unit 23 is continuous as shown in FIG. 4A based on information of coordinates, time, traveling speed, acceleration, and angular velocity of locus information included in a plurality of probe data received by the vehicle data receiving unit 28. Acquire m sets of probe data. For example, the moving image drawing unit 23 acquires, as probe data groups, probe data groups having continuous coordinates at predetermined time intervals among the probe data. The moving image drawing unit 23 acquires, from the data storage unit 29, the coordinates of m pieces of locus information included in a group of probe data. The moving image drawing unit 23 plots the acquired coordinates as points P1, P2, and P3 to Pm. As illustrated in FIG. 4B, the moving image drawing unit 23 draws the plotted points P1, P2, and P3 to Pm as lines of one moving locus image L by connecting them. As a result, the moving image drawing unit 23 can generate a moving locus image in scalar form from probe data in vector form including information on time, traveling distance, traveling speed, acceleration, and angular velocity in addition to locus information. .

また、移動画像描画部23は、車両データ受信部28がプローブデータを受信すると、移動軌跡画像の描画を繰り返し行う。移動画像描画部23は、複数の移動軌跡画像を重畳して描画した場合、各移動軌跡画像の中央値または自乗平均値を算出して、重畳して描画された各移動軌跡画像の幅方向の中心値(中心座標)を繋いだ線を、平均化された移動軌跡画像として描画することができる。これにより、移動画像描画部23は、マルチパスによるGPSデータの誤差、通信障害を起因とする軌跡情報の座標の揺らぎが抑制される。移動画像描画部23は、座標の揺らぎが抑制されることで描画精度を向上できる。   In addition, when the vehicle data receiving unit 28 receives the probe data, the moving image drawing unit 23 repeatedly draws the movement locus image. When the moving image drawing unit 23 draws a plurality of moving trajectory images in a superimposed manner, it calculates a median or a square average value of each moving trajectory image, and the width direction of each moving trajectory image drawn in a superimposed manner A line connecting center values (center coordinates) can be drawn as an averaged movement trajectory image. As a result, the moving image drawing unit 23 suppresses an error in GPS data due to multipath and fluctuation in coordinates of trajectory information caused by communication failure. The moving image drawing unit 23 can improve the drawing accuracy by suppressing the fluctuation of the coordinates.

移動画像描画部23は、プローブデータに含まれる走行速度の情報を参照して、走行速度が所定の速度以上のプローブデータを省いて移動軌跡画像を描画してもよい。車載端末3は、GPSデータから走行速度を算出する場合、マルチパスによるGPSデータの誤差、若しくは通信障害を起因として、例えば、車速が通常ありえない300km以上に算出される場合もある。移動画像描画部23は、マルチパスによるGPSデータの誤差、若しくは通信障害を起因とする走行情報の誤検出が抑制できる。移動画像描画部23は、走行情報の誤検出が抑制されることで、描画精度が向上する。   The moving image drawing unit 23 may draw a movement locus image by omitting probe data having a traveling speed equal to or higher than a predetermined speed with reference to information on traveling speed included in the probe data. When calculating the traveling speed from the GPS data, the on-vehicle terminal 3 may be calculated, for example, to 300 km or more where the vehicle speed can not normally be obtained due to an error in GPS data due to multipath or communication failure. The moving image drawing unit 23 can suppress erroneous detection of traveling information caused by an error in GPS data due to multipath or communication failure. The moving image drawing unit 23 improves the drawing accuracy by suppressing the erroneous detection of the traveling information.

移動画像描画部23は、プローブデータに含まれる走行速度の情報を参照して、走行速度が連続しないプローブデータを省いて移動軌跡画像を描画してもよい。これにより、移動画像描画部23は、例えば、駐車場において途中で駐車した車両4の車載端末3から得られるプローブデータを省くことができる。移動画像描画部23は、不要なプローブデータを省くことで、移動軌跡画像の描画精度を向上させることができる。   The moving image drawing unit 23 may draw a movement locus image by omitting probe data in which the traveling speed is not continuous, with reference to information on the traveling speed included in the probe data. As a result, the moving image drawing unit 23 can omit, for example, probe data obtained from the on-vehicle terminal 3 of the vehicle 4 parked halfway in the parking lot. The moving image drawing unit 23 can improve the drawing accuracy of the movement locus image by omitting unnecessary probe data.

移動画像描画部23は、プローブデータに含まれる軌跡情報、走行速度の情報を参照して、高速道路上を移動していると推定できるプローブデータと、一般道路上を移動していると推定できるプローブデータと、を互いに識別して移動軌跡画像を描画することもできる。これにより、地図情報処理装置2は、任意に選択した道路種別だけを道路形状変化の判定処理対象にすることができる。地図情報処理装置2は、処理速度の向上を図ることができる。   The moving image drawing unit 23 can estimate that it is moving on a general road and probe data that can be estimated to move on a freeway with reference to locus information and traveling speed information included in the probe data It is also possible to draw the movement trajectory image by mutually identifying the probe data. Thereby, the map information processing apparatus 2 can set only the road type arbitrarily selected as the determination processing target of the road shape change. The map information processing apparatus 2 can improve the processing speed.

また、移動画像描画部23は、所定の単位期間に取得された車両4の軌跡情報に基づいて移動軌跡画像を描画してもよい。移動画像描画部23は、例えば、所定の単位期間の間を蓄積した軌跡情報に基づいてデータの正規化を行う。移動画像描画部23は、正規化されたデータから、メッシュ単位毎に、単位期間ごとのプローブデータを作成することができる。所定の単位期間は、例えば、現在時点を基準として、過去30日間分に設定することができる。本実施形態においては、移動画像描画部23は、単位期間ごとのプローブデータとして、2次メッシュのプローブデータを作成する。このように、地図情報処理装置2は、所定の期間にわたって蓄積した軌跡情報に基づいてプローブデータを作成することで、移動軌跡画像の描画精度が向上する。   In addition, the moving image drawing unit 23 may draw a movement locus image based on the locus information of the vehicle 4 acquired in a predetermined unit period. The moving image drawing unit 23 normalizes data, for example, based on locus information accumulated for a predetermined unit period. The moving image drawing unit 23 can create probe data for each unit period for each mesh unit from the normalized data. The predetermined unit period can be set, for example, for the past 30 days based on the current time point. In the present embodiment, the moving image drawing unit 23 creates probe data of secondary mesh as probe data for each unit period. As described above, the map information processing apparatus 2 generates the probe data based on the trajectory information accumulated over a predetermined period, thereby improving the drawing accuracy of the movement trajectory image.

なお、移動画像描画部23は、過去のプローブデータをリファレンスのために蓄積してもよい。移動画像描画部23は、リファレンスとなる過去のプローブデータを、所定の単位期間に取得した軌跡情報に基づいて作成された2次メッシュのプローブデータが作成される以前に、予め特定の期間にわたって蓄積した軌跡情報に基づいて作成することができる。過去のプローブデータは、メッシュ単位毎に作成されていることが好ましい。移動画像描画部23は、予め特定の期間として、例えば、30日を過去のプローブデータとして設定されていればよい。本実施形態においては、移動画像描画部23は、過去のプローブデータとして、30日間蓄積された2次メッシュのプローブデータを作成する。   The moving image drawing unit 23 may accumulate past probe data for reference. The moving image drawing unit 23 stores probe data of the past serving as a reference for a specific period in advance before probe data of a secondary mesh created based on locus information acquired in a predetermined unit period is created. It can be created based on the trajectory information. It is preferable that past probe data be created for each mesh unit. The moving image drawing unit 23 may be set in advance as probe data in the past, for example, 30 days as a specific period. In the present embodiment, the moving image drawing unit 23 creates probe data of secondary mesh accumulated for 30 days as probe data in the past.

移動画像描画部23は、第1ステップとして、新たに作成した2次メッシュのプローブデータと、過去に作成した2次メッシュのプローブデータと、を比較して差分があるか否かを判定することができる。そして、移動画像描画部23は、差分があった場合のみ、第2ステップとして、新たなプローブデータと地図情報との比較が行われる。これにより、地図情報処理装置2は、2段階で道路形状変化を検出することができる。また、地図情報処理装置2は、過去のプローブデータと差分があったプローブデータのみを差分抽出部25による差分データの抽出処理の処理対象にしている。地図情報処理装置2は、過去のプローブデータと差分があったプローブデータのみを差分データの処理対象にしているので、差分抽出部25における処理対象を減らすことができる。地図情報処理装置2は、差分抽出部25における処理対象を減らすことができるので、処理負担を軽減し、処理速度の向上を図ることができる。   As a first step, the moving image drawing unit 23 compares the probe data of the newly created secondary mesh with the probe data of the secondary mesh created in the past to determine whether there is a difference. Can. Then, the moving image drawing unit 23 compares the new probe data with the map information as the second step only when there is a difference. Thereby, the map information processing apparatus 2 can detect the road shape change in two steps. Further, the map information processing apparatus 2 makes only the probe data having a difference from the past probe data as a processing target of the extraction process of the difference data by the difference extracting unit 25. The map information processing apparatus 2 processes only the probe data having a difference with the past probe data as a processing target of the difference data, so that the processing target in the difference extracting unit 25 can be reduced. The map information processing apparatus 2 can reduce the processing target in the difference extracting unit 25, so that the processing load can be reduced and the processing speed can be improved.

なお、上述の実施形態では、所定の単位期間を1日間、3日間、7日間、30日間に設定としたがこれに限られるものではない。所定の単位期間は、日単位だけでなく、時間単位、月単位、年単位でもよく、任意の期間に設定することができる。また、上述の実施形態では、特定の期間を30日としたがこれに限られるものではない。特定の期間は、任意の期間に設定することができる。さらに、上述の実施形態では、移動画像描画部23は、2次メッシュのプローブデータを作成する構成だけに限られない。移動画像描画部23は、1次メッシュ、3次メッシュ、若しくは他の単位メッシュに合わせたプローブデータを作成してもよい。   In the above embodiment, the predetermined unit period is set to one day, three days, seven days, and thirty days, but the present invention is not limited to this. The predetermined unit period may be set not only on a daily basis, but also on an hourly basis, a monthly basis, or an annual basis, and can be set to any period. Moreover, in the above-mentioned embodiment, although the specific period was made into 30 days, it is not restricted to this. The specific period can be set to any period. Furthermore, in the above-described embodiment, the moving image drawing unit 23 is not limited to only the configuration for creating probe data of secondary mesh. The moving image drawing unit 23 may create probe data in accordance with a primary mesh, a tertiary mesh, or another unit mesh.

地図情報変換部24は、ベクトル形式の地図情報をスカラー形式の地図情報に変換する。具体的には、地図情報変換部24は、地図情報記憶部21に記憶されているベクトルデータの地図情報のうち、地図画像情報に紐付いたノードの情報、リンクの情報、一般道路か高速道路かを示す属性情報を省く。言い換えれば、地図情報変換部24は、道路の形状を示す地図画像情報だけを取り出す。地図情報変換部24は、地図画像情報だけにすることで、地図情報を3次元のベクトルデータから2次元のスカラーデータに変換する。すなわち、3次元のベクトルデータの地図情報は、地図情報に含まれるノードの情報、リンクの情報および属性情報が取り除かれて、地図画像情報だけとなる。3次元のベクトルデータの地図情報は、地図画像情報だけとなることで、データ構成がシンプルな2次元のスカラーデータの地図情報に変換される。これにより、地図情報処理装置2は、プローブデータにより得られた移動軌跡画像と、地図情報と、を同じシンプルな次元のデータにすることができ、後述の差分抽出部25における差分の抽出を容易にすることができる。また、地図情報変換部24は、スカラーデータに変換した2次元の地図情報を、任意の縮尺のメッシュ単位毎に分割したスカラーデータにする。   The map information conversion unit 24 converts map information in vector format into map information in scalar format. Specifically, among the map information of vector data stored in the map information storage unit 21, the map information conversion unit 24 is information of a node linked to the map image information, information of a link, and whether it is a general road or an expressway Omit attribute information indicating. In other words, the map information conversion unit 24 takes out only map image information indicating the shape of the road. The map information conversion unit 24 converts the map information from three-dimensional vector data into two-dimensional scalar data by using only map image information. That is, the map information of the three-dimensional vector data is only map image information after the node information, the link information, and the attribute information included in the map information are removed. The map information of the three-dimensional vector data is converted into the map information of the two-dimensional scalar data having a simple data configuration by being only the map image information. As a result, the map information processing apparatus 2 can convert the movement locus image obtained by the probe data and the map information into data of the same simple dimension, and it becomes easy to extract the difference in the difference extraction unit 25 described later. Can be Further, the map information conversion unit 24 converts the two-dimensional map information converted into scalar data into scalar data divided into mesh units of arbitrary scale.

上述の実施形態においては、地図情報変換部24は、スカラーデータに変換した2次元の地図情報を、任意の縮尺のメッシュ単位毎に分割したスカラーデータにする場合だけに限られない。例えば、道路形状変化判定部26により、差分データから道路形状変化があるとする確率が所定の確度以下であると判定された場合、地図情報変換部24は、地図情報記憶部21に記憶されている地図情報のうち、縮尺が大きい地図情報をベクトルデータからスカラーデータに変換する。   In the above embodiment, the map information conversion unit 24 is not limited to the case of converting the two-dimensional map information converted into scalar data into scalar data divided into mesh units of arbitrary scale. For example, when the road shape change determination unit 26 determines that the probability that there is a road shape change from the difference data is equal to or less than a predetermined probability, the map information conversion unit 24 is stored in the map information storage unit 21 Among the map information, map information with a large scale is converted from vector data to scalar data.

これにより、地図情報処理装置2は、初期段階では大まかに全体を判定することで、道路形状変化があるか否かの判定速度を向上することができる。言い換えれば、地図情報処理装置2は、差分データから道路形状変化があるとする確率が所定の確度若しくは所定の確度未満と判定された場合、処理対象をより縮尺が大きい地図情報にすることで、処理対象を限定して処理速度を向上させることができる。その結果、地図情報処理装置2は、判定精度をより向上させることができる。   As a result, the map information processing apparatus 2 can improve the determination speed as to whether or not there is a change in the road shape by roughly determining the whole in the initial stage. In other words, when it is determined that the probability that there is a road shape change from the difference data is less than the predetermined probability or the certain probability, the map information processing apparatus 2 changes the processing target to map information with a larger scale. The processing target can be limited to improve the processing speed. As a result, the map information processing apparatus 2 can further improve the determination accuracy.

差分抽出部25は、移動画像描画部23により描画された移動軌跡画像と、地図情報変換部24によりスカラーデータに変換された地図情報の地図画像と、の差分データを抽出することができるように構成されている。   The difference extraction unit 25 can extract difference data between the movement trajectory image drawn by the movement image drawing unit 23 and the map image of the map information converted into scalar data by the map information conversion unit 24. It is configured.

本実施形態の地図情報処理装置2は、地図情報記憶部21およびデータ記憶部29を、例えば、ハードディスクドライブ、若しくは半導体メモリのメモリで構成することができる。メモリには、CPU(Central Processing Unit)を駆動させるプログラムが記憶されていてもよい。CPUは、メモリに記憶されたプログラムが実行されることで、移動画像描画部23、地図情報変換部24、差分抽出部25、道路形状変化判定部26および地図情報更新部27を機能させることができるように構成されている。車両データ受信部28は、適宜の通信モジュールで構成することができる。   In the map information processing apparatus 2 according to the present embodiment, the map information storage unit 21 and the data storage unit 29 can be configured by, for example, a hard disk drive or a memory of semiconductor memory. The memory may store a program for driving a CPU (Central Processing Unit). The CPU causes the moving image drawing unit 23, the map information conversion unit 24, the difference extraction unit 25, the road shape change determination unit 26, and the map information update unit 27 to function by executing the program stored in the memory. It is configured to be able to. The vehicle data receiving unit 28 can be configured by an appropriate communication module.

以下、図5A〜図5Dを参照して、差分抽出部25により差分データを抽出する一例について説明する。
差分抽出部25は、移動画像描画部23により描画された移動軌跡画像と、地図情報変換部24によりスカラーデータに変換された地図情報の地図画像と、を取得する。図5Aには、移動画像描画部23により描画された移動軌跡画像を例示している。図5Bには、スカラーデータに変換された地図情報の地図画像を例示している。次に、差分抽出部25は、図5Cに示すように、取得した移動軌跡画像と、地図画像と、を合成した合成データの画像を作成する。差分抽出部25は、合成データの画像を作成した結果、図5Dに示すように、図5Aに示す移動軌跡画像と図5Bに示す地図画像との間で重複しない画像を、差分データの画像として抽出する。これにより、移動軌跡画像のうち、移動軌跡の揺らぎを消して、地図画像からはみ出た移動軌跡の画像のみを抽出することができる。図5Dには、差分抽出部25で抽出された差分データの画像を例示している。差分データの画像は、地図情報が生成された時点での道路と、現在の道路との差分を表すと考えられる。すなわち、差分データの画像は、道路形状変化を表すと考えられる。図5A〜図5Dに示す例では、図5中の丸で囲んだ領域において新たな道路が形成された可能性がある。次に、地図情報処理装置2は、図5中の丸で囲われた箇所を含めて、抽出した差分データが道路形状変化であるか否かを判定する。
Hereinafter, an example of extracting difference data by the difference extracting unit 25 will be described with reference to FIGS. 5A to 5D.
The difference extraction unit 25 acquires the movement trajectory image drawn by the movement image drawing unit 23 and the map image of the map information converted into scalar data by the map information conversion unit 24. FIG. 5A exemplifies the moving track image drawn by the moving image drawing unit 23. FIG. 5B exemplifies the map image of the map information converted into scalar data. Next, as shown in FIG. 5C, the difference extraction unit 25 creates an image of composite data obtained by combining the acquired movement trajectory image and the map image. As a result of creating the image of the composite data, as shown in FIG. 5D, the difference extraction unit 25 uses an image that does not overlap between the movement locus image shown in FIG. 5A and the map image shown in FIG. Extract. As a result, among the movement locus images, it is possible to eliminate the fluctuation of the movement locus and to extract only the image of the movement locus that has run out of the map image. The image of the difference data extracted by the difference extraction part 25 is illustrated in FIG. 5D. The image of the difference data is considered to represent the difference between the road at the time of generation of the map information and the current road. That is, the image of difference data is considered to represent road shape change. In the example shown in FIGS. 5A-5D, a new road may have been formed in the circled area in FIG. Next, the map information processing apparatus 2 determines whether or not the extracted difference data is a road shape change, including the circled portion in FIG.

道路形状変化判定部26は、差分抽出部25が抽出した差分データが道路形状変化であるか否かの判定を機械学習により判定する。機械学習としては、ディープラーニングが用いられている。具体的には、道路形状変化判定部26は、過去に抽出した差分データを教師データとして機械学習を行う。道路形状変化判定部26は、機械学習の結果に基づき、新たに抽出した差分データが道路形状変化であるか否かを判定する。   The road shape change determination unit 26 determines by machine learning whether the difference data extracted by the difference extraction unit 25 is a road shape change. Deep learning is used as machine learning. Specifically, the road shape change determination unit 26 performs machine learning using the difference data extracted in the past as teacher data. The road shape change determination unit 26 determines whether the newly extracted difference data is a road shape change based on the result of the machine learning.

次に、図6を参照して、道路形状変化判定部26がディープラーニングにより道路形状変化を判定する方法の一例について説明する。ディープラーニングは、多層のニューラルネットワーク60による機械学習の手法の一種である。ニューラルネットワーク60は、入力データと出力データとを持ち、内部の演算処理は複数の人工ニューロンに基づいて行われる。機械学習において使用するニューラルネットワーク60は、3つの層を含んでいる。3つの層は、入力層61と、中間層62と、出力層63として図示している。中間層62は、隠れ層とも呼ばれ、2以上の層を含んでいてもよい。中間層62は、層の数が少なすぎれば、未学習となる。中間層62は、層の数が多すぎれば、過剰適合となる。道路形状変化判定部26は、差分データが道路形状変化であるか否かを判定するために、適宜に層の数が設定されればよい。人工ニューロンは、前の層の出力に対してパラメータを掛けたものの総和を出力する。人工ニューロンの出力データは、活性化関数により制御され、非線形性が付加される。本実施形態において使用される機械学習のための活性化関数は、例えば、ソフトマックス関数、シグモイド関数、若しくはガウス関数を採用することができる。   Next, with reference to FIG. 6, an example of a method in which the road shape change determination unit 26 determines the road shape change by deep learning will be described. Deep learning is a type of machine learning method using a multi-layered neural network 60. The neural network 60 has input data and output data, and internal arithmetic processing is performed based on a plurality of artificial neurons. The neural network 60 used in machine learning includes three layers. The three layers are illustrated as an input layer 61, an intermediate layer 62, and an output layer 63. The middle layer 62 is also called a hidden layer, and may include two or more layers. The middle layer 62 is unlearned if the number of layers is too small. The middle layer 62 is overfit if there are too many layers. The road shape change determination unit 26 may appropriately set the number of layers in order to determine whether the difference data is a road shape change. An artificial neuron outputs the sum of the output of the previous layer multiplied by a parameter. The output data of the artificial neuron is controlled by the activation function to add nonlinearity. The activation function for machine learning used in the present embodiment can employ, for example, a soft max function, a sigmoid function, or a Gaussian function.

ニューラルネットワーク60は、機械学習を行うため、初めに入力データとして、教師データが入力層61に与えられる。教師データは、例えば、差分抽出部25により過去に抽出された差分データである。道路形状変化判定部26は、教師データを入力層61、中間層62、出力層63により処理する。すなわち、道路形状変化判定部26は、入力した差分データに最適な特徴量を動的に生成して学習し、順方向の情報伝搬により演算処理する順伝播を行う。図6では、順伝播の方向を極太の片矢印で示している。出力結果は、入力された差分データが道路形状変化の画像であるか、ノイズであるかの予測結果を表す。   In order to perform machine learning, the neural network 60 is first given teaching data to the input layer 61 as input data. The teacher data is, for example, difference data extracted in the past by the difference extraction unit 25. The road shape change determination unit 26 processes teacher data by the input layer 61, the intermediate layer 62, and the output layer 63. That is, the road shape change determination unit 26 dynamically generates and learns an optimal feature amount for the input difference data, and performs forward propagation in which calculation processing is performed by forward information propagation. In FIG. 6, the direction of forward propagation is indicated by a thick single arrow. The output result indicates the prediction result as to whether the input difference data is an image of road shape change or noise.

また、学習を行う場合には、道路形状変化判定部26は、出力結果が道路形状変化の画像であるか、ノイズであるかの情報を与えることで、逆方向の情報伝搬により演算処理する逆伝播を行う。図6では、逆伝播の方向を太い片矢印で示している。なお、道路形状変化判定部26では、機械学習において、教師データとして学習に使用する入力データと、出力データとの出力誤差を評価する。道路形状変化判定部26は、逆伝播により、出力誤差から逐次的に機械学習における各層と各ノードのパラメータを最適化することが好ましい。   When learning is performed, the road shape change determination unit 26 reversely performs arithmetic processing by information propagation in the reverse direction by giving information on whether the output result is a road shape change image or noise. Propagation is done. In FIG. 6, the direction of back propagation is indicated by a thick single arrow. In the machine learning, the road shape change determination unit 26 evaluates an output error between input data used for learning as teacher data and output data. The road shape change determination unit 26 preferably optimizes the parameters of each layer and each node in machine learning sequentially from the output error by back propagation.

この学習により、道路形状変化判定部26は、各層のパラメータを徐々に最適値に近づけていける。そして、道路形状変化判定部26は、差分抽出部25により抽出された差分データを入力層61に入力すると、機械学習の結果に基づいて調整されたパラメータを用いて、差分データが道路形状変化の画像であるか否かの判定を行うことができる。   By this learning, the road shape change determination unit 26 can gradually bring the parameters of each layer closer to the optimal value. Then, when the road shape change determination unit 26 inputs the difference data extracted by the difference extraction unit 25 to the input layer 61, the difference data is changed according to the road shape change using the parameter adjusted based on the result of machine learning. It can be judged whether it is an image or not.

道路形状変化判定部26は、例えば、図6に示すように、n個の差分データd1、d2からdnを教師データとして順伝播させると、出力層63にM個の出力データy1〜yMの情報が得られる。本実施形態において、出力データは、入力された差分データが道路形状変化の画像であるか、それ以外の画像であるかを予測する予測値を表す。   For example, as shown in FIG. 6, when the road shape change determination unit 26 propagates n pieces of difference data d1 and d2 forward as teacher data, information on M pieces of output data y1 to yM is output to the output layer 63. Is obtained. In the present embodiment, the output data represents a predicted value for predicting whether the input difference data is an image of road shape change or another image.

道路形状変化判定部26は、得られた出力データy1〜yMに対して、道路形状変化の画像であるか、ノイズであるかを示すM個の正解データt1〜tMの情報が与えられる。道路形状変化判定部26は、正解データt1からtMの情報が与えられて逆伝播を行うと、逐次パラメータを最適な値に調整する機械学習を行う。言い換えれば、道路形状変化判定部26は、逆伝播により出力データと正解データとのずれを評価し、パラメータを最適化している。なお、機械学習のために使用するソフトウェアは、例えば、OpenCV、Numpy、Matplotlib、若しくはChainerを採用することができる。   The road shape change determination unit 26 is provided with information of M pieces of correct data t1 to tM indicating whether it is an image of road shape change or noise, to the obtained output data y1 to yM. When information on the correct data t1 to tM is given and back propagation is performed, the road shape change determination unit 26 performs machine learning to adjust the parameter to an optimal value one by one. In other words, the road shape change determination unit 26 evaluates the deviation between the output data and the correct data by back propagation to optimize the parameters. As software used for machine learning, for example, OpenCV, Numpy, Matplotlib, or Chainer can be adopted.

地図情報更新部27は、地図情報記憶部21に記憶される地図情報を更新する。具体的には、地図情報更新部27は、道路形状変化判定部26により、道路形状変化であると判定された差分データに対応するスカラーデータに変換された地図情報から、ベクトルデータの地図情報を生成する。そして、地図情報更新部27は、生成した地図情報で、地図情報記憶部21に記憶される地図情報を更新する。地図情報を更新する処理については、後述の地図情報更新処理において説明する。   The map information updating unit 27 updates the map information stored in the map information storage unit 21. Specifically, the map information updating unit 27 converts the map information of the vector data from the map information converted into the scalar data corresponding to the difference data determined by the road shape change determination unit 26 to be the road shape change. Generate Then, the map information updating unit 27 updates the map information stored in the map information storage unit 21 with the generated map information. The process of updating the map information will be described in the later-described map information update process.

ところで、地図情報処理装置では、機械学習により、単純にプローブデータとデジタル地図とから道路形状の変化を識別させることも考えられる。
しかしながら、一般にデジタル地図のデータは、道路の形状を示す地図画像情報、地図画像情報に紐付いた地図画像上のノードやリンクの情報、一般道路か高速道路かを示す属性情報などを有する3次元のベクトルデータで構成されている。
By the way, in the map information processing apparatus, it is conceivable to simply identify a change in road shape from probe data and a digital map by machine learning.
However, in general, digital map data is three-dimensional including map image information indicating the shape of a road, information on nodes and links on the map image linked to the map image information, and attribute information indicating whether it is a general road or an expressway. It is composed of vector data.

そのため、地図情報処理装置は、機械学習を用いて新規に作成された道路形状の変化を検出させる場合、単純にデジタル地図の3次元のベクトルデータを機械学習の処理対象として情報処理を行うと、処理対象の情報量が多すぎて情報処理の負担が大きくなり過ぎる場合がある。さらに、地図情報処理装置は、機械学習のオブジェクトとして比較する対象の情報量が多いため、どの情報が比較すべき対象の情報であるのか判断しづらい場合もある。   Therefore, when the map information processing apparatus detects a change in the road shape newly created using machine learning, it simply performs information processing with the three-dimensional vector data of the digital map as the machine learning process target. The amount of information to be processed may be so large that the burden of information processing may become too large. Furthermore, since the map information processing apparatus has a large amount of information to be compared as a machine learning object, it may be difficult to determine which information is to be compared.

本実施形態の地図情報処理装置2は、機械学習により道路地図を作成するため、処理対象をできるだけシンプルにすることで、道路形状変化の判定を容易に行っている。
また、地球の形状は、真球ではなく偏球であるため、メッシュの縦横の長さが場所によって異なる場合がある。本実施形態の地図情報処理装置2は、機械学習を行う場合、予め各メッシュの縦横の長さを統一した正規化を行っていることが好ましい。地図情報処理装置2は、機械学習を行った後、正規化されたメッシュを元に戻して利用することで、道路形状変化の判定をより正確に行うことができる。
Since the map information processing apparatus 2 of the present embodiment creates a road map by machine learning, determination of road shape change is easily performed by making the processing object as simple as possible.
Moreover, since the shape of the earth is not a true sphere but an oblate sphere, the length and width of the mesh may differ depending on the place. When performing machine learning, it is preferable that the map information processing apparatus 2 of the present embodiment performs normalization in which the vertical and horizontal lengths of the meshes are unified in advance. The map information processing apparatus 2 can perform the determination of the road shape change more accurately by restoring the normalized mesh and using it after machine learning.

次に、本実施形態に係る地図情報処理装置2による道路形状変化判定処理について、図7および図8を参照して説明する。地図情報処理装置2は、道路形状変化処理の開始の指示を受け付けると、図7のステップ11からステップ19の判定処理を開始する。以下では、ステップをSで示す。   Next, road shape change determination processing by the map information processing apparatus 2 according to the present embodiment will be described with reference to FIGS. 7 and 8. When the map information processing apparatus 2 receives an instruction to start road shape change processing, the map information processing apparatus 2 starts the determination processing of step 11 to step 19 of FIG. 7. In the following, the steps are indicated by S.

地図情報処理装置2は、道路形状変化であるか否かを判定する前に予め教師データに基づいてパラメータの最適化を実行する。道路形状変化判定部26は、教師データに基づいて機械学習を行う(S11)。   The map information processing apparatus 2 performs parameter optimization based on teacher data in advance before determining whether or not there is a road shape change. The road shape change determination unit 26 performs machine learning based on the teacher data (S11).

道路形状変化判定部26は、教師データとして予め準備された情報が入力される。予め準備された情報は、過去に抽出された差分データが道路形状変化を示す画像か、それ以外のノイズなどの画像か、を互いに識別するパラメータの設定のために用いられる。そして、設定されたパラメータは、例えば、道路形状変化判定部26で保持されるか、あるいは、道路形状変化判定部26がアクセス可能なメモリに格納される。   The road shape change determination unit 26 receives information prepared in advance as teacher data. The information prepared in advance is used to set parameters for mutually identifying whether the difference data extracted in the past is an image showing a road shape change or an image such as other noise. Then, for example, the set parameter is held by the road shape change determination unit 26 or stored in a memory accessible by the road shape change determination unit 26.

次に、軌跡情報取得部22は、各車載端末3から送信されたプローブデータを車両データ受信部28が受信する。軌跡情報取得部22は、受信したプローブデータをデータ記憶部29が記憶する。これにより、軌跡情報取得部22は、受信したプローブデータに含まれる各車両4の軌跡情報を取得する(S12)。   Next, in the locus information acquisition unit 22, the vehicle data reception unit 28 receives the probe data transmitted from each on-vehicle terminal 3. The locus information acquisition unit 22 stores the received probe data in the data storage unit 29. Thereby, the locus information acquisition unit 22 acquires locus information of each vehicle 4 included in the received probe data (S12).

地図情報変換部24は、地図情報記憶部21に記憶されているベクトルデータの地図情報に含まれる情報のうち、道路の形状を示す地図画像情報を取り出す。地図情報変換部24は、地図画像情報を取り出すことで、地図情報を3次元のベクトルデータから2次元のスカラーデータに変換する(S13)。   The map information conversion unit 24 extracts map image information indicating the shape of the road from the information included in the map information of the vector data stored in the map information storage unit 21. The map information conversion unit 24 converts map information from three-dimensional vector data into two-dimensional scalar data by extracting map image information (S13).

言い換えれば、地図情報変換部24は、ベクタ形式の地図画像を、ラスタ形式の地図画像に変換する。本実施形態においては、地図情報変換部24は、スカラーデータに変換した2次元の地図情報を、任意の縮尺のメッシュ単位として、2次メッシュ単位に分割した2次メッシュのスカラーデータに変換する。移動画像描画部23は、軌跡情報取得部22により取得したプローブデータを所定の単位期間の間、蓄積したデータの正規化により2次メッシュのプローブデータを作成する。   In other words, the map information conversion unit 24 converts the vector type map image into a raster type map image. In the present embodiment, the map information conversion unit 24 converts the two-dimensional map information converted into scalar data into scalar data of a secondary mesh divided into secondary mesh units as mesh units of an arbitrary scale. The moving image drawing unit 23 creates secondary mesh probe data by normalizing the accumulated data of the probe data acquired by the locus information acquisition unit 22 for a predetermined unit period.

移動画像描画部23は、正規化した2次メッシュのプローブデータに基づいて、2次メッシュの移動軌跡画像を描画する(S14)。
なお、移動画像描画部23は、所定の単位期間に取得されたプローブデータに基づき移動軌跡画像を作成する前に、軌跡情報取得部22により取得した過去のプローブデータを特定の期間の間、蓄積してデータの正規化を行う。移動画像描画部23は、データの正規化された過去の2次メッシュのプローブデータを作成する。そして、移動画像描画部23は、正規化した過去の2次メッシュのプローブデータに基づいて、過去の2次メッシュの移動軌跡画像を描画する。過去の2次メッシュの移動軌跡画像は、リファレンス用として参照される。
The moving image drawing unit 23 draws a moving trace image of the secondary mesh based on the normalized probe data of the secondary mesh (S14).
The moving image drawing unit 23 accumulates the past probe data acquired by the locus information acquiring unit 22 for a specific period before creating the movement locus image based on the probe data acquired in a predetermined unit period. Perform data normalization. The moving image drawing unit 23 creates probe data of a normalized past secondary mesh of data. Then, the moving image drawing unit 23 draws the moving trajectory image of the past secondary mesh based on the normalized past probe data of the secondary mesh. The movement trajectory image of the past secondary mesh is referred to for reference.

移動画像描画部23は、第1ステップとして、2次メッシュのプローブデータに基づいて描画した2次メッシュの移動軌跡画像と、過去の2次メッシュのプローブデータに基づいて描画した過去の2次メッシュの移動軌跡画像と、を比較して差分があるか否かを判定する(S15)。   As a first step, the moving image drawing unit 23 draws a movement trajectory image of a secondary mesh drawn based on probe data of a secondary mesh, and a past secondary mesh drawn based on probe data of a past secondary mesh. It is determined whether or not there is a difference by comparing the movement locus image of (S15).

上述の実施形態では、移動画像描画部23は、2次メッシュの移動軌跡画像を描画しているがこれに限られるものではない。移動画像描画部23は、1次メッシュ、3次メッシュなどの任意の縮尺のメッシュの移動軌跡画像を描画することができる。また、移動画像描画部23は、2次メッシュの移動軌跡画像と、過去の2次メッシュの移動軌跡画像と、を比較して差分があるか否かを判定する場合だけに限らない。例えば、移動画像描画部23は、2次メッシュのプローブデータに含まれる緯度・経度の情報と、過去の2次メッシュのプローブデータに含まれる緯度・経度の情報と、を直接比較して差分があるか否かを判定することもできる。   In the above-described embodiment, the moving image drawing unit 23 draws the movement trajectory image of the secondary mesh, but the present invention is not limited to this. The moving image drawing unit 23 can draw a movement locus image of a mesh of any scale, such as a primary mesh and a tertiary mesh. The moving image drawing unit 23 is not limited to the case of determining whether there is a difference by comparing the movement trajectory image of the secondary mesh and the movement trajectory image of the secondary mesh in the past. For example, the moving image drawing unit 23 directly compares the information of the latitude and longitude included in the probe data of the secondary mesh with the information of the latitude and longitude included in the probe data of the past secondary mesh, and the difference is It can also be determined whether there is any.

地図情報処理装置2は、移動軌跡画像と過去の移動軌跡画像との間に差分がないS15のNOの場合、図7に示すS16〜S19はスキップされ、道路形状変化判定処理は終了となる。すなわち、地図情報処理装置2は、S15の判定において差分があった場合のみ、S16〜S17が実行される。したがって、地図情報処理装置2は、S17の実行頻度が削減できる。また、地図情報処理装置2は、過去に蓄積したプローブデータに基づいて作成した移動軌跡画像と差分があった移動軌跡画像のみを差分抽出部25による差分データの抽出処理の処理対象にすることができる。そのため、地図情報処理装置2は、差分抽出部25における処理対象を減らすことで、処理負担を軽減し、処理速度の向上を図ることができる。   In the case of NO in S15 where there is no difference between the movement locus image and the past movement locus image, the map information processing apparatus 2 skips S16 to S19 shown in FIG. 7, and the road shape change determination processing ends. That is, the map information processing apparatus 2 executes S16 to S17 only when there is a difference in the determination of S15. Therefore, the map information processing apparatus 2 can reduce the execution frequency of S17. In addition, the map information processing apparatus 2 may process only the movement locus image having a difference from the movement locus image created based on the probe data accumulated in the past as the processing object of the difference data extraction process by the difference extraction unit 25. it can. Therefore, the map information processing apparatus 2 can reduce the processing load and reduce the processing speed by reducing the processing target in the difference extracting unit 25.

これに対し、移動軌跡画像と過去の移動軌跡画像との間に差分があるS15のYESの場合、差分抽出部25は、S14において描画された移動軌跡画像と、S13においてスカラーデータに変換された地図情報の地図画像との差分を表す差分データを抽出する(S16)。   On the other hand, in the case of YES in S15 where there is a difference between the movement locus image and the past movement locus image, the difference extraction unit 25 converts the movement locus image drawn in S14 into scalar data in S13. Difference data representing the difference between the map information and the map image is extracted (S16).

道路形状変化判定部26は、S11において学習した機械学習の結果に基づき、S16において新たに抽出した差分データが道路形状変化であるか否かを判定する(S17)。
抽出した差分データが道路形状変化であるS18のYESの場合、道路形状変化判定部26は、抽出した差分データを道路形状変化として出力する(S19)。
The road shape change determination unit 26 determines whether the difference data newly extracted in S16 is a road shape change based on the result of the machine learning learned in S11 (S17).
If the extracted difference data is YES at S18, which is a road shape change, the road shape change determination unit 26 outputs the extracted difference data as a road shape change (S19).

この場合、差分データは、道路形状変化を示すので、後の地図情報作成処理において使用するために保存しておく。
これに対し、抽出した差分データが道路形状変化でないS18のNOの場合、S19はスキップされ、道路形状変化判定処理は終了となる。この場合、差分データは、道路形状変化を示す情報ではなく、単なるノイズである可能性が高い。よって、抽出された差分データは廃棄されてもよい。
In this case, since the difference data indicates a road shape change, it is stored for use in the later map information creation process.
On the other hand, if the extracted difference data is NO in S18, which is not a road shape change, S19 is skipped, and the road shape change determination process ends. In this case, the difference data is not information indicating a road shape change, but is likely to be a simple noise. Thus, the extracted difference data may be discarded.

このように、地図情報処理装置2は、地図情報記憶部21に記憶されているベクトルデータの地図情報のうち、道路の形状を示す地図画像情報だけを取り出すことで、3次元のベクトルデータの地図情報が、データ構成のシンプルな2次元のスカラーデータの地図情報に変換される。これにより、地図情報処理装置2では、プローブデータにより得られた移動軌跡画像と、地図情報と、を同じシンプルな2次元のデータにすることができる。   As described above, the map information processing apparatus 2 extracts the map image information indicating the shape of the road from the map information of the vector data stored in the map information storage unit 21 so that the map of the three-dimensional vector data is extracted. Information is converted to simple two-dimensional scalar data map information of data configuration. Thereby, in the map information processing apparatus 2, it is possible to make the movement locus image obtained by the probe data and the map information the same simple two-dimensional data.

その結果、地図情報処理装置2は、機械学習を用いて新規に作成された道路形状の変化を検出させる場合、機械学習の処理対象を減らして処理負担の軽減を図ることができる。地図情報処理装置2は、処理速度を向上させ、さらに判定精度を向上させることで道路形状変化の判定を容易に行うことができる。   As a result, when the map information processing apparatus 2 detects a change in the road shape newly created using machine learning, it is possible to reduce the processing load of the machine learning by reducing the processing target of the machine learning. The map information processing apparatus 2 can easily determine the road shape change by improving the processing speed and further improving the determination accuracy.

次に、本実施形態に係る地図情報処理装置2による地図情報更新処理について、図9および図10A、図10Bを参照して説明する。
地図情報処理装置2は、地図情報更新処理の開始の指示を受け付けると、以下の地図情報更新処理が開始される。なお、上述の実施形態では、地図情報更新処理の開始の指示を受け付けると、地図情報更新処理を開始しているがこれに限られない。例えば、上述の道路形状変化判定処理のS19において所定数の道路形状変化を出力すると、地図情報更新処理を自動的に開始させてもよい。
Next, map information update processing by the map information processing apparatus 2 according to the present embodiment will be described with reference to FIG. 9 and FIGS. 10A and 10B.
When the map information processing apparatus 2 receives an instruction to start the map information update process, the following map information update process is started. In the above-described embodiment, when the instruction to start the map information update process is received, the map information update process is started, but the present invention is not limited to this. For example, when a predetermined number of road shape changes are output in S19 of the above-described road shape change determination process, the map information update process may be automatically started.

はじめに、地図情報更新部27は、道路形状変化判定処理のS19において出力した差分データをN個蓄積し、プローブデータの誤差を平均化する(S31)。ここで、Nは、任意の自然数である。誤差を平均化したプローブデータを図10Aおよび図10Bに示す。図10Bは、図10Aの領域F1を拡大した拡大図である。地図情報更新部27は、誤差を平均化した差分データ、すなわち、道路形状変化であると判定された道路形状を表すデータに対しスムース処理を行う(S32)。スムース処理が行われた道路形状は、新たに作られた道路の形状に相当する。   First, the map information update unit 27 accumulates N pieces of difference data output in S19 of the road shape change determination process, and averages the error of the probe data (S31). Here, N is an arbitrary natural number. Error averaged probe data is shown in FIGS. 10A and 10B. FIG. 10B is an enlarged view of a region F1 of FIG. 10A. The map information updating unit 27 performs a smoothing process on difference data obtained by averaging the errors, that is, data representing the road shape determined to be a road shape change (S32). The road shape on which the smoothing process has been performed corresponds to the shape of the newly created road.

地図情報更新部27は、地図情報記憶部21に記憶されているベクトルデータの地図情報のうち、S32においてスムース処理を行った道路形状の緯度・経度が含まれるメッシュの地図情報を取得する。差分データに基づいて判定された道路形状は、プローブデータに基づいて作成されているため、緯度・経度の情報を有する。よって、地図情報更新部27は、道路形状のプローブデータの緯度・経度を参照することで、対応するメッシュの地図情報を地図情報記憶部21から取得することができる。   The map information updating unit 27 acquires, among the map information of the vector data stored in the map information storage unit 21, the map information of the mesh including the latitude and longitude of the road shape on which the smooth processing has been performed in S32. The road shape determined based on the difference data has latitude and longitude information because it is created based on the probe data. Therefore, the map information updating unit 27 can acquire the map information of the corresponding mesh from the map information storage unit 21 by referring to the latitude and longitude of the probe data of the road shape.

図10Cおよび図10Dに示すように、地図情報更新部27は、S32においてスムース処理を行った2次元の道路形状D2を、取得したベクトルデータのメッシュの地図情報に含まれる道路形状D3に重ねる(S33)。図10Dは、図10Cの領域F2を拡大した拡大図である。   As shown in FIG. 10C and FIG. 10D, the map information updating unit 27 superimposes the two-dimensional road shape D2 which has been smoothed in S32 on the road shape D3 included in the map information of the mesh of the acquired vector data S33). FIG. 10D is an enlarged view of a region F2 of FIG. 10C.

地図情報更新部27は、図10Dに示すように、S32においてスムース処理を行った2次元の道路形状D2と、ベクトルデータのメッシュの地図情報に含まれる道路形状D3との接点を特定する。ここで、地図情報は、ベクトルデータで表されているので、Z軸方向の情報を含む。Z軸方向は、地面に対して垂直な方向を示している。すなわち、地図情報は、各道路のZ軸座標を表す情報を含む。Z軸座標は、例えば、標高である。よって、差分データから生成される道路形状D2と地図情報中の道路との接点は、緯度、経度、標高により表される。そして、地図情報更新部27は、特定した各接点にノードを付加する(S34)。図10Dおよび図10Eでは、ノードN1およびノードN2として例示している。なお、差分データから生成される道路形状D2に付加されるノードには、各道路のZ軸方向を表す接点の情報が含まれるため、道路形状D2は、ベクトルデータに変換される。   As shown in FIG. 10D, the map information updating unit 27 specifies a contact point between the two-dimensional road shape D2 which has been smoothed in S32 and the road shape D3 included in the map information of the mesh of vector data. Here, since the map information is represented by vector data, it includes information in the Z-axis direction. The Z-axis direction indicates a direction perpendicular to the ground. That is, the map information includes information representing Z-axis coordinates of each road. The Z-axis coordinate is, for example, the elevation. Therefore, the contact point between the road shape D2 generated from the difference data and the road in the map information is represented by latitude, longitude, and altitude. And the map information update part 27 adds a node to each identified contact point (S34). In FIG. 10D and FIG. 10E, they are illustrated as the node N1 and the node N2. Note that the nodes added to the road shape D2 generated from the difference data include information of contact points representing the Z-axis direction of each road, so the road shape D2 is converted into vector data.

地図情報更新部27は、特定したノードを利用して、ベクトルデータの道路形状D2の軸を生成する(S35)。
地図情報更新部27は、差分データから得られた道路形状D2の道路幅を、地図情報に含まれる道路形状D3の道路幅と一致するように修正する。そして、道路幅を修正したベクトルデータの道路形状D2を地図情報に含まれる道路形状D3とノードで連結する(S36)。
The map information updating unit 27 generates an axis of the road shape D2 of the vector data using the specified node (S35).
The map information updating unit 27 corrects the road width of the road shape D2 obtained from the difference data so as to match the road width of the road shape D3 included in the map information. Then, the road shape D2 of the vector data in which the road width is corrected is connected to the road shape D3 included in the map information by the node (S36).

地図情報更新部27は、地図情報に含まれる道路形状D3のうち、不要となった道路箇所D4および付加したノードを削除する(S37)。例えば、地図情報更新部27は、変換前の元の2次元の道路形状D2に付加したノード間において、プローブデータが存在しない箇所を不要となった道路箇所D4として削除する。   The map information updating unit 27 deletes the unnecessary road location D4 and the added node from the road shape D3 included in the map information (S37). For example, the map information updating unit 27 deletes, as the unnecessary road location D4, a location where no probe data exists between the nodes added to the original two-dimensional road shape D2 before conversion.

地図情報更新部27は、不要となった道路箇所D4を削除する。地図情報更新部27は、ベクトルデータの道路形状D2が連結された道路形状D3に基づき、地図情報記憶部21内の地図情報を更新する(S38)。この処理が終了すると、地図情報更新処理は終了となる。   The map information updating unit 27 deletes the unnecessary road location D4. The map information updating unit 27 updates the map information in the map information storage unit 21 based on the road shape D3 to which the road shape D2 of the vector data is connected (S38). When this process ends, the map information update process ends.

これにより、道路形状変化として抽出された2次元の差分データを再び3次元のベクトルデータに戻して地図情報を更新することができる。その結果、地図情報を定期的に自動フォーマット化することができ、地図情報の更新にかかる手間を軽減することができる。   Thereby, the two-dimensional difference data extracted as the road shape change can be returned to the three-dimensional vector data again to update the map information. As a result, the map information can be automatically formatted periodically, and the time required for updating the map information can be reduced.

なお、本実施形態の地図情報処理装置2は、制御部、一時記憶部、記憶部、無線通信部を有する。制御部は、記憶部に読込んだプログラムを実行する。本実施形態の車両データ受信部28、移動画像描画部23、地図情報変換部24、差分抽出部25、道路形状変化判定部26、地図情報更新部27は、地図情報処理装置2の制御部に含まれる。本実施形態の地図情報記憶部21およびデータ記憶部29は、地図情報処理装置2の記憶部に含まれる。一時記憶部は、記憶部から読込まれたプログラムや各種データを展開するワーキングエリアである。制御部、一時記憶部、記憶部、無線通信部などの各部位は相互に接続される。   The map information processing apparatus 2 of the present embodiment has a control unit, a temporary storage unit, a storage unit, and a wireless communication unit. The control unit executes the program read into the storage unit. The vehicle data reception unit 28, the moving image drawing unit 23, the map information conversion unit 24, the difference extraction unit 25, the road shape change determination unit 26, and the map information update unit 27 according to the present embodiment included. The map information storage unit 21 and the data storage unit 29 of the present embodiment are included in the storage unit of the map information processing apparatus 2. The temporary storage unit is a working area for expanding programs and various data read from the storage unit. The parts such as the control unit, the temporary storage unit, the storage unit, and the wireless communication unit are mutually connected.

本実施形態の地図情報処理装置2は、例えば、カーナビゲーションシステムや、自動運転支援システムで使用される地図データを自動でフォーマットする技術として使用することができる。   The map information processing apparatus 2 of the present embodiment can be used, for example, as a technology for automatically formatting map data used in a car navigation system or an automatic driving support system.

尚、本発明は上述した実施形態そのままに限定されるものではなく、実施段階でのその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施形態に示される全構成要素を適宜組み合わせても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。このような、発明の趣旨を逸脱しない範囲内において種々の変形や応用が可能であることはもちろんである。   The present invention is not limited to the above-described embodiment as it is, and constituent elements can be modified and embodied without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriate combinations of a plurality of components disclosed in the above embodiments. For example, all components shown in the embodiments may be combined as appropriate. Furthermore, components in different embodiments may be combined as appropriate. Of course, various modifications and applications are possible without departing from the scope of the invention.

1 地図情報処理システム
2 地図情報処理装置
3 車載端末
4 車両
5 通信端末
21 地図情報記憶部
22 軌跡情報取得部
23 移動画像描画部
24 地図情報変換部
25 差分抽出部
26 道路形状変化判定部
27 地図情報更新部
28 車両データ受信部
29 データ記憶部
DESCRIPTION OF SYMBOLS 1 map information processing system 2 map information processing apparatus 3 vehicle-mounted terminal 4 vehicle 5 communication terminal 21 map information storage part 22 locus information acquisition part 23 moving image drawing part 24 map information conversion part 25 difference extraction part 26 road shape change determination part 27 map Information updating unit 28 Vehicle data receiving unit 29 Data storage unit

Claims (9)

複数の移動体それぞれの軌跡情報を取得する軌跡情報取得部と、
道路の位置および形状を示す情報を含む、ベクトルデータで表された地図情報を記憶する地図情報記憶部と、
前記地図情報をベクトルデータからスカラーデータに変換する地図情報変換部と、
前記軌跡情報から描画された移動軌跡画像と、前記スカラーデータに変換された地図情報中の道路の地図画像との差分を表す差分データを抽出する差分抽出部と、
機械学習により前記差分データが道路形状変化であるか否かを判定する道路形状変化判定部と、
を備えることを特徴とする地図情報処理装置。
A trajectory information acquisition unit that acquires trajectory information of each of a plurality of moving objects;
A map information storage unit that stores map information represented by vector data including information indicating the position and shape of a road;
A map information conversion unit that converts the map information from vector data to scalar data;
A difference extraction unit that extracts difference data representing a difference between the movement locus image drawn from the locus information and the map image of the road in the map information converted into the scalar data;
A road shape change determination unit that determines whether the difference data is a road shape change by machine learning;
A map information processing apparatus comprising:
前記複数の移動体それぞれの軌跡情報に基づいて前記移動軌跡画像を描画する移動画像描画部をさらに備え、
前記移動画像描画部は、所定の範囲にある前記移動軌跡画像をまとめて描画する
ことを特徴とする請求項1に記載の地図情報処理装置。
It further comprises a moving image drawing unit that draws the movement trajectory image based on trajectory information of each of the plurality of moving objects,
The map information processing apparatus according to claim 1, wherein the moving image drawing unit draws the movement trajectory images within a predetermined range together.
前記移動画像描画部は、所定の期間に取得した軌跡情報に基づいて前記移動軌跡画像を描画する前に、予め特定の期間に取得した軌跡情報に基づいて過去の移動軌跡画像を描画し、描画した前記移動軌跡画像と、前記過去の移動軌跡画像と、を比較して差分があるか否かを判定し、
前記差分抽出部は、前記過去の移動軌跡画像と比較して差分があったと判定された前記移動軌跡画像のみを、前記差分データの抽出処理の処理対象にする
ことを特徴とする請求項2に記載の地図情報処理装置。
The moving image drawing unit draws a past movement locus image based on locus information acquired in a specific period in advance, before drawing the movement locus image based on locus information acquired in a predetermined period, and draws it. Comparing the moved trajectory image with the past moved trajectory image to determine whether there is a difference;
The difference extraction unit is characterized in that only the movement locus image determined to have a difference compared to the past movement locus image is a processing target of the extraction process of the difference data. Map information processing apparatus as described.
前記地図情報変換部は、前記地図情報のうち、道路の形状を示す地図画像情報だけを取り出してベクトルデータからスカラーデータに変換する
ことを特徴とする請求項1〜3のいずれか1つに記載の地図情報処理装置。
The said map information conversion part takes out only the map image information which shows the shape of a road among the said map information, Converts into vector data from scalar data, It is characterized by the above-mentioned. Map Information Processing Device.
前記道路形状変化判定部は、過去に抽出した前記差分データにより機械学習を行い、当該機械学習の結果に基づき、新たに抽出した前記差分データが道路形状変化であるか否かを判定する
ことを特徴とする請求項1〜4のいずれか1つに記載の地図情報処理装置。
The road shape change determination unit performs machine learning based on the difference data extracted in the past, and determines whether the difference data newly extracted is a road shape change based on the result of the machine learning. The map information processing apparatus according to any one of claims 1 to 4, characterized in that:
前記地図情報記憶部に記憶される地図情報を更新する地図情報更新部をさらに備え、
前記地図情報更新部は、
前記道路形状変化判定部により道路形状変化であると判定された前記差分データをベクトルデータに変換し、
ベクトルデータに変換した差分データを用いて前記地図情報記憶部に記憶される地図情報を更新する
ことを特徴とする請求項1〜5のいずれか1つに記載の地図情報処理装置。
It further comprises a map information update unit for updating the map information stored in the map information storage unit,
The map information updating unit
Converting the difference data determined to be road shape change by the road shape change determination unit into vector data;
The map information processing apparatus according to any one of claims 1 to 5, wherein the map information stored in the map information storage unit is updated using difference data converted into vector data.
前記地図情報記憶部は、複数の道路の位置および形状を示す情報を含んだ地図情報を複数の縮尺毎に記憶し、
前記地図情報変換部は、前記機械学習により前記差分データが道路形状変化である確率が所定の確度以下であると前記道路形状変化判定部により判定された場合には、前記地図情報記憶部に記憶されている地図情報のうち、縮尺が大きい地図情報をベクトルデータからスカラーデータに変換する
ことを特徴とする請求項1〜6のいずれか1つに記載の地図情報処理装置。
The map information storage unit stores map information including information indicating positions and shapes of a plurality of roads for each of a plurality of scales.
The map information conversion unit stores the map information storage unit when the road shape change determination unit determines that the probability that the difference data is a road shape change is less than or equal to a certainty by the machine learning. The map information processing apparatus according to any one of claims 1 to 6, wherein map information having a large scale is converted from vector data to scalar data among the stored map information.
複数の移動体それぞれの軌跡情報を取得し、
道路の位置および形状を示す情報を含む地図情報をベクトルデータからスカラーデータに変換し、
前記軌跡情報から描画された移動軌跡画像と、前記スカラーデータに変換された地図情報の地図画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する
処理をコンピュータが実行する地図情報処理方法。
Get trajectory information for each of multiple mobiles,
Convert map information including information indicating the position and shape of roads from vector data to scalar data,
Extracting difference data representing a difference between the movement locus image drawn from the locus information and the map image of the map information converted into the scalar data;
A map information processing method in which a computer executes a process of determining whether the difference data is a road shape change by machine learning.
複数の移動体それぞれの軌跡情報を取得し、
道路の位置および形状を示す情報を含む地図情報をベクトルデータからスカラーデータに変換し、
前記軌跡情報から描画された移動軌跡画像と、前記スカラーデータに変換された地図情報の地図画像との差分を表す差分データを抽出し、
機械学習により前記差分データが道路形状変化であるか否かを判定する
処理をコンピュータに実行させることを特徴とする地図情報処理プログラム。
Get trajectory information for each of multiple mobiles,
Convert map information including information indicating the position and shape of roads from vector data to scalar data,
Extracting difference data representing a difference between the movement locus image drawn from the locus information and the map image of the map information converted into the scalar data;
A map information processing program that causes a computer to execute a process of determining whether the difference data is a road shape change by machine learning.
JP2017224128A 2017-11-22 2017-11-22 Map information processing apparatus, map information processing method, and map information processing program Active JP6586146B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017224128A JP6586146B2 (en) 2017-11-22 2017-11-22 Map information processing apparatus, map information processing method, and map information processing program
EP18881072.5A EP3614366A4 (en) 2017-11-22 2018-11-21 Map information processing device, map information processing method, and map information processing program
PCT/JP2018/043027 WO2019103049A1 (en) 2017-11-22 2018-11-21 Map information processing device, map information processing method, and map information processing program
CN201880039595.8A CN110914888A (en) 2017-11-22 2018-11-21 Map information processing device, map information processing method, and map information processing program
US16/688,891 US10760920B2 (en) 2017-11-22 2019-11-19 Map information processing device and map information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224128A JP6586146B2 (en) 2017-11-22 2017-11-22 Map information processing apparatus, map information processing method, and map information processing program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019162266A Division JP7039536B2 (en) 2019-09-05 2019-09-05 Map information processing system

Publications (2)

Publication Number Publication Date
JP2019095569A true JP2019095569A (en) 2019-06-20
JP6586146B2 JP6586146B2 (en) 2019-10-02

Family

ID=66972941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224128A Active JP6586146B2 (en) 2017-11-22 2017-11-22 Map information processing apparatus, map information processing method, and map information processing program

Country Status (1)

Country Link
JP (1) JP6586146B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540010A (en) * 2020-05-15 2020-08-14 百度在线网络技术(北京)有限公司 Road monitoring method and device, electronic equipment and storage medium
WO2021002190A1 (en) * 2019-07-03 2021-01-07 株式会社デンソー Map data generation device
WO2021005738A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Map difference detection device, map data integration device, map differance correction device, map difference detection method
JP2022040067A (en) * 2020-08-28 2022-03-10 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Method and apparatus for identifying updated road, device, and computer storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243391A (en) * 1996-03-08 1997-09-19 Nissan Motor Co Ltd Vehicular route guidance system
JP2004109021A (en) * 2002-09-20 2004-04-08 Clarion Co Ltd Updating system of road map information
JP2004198997A (en) * 2002-12-20 2004-07-15 Denso Corp Map evaluation system, collating device and map evaluation device
JP2008164821A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Map information generation system
US20120277993A1 (en) * 2009-10-22 2012-11-01 Heiko Mund Incremental map generation, refinement and extension with gps traces
JP2014052341A (en) * 2012-09-10 2014-03-20 Hitachi Automotive Systems Ltd Map creation server, map creation method and map creation system
JP2014126372A (en) * 2012-12-25 2014-07-07 Denso Corp Map display system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243391A (en) * 1996-03-08 1997-09-19 Nissan Motor Co Ltd Vehicular route guidance system
JP2004109021A (en) * 2002-09-20 2004-04-08 Clarion Co Ltd Updating system of road map information
JP2004198997A (en) * 2002-12-20 2004-07-15 Denso Corp Map evaluation system, collating device and map evaluation device
JP2008164821A (en) * 2006-12-27 2008-07-17 Aisin Aw Co Ltd Map information generation system
US20120277993A1 (en) * 2009-10-22 2012-11-01 Heiko Mund Incremental map generation, refinement and extension with gps traces
JP2014052341A (en) * 2012-09-10 2014-03-20 Hitachi Automotive Systems Ltd Map creation server, map creation method and map creation system
JP2014126372A (en) * 2012-12-25 2014-07-07 Denso Corp Map display system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211513B2 (en) 2019-07-03 2023-01-24 株式会社デンソー Map data generator
WO2021002190A1 (en) * 2019-07-03 2021-01-07 株式会社デンソー Map data generation device
JPWO2021002190A1 (en) * 2019-07-03 2021-01-07
CN114072864A (en) * 2019-07-03 2022-02-18 株式会社电装 Map data generating device
CN114072864B (en) * 2019-07-03 2024-03-12 株式会社电装 Map data generating device
US11815362B2 (en) 2019-07-03 2023-11-14 Denso Corporation Map data generation apparatus
WO2021005738A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Map difference detection device, map data integration device, map differance correction device, map difference detection method
JPWO2021005738A1 (en) * 2019-07-10 2021-10-28 三菱電機株式会社 Map difference detection device, map data integration device, map difference correction device, map difference detection method
CN111540010B (en) * 2020-05-15 2023-09-19 阿波罗智联(北京)科技有限公司 Road monitoring method and device, electronic equipment and storage medium
CN111540010A (en) * 2020-05-15 2020-08-14 百度在线网络技术(北京)有限公司 Road monitoring method and device, electronic equipment and storage medium
JP7196382B2 (en) 2020-08-28 2022-12-27 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Method, Apparatus, Device and Computer Storage Medium for Identifying Updated Roads
JP2022040067A (en) * 2020-08-28 2022-03-10 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Method and apparatus for identifying updated road, device, and computer storage medium
US12025443B2 (en) 2020-08-28 2024-07-02 Beijing Baidu Netcom Science And Technology Co., Ltd. Method and apparatus for identifying updated road, device and computer storage medium

Also Published As

Publication number Publication date
JP6586146B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2019103049A1 (en) Map information processing device, map information processing method, and map information processing program
JP6586146B2 (en) Map information processing apparatus, map information processing method, and map information processing program
JP5013211B2 (en) Driving evaluation system and driving evaluation program
US10380503B2 (en) Distributed online learning for privacy-preserving personal predictive models
CN104270714B (en) The method and apparatus for determining user movement track
US11085791B2 (en) Method, apparatus, and computer program product for on-street parking localization
CN114930122B (en) Method and processor circuit for updating digital road map
CN116518960B (en) Road network updating method, device, electronic equipment and storage medium
CN111859178A (en) Method and system for recommending boarding points
EP3093620B1 (en) System and method for detecting roundabouts from probe data using vector fields
TWI725360B (en) Systems and methods for determining new roads on a map
JP5794453B2 (en) Navigation system, navigation program, and navigation method
JP2019139346A (en) Image recognition device, image recognition system and program
CN116164770A (en) Path planning method, path planning device, electronic equipment and computer readable medium
JP2020067656A (en) Map information processing device, map information processing method, and map information processing program
JP7039536B2 (en) Map information processing system
US20220229868A1 (en) Method and apparatus for automated map object conflict resolution via map event normalization and augmentation
CN116698075B (en) Road network data processing method and device, electronic equipment and storage medium
US20210270629A1 (en) Method and apparatus for selecting a path to a destination
CN116776999A (en) System and method for joint learning of self-supervising networks in an autopilot system
JP6557392B1 (en) Map information processing apparatus, map information processing method, and map information processing program
CN115773744A (en) Model training and road network processing method, device, equipment, medium and product
CN114543788A (en) Multi-layer global perception map construction method and system universal to structural unstructured environment
US20240203255A1 (en) System to predict vehicle parking bunching
CN114252081B (en) Positioning method, device, equipment and storage medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190906

R150 Certificate of patent or registration of utility model

Ref document number: 6586146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250