JP2019094509A - Polyolefin resin film - Google Patents

Polyolefin resin film Download PDF

Info

Publication number
JP2019094509A
JP2019094509A JP2019049080A JP2019049080A JP2019094509A JP 2019094509 A JP2019094509 A JP 2019094509A JP 2019049080 A JP2019049080 A JP 2019049080A JP 2019049080 A JP2019049080 A JP 2019049080A JP 2019094509 A JP2019094509 A JP 2019094509A
Authority
JP
Japan
Prior art keywords
derived
biomass
resin film
ethylene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019049080A
Other languages
Japanese (ja)
Inventor
高橋 拓
Taku Takahashi
拓 高橋
戸田 清志
Kiyoshi Toda
清志 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2019049080A priority Critical patent/JP2019094509A/en
Publication of JP2019094509A publication Critical patent/JP2019094509A/en
Priority to JP2021188750A priority patent/JP7257001B2/en
Withdrawn legal-status Critical Current

Links

Abstract

To provide a resin film formed of a resin composition containing carbon neutral polyolefin using ethylene derived from biomass.SOLUTION: A resin film is formed of a resin composition containing polyethylene derived from biomass formed by polymerization a monomer containing ethylene derived from biomass and polyethylene derived from a fossil fuel formed by polymerization of a monomer containing ethylene derived from a fossil fuel, in which the resin film contains one or two or more impurities selected from the group consisting of a carbonyl compound and a nitrogen-containing compound of amine and amine acid, the resin composition contains 5 mass% or more of the ethylene derived from the biomass to the whole resin composition, and the resin composition has a density of 0.91-0.96 g/cm.SELECTED DRAWING: None

Description

本発明は、バイオマス由来のポリオレフィンを含む樹脂フィルムに関し、より詳細には、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなるポリオレフィン樹脂フィルムに関する。   The present invention relates to a resin film containing a biomass-derived polyolefin, and more particularly, to a polyolefin resin film comprising a resin composition containing a biomass-derived polyolefin obtained by polymerizing a monomer containing biomass-derived ethylene.

近年、循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれており、バイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな再生可能エネルギーである。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、各種の樹脂をバイオマス原料から製造する試みも行われている。   In recent years, along with a growing demand for the construction of a recycling society, in the field of materials as well as energy, it is desired to break away from fossil fuels, and the use of biomass is attracting attention. Biomass is a so-called carbon neutral renewable energy, which is an organic compound photosynthesized from carbon dioxide and water, and converted to carbon dioxide and water by using it. In recent years, commercialization of biomass plastic using such biomass as raw materials has been rapidly advanced, and attempts have been made to produce various resins from biomass raw materials.

バイオマス由来の樹脂としては、乳酸発酵を経由して製造されるポリ乳酸(PLA)が先行して商業生産が始まったが、生分解性であることをはじめ、プラスチックとしての性能が現在の汎用プラスチックとは大きく異なるため、製品用途や製品製造方法に限界があり広く普及するには至っていない。また、PLAに対しては、ライフサイクルアセスメント(LCA)評価が行われており、PLA製造時の消費エネルギーおよび汎用プラスチック代替時の等価性等について議論がなされている。   As a resin derived from biomass, polylactic acid (PLA) produced via lactic acid fermentation preceded commercial production, but it is biodegradable, and its performance as a plastic is currently general-purpose plastic However, there is a limit to product applications and product manufacturing methods, and they have not been widely used. In addition, life cycle assessment (LCA) evaluation is performed for PLA, and discussions are being made on energy consumption at the time of PLA production and equivalence when replacing general-purpose plastics.

ここで、汎用プラスチックとしては、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ABS樹脂等、様々な種類が用いられている。特に、ポリエチレンは、フィルム、シート、ボトル等に成形され、包装材等の種々の用途に供されており、世界中での使用量が多い。そのため、従来の化石燃料由来のポリエチレンを用いることは環境負荷が大きい。   Here, as the general purpose plastic, various types such as polyethylene, polyvinyl chloride, polystyrene, ABS resin, etc. are used. In particular, polyethylene is formed into a film, a sheet, a bottle and the like, used for various applications such as packaging materials, and used in large quantities all over the world. Therefore, using conventional fossil fuel-derived polyethylene has a large environmental impact.

そのため、ポリエチレンの製造にバイオマス由来の原料を用いて、化石燃料の使用量を削減することが望まれている。例えば、現在までに、ポリオレフィン樹脂の原料となるエチレンやブチレンを、再生可能な天然原料から製造することが研究されてきた(例えば、特許文献1を参照)。   Therefore, it is desirable to reduce the amount of fossil fuel used by using biomass-derived materials for the production of polyethylene. For example, to date, it has been studied to produce ethylene and butylene, which are raw materials of polyolefin resins, from renewable natural raw materials (see, for example, Patent Document 1).

特表2011−506628号公報JP 2011-506628 gazette

本発明者らは、ポリオレフィン樹脂フィルムの原料であるエチレンに着目し、従来の化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンをその原料としたポリオレフィン樹脂フィルムは、従来の化石燃料から得られるエチレンを用いて製造されたポリオレフィン樹脂フィルムと、機械的特性等の物性面で遜色ないものが得られるとの知見を得た。本発明はかかる知見によるものである。   The present inventors focused on ethylene which is a raw material of a polyolefin resin film, and instead of ethylene obtained from a conventional fossil fuel, a polyolefin resin film using ethylene derived from biomass as the raw material is obtained from a conventional fossil fuel We obtained the finding that a polyolefin resin film produced using ethylene and a film comparable in physical properties such as mechanical properties can be obtained. The present invention is based on such findings.

したがって、本発明の目的は、バイオマス由来のエチレンを用いたカーボンニュートラルなポリオレフィンを含む樹脂組成物からなる樹脂フィルムを提供することであって、従来の化石燃料から得られる原料から製造された樹脂フィルムと機械的特性等の物性面で遜色ないポリオレフィン樹脂フィルムを提供することである。   Therefore, an object of the present invention is to provide a resin film comprising a resin composition containing a carbon neutral polyolefin using biomass-derived ethylene, wherein the resin film is produced from raw materials obtained from conventional fossil fuels And providing a polyolefin resin film which is comparable in physical properties such as mechanical properties.

本発明の態様によれば、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリエチレンと、化石燃料由来のエチレンを含むモノマーが重合してなる化石燃料由来のポリエチレンと、を含んでなる樹脂組成物からなる樹脂フィルムであって、
前記樹脂フィルムが、カルボニル化合物、アミンおよびアミノ酸の含窒素化合物からなる群より選択される1種または2種以上の不純物を含み、
前記樹脂組成物が、前記バイオマス由来のエチレンを前記樹脂組成物全体に対して5質量%以上含んでなり、前記樹脂組成物が、0.91〜0.96g/cmの密度を有する、樹脂フィルムが提供される。
According to an aspect of the present invention, it comprises biomass-derived polyethylene obtained by polymerizing a monomer derived from biomass-derived ethylene, and fossil fuel-derived polyethylene obtained by polymerizing a monomer derived from fossil fuel-derived ethylene. A resin film comprising a resin composition, wherein
The resin film contains one or more impurities selected from the group consisting of carbonyl compounds, amines and nitrogen-containing compounds of amino acids,
The resin, wherein the resin composition contains 5% by mass or more of ethylene derived from the biomass with respect to the entire resin composition, and the resin composition has a density of 0.91 to 0.96 g / cm 3 A film is provided.

本発明の態様においては、前記バイオマス由来のエチレンを含むモノマーが、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含んでもよい。   In the aspect of the present invention, the monomer containing ethylene derived from the biomass may further contain ethylene and / or α-olefin derived from fossil fuel.

本発明の態様においては、前記バイオマス由来のエチレンを含むモノマーが、バイオマス由来のα−オレフィンをさらに含んでもよい。   In an aspect of the present invention, the monomer containing ethylene derived from biomass may further contain an α-olefin derived from biomass.

本発明の態様においては、前記α−オレフィンが、ブチレン、ヘキセン、またはオクテンであってもよい。   In an aspect of the present invention, the α-olefin may be butylene, hexene or octene.

本発明の態様においては、前記樹脂フィルムを備えた、包装製品が提供される。   In an aspect of the present invention, there is provided a packaged product comprising the resin film.

本発明の態様においては、前記樹脂フィルムを備えた、シート成形品が提供される。   In the aspect of this invention, the sheet | seat molded article provided with the said resin film is provided.

本発明の態様においては、前記樹脂フィルムを備えた、ラベル材料が提供される。   In the aspect of this invention, the label material provided with the said resin film is provided.

本発明の態様においては、前記樹脂フィルムを備えた、蓋材が提供される。   In the aspect of this invention, the lid material provided with the said resin film is provided.

本発明の態様においては、前記樹脂フィルムを備えた、ラミネートチューブが提供される。   In an aspect of the present invention, a laminate tube provided with the resin film is provided.

本発明の態様においては、前記樹脂フィルムを備えた、積層フィルムが提供される。   In the aspect of this invention, the laminated | multilayer film provided with the said resin film are provided.

本発明の態様においては、前記樹脂フィルムを備えた、袋が提供される。   In an aspect of the present invention, a bag provided with the resin film is provided.

本発明によれば、ポリオレフィン樹脂フィルムが、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリエチレンと、化石燃料由来のエチレンを含むモノマーが重合してなる化石燃料由来のポリエチレンと、を含んでなる樹脂組成物からなり、バイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上含んでなることで、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。したがって、従来に比べて化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。
また、本発明のポリオレフィン樹脂フィルムは、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂フィルムと比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂フィルムを代替することができる。
According to the present invention, the polyolefin resin film comprises: biomass-derived polyethylene obtained by polymerizing monomers containing biomass-derived ethylene; and fossil fuel-derived polyethylene obtained by polymerizing the monomers containing fossil fuel-derived ethylene A carbon neutral polyolefin resin film can be realized by containing a resin composition containing 5% by mass or more of ethylene derived from biomass with respect to the entire resin composition. Therefore, the amount of fossil fuel used can be significantly reduced as compared with the prior art, and the environmental impact can be reduced.
In addition, the polyolefin resin film of the present invention substitutes the conventional polyolefin resin film because it is comparable in physical properties such as mechanical properties to the polyolefin resin film produced from the raw material obtained from the conventional fossil fuel. be able to.

バイオマス由来のエチレン
本発明において、バイオマス由来のポリオレフィンの原料となるバイオマス由来のエチレンの製造方法は、特に限定されず、従来公知の方法により得ることができる。以下、バイオマス由来のエチレンの製造方法の一例を説明する。
Ethylene derived from biomass In the present invention, a method of producing ethylene derived from biomass which is a raw material of polyolefin derived from biomass is not particularly limited, and can be obtained by a conventionally known method. Hereinafter, an example of a method for producing biomass-derived ethylene will be described.

バイオマス由来のエチレンは、バイオマス由来のエタノールを原料として製造することができる。特に、植物原料から得られるバイオマス由来の発酵エタノールを用いることが好ましい。植物原料は、特に限定されず、従来公知の植物を用いることができる。例えば、トウモロコシ、サトウキビ、ビート、およびマニオクを挙げることができる。   Biomass-derived ethylene can be produced using biomass-derived ethanol as a raw material. In particular, it is preferable to use biomass-derived fermented ethanol obtained from plant raw materials. The plant raw material is not particularly limited, and conventionally known plants can be used. For example, corn, sugar cane, beet and manioc can be mentioned.

本発明において、バイオマス由来の発酵エタノールとは、植物原料より得られる炭素源を含む培養液にエタノールを生産する微生物またはその破砕物由来産物を接触させ、生産した後、精製されたエタノールを指す。培養液からのエタノールの精製は、蒸留、膜分離、および抽出等の従来公知の方法が適用可能である。例えば、ベンゼン、シクロヘキサン等を添加し、共沸させるか、または膜分離等により水分を除去する等の方法が挙げられる。   In the present invention, biomass-derived fermented ethanol refers to ethanol purified after contacting a culture solution containing a carbon source obtained from a plant material with a microorganism producing ethanol or a product derived from a crushed material thereof to produce. For purification of ethanol from the culture solution, conventionally known methods such as distillation, membrane separation, and extraction can be applied. For example, benzene, cyclohexane and the like are added to make it azeotropic, or water is removed by membrane separation and the like.

本発明のエチレンを得るために、この段階で、エタノール中の不純物総量が1ppm以下にする等の高度な精製をさらに行ってもよい。   In order to obtain the ethylene of the present invention, high-level purification may be further performed at this stage, such as reducing the total amount of impurities in ethanol to 1 ppm or less.

エタノールの脱水反応によりエチレンを得る際には通常触媒が用いられるが、この触媒は、特に限定されず、従来公知の触媒を用いることができる。プロセス上有利なのは、触媒と生成物の分離が容易な固定床流通反応であり、例えば、γ―アルミナ等が好ましい。   When ethylene is obtained by dehydration reaction of ethanol, a catalyst is usually used, but this catalyst is not particularly limited, and conventionally known catalysts can be used. An advantage of the process is a fixed bed flow reaction which facilitates separation of the catalyst and the product, and, for example, γ-alumina and the like are preferable.

この脱水反応は吸熱反応であるため、通常加熱条件で行う。商業的に有用な反応速度で反応が進行すれば、加熱温度は限定されないが、好ましくは100℃以上、より好ましくは250℃以上、さらに好ましくは300℃以上の温度が適当である。上限も特に限定されないが、エネルギー収支および設備の観点から、好ましくは500℃以下、より好ましくは400℃以下である。   Since this dehydration reaction is an endothermic reaction, it is usually conducted under heating conditions. If the reaction proceeds at a commercially useful reaction rate, the heating temperature is not limited, but a temperature of preferably 100 ° C. or more, more preferably 250 ° C. or more, still more preferably 300 ° C. or more is suitable. The upper limit is also not particularly limited, but is preferably 500 ° C. or less, more preferably 400 ° C. or less from the viewpoint of energy balance and equipment.

反応圧力も特に限定されないが、後続の気液分離を容易にするため常圧以上の圧力が好ましい。工業的には触媒の分離の容易な固定床流通反応が好適であるが、液相懸濁床、流動床等でもよい。   The reaction pressure is also not particularly limited, but a pressure of normal pressure or higher is preferable in order to facilitate the subsequent gas-liquid separation. Industrially, a fixed bed flow reaction in which separation of the catalyst is easy is preferable, but a liquid phase suspension bed, a fluidized bed and the like may be used.

エタノールの脱水反応においては、原料として供給するエタノール中に含まれる水分量によって反応の収率が左右される。一般的に、脱水反応を行う場合には、水の除去効率を考えると水が無いほうが好ましい。しかしながら、固体触媒を用いたエタノールの脱水反応の場合、水が存在しないと他のオレフィン、特にブテンの生成量が増加する傾向にあることが判明した。恐らく、少量の水が存在しないと脱水後のエチレン二量化を押さえることができないためと推察している。許容される水の含有量の下限は、0.1%以上、好ましくは0.5%以上必要である。上限は特に限定されないが、物質収支上および熱収支の観点から、好ましくは50重量%以下、より好ましくは30%以下、さらに好ましくは20%以下である。   In the dehydration reaction of ethanol, the yield of the reaction depends on the amount of water contained in ethanol supplied as a raw material. In general, when the dehydration reaction is carried out, it is preferable that there is no water in view of the water removal efficiency. However, in the case of dehydration reaction of ethanol using a solid catalyst, it has been found that in the absence of water, the production of other olefins, in particular butene, tends to increase. It is speculated that this is probably because ethylene dimerization after dehydration can not be suppressed unless a small amount of water is present. The lower limit of the allowable water content is 0.1% or more, preferably 0.5% or more. The upper limit is not particularly limited, but is preferably 50% by weight or less, more preferably 30% or less, and still more preferably 20% or less from the viewpoint of mass balance and heat balance.

このようにしてエタノールの脱水反応を行うことによりエチレン、水および少量の未反応エタノールの混合部が得られるが、常温において約5MPa以下ではエチレンは気体であるため、これら混合部から気液分離により水やエタノールを除きエチレンを得ることができる。この方法は公知の方法で行えばよい。   By conducting dehydration reaction of ethanol in this way, a mixed portion of ethylene, water and a small amount of unreacted ethanol is obtained, but ethylene is a gas at normal temperature or less at about 5 MPa or less. Ethylene can be obtained except water and ethanol. This method may be performed by a known method.

気液分離により得られたエチレンはさらに蒸留され、このときの操作圧力が常圧以上であること以外は、蒸留方法、操作温度、および滞留時間等は特に制約されない。   Ethylene obtained by gas-liquid separation is further distilled, and the distillation method, the operation temperature, the residence time and the like are not particularly limited except that the operation pressure at this time is equal to or higher than normal pressure.

原料がバイオマス由来のエタノールの場合、得られたエチレンには、エタノール発酵工程で混入した不純物であるケトン、アルデヒド、およびエステル等のカルボニル化合物ならびにその分解物である炭酸ガスや、酵素の分解物・夾雑物であるアミンおよびアミノ酸等の含窒素化合物ならびにその分解物であるアンモニア等が極微量含まれる。エチレンの用途によっては、これら極微量の不純物が問題となるおそれがあるので、精製により除去しても良い。精製方法は、特に限定されず、従来公知の方法により行うことができる。好適な精製操作としては、例えば、吸着精製法をあげることができる。用いる吸着剤は特に限定されず、従来公知の吸着剤を用いることができる。例えば、高表面積の材料が好ましく、吸着剤の種類としては、バイオマス由来のエタノールの脱水反応により得られるエチレン中の不純物の種類・量に応じて選択される。   When the raw material is ethanol derived from biomass, the ethylene obtained may be a carbonyl compound such as a ketone, an aldehyde, or an ester, which is an impurity mixed in the ethanol fermentation process, a carbonic acid gas as a decomposition product thereof, a decomposition product of the enzyme, It contains extremely small amounts of nitrogen-containing compounds such as amines and amino acids which are contaminants, and ammonia which is its decomposition product. Depending on the use of ethylene, these trace impurities may become a problem, and may be removed by purification. The purification method is not particularly limited, and can be carried out by a conventionally known method. As a suitable purification operation, for example, an adsorption purification method can be mentioned. The adsorbent used is not particularly limited, and conventionally known adsorbents can be used. For example, a high surface area material is preferable, and the type of adsorbent is selected according to the type and amount of impurities in ethylene obtained by the dehydration reaction of ethanol derived from biomass.

なお、エチレン中の不純物の精製方法として苛性水処理を併用してもよい。苛性水処理をする場合は、吸着精製前に行うことが望ましい。その場合、苛性処理後、吸着精製前に水分除去処理を施す必要がある。   In addition, you may use together a caustic water treatment as a purification method of the impurity in ethylene. In the case of caustic water treatment, it is desirable to carry out before adsorption purification. In that case, after caustic treatment, it is necessary to carry out water removal treatment before adsorption purification.

ポリオレフィン
本発明において、バイオマス由来のポリオレフィンは、バイオマス由来のエチレンを含むモノマーが重合してなるものである。バイオマス由来のエチレンには、上記の製造方法により得られたものを用いることが好ましい。原料であるモノマーとしてバイオマス由来のエチレンを用いているため、重合されてなるポリオレフィンはバイオマス由来となる。なお、ポリオレフィンの原料モノマーは、バイオマス由来のエチレンを100質量%含むものでなくてもよい。
Polyolefin In the present invention, biomass-derived polyolefin is obtained by polymerizing a monomer containing biomass-derived ethylene. It is preferable to use what was obtained by said manufacturing method as ethylene derived from biomass. Since ethylene derived from biomass is used as a monomer which is a raw material, the polyolefin which is polymerized is derived from biomass. In addition, the raw material monomer of polyolefin does not need to contain 100 mass% of ethylene derived from biomass.

バイオマス由来のポリオレフィンの原料であるモノマーは、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含んでもよいし、バイオマス由来のα−オレフィンをさらに含んでもよい。   The monomer which is a raw material of biomass-derived polyolefin may further contain ethylene and / or α-olefin derived from fossil fuel, and may further contain α-olefin derived from biomass.

上記のα−オレフィンは、炭素数は特に限定されないが、通常、炭素数3〜20のものを用いることができ、ブチレン、ヘキセン、またはオクテンであることが好ましい。ブチレン、ヘキセン、またはオクテンであれば、バイオマス由来の原料であるエチレンの重合により製造することが可能となるからである。また、このようなα−オレフィンを含むことで、重合されてなるポリオレフィンはアルキル基を分岐構造として有するため、単純な直鎖状のものよりも柔軟性に富むものとすることができる。   The carbon number of the above α-olefin is not particularly limited, but generally, one having 3 to 20 carbon atoms can be used, and is preferably butylene, hexene or octene. This is because butylene, hexene or octene can be produced by polymerizing ethylene, which is a biomass-derived material. Further, by containing such an α-olefin, the polyolefin to be polymerized can be made more flexible than a simple linear one because it has an alkyl group as a branched structure.

上記のポリオレフィンが、ポリエチレンであることが好ましい。バイオマス由来の原料であるエチレンを用いることで、理論上100%バイオマス由来の成分により製造することが可能となるからである。   It is preferable that said polyolefin is polyethylene. By using ethylene, which is a biomass-derived material, it is possible to theoretically use 100% biomass-derived components.

上記のポリオレフィン中のバイオマス由来のエチレン濃度(以下、「バイオマス度」ということがある)は、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量を測定した値である。大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリオレフィン中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。本発明においては、ポリオレフィン中のC14の含有量をPC14とした場合の、バイオマス由来の炭素の含有量Pbioは、以下のようにして求めることができる。
bio(%)=PC14/105.5×100
The ethylene concentration derived from biomass (hereinafter sometimes referred to as “biomass degree”) in the above-mentioned polyolefin is a value obtained by measuring the content of carbon derived from biomass by the measurement of radioactive carbon (C14). Since carbon dioxide in the atmosphere contains C14 at a constant rate (105.5 pMC), the C14 content in plants that take in carbon dioxide in the atmosphere, such as corn, is about 105.5 pMC. It is known. It is also known that fossil fuel contains almost no C14. Therefore, the proportion of carbon derived from biomass can be calculated by measuring the proportion of C14 contained in all carbon atoms in the polyolefin. In the present invention, in the case where the content of C14 in the polyolefin was P C14, the content P bio Bio carbon from biomass, can be obtained as follows.
P bio (%) = P C14 / 105.5 × 100

本発明においては、理論上、ポリオレフィンの原料として、全てバイオマス由来のエチレンを用いれば、バイオマス由来のエチレン濃度は100%であり、バイオマス由来のポリオレフィンのバイオマス度は100%となる。また、化石燃料由来の原料のみで製造された化石燃料由来のポリオレフィン中のバイオマス由来のエチレン濃度は0%であり、化石燃料由来のポリオレフィンのバイオマス度は0%となる。   In the present invention, theoretically, if all biomass-derived ethylene is used as a raw material of polyolefin, the ethylene concentration derived from biomass is 100%, and the biomass degree of biomass-derived polyolefin is 100%. Moreover, the ethylene concentration derived from biomass in the fossil fuel derived polyolefin produced only from the fossil fuel derived raw material is 0%, and the biomass degree of the fossil fuel derived polyolefin is 0%.

本発明において、バイオマス由来のポリオレフィンやバイオマス由来の樹脂フィルムは、バイオマス度が100%である必要はない。樹脂フィルムの一部にでもバイオマス由来の原料が用いられていれば、従来に比べて化石燃料の使用量を削減するという本発明の趣旨に沿うからである。   In the present invention, the biomass-derived polyolefin and the biomass-derived resin film do not have to have a biomass degree of 100%. This is because, in accordance with the present invention, the amount of fossil fuel used can be reduced as compared to the conventional method if the biomass-derived material is used even for a part of the resin film.

本発明において、バイオマス由来のエチレンを含むモノマーの重合方法は、特に限定されず、従来公知の方法により行うことができる。重合温度や重合圧力は、重合方法や重合装置に応じて、適宜調節するのがよい。重合装置についても特に限定されず、従来公知の装置を用いることができる。以下、エチレンを含むモノマーの重合方法の一例を説明する。   In the present invention, the method for polymerizing ethylene-containing monomers derived from biomass is not particularly limited, and can be carried out by a conventionally known method. The polymerization temperature and the polymerization pressure may be appropriately adjusted according to the polymerization method and the polymerization apparatus. The polymerization apparatus is also not particularly limited, and a conventionally known apparatus can be used. Hereinafter, an example of the polymerization method of the monomer containing ethylene is demonstrated.

ポリオレフィン、特に、エチレン重合体やエチレンとα−オレフィンの共重合体の重合方法は、目的とするポリエチレンの種類、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、および直鎖状低密度ポリエチレン(LLDPE)等の密度や分岐の違いにより、適宜選択することができる。例えば、重合触媒として、チーグラー・ナッタ触媒等のマルチサイト触媒や、メタロセン系触媒等のシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。   Methods of polymerizing polyolefins, in particular ethylene polymers and copolymers of ethylene and α-olefins, include the types of polyethylenes targeted, eg high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE) And linear low density polyethylene (LLDPE) and the like, depending on the difference in density and branching. For example, by using a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene-based catalyst as a polymerization catalyst, any method of gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ion polymerization can be used. It is preferable to carry out in one or two or more stages.

上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。   The above single-site catalyst is a catalyst capable of forming homogeneous active species, and is usually prepared by contacting a metallocene transition metal compound or a nonmetallocene transition metal compound with an activation cocatalyst. . A single site catalyst is preferable because it can polymerize a polymer having a high molecular weight and a high degree of uniformity since the active site structure is uniform as compared with a multisite catalyst. It is particularly preferable to use a metallocene catalyst as the single site catalyst. The metallocene catalyst is a catalyst comprising a transition metal compound of Group IV of the periodic table including a ligand having a cyclopentadienyl skeleton, a cocatalyst, an organometallic compound if necessary, and each catalyst component of a carrier. is there.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基等である。置換シクロペンタジエニル基としては、炭素数1〜30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基等から選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体等を形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。   In the transition metal compound of Group IV of the periodic table including a ligand having a cyclopentadienyl skeleton as described above, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, etc. . The substituted cyclopentadienyl group is a hydrocarbon group having 1 to 30 carbon atoms, silyl group, silyl substituted alkyl group, silyl substituted aryl group, cyano group, cyanoalkyl group, cyanoaryl group, halogen group, haloalkyl group, halosilyl It has at least one kind of substituent selected from groups and the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents combine with each other to form a ring, and an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, etc. You may form. The rings formed by bonding the substituents to each other may further have substituents each other.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウム等が挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1〜4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基等の置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基等の置換ゲルミレン基等が挙げられる。好ましくは、置換シリレン基である。   In the transition metal compound of Group IV of the periodic table including a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium, hafnium and the like, with zirconium and hafnium being particularly preferable. The transition metal compound generally has two as a ligand having a cyclopentadienyl skeleton, and it is preferable that the ligands having each cyclopentadienyl skeleton are bonded to each other by a crosslinking group. Examples of the crosslinking group include substituted silylene groups such as alkylene groups having 1 to 4 carbon atoms, silylene groups, dialkyl silylene groups and diaryl silylene groups, and substituted germylene groups such as dialkyl germylene groups and diaryl germylene groups. Preferably, it is a substituted silylene group.

周期律表第IV族の遷移金属化合物において、シクロペンタジエニル骨格を有する配位子以外の配位子としては、代表的なものとして、水素、炭素数1〜20の炭化水素基(アルキル基、アルケニル基、アリール基、アルキルアリール基、アラルキル基、ポリエニル基等)、ハロゲン、メタアルキル基、メタアリール基等が挙げられる。   In a transition metal compound of Group IV of the periodic table, a ligand other than a ligand having a cyclopentadienyl skeleton is typically a hydrogen, a hydrocarbon group having 1 to 20 carbon atoms (an alkyl group as an example) And alkenyl groups, aryl groups, alkylaryl groups, aralkyl groups, polyenyl groups and the like), halogens, metaalkyl groups, metaaryl groups and the like.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。   The transition metal compound of Group IV of the periodic table including the above-described ligand having a cyclopentadienyl skeleton can have one or a mixture of two or more as a catalyst component.

助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタン等のランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物等が挙げられる。   As the co-catalyst is meant one that can effectively make the transition metal compound of Group IV of the periodic table as a polymerization catalyst, or can make the ionic charge in a catalytically activated state be balanced. As a co-catalyst, benzene-soluble aluminoxanes of organoaluminum oxy compounds, benzene-insoluble organoaluminum oxy compounds, ion exchangeable layered silicates, boron compounds, active hydrogen group-containing or non-containing cations and non-coordinating anions And lanthanide salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイト等のイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられる。 The transition metal compound of Group IV of the periodic table including a ligand having a cyclopentadienyl skeleton may be used by being supported on an inorganic or organic compound carrier. As the carrier, porous oxides of inorganic or organic compounds are preferable, and specifically, ion exchange layered silicates such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 CaO, ZnO, BaO, ThO 2 etc. or mixtures thereof.

また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物等が例示される。このうち有機アルミニウムが好適に使用される。   Furthermore, as an organic metal compound used as needed, an organic aluminum compound, an organic magnesium compound, an organic zinc compound etc. are illustrated. Among these, organic aluminum is preferably used.

また、ポリオレフィンとして、エチレンの重合体やエチレンとα−オレフィンの共重合体を、単独で用いてもよいし、二種以上混合して用いてもよい。   In addition, as the polyolefin, a polymer of ethylene or a copolymer of ethylene and an α-olefin may be used alone or in combination of two or more.

樹脂組成物
本発明において、樹脂組成物は、上記のポリオレフィンを主成分として含むものである。樹脂組成物は、バイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上、好ましくは5〜95質量%、より好ましくは25〜75質量%含んでなるものである。樹脂組成物中のバイオマス由来のエチレンの濃度が5質量%以上であれば、従来に比べて化石燃料の使用量を削減することができ、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。
Resin Composition In the present invention, the resin composition contains the above-described polyolefin as a main component. The resin composition comprises 5% by mass or more, preferably 5 to 95% by mass, more preferably 25 to 75% by mass of ethylene derived from biomass with respect to the entire resin composition. If the concentration of biomass-derived ethylene in the resin composition is 5% by mass or more, the amount of fossil fuel used can be reduced as compared with the prior art, and a carbon neutral polyolefin resin film can be realized.

上記の樹脂組成物は、0.91〜0.96g/cm、好ましくは0.915〜0.955g/cm、より好ましくは0.92〜0.95g/cmの密度を有するものである。樹脂組成物の密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される値である。樹脂組成物の密度が0.91g/cm以上であれば、該樹脂組成物からなる樹脂フィルムの剛性を高めることができる。また、樹脂組成物の密度が0.96g/cm以下であれば、該樹脂組成物からなる樹脂フィルムの透明性や機械的強度を高めることができる。 The above resin composition has a density of 0.91 to 0.96 g / cm 3 , preferably 0.915 to 0.955 g / cm 3 , more preferably 0.92 to 0.95 g / cm 3. is there. The density of the resin composition is a value measured according to the method specified in method A of JIS K7112-1980 after annealing described in JIS K6760-1995. If the density of the resin composition is 0.91 g / cm 3 or more, the rigidity of the resin film made of the resin composition can be enhanced. When the density of the resin composition is 0.96 g / cm 3 or less, the transparency and mechanical strength of the resin film made of the resin composition can be enhanced.

上記の樹脂組成物は、1〜30g/10分、好ましくはインフレ法では1.5〜6.0g/10分、Tダイ法では、4〜20g/10分のメルトフローレート(MFR)を有するものである。メルトフローレートとは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。樹脂組成物のMFRが1g/10分以上であれば、成形加工時の押出負荷を低減することができる。また、樹脂組成物のMFRが30g/10分以下であれば、該樹脂組成物からなる樹脂フィルムの機械的強度を高めることができる。   The above resin composition has a melt flow rate (MFR) of 1 to 30 g / 10 min, preferably 1.5 to 6.0 g / 10 min for the inflation method, and 4 to 20 g / 10 min for the T-die method. It is a thing. Melt flow rate is a value measured by method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K 7210-1995. If the MFR of the resin composition is 1 g / 10 min or more, the extrusion load during molding can be reduced. When the MFR of the resin composition is 30 g / 10 min or less, the mechanical strength of the resin film made of the resin composition can be enhanced.

上記の樹脂組成物は、異なるバイオマス度のポリオレフィンを2種以上含むものであってもよく、樹脂組成物全体として、バイオマス由来のエチレンの濃度が、上記範囲内であればよい。   The above resin composition may contain two or more types of polyolefins having different degrees of biomass, and the concentration of ethylene derived from biomass may be within the above range as the whole resin composition.

上記の樹脂組成物は、化石燃料由来のエチレンと、化石燃料由来のエチレンおよび/またはα−オレフィンとを含むモノマーが重合してなる化石燃料由来のポリオレフィンをさらに含んでもよい。つまり、本発明においては、樹脂組成物は、バイオマス由来のポリオレフィンと、化石燃料由来のポリオレフィンとの混合物であってもよい。混合方法は、特に限定されず、従来公知の方法で混合することができる。例えば、ドライブレンドでもよいし、メルトブレンドでもよい。   The above resin composition may further include a fossil fuel-derived polyolefin obtained by polymerizing a monomer containing ethylene of a fossil fuel and ethylene and / or an α-olefin derived from a fossil fuel. That is, in the present invention, the resin composition may be a mixture of biomass-derived polyolefin and fossil fuel-derived polyolefin. The mixing method is not particularly limited, and may be mixed by a conventionally known method. For example, it may be a dry blend or a melt blend.

本発明の態様によれば、樹脂組成物は、好ましくは5〜90質量%、より好ましくは25〜75質量%のバイオマス由来のポリオレフィンと、好ましくは10〜95質量%、より好ましくは25〜75質量%の化石燃料由来のポリオレフィンとを含むものである。このような混合物の樹脂組成物を用いた場合でも、樹脂組成物全体として、バイオマス由来のエチレンの濃度が、上記範囲内であればよい。   According to an embodiment of the present invention, the resin composition is preferably 5 to 90% by mass, more preferably 25 to 75% by mass, of a biomass-derived polyolefin and preferably 10 to 95% by mass, more preferably 25 to 75%. And polyolefins of fossil fuel origin. Even when the resin composition of such a mixture is used, the concentration of ethylene derived from biomass may be within the above range as the entire resin composition.

上記の樹脂組成物の製造工程において、または製造された樹脂組成物には、その特性が損なわれない範囲において、主成分であるポリオレフィン以外に、各種の添加剤を添加してもよい。添加剤としては、例えば、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、および着色顔料等を添加することができる。これら添加剤は、樹脂組成物全体に対して、好ましくは1〜20質量%、好ましくは1〜10質量%の範囲で添加される。   Various additives may be added to the above-mentioned resin composition production process or to the produced resin composition, in addition to the main component polyolefin, as long as the characteristics are not impaired. Additives include, for example, plasticizers, UV stabilizers, color inhibitors, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, slip agents, mold release agents, An oxidant, an ion exchange agent, a color pigment, etc. can be added. These additives are preferably added in an amount of 1 to 20% by mass, preferably 1 to 10% by mass, based on the entire resin composition.

樹脂フィルム
本発明による樹脂フィルムは、上記の樹脂組成物からなり、樹脂組成物がバイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上含んでなることで、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。したがって、従来に比べて化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。また、本発明のポリオレフィン樹脂フィルムは、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂フィルムと比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂フィルムを代替することができる。
Resin Film A resin film according to the present invention comprises the above resin composition, and the resin composition contains 5% by mass or more of ethylene derived from biomass with respect to the entire resin composition, whereby a carbon neutral polyolefin resin film is obtained. realizable. Therefore, the amount of fossil fuel used can be significantly reduced as compared with the prior art, and the environmental impact can be reduced. In addition, the polyolefin resin film of the present invention substitutes the conventional polyolefin resin film because it is comparable in physical properties such as mechanical properties to the polyolefin resin film produced from the raw material obtained from the conventional fossil fuel. be able to.

本発明による樹脂フィルムの製造方法は、特に限定されず、従来公知の方法により製造することができる。本発明においては、押出成形されてなることが好ましく、押出成形が、Tダイ法またはインフレーション法により行われることがより好ましい。   The manufacturing method of the resin film by this invention is not specifically limited, It can manufacture by a conventionally well-known method. In the present invention, extrusion molding is preferred, and extrusion molding is more preferably performed by a T-die method or inflation method.

例えば、以下の方法で、押出成形により樹脂フィルムを成形することができる。上記した樹脂組成物を乾燥させた後、ポリオレフィンの融点以上の温度(Tm)〜Tm+70℃の温度に加熱された溶融押出機に供給して、樹脂組成物を溶融し、例えばTダイ等のダイよりシート状に押出し、押出されたシート状物を回転している冷却ドラム等で急冷固化することによりフィルムを成形することができる。溶融押出機としては、一軸押出機、二軸押出機、ベント押出機、タンデム押出機等を目的に応じて使用することができる。   For example, the resin film can be formed by extrusion in the following manner. After drying the resin composition described above, it is supplied to a melt extruder heated to a temperature (Tm) to Tm + 70 ° C. higher than the melting point of the polyolefin to melt the resin composition, for example, a die such as a T die. A film can be formed by extruding into a sheet-like shape and quenching and solidifying the extruded sheet-like material with a rotating cooling drum or the like. As a melt extruder, a single screw extruder, a twin screw extruder, a vent extruder, a tandem extruder etc. can be used according to the objective.

上記のようにして得られる樹脂フィルムの厚さは、その用途に応じて任意であるが、通常、5〜500μm程度、好ましくは5〜200μm程度である。また、樹脂フィルムは、単層のフィルムとして用いてもよいし、複数枚をラミネートして積層フィルムとして用いてもよい。   Although the thickness of the resin film obtained as mentioned above is arbitrary according to the use, it is usually about 5-500 micrometers, Preferably it is about 5-200 micrometers. The resin film may be used as a single layer film or may be used as a laminated film by laminating a plurality of sheets.

用途
本発明による樹脂フィルムは、容器や袋等の包装製品、化粧シートやトレー等のシート成形品、積層フィルム、光学フィルム、樹脂板、各種ラベル材料、蓋材、およびラミネートチューブ等の各種用途に好適に使用することができ、特に、包装製品およびシート成形品が好ましい。
Applications The resin film according to the present invention is used for various applications such as packaging products such as containers and bags, sheet molded articles such as decorative sheets and trays, laminated films, optical films, resin plates, various label materials, lids, and laminate tubes. It can be suitably used, and in particular, packaged products and sheet-formed articles are preferable.

他の態様
本発明の目的は、バイオマス由来のエチレンを用いたカーボンニュートラルなポリオレフィンを含む樹脂組成物からなる樹脂フィルムを提供することであって、従来の化石燃料から得られる原料から製造された樹脂フィルムと機械的特性等の物性面で遜色ないポリオレフィン樹脂フィルムを提供することである。
本発明の他の態様による樹脂フィルムは、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなるものであって、
上記の樹脂組成物が、上記のバイオマス由来のエチレンを上記の樹脂組成物全体に対して5質量%以上含んでなり、上記の樹脂組成物が、0.91〜0.96g/cmの密度を有するものである。
本発明の他の態様においては、上記の樹脂組成物が、1〜30g/10分のメルトフローレートを有してもよい。
本発明の他の態様においては、上記の樹脂組成物が、上記のバイオマス由来のエチレンを、上記の樹脂組成物全体に対して5〜95質量%含んでもよい。
本発明の他の態様においては、上記のモノマーが、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含んでもよい。
本発明の他の態様においては、上記のモノマーが、バイオマス由来のα−オレフィンをさらに含んでもよい。
本発明の他の態様においては、上記の樹脂組成物が、化石燃料由来のエチレンと、化石燃料由来のエチレンおよび/またはα−オレフィンとを含むモノマーが重合してなる化石燃料由来のポリオレフィンをさらに含んでもよい。
本発明の他の態様においては、上記の樹脂組成物が、5〜90質量%の上記のバイオマス由来のポリオレフィンと、10〜95質量%の上記の化石燃料由来のポリオレフィンとを含むものであってもよい。
本発明の他の態様においては、上記のα−オレフィンが、ブチレン、ヘキセン、またはオクテンであってもよい。
本発明の他の態様においては、上記のポリオレフィンが、ポリエチレンであってもよい。
本発明の他の態様においては、上記の樹脂組成物が押出成形されてなる樹脂フィルムであってもよい。
本発明の他の態様においては、上記の押出成形が、Tダイ法またはインフレーション法により行われてもよい。
本発明の他の態様においては、上記の樹脂フィルムからなる、包装製品が提供される。
本発明の他の態様においては、上記の樹脂フィルムからなる、シート成形品が提供される。
このような本発明によれば、ポリオレフィン樹脂フィルムが、バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリオレフィンを含んでなる樹脂組成物からなり、バイオマス由来のエチレンを樹脂組成物全体に対して5質量%以上含んでなることで、カーボンニュートラルなポリオレフィン樹脂フィルムを実現できる。したがって、従来に比べて化石燃料の使用量を大幅に削減することができ、環境負荷を減らすことができる。
また、本発明のポリオレフィン樹脂フィルムは、従来の化石燃料から得られる原料から製造されたポリオレフィン樹脂フィルムと比べて、機械的特性等の物性面で遜色がないため、従来のポリオレフィン樹脂フィルムを代替することができる。
Other Aspects The object of the present invention is to provide a resin film comprising a resin composition containing a carbon neutral polyolefin using biomass-derived ethylene, wherein the resin is produced from raw materials obtained from conventional fossil fuels It is an object of the present invention to provide a polyolefin resin film which is not inferior to the film in terms of physical properties such as mechanical properties.
A resin film according to another aspect of the present invention comprises a resin composition comprising a biomass-derived polyolefin obtained by polymerization of a monomer derived from biomass-derived ethylene,
The above resin composition contains 5% by mass or more of ethylene derived from the above biomass with respect to the entire above resin composition, and the above resin composition has a density of 0.91 to 0.96 g / cm 3 The
In another aspect of the present invention, the above resin composition may have a melt flow rate of 1 to 30 g / 10 min.
In another aspect of the present invention, the above resin composition may contain 5 to 95% by mass of ethylene derived from the above biomass with respect to the entire above resin composition.
In another aspect of the invention, the above mentioned monomers may further comprise ethylene and / or alpha-olefins derived from fossil fuels.
In another aspect of the present invention, the above-mentioned monomer may further comprise an α-olefin derived from biomass.
In another aspect of the present invention, the resin composition further comprises a polyolefin derived from fossil fuel, which is obtained by polymerizing a monomer containing ethylene derived from fossil fuel and ethylene and / or α-olefin derived from fossil fuel May be included.
In another aspect of the present invention, the above-mentioned resin composition comprises 5-90% by mass of the biomass-derived polyolefin and 10-95% by mass of the fossil fuel-derived polyolefin. It is also good.
In another aspect of the present invention, the above-mentioned α-olefin may be butylene, hexene or octene.
In another aspect of the invention, the polyolefin described above may be polyethylene.
In the other aspect of this invention, the resin film which said resin composition is extrusion-molded may be sufficient.
In another aspect of the present invention, the above-mentioned extrusion may be performed by a T-die method or an inflation method.
In another aspect of the present invention, there is provided a packaged product comprising the above-mentioned resin film.
In another aspect of the present invention, there is provided a sheet molded article comprising the above-described resin film.
According to the present invention, the polyolefin resin film is made of a resin composition comprising a polyolefin derived from biomass formed by polymerization of a monomer derived from biomass, and ethylene derived from biomass is used in the entire resin composition. On the other hand, by containing 5% by mass or more, a carbon neutral polyolefin resin film can be realized. Therefore, the amount of fossil fuel used can be significantly reduced as compared with the prior art, and the environmental impact can be reduced.
In addition, the polyolefin resin film of the present invention substitutes the conventional polyolefin resin film because it is comparable in physical properties such as mechanical properties to the polyolefin resin film produced from the raw material obtained from the conventional fossil fuel. be able to.

以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these.

測定・条件
下記の実施例1〜7および比較例1〜2において、バイオマス度とは、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量の値である。
Measurement / Conditions In Examples 1 to 7 and Comparative Examples 1 to 2 below, the biomass degree is the value of the content of carbon derived from biomass by the measurement of radioactive carbon (C14).

樹脂フィルムの製造
下記の実施例1〜7および比較例1〜2で用いた押出製膜機の条件は、以下のとおりであった。
スクリュー径:90mm
スクリュー型式:フルフライト
L/D:28
Tダイ:11S型ストレートマニホールド
Tダイ有効開口長:560mm
Production of Resin Film The conditions of the extrusion film-forming machine used in the following Examples 1 to 7 and Comparative Examples 1 and 2 were as follows.
Screw diameter: 90 mm
Screw type: Full flight L / D: 28
T die: 11S type straight manifold T die effective opening length: 560 mm

実施例1
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)を290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 1
Thickness of high density polyethylene derived from biomass (Braskem, trade name: SHA7260, degree of biomass: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min) at a resin temperature of 290 ° C. It was extruded on a 12 μm PET film (Toyobo Co., Ltd., trade name: E5100) to obtain a laminated film. The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

実施例2
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)50質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)50質量部とをドライブレンドした樹脂(バイオマス度:48%、密度:0.937g/cm、MFR:17g/10分)を、290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。
押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 2
50 parts by mass of high-density polyethylene derived from biomass (manufactured by Braskem, trade name: SHA7260, degree of biomass: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min) and fossil fuel-derived low Resin (dry weight: 48%) dry blended with 50 parts by weight of high density polyethylene (trade name: LC 701, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) , Density: 0.937 g / cm 3 , MFR: 17 g / 10 min) at a resin temperature of 290 ° C. onto a 12 μm-thick PET film (Toyobo Co., Ltd., trade name: E5100) to form a laminated film Obtained.
The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

実施例3
バイオマス由来の高密度ポリエチレン(Braskem社製、商品名:SHA7260、バイオマス度:94.5%、密度:0.955g/cm、MFR:20g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)67質量部とをドライブレンドした樹脂(バイオマス度:32%、密度:0.931g/cm、MFR:16g/10分)を、290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。
押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 3
33 parts by mass of high-density polyethylene derived from biomass (manufactured by Braskem, trade name: SHA7260, degree of biomass: 94.5%, density: 0.955 g / cm 3 , MFR: 20 g / 10 min) and fossil fuel-derived low Resin (biomass degree: 32%) dry-blended with density polyethylene (trade name: LC701, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) manufactured by Japan Polyethylene Corporation and 67 parts by mass , Density: 0.931 g / cm 3 , MFR: 16 g / 10 min) at a resin temperature of 290 ° C. onto a 12 μm-thick PET film (Toyobo Co., Ltd., trade name: E5100) to form a laminated film Obtained.
The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

比較例1
化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC701、バイオマス度:0%、密度:0.919g/cm、MFR:14g/10分)を290℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Comparative Example 1
Low-density polyethylene derived from fossil fuel (manufactured by Japan Polyethylene Corporation, trade name: LC 701, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 14 g / 10 min) at a resin temperature of 290 ° C. It was extruded on a 12 μm PET film (Toyobo Co., Ltd., trade name: E5100) to obtain a laminated film. The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

樹脂組成物および樹脂フィルムの評価
上記の実施例1〜3および比較例1で用いた樹脂組成物の加工適性および得られたフィルムの特性について、以下の各種評価:(1)ドローダウン、(2)ネックイン、(3)モーター負荷、(4)樹脂圧力、(5)ループスティフネス、を行った。
Evaluation of Resin Composition and Resin Film Regarding the processability of the resin composition used in Examples 1 to 3 and Comparative Example 1 described above and the characteristics of the obtained film, the following various evaluations: (1) Drawdown, (2 ) Neck-in, (3) motor load, (4) resin pressure, and (5) loop stiffness were performed.

(1)ドローダウン
上記の実施例1〜3および比較例1で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、樹脂温度290℃、スクリュー回転数34rpmの条件で、押出コーティング膜が膜切れするか、サージングする最高引取り速度(m/分)を測定した。
測定結果は、下記の表1に示される通りであった。
(1) Drawdown The conditions of T die width 560 mm, resin temperature 290 ° C., screw rotation speed 34 rpm, using the above-described extrusion film forming machine, for the resin composition used in Examples 1 to 3 and Comparative Example 1 above. The maximum draw speed (m / min) at which the extrusion coating film broke or surging was measured.
The measurement results were as shown in Table 1 below.

(2)ネックイン
上記の実施例1〜3および比較例1で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、スクリュー回転数105rpmの条件で、引取り速度140m/分、エアーギャップ120mmの時の両耳ネックイン(mm)を測定した。測定結果は、下記の表1に示される通りであった。
(2) Neck-in The resin composition used in the above Examples 1 to 3 and Comparative Example 1 was drawn using the above-described extrusion film forming machine under conditions of T-die width 560 mm and screw rotation speed 105 rpm. The binaural neck-in (mm) was measured when the air gap was 140 mm and the air gap was 120 mm. The measurement results were as shown in Table 1 below.

(3)モーター負荷
上記の実施例1〜3および比較例1において、上記の押出製膜機を用いて樹脂フィルムを製造した際のモーター負荷(A)を測定した。測定結果は、下記の表1に示される通りであった。
(3) Motor Load In Examples 1 to 3 and Comparative Example 1 described above, motor load (A) was measured when a resin film was produced using the above-described extrusion film-forming machine. The measurement results were as shown in Table 1 below.

(4)樹脂圧力
上記の実施例1〜3および比較例1において、上記の押出製膜機を用いて樹脂フィルムを製造した際の樹脂圧力(MPa)を測定した。測定結果は、下記の表1に示される通りであった。
(4) Resin Pressure In the above Examples 1 to 3 and Comparative Example 1, the resin pressure (MPa) at the time of producing a resin film using the above extrusion film forming machine was measured. The measurement results were as shown in Table 1 below.

(5)ループスティフネス
上記の実施例1〜3および比較例1で得られた樹脂フィルムを、幅15mm、長さ150mmに切り出し、剛性試験機(東洋精機製作所社製、商品名:ループステフネステスタ)を用いてフィルムの剛性(N)の測定を行った。ループの長さは60mmとした。測定結果は、下記の表1に示される通りであった。
(5) Loop Stiffness The resin films obtained in the above Examples 1 to 3 and Comparative Example 1 are cut into a width of 15 mm and a length of 150 mm, and a stiffness tester (manufactured by Toyo Seiki Seisakusho, trade name: Loop stiffness tester) ) Was used to measure the stiffness (N) of the film. The length of the loop was 60 mm. The measurement results were as shown in Table 1 below.

実施例4
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)を320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 4
Biomass-derived linear low density polyethylene (Braskem, trade name: SLL 318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min) at a resin temperature of 320 ° C. The resultant was extruded on a 12 μm thick PET film (manufactured by Toyobo Co., Ltd., trade name: E5100) to obtain a laminated film. The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

実施例5
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)67質量部とをメルトブレンドした樹脂(バイオマス度:29%、密度:0.918g/cm、MFR:6.3g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 5
33 parts by mass of linear low density polyethylene derived from biomass (Braske: SLL 318, degree of biomass: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min), and fossil fuel-derived low Resin obtained by melt blending 67 parts by mass of density polyethylene (trade name: LC604, degree of biomass: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min) (manufactured by Japan Polyethylene Corporation) (degree of biomass: 29% , Density: 0.918 g / cm 3 , MFR: 6.3 g / 10 min) at a resin temperature of 320 ° C. onto a 12 μm thick PET film (Toyobo Co., Ltd., trade name: E5100) and laminating I got a film. The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

実施例6
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)37質量部と、化石燃料由来の直鎖状低密度ポリエチレン(日本ポリエチレン社製、商品名:KC573、バイオマス度:0%、密度:0.910g/cm、MFR:15g/10分)30質量部とをメルトブレンドした樹脂(バイオマス度:29%、密度:0.916g/cm、MFR:8.4g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 6
33 parts by mass of linear low density polyethylene derived from biomass (Braskem, trade name: SLL 318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min), fossil fuel 37 parts by mass of low density polyethylene derived from Japan (manufactured by Japan Polyethylene, trade name: LC604, biomass degree: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min), linear fossil fuel derived Resin obtained by melt blending 30 parts by mass of low density polyethylene (trade name: KC 573, biomass degree: 0%, density: 0.910 g / cm 3 , MFR: 15 g / 10 min, manufactured by Japan Polyethylene Corporation) (biomass degree: 29 %, Density: 0.916 g / cm 3 , MFR: 8.4 g / 10 min, at a resin temperature of 320 ° C., a PET film of 12 μm thickness (east The laminated film was obtained by extruding onto a product of YOKOSMO CO., LTD., Trade name: E5100). The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

実施例7
バイオマス由来の直鎖状低密度ポリエチレン(Braskem社製、商品名:SLL318、バイオマス度:87%、密度:0.918g/cm、MFR:2.7g/10分)33質量部と、化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC604、バイオマス度:0%、密度:0.918g/cm、MFR:8g/10分)37質量部と、化石燃料由来の直鎖状低密度ポリエチレン(日本ポリエチレン社製、商品名:KS560T、バイオマス度:0%、密度:0.898g/cm、MFR:16g/10分)30質量部とをメルトブレンドした樹脂(バイオマス度は29%、密度は0.912g/cm、MFRは8.7g/10分)を、320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Example 7
33 parts by mass of linear low density polyethylene derived from biomass (Braskem, trade name: SLL 318, biomass degree: 87%, density: 0.918 g / cm 3 , MFR: 2.7 g / 10 min), fossil fuel 37 parts by mass of low density polyethylene derived from Japan (manufactured by Japan Polyethylene, trade name: LC604, biomass degree: 0%, density: 0.918 g / cm 3 , MFR: 8 g / 10 min), linear fossil fuel derived Resin (a biomass degree is 29) obtained by melt-blending 30 parts by mass of low density polyethylene (trade name: KS 560 T, biomass degree: 0%, density: 0.898 g / cm 3 , MFR: 16 g / 10 min) %, Density 0.912 g / cm 3 , MFR 8.7 g / 10 min, at a resin temperature of 320 ° C., a 12 μm thick PET film ( A laminated film was obtained by extruding onto Toyobo Co., Ltd., trade name: E5100). The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

比較例2
化石燃料由来の低密度ポリエチレン(日本ポリエチレン社製、商品名:LC600A、バイオマス度:0%、密度:0.919g/cm、MFR:7g/10分)を320℃の樹脂温度にて、厚み12μmのPETフィルム(東洋紡社製、商品名:E5100)上に押し出して、積層フィルムを得た。押出成形の条件を、有効巾は560mm、押出厚みは30μm、押出速度は100m/分に設定した。
Comparative example 2
Low-density polyethylene derived from fossil fuel (manufactured by Japan Polyethylene, trade name: LC600A, biomass degree: 0%, density: 0.919 g / cm 3 , MFR: 7 g / 10 min) at a resin temperature of 320 ° C. It was extruded on a 12 μm PET film (Toyobo Co., Ltd., trade name: E5100) to obtain a laminated film. The extrusion conditions were set to an effective width of 560 mm, an extrusion thickness of 30 μm, and an extrusion speed of 100 m / min.

樹脂組成物および樹脂フィルムの評価
上記の実施例4〜7および比較例2で用いた樹脂組成物の加工適性および得られたフィルムの特性について、以下の各種評価:(6)ドローダウン、(7)ネックイン、(8)モーター負荷、(9)樹脂圧力、(10)シール開始温度、を行った。
Evaluation of Resin Composition and Resin Film Regarding the processability of the resin composition used in Examples 4 to 7 and Comparative Example 2 described above and the characteristics of the obtained film, the following various evaluations: (6) Drawdown, (7 ) Neck-in, (8) motor load, (9) resin pressure, and (10) seal start temperature were performed.

(6)ドローダウン
上記の実施例4〜7および比較例2で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、樹脂温度290℃、スクリュー回転数34rpmの条件で、押出コーティング膜が膜切れするか、サージングする最高引取り速度(m/分)を測定した。測定結果は、下記の表2に示される通りであった。
(6) Drawdown The resin composition used in Examples 4 to 7 and Comparative Example 2 described above was subjected to the conditions of T die width 560 mm, resin temperature 290 ° C., screw rotation speed 34 rpm using the extrusion film forming machine described above. The maximum draw speed (m / min) at which the extrusion coating film broke or surging was measured. The measurement results were as shown in Table 2 below.

(7)ネックイン
上記の実施例4〜7および比較例2で用いた樹脂組成物を、上記の押出製膜機を用いて、Tダイ幅560mm、スクリュー回転数105rpmの条件で、引取り速度140m/分、エアーギャップ120mmの時の両耳ネックイン(mm)を測定した。測定結果は、下記の表2に示される通りであった。
(7) Neck-in The resin composition used in the above Examples 4 to 7 and Comparative Example 2 was drawn using the above-described extrusion film forming machine under the conditions of T die width 560 mm and screw rotational speed 105 rpm. The binaural neck-in (mm) was measured when the air gap was 140 mm and the air gap was 120 mm. The measurement results were as shown in Table 2 below.

(8)モーター負荷
上記の実施例4〜7および比較例2において、上記の押出製膜機を用いて樹脂フィルムを製造した際のモーター負荷(A)を測定した。測定結果は、下記の表2に示される通りであった。
(8) Motor Load In Examples 4 to 7 and Comparative Example 2 described above, the motor load (A) was measured when a resin film was produced using the above-described extrusion film-forming machine. The measurement results were as shown in Table 2 below.

(9)樹脂圧力
上記の実施例4〜7および比較例2において、上記の押出製膜機を用いて樹脂フィルムを製造した際の樹脂圧力(MPa)を測定した。測定結果は、下記の表2に示される通りであった。
(9) Resin Pressure In Examples 4 to 7 and Comparative Example 2 described above, the resin pressure (MPa) at the time of producing a resin film using the above-described extrusion film-forming machine was measured. The measurement results were as shown in Table 2 below.

(10)シール開始温度
上記の実施例4〜7および比較例2で得られた樹脂フィルムを、厚さ幅15mm、長さ200mmに切り出し、シール温度は90〜150℃、シール圧力は30N/cm、シール時間は1秒でヒートシールして、シールが開始される温度(℃)を特定した。測定結果は、下記の表2に示される通りであった。
(10) Sealing start temperature The resin films obtained in the above Examples 4 to 7 and Comparative Example 2 are cut out to a thickness of 15 mm and a length of 200 mm, the sealing temperature is 90 to 150 ° C., and the sealing pressure is 30 N / cm. 2. The seal time was heat sealed in 1 second to specify the temperature (° C.) at which the seal starts. The measurement results were as shown in Table 2 below.

Claims (11)

バイオマス由来のエチレンを含むモノマーが重合してなるバイオマス由来のポリエチレンと、化石燃料由来のエチレンを含むモノマーが重合してなる化石燃料由来のポリエチレンと、を含んでなる樹脂組成物からなる樹脂フィルムであって、
前記樹脂フィルムが、カルボニル化合物、アミンおよびアミノ酸の含窒素化合物からなる群より選択される1種または2種以上の不純物を含み、
前記樹脂組成物が、前記バイオマス由来のエチレンを前記樹脂組成物全体に対して5質量%以上含んでなり、前記樹脂組成物が、0.91〜0.96g/cmの密度を有する、樹脂フィルム。
A resin film comprising a resin composition comprising a biomass-derived polyethylene formed by polymerization of a biomass-derived ethylene-containing monomer and a fossil fuel-derived polyethylene formed by polymerization of a fossil fuel-derived ethylene There,
The resin film contains one or more impurities selected from the group consisting of carbonyl compounds, amines and nitrogen-containing compounds of amino acids,
The resin, wherein the resin composition contains 5% by mass or more of ethylene derived from the biomass with respect to the entire resin composition, and the resin composition has a density of 0.91 to 0.96 g / cm 3 the film.
前記バイオマス由来のエチレンを含むモノマーが、化石燃料由来のエチレンおよび/またはα−オレフィンをさらに含む、請求項1に記載の樹脂フィルム。   The resin film according to claim 1, wherein the biomass-derived ethylene-containing monomer further comprises a fossil fuel-derived ethylene and / or an α-olefin. 前記バイオマス由来のエチレンを含むモノマーが、バイオマス由来のα−オレフィンをさらに含む、請求項1または2に記載の樹脂フィルム。   The resin film according to claim 1, wherein the monomer containing ethylene derived from biomass further comprises an α-olefin derived from biomass. 前記α−オレフィンが、ブチレン、ヘキセン、またはオクテンである、請求項2または3に記載の樹脂フィルム。   The resin film according to claim 2 or 3, wherein the α-olefin is butylene, hexene or octene. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、包装製品。   The packaged product provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、シート成形品。   The sheet | seat molded article provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、ラベル材料。   The label material provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、蓋材。   The lid material provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、ラミネートチューブ。   The lamination tube provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、積層フィルム。   The laminated film provided with the resin film as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載の樹脂フィルムを備えた、袋。   The bag provided with the resin film as described in any one of Claims 1-4.
JP2019049080A 2019-03-15 2019-03-15 Polyolefin resin film Withdrawn JP2019094509A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019049080A JP2019094509A (en) 2019-03-15 2019-03-15 Polyolefin resin film
JP2021188750A JP7257001B2 (en) 2019-03-15 2021-11-19 Polyolefin resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049080A JP2019094509A (en) 2019-03-15 2019-03-15 Polyolefin resin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018082549A Division JP6497601B2 (en) 2018-04-23 2018-04-23 Polyolefin resin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021188750A Division JP7257001B2 (en) 2019-03-15 2021-11-19 Polyolefin resin film

Publications (1)

Publication Number Publication Date
JP2019094509A true JP2019094509A (en) 2019-06-20

Family

ID=66972717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049080A Withdrawn JP2019094509A (en) 2019-03-15 2019-03-15 Polyolefin resin film

Country Status (1)

Country Link
JP (1) JP2019094509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215233A1 (en) * 2020-04-21 2021-10-28 オイレス工業株式会社 Resin composition for sliding members, and sliding member
WO2022196791A1 (en) * 2021-03-19 2022-09-22 大和製罐株式会社 Extrusion-molded article for tube container and tube container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331751A (en) * 1976-09-03 1978-03-25 Jujo Paper Co Ltd Packaging film
JPS591551A (en) * 1982-06-03 1984-01-06 ソシエテ・シミツク・デ・シヤルボナ−ジユ Ethylene polymer composition for film manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331751A (en) * 1976-09-03 1978-03-25 Jujo Paper Co Ltd Packaging film
JPS591551A (en) * 1982-06-03 1984-01-06 ソシエテ・シミツク・デ・シヤルボナ−ジユ Ethylene polymer composition for film manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杉山英路ら: "地球環境に優しい『サトウキビ由来のポリエチレン』", コンバーテック, vol. 第37巻、第8号、通巻437号, JPN6020012814, 15 August 2009 (2009-08-15), pages 63 - 67, ISSN: 0004574671 *
牧野太宣: "サトウキビから作られたプラスチック包装材料『Bipro−PE』", コンバーテック, vol. 第39巻、第2号、通巻455号, JPN6020012816, 15 February 2011 (2011-02-15), pages 83 - 85, ISSN: 0004574672 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215233A1 (en) * 2020-04-21 2021-10-28 オイレス工業株式会社 Resin composition for sliding members, and sliding member
CN115427498A (en) * 2020-04-21 2022-12-02 奥依列斯工业株式会社 Resin composition for sliding member and sliding member
WO2022196791A1 (en) * 2021-03-19 2022-09-22 大和製罐株式会社 Extrusion-molded article for tube container and tube container

Similar Documents

Publication Publication Date Title
JP5862055B2 (en) Polyolefin resin film
JP5742016B2 (en) Polyolefin multilayer resin film
JP6187657B2 (en) Polyolefin resin film
JP6020975B2 (en) Polyolefin resin film
JP6704878B2 (en) Laminated film
JP6136272B2 (en) Laminate with a resin layer derived from biomass
JP6635355B2 (en) Laminate for packaging products with biomass-derived resin layer
JP6443769B2 (en) Laminate with a resin layer derived from biomass
JP6738568B2 (en) Polyethylene resin film
JP6443768B2 (en) Packaging product comprising a laminate having a biomass-derived resin layer
JP6497601B2 (en) Polyolefin resin film
JP6827892B2 (en) Polyolefin resin film
JP2020163631A (en) Resin film, laminate and packaging product
JP2023160823A (en) Resin film, laminate and packaging product
JP2019094509A (en) Polyolefin resin film
JP2019043145A (en) Laminate for packaging product having biomass-derived resin layer
JP6024812B2 (en) Polyolefin resin film
JP7257001B2 (en) Polyolefin resin film
JP2016210511A (en) Polyolefin resin film
JP2016027172A (en) Polyolefin resin film
JP2016028159A (en) Polyolefin resin film
JP6020976B2 (en) Polyolefin resin film
JP6770700B2 (en) Laminates with a polyolefin resin layer and packaging products with them
JP2022020246A (en) Resin film, bag, and package product
JP2019043146A (en) Laminate for packaging product having biomass-derived resin layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210820

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230316