JP2019090794A - Method for evaluating quartz glass member and quartz glass member - Google Patents

Method for evaluating quartz glass member and quartz glass member Download PDF

Info

Publication number
JP2019090794A
JP2019090794A JP2018198178A JP2018198178A JP2019090794A JP 2019090794 A JP2019090794 A JP 2019090794A JP 2018198178 A JP2018198178 A JP 2018198178A JP 2018198178 A JP2018198178 A JP 2018198178A JP 2019090794 A JP2019090794 A JP 2019090794A
Authority
JP
Japan
Prior art keywords
quartz glass
glass member
red fluorescence
fluorescence intensity
intensity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018198178A
Other languages
Japanese (ja)
Other versions
JP7128083B2 (en
Inventor
力 濱野
Tsutomu Hamano
力 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Publication of JP2019090794A publication Critical patent/JP2019090794A/en
Application granted granted Critical
Publication of JP7128083B2 publication Critical patent/JP7128083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for evaluating a quartz glass member that can non-destructively measure an amount of oxygen excess defects in the quartz glass in a minute region, and a quartz glass member that has quality guaranteed on the basis of a result obtained by the method for evaluation.SOLUTION: A method includes the steps of: obtaining a red fluorescence intensity ratio and a standard curve of oxygen excess defects in a quartz glass member by a laser raman spectroscopic analysis method and an electron spin resonance method; and calculating the number of oxygen excess defects per unit weight by the standard curve from the red fluorescence intensity ratio of the quartz glass member measured by the laser raman spectroscopic analysis method.SELECTED DRAWING: Figure 1

Description

本発明は、石英ガラス部材の評価方法、石英ガラス部材に関し、特に石英ガラス部材における酸素過剰欠陥を非破壊で測定することができる石英ガラス部材の評価方法、及びその評価方法により得られた結果に基づき品質が保証された石英ガラス部材に関する。   The present invention relates to a method of evaluating a quartz glass member, a quartz glass member, and in particular, to a method of evaluating a quartz glass member capable of nondestructively measuring oxygen excess defects in the quartz glass member and results obtained by the evaluation method. The present invention relates to a quartz glass member of which quality is guaranteed based on the above.

石英ガラス中の酸素過剰欠陥(例えば、NBOHC(Non Bridge Oxygen Hole Center))は、気泡膨れや赤色蛍光等の発生原因となることから、上記対策の効果を把握する上で、微小領域での分布の測定が求められている。   Since excess oxygen defects in quartz glass (for example, NBOHC (Non Bridge Oxygen Hole Center)) cause bubble blistering, red fluorescence, etc., the distribution in a minute region is necessary to understand the effects of the above measures. Measurement of is required.

ここで、上記の「微小領域」とは、比較的狭い間隔で多点指定される領域を示すもので、間隔や点の数に対して格別の限定を設けるものではないが、本発明では、おおむね0.001mm以上10mm以下の間隔で少なくとも3点以上指定される領域を指すものとする。好適な例としては、0.01mm以上1mm以下の間隔で少なくとも10点以上指定される領域が挙げられる。   Here, the above-mentioned "minute area" indicates an area designated at a relatively narrow interval at multiple points, and there is no particular limitation on the number of intervals or the number of points, but in the present invention, An area designated at least 3 points or more at intervals of about 0.001 mm or more and 10 mm or less shall be pointed out. As a suitable example, a region designated at least 10 points or more at intervals of 0.01 mm or more and 1 mm or less can be mentioned.

特許文献1には、酸素過剰欠陥の量を、ESR(Electron Spin Resonance:電子スピン共鳴分析法)により測定し、石英ガラスルツボ中の酸素過剰欠陥を測定することが開示されている。   Patent Document 1 discloses that the amount of oxygen excess defects is measured by ESR (Electron Spin Resonance: electron spin resonance analysis) to measure the oxygen excess defects in a quartz glass crucible.

しかしながら、ESRにより酸素過剰欠陥を測定するには、測定対象となる試料の破壊を要し、且つバルク分析であることから、微小領域の非破壊測定に対応できないという課題があった。   However, in order to measure the oxygen excess defect by ESR, it is necessary to destroy the sample to be measured, and since it is a bulk analysis, there is a problem that it can not cope with nondestructive measurement of a minute region.

一方、特許文献2、特許文献3には、微小領域での非破壊測定を可能とする方法として、レーザラマン分光分析法が採用されている。このレーザラマン分光分析法によれば、4000cm−1〜4100cm−1に検出される650nmの蛍光は酸素過剰欠陥に起因するとされ、本蛍光強度(以下赤色蛍光強度比:赤色蛍光(4000〜100cm−1)の面積強度を石英ガラスの内部標準ピーク (700〜900cm−1)の面積強度で割ることにより算出)の分布を微小領域で測定することで、場所による酸素過剰欠陥の量の大まかな傾向を把握することができる。 On the other hand, laser Raman spectroscopy is adopted as patent document 2 and patent document 3 as a method which enables nondestructive measurement in a minute field. According to this laser Raman spectroscopy, it is considered that the fluorescence of 650 nm detected at 4000 cm −1 to 4100 cm −1 is caused by oxygen excess defects, and the present fluorescence intensity (hereinafter red fluorescence intensity ratio: red fluorescence (4000 to 100 cm −1 The rough tendency of the amount of oxygen excess defects depending on the location can be obtained by measuring the distribution of the area strength of) calculated by dividing the area strength of the internal standard peak of quartz glass (700 to 900 cm -1 ) by the micro area It can be grasped.

特開2016−124718号公報JP, 2016-124718, A 特開2000−344536号公報JP 2000-344536 A 特開2006−89301号公報Unexamined-Japanese-Patent No. 2006-89301

しかしながら、特許文献2、特許文献3に開示されるレーザラマン分光分析法を用いた酸素過剰欠陥の評価にあっては、赤色蛍光強度比という形で間接的に評価しているに過ぎなかった。即ち、非破壊であっても、酸素過剰欠陥の量を測定することが出来ず、その結果を不良解析や品質保証の面で、具体的な数値として反映できないという課題があった。   However, in the evaluation of oxygen excess defects using laser Raman spectroscopy disclosed in Patent Document 2 and Patent Document 3, only indirect evaluation was performed in the form of a red fluorescence intensity ratio. That is, there is a problem that even if it is nondestructive, the amount of oxygen excess defects can not be measured, and the result can not be reflected as a concrete numerical value in terms of defect analysis and quality assurance.

本発明は、前記した課題を解決するためになされたものであり、石英ガラス中の酸素過剰欠陥の量を、前記微小領域において、非破壊に測定することのできる石英ガラス部材の評価方法、及びその評価方法により得られた結果に基づき品質が保証された石英ガラス部材を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a method of evaluating a quartz glass member capable of nondestructively measuring the amount of oxygen-rich defects in quartz glass in the minute region, and An object of the present invention is to provide a quartz glass member of which quality is guaranteed based on the result obtained by the evaluation method.

上記目的を達成するためになされた本発明にかかる石英ガラス部材の評価方法は、石英ガラス部材の酸素過剰欠陥を評価する方法であって、レーザラマン分光分析法と電子スピン共鳴法とを用いて石英ガラス部材における、赤色蛍光強度比と酸素過剰欠陥の検量線を得る工程と、前記レーザラマン分光分析法により測定した前記石英ガラス部材の赤色蛍光強度比から前記検量線を用いて、酸素過剰欠陥の単位重量あたりの個数を算出する工程と、を含み、前記レーザラマン分光分析法と電子スピン共鳴法とを用いて石英ガラス部材における赤色蛍光強度比と酸素過剰欠陥の検量線を得る工程は、試料となる石英ガラス部材を用意する工程と、前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程と、前記赤色蛍光強度比の分布から赤色蛍光強度比の変動係数が20%以下の低変動領域を特定する工程と、前記石英ガラス部材における前記低変動領域を切り出し、粉砕して検量線作成用試料を作成する工程と、前記検量線作成用試料の酸素過剰欠陥の量を前記電子スピン共鳴法により測定する工程と、前記赤色蛍光強度比の分布と前記酸素過剰欠陥量とから検量線を作成する工程と、を含むことを特徴としている。   An evaluation method of a quartz glass member according to the present invention made to achieve the above object is a method of evaluating an oxygen excess defect of a quartz glass member, which is a quartz using laser Raman spectroscopy and electron spin resonance. In the glass member, a step of obtaining a calibration curve of the red fluorescence intensity ratio and the oxygen excess defect, and a unit of the oxygen excess defect using the calibration curve from the red fluorescence intensity ratio of the quartz glass member measured by the laser Raman spectroscopy. The step of calculating the number per unit weight, and the step of obtaining the calibration curve of the red fluorescence intensity ratio and the oxygen excess defect in the quartz glass member by using the laser Raman spectroscopy and the electron spin resonance method is a sample A step of preparing a quartz glass member; and red fluorescence intensities at a plurality of places at predetermined intervals in the quartz glass member by the laser Raman spectroscopy Measuring the ratio to obtain the distribution of the red fluorescence intensity ratio, identifying the low fluctuation region of the red fluorescence intensity ratio having a variation coefficient of 20% or less from the distribution of the red fluorescence intensity ratio, and the quartz glass member The step of cutting out the low variation region and crushing it to prepare a sample for preparing a calibration curve, the step of measuring the amount of oxygen excess defects of the sample for preparing a calibration curve by the electron spin resonance method, and the red fluorescence intensity ratio And a step of creating a calibration curve from the distribution of oxygen and the oxygen excess defect amount.

ここで、前記赤色蛍光強度比は、赤色蛍光(4000〜4100cm−1)の面積強度を石英ガラスの内部標準ピーク (700〜900cm−1)の面積強度で除することにより算出されることが望ましい。 Here, it is desirable that the red fluorescence intensity ratio is calculated by dividing the area intensity of red fluorescence (4000 to 4100 cm -1 ) by the area intensity of the internal standard peak (700 to 900 cm -1 ) of quartz glass. .

また、前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程において、レーザラマン分光分析法で用いる測定光の波長の2倍以上1mm以下の間隔で複数箇所、測定することが望ましい。   In the step of measuring the red fluorescence intensity ratio at a plurality of locations at predetermined intervals in the quartz glass member by the laser Raman spectroscopy and obtaining the distribution of the red fluorescence intensity ratio, the wavelength of the measurement light used in the laser Raman spectroscopy It is desirable to measure at a plurality of points at intervals of 2 times or more and 1 mm or less.

更に、前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程において、0.01mm以上1mm以下の間隔で少なくとも10箇所の赤色蛍光強度比を測定することが望ましい。
尚、0.01以上1mm以下の間隔で測定するのは、欠陥量をモニターするのに最適な間隔であるためであり、少なくとも10箇所測定するのは、信頼出来るばらつきを算出するための最低限の箇所数であるためである。
Furthermore, in the step of measuring the red fluorescence intensity ratio at a plurality of locations at predetermined intervals in the quartz glass member by the laser Raman spectroscopy and obtaining the distribution of the red fluorescence intensity ratio, at least 10 at intervals of 0.01 mm or more and 1 mm or less. It is desirable to measure the red fluorescence intensity ratio at the location.
The reason for measuring at intervals of 0.01 or more and 1 mm or less is because this is the optimum interval for monitoring the amount of defects, and measuring at least 10 locations is the minimum for calculating reliable variation. It is because it is the number of places of.

このような方法によれば、レーザラマン分光分析法により、前記微小領域での赤色蛍光強度比の分布の測定が可能であるため、赤色蛍光強度比と酸素過剰欠陥量との検量線を用いることで、非破壊かつ微小領域での酸素過剰欠陥分布を評価することができる。   According to such a method, it is possible to measure the distribution of the red fluorescence intensity ratio in the minute area by laser Raman spectroscopy, so by using a calibration curve of the red fluorescence intensity ratio and the oxygen excess defect amount Nondestructively, it is possible to evaluate the oxygen excess defect distribution in a minute region.

また、上記石英ガラス部材の評価方法で測定され、赤色蛍光強度比が0.05以下であり、酸素過剰欠陥量が3×1011個/g以下である石英ガラス部材を、石英ガラスルツボに用いた場合には、石英ガラスルツボの気泡膨れの発生を抑制でき、好ましい。
このように、事前に気泡膨れの発生の有無を検証することができるため、品質が保証された石英ガラスルツボ用の石英ガラス部材を提供することができる。
In addition, it is measured by the evaluation method of the quartz glass member, and a quartz glass member having a red fluorescence intensity ratio of 0.05 or less and an oxygen excess defect amount of 3 × 10 11 pieces / g or less is used for a quartz glass crucible. In this case, the occurrence of bubble expansion of the quartz glass crucible can be suppressed, which is preferable.
Thus, since the presence or absence of the occurrence of bubble expansion can be verified in advance, it is possible to provide a quartz glass member for a quartz glass crucible whose quality is guaranteed.

本発明によれば、石英ガラス中の酸素過剰欠陥の量を、前記微小領域において、非破壊に測定することのできる石英ガラス部材の評価方法、及びその評価方法により得られた結果に基づき品質が保証された石英ガラス部材を得ることができる。   According to the present invention, the quality is based on the evaluation method of the quartz glass member capable of nondestructively measuring the amount of oxygen excess defects in the quartz glass in the micro area and the result obtained by the evaluation method. A secured quartz glass member can be obtained.

図1は、本発明に係る石英ガラス部材の評価方法の流れを示すフローである。FIG. 1 is a flow showing a flow of a method of evaluating a quartz glass member according to the present invention. 図2は、合成石英ガラスの試料を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a sample of synthetic quartz glass. 図3(a)、(b)は、本発明の実施例において得られた赤色蛍光強度比の分布を示すグラフである。FIGS. 3 (a) and 3 (b) are graphs showing the distribution of the red fluorescence intensity ratio obtained in the example of the present invention. 図4は、本発明の実施例において得られた酸素過剰欠陥量と赤色蛍光強度比との相関を示す検量線のグラフである。FIG. 4 is a graph of a calibration curve showing the correlation between the oxygen excess defect amount and the red fluorescence intensity ratio obtained in the example of the present invention.

以下、本発明に係る石英ガラス部材の評価方法の一実施形態を説明する。図1は、本発明に係る石英ガラス部材の評価方法の流れを示すフローである。本発明に係る石英ガラス部材の評価方法にあっては、レーザラマン分光分析法で測定する赤色蛍光強度比と、酸素過剰欠陥の量との間の相関を求め、前記微小領域での欠陥量の分布を測定するものである。   Hereinafter, an embodiment of a method of evaluating a quartz glass member according to the present invention will be described. FIG. 1 is a flow showing a flow of a method of evaluating a quartz glass member according to the present invention. In the evaluation method of the quartz glass member according to the present invention, the correlation between the red fluorescence intensity ratio measured by laser Raman spectroscopy and the amount of oxygen excess defects is determined, and the distribution of the amount of defects in the minute region To measure the

前記評価方法にあっては、先ず準備工程が必要である。準備工程では、酸素過剰欠陥を含む石英ガラス部材の試料を1つ又は複数用意する(ステップS1)。複数の場合には、測定を行う石英ガラス部材と同じ条件で製造された石英ガラス部材の試料を用意する。   In the above evaluation method, a preparation step is first required. In the preparation step, one or more samples of a quartz glass member containing an oxygen excess defect are prepared (step S1). In a plurality of cases, a sample of a quartz glass member manufactured under the same conditions as the quartz glass member to be measured is prepared.

試料の作製は、例えば、図2に示すように所定大きさ(例えば幅12mm×高さ50mm×奥行き6mm)の直方体形状とし、酸素過剰欠陥が存在する箇所と存在しない箇所とを含むように4側面を鏡面とする。   The preparation of the sample is, for example, a rectangular solid of a predetermined size (for example, 12 mm wide × 50 mm high × 6 mm deep) as shown in FIG. 2 and includes 4 places where excess oxygen defects exist and places where no oxygen excess defects exist. Make the side a mirror surface.

次いでレーザラマン分光分析法により、試料における赤色蛍光強度比の分布を測定する(測定装置としては、例えば愛宕物産株式会社製S320型レーザラマン分光分析装置)。測定方向は試料長手方向の分布を所定間隔(例えば測定光の波長の2倍以上1mm以下)で少なくとも10箇所を測定する(ステップS2)。尚、測定光の波長の2倍未満では、入射光を絞れず、隣接する測定箇所の情報を拾ってしまう虞があり、1mmを超えるとバルク分析でも対応可能であり、本発明の優位な特徴である微小領域の分布測定ではなくなるためである。   Next, the distribution of the red fluorescence intensity ratio in the sample is measured by laser Raman spectroscopy (as a measuring device, for example, S320 laser Raman spectroscopy analyzer manufactured by Alisu Co., Ltd.). As the measurement direction, at least ten locations of the distribution in the longitudinal direction of the sample are measured at predetermined intervals (for example, twice or more and 1 mm or less of the wavelength of measurement light) (step S2). If the wavelength of the measurement light is less than twice, incident light can not be narrowed and information on adjacent measurement points may be picked up. If it exceeds 1 mm, bulk analysis is possible, which is an advantageous feature of the present invention It is because it is not distribution measurement of the micro area which is.

次いで、得られた結果に基づき、各試料において赤色蛍光強度比の値が安定(例えば、赤色蛍光強度比の変動係数が20%以下)して検出される部位を切り出す(ステップS3)。   Then, based on the obtained result, in each sample, the value of the red fluorescence intensity ratio is stable (for example, the variation coefficient of the red fluorescence intensity ratio is 20% or less), and a site detected is cut out (step S3).

本発明では、赤色蛍光強度比の変動係数を20%以下としている。変動係数が20%を超える場合は、正確な評価が困難になるおそれがあり好ましくない。なお、変動係数は小さければ小さいほど良いが、変動係数ゼロは現実的にはありえない。また、ある程度まで変動が抑えられていれば本発明の効果にはほとんど影響しない一方、過度の変動係数の最小化には過大な労力が必要になり実用上適切とは言えない。これらを考慮すると、下限としては0.1%以上とするのが現実的である。なお、変動係数が10%以下であるとより好ましい。   In the present invention, the variation coefficient of the red fluorescence intensity ratio is 20% or less. If the variation coefficient exceeds 20%, accurate evaluation may be difficult, which is not preferable. The smaller the coefficient of variation, the better, but no coefficient of variation can not be realized practically. In addition, if the fluctuation is suppressed to a certain extent, the effect of the present invention is hardly affected, but the excessive fluctuation coefficient requires excessive labor to be minimized, which is not practically appropriate. In consideration of these, it is realistic to set the lower limit to 0.1% or more. The variation coefficient is more preferably 10% or less.

そして、切り出した部位を粉砕し、ESR(電子スピン共鳴法)により(装置としては、汎用のESR測定装置を適時用いることができる)酸素過剰欠陥の量を測定する(ステップS4)。酸素過剰欠陥の量はESRにより求めることが出来る総スピン数とする。   Then, the cut-out portion is crushed, and the amount of oxygen excess defects (in which a general-purpose ESR measurement device can be used as appropriate for the device) is measured by ESR (electron spin resonance method) (step S4). The amount of oxygen excess defects is the total number of spins that can be determined by ESR.

これにより赤色蛍光強度比と酸素過剰欠陥との相関(検量線)が得られる(ステップS5)。得られた検量線は、必要に応じて、例えば、相関テーブルとしてコンピュータの記憶装置等に保持しておくと良い。   As a result, the correlation (calibration curve) between the red fluorescence intensity ratio and the oxygen excess defect is obtained (step S5). The obtained calibration curve may be stored, for example, in a storage device of a computer as a correlation table, if necessary.

以上により準備工程が完了し、以後、試料と同じ条件で製造された石英ガラス部材については、赤色蛍光強度比を測定し(ステップS6)、これを前記得られた検量線を用いて酸素過剰欠陥量に換算する(ステップS7)。   Thus, the red fluorescence intensity ratio is measured for the quartz glass member manufactured under the same conditions as the sample after the preparation step is completed (step S6), and the oxygen excess defect is measured using the obtained calibration curve. Convert to quantity (step S7).

このように本発明に係る実施の形態によれば、レーザラマン分光分析法により微小領域での赤色蛍光強度比の分布の測定が可能であるため、赤色蛍光強度比と酸素過剰欠陥量との検量線を用いることで、非破壊かつ微小領域での酸素過剰欠陥分布を評価することができる。   As described above, according to the embodiment of the present invention, it is possible to measure the distribution of the red fluorescence intensity ratio in a minute area by laser Raman spectroscopy, so that the calibration curve of the red fluorescence intensity ratio and the oxygen excess defect amount By using the above, it is possible to evaluate the distribution of excess oxygen defects in a nondestructive and minute area.

また、前記評価方法により微小領域での酸素過剰欠陥の分布を把握できるので、後述するように、気泡膨れを事前に予防できる石英ガラス部材を得ることができる。   Moreover, since the distribution of the oxygen excess defect in a micro area | region can be grasped | ascertained by the said evaluation method, as mentioned later, the quartz glass member which can prevent bubble swelling in advance can be obtained.

本発明に係る本発明に係る石英ガラス部材の評価方法について、実施例に基づきさらに説明する。本実施例では、図1に示したフローに従って、石英ガラス部材の酸素過剰欠陥を評価し、本発明の効果を検証した。   The method for evaluating a quartz glass member according to the present invention according to the present invention will be further described based on examples. In this example, the excess oxygen defect of the quartz glass member was evaluated according to the flow shown in FIG. 1 to verify the effect of the present invention.

[実施例1]
実施例1では、石英ガラス部材の試料における複数箇所、具体的には、レーザラマン分光分析法で用いる測定光の波長(514nm)の2倍以上1mm以下の範囲にある0.1mm間隔で測定箇所を決定した。そして、各測定箇所に対し、図3(a)、(b)にグラフで示すようにレーザラマン分光分析法により赤色蛍光強度を測定し、それぞれ測定値の変化が少ない部位(ここでは、赤色蛍光強度の変動係数が10%以下となるグラフ中の破線で囲む部分)を選定した。
Example 1
In Example 1, a plurality of measurement points on a sample of a quartz glass member, specifically, measurement points at intervals of 0.1 mm within a range of twice to 1 mm of the wavelength (514 nm) of measurement light used in laser Raman spectroscopy. Were determined. Then, for each measurement location, the red fluorescence intensity is measured by laser Raman spectroscopy as shown by the graphs in FIGS. 3 (a) and 3 (b). The part surrounded by the broken line in the graph where the coefficient of variation of 10% or less is selected.

尚、レーザラマン分光分析法による赤色蛍光強度比の測定には、愛宕物産社製S320型レーザラマン分光分析装置を用いた。レーザの種類はArレーザ、レーザ波長は514nm、レーザ出力は400mW、積算時間は内部標準1秒×2回、赤色蛍光10秒×2回、散乱光検出角度は90°である。
また、赤色蛍光強度比は、赤色蛍光(4000〜4100cm−1)の面積強度を石英ガラスの内部標準ピーク (700〜900cm−1)の面積強度で割ることにより算出した。
For the measurement of the red fluorescence intensity ratio by laser Raman spectroscopy, a model S320 laser Raman spectroscopy analyzer manufactured by Ehime Sangyo Co., Ltd. was used. The type of laser is Ar laser, the laser wavelength is 514 nm, the laser output is 400 mW, the integration time is 1 second × 2 times internal standard, red fluorescence 10 seconds × 2 times, and the scattered light detection angle is 90 °.
In addition, the red fluorescence intensity ratio was calculated by dividing the area intensity of red fluorescence (4000 to 4100 cm −1 ) by the area intensity of the internal standard peak (700 to 900 cm −1 ) of quartz glass.

さらに選定した複数の部位を取り出して、それぞれ粉砕し、ESR(電子スピン共鳴法)により各部位の酸素過剰欠陥量を測定した。その結果、前記算出した赤色蛍光強度比と酸素過剰欠陥量との相関が図4のグラフに示すように得られた。また、図4のグラフより、各データを用いた近似曲線をエクセルの機能を用いて作成し、同様にして検量線のR値を求めると、0.9以上となり非常に高い精度が得られた。R値は相関係数の二乗で決定係数を意味している。
尚、ESR(電子スピン共鳴法)による酸素過剰欠陥量の測定には、汎用のESR測定装置を用い、測定温度は40K、マイクロ波波長は9.45GHz、マイクロ波パワーは4mW、掃引時間は30秒、スキャン回数は10回、変調2Gとした。
Further, a plurality of selected sites were taken out and crushed respectively, and the amount of oxygen excess defects in each site was measured by ESR (electron spin resonance method). As a result, the correlation between the calculated red fluorescence intensity ratio and the excess oxygen defect amount was obtained as shown in the graph of FIG. Also, if an approximate curve using each data is created from the graph in FIG. 4 using the function of Excel, and the R 2 value of the calibration curve is similarly determined, it becomes 0.9 or more, and very high accuracy is obtained. The The R 2 value means the determination coefficient by the square of the correlation coefficient.
For measuring the amount of oxygen excess defects by ESR (electron spin resonance), a general-purpose ESR measuring device is used, the measurement temperature is 40 K, the microwave wavelength is 9.45 GHz, the microwave power is 4 mW, and the sweep time is 30 Second, the number of scans was 10 and modulation 2G was used.

[実施例2]
実施例2では石英ガラス部材の試料に対して赤色蛍光強度の測定を行い、その結果に対し、赤色蛍光(4000〜4100cm−1)の面積強度を石英ガラスの内部標準ピーク (700〜900cm−1)の面積強度で割り、赤色蛍光強度比を算出し、赤色蛍光強度比から実施例1で得られた検量線(図4)を用いて、赤色蛍光強度比を酸素過剰欠陥量に変換した。
その結果、その試料の赤色蛍光強度比は0.28であり、変換した酸素過剰欠陥量は、1.2×1013個/gであった。
一方、この試料の酸素過剰欠陥の量を、電子スピン共鳴分析法)により測定した。その結果、酸素過剰欠陥量は、1.4×1013個/gであった。
石英ガラス部材の評価方法による変換した酸素過剰欠陥量と、電子スピン共鳴分析法酸素過剰欠陥量は、誤差20%以下で測定出来ることが確認された。
Example 2
Example 2 was measured in the red fluorescence intensity in the sample of the silica glass member, as a result to the red fluorescence (4000~4100cm -1) internal standard peak area intensity of quartz glass (700~900cm -1 The red fluorescence intensity ratio was converted into the amount of oxygen excess defects using the calibration curve (FIG. 4) obtained in Example 1 from the red fluorescence intensity ratio.
As a result, the red fluorescence intensity ratio of the sample was 0.28, and the converted excess oxygen defect amount was 1.2 × 10 13 pieces / g.
On the other hand, the amount of oxygen excess defects in this sample was measured by electron spin resonance analysis). As a result, the oxygen excess defect amount was 1.4 × 10 13 pieces / g.
It was confirmed that the amount of oxygen excess defects converted by the evaluation method of the quartz glass member and the amount of oxygen excess defects by electron spin resonance analysis can be measured with an error of 20% or less.

本発明は、上記したように、前記試料となる石英ガラス部材を破壊することなく、前記酸素過剰欠陥量を求めるものであるが、本発明を適用により、石英ガラスルツボにおける気泡膨れの発生を予見することにも利用することができる。
ここで、気泡膨れとは、特許文献2にもあるように、石英ガラスルツボ内部に残存した気泡が単結晶原料溶融時に体積が増加する現象で、膨れた気泡は、単結晶化率を低下させる要因となるので、気泡膨れを起こす気泡の存在を事前に予見することは非常に有用である。
The present invention, as described above, determines the amount of excess oxygen defects without destroying the quartz glass member to be the sample, but by applying the present invention, the occurrence of bubble blistering in a quartz glass crucible is foreseen It can also be used to
Here, as described in Patent Document 2, bubble blistering is a phenomenon in which bubbles remaining in the inside of a quartz glass crucible increase in volume during melting of a single crystal raw material, and the blistered bubble reduces the single crystallization rate. Because it is a factor, it is very useful to predict in advance the presence of a bubble that causes bubble blistering.

特許文献2、特許文献3にあっては、赤色蛍光強度比を測定し、得られた値が所定値以下の場合に気泡の膨れを抑制できることが示されている。しかしながら、気泡の膨れの抑制に対する、直接的な関係を有する酸素過剰欠陥量を用いた測定(評価)方法は行われていない。
本発明にあっては、予め、気泡の膨れを抑制できる酸素過剰欠陥量の閾値を定め、試料の赤色蛍光強度比を測定し、その赤色蛍光強度比を酸素過剰欠陥量に換算して、前記閾値を超えるか否かによって、気泡膨れを起こすか否かを事前に評価することができる。
具体的には、赤色蛍光強度比が0.05以下であり、酸素過剰欠陥量が3×1011個/g以下である石英ガラス部材を石英ガラスルツボに用いた場合には、石英ガラスルツボの気泡膨れの発生を有効に抑制できる。
According to Patent Document 2 and Patent Document 3, it is shown that the red fluorescence intensity ratio is measured, and when the obtained value is equal to or less than a predetermined value, it is possible to suppress the bubble swelling. However, there is no measurement (evaluation) method using the amount of excess oxygen defects that has a direct relationship with the suppression of bubble blistering.
In the present invention, the threshold value of the oxygen excess defect amount capable of suppressing the bubble swelling is previously determined, the red fluorescence intensity ratio of the sample is measured, and the red fluorescence intensity ratio is converted to the oxygen excess defect amount. It can be evaluated in advance whether bubble blistering will occur depending on whether the threshold value is exceeded.
Specifically, when a quartz glass member having a red fluorescence intensity ratio of 0.05 or less and an oxygen excess defect amount of 3 × 10 11 pieces / g or less is used for a quartz glass crucible, the quartz glass crucible The occurrence of bubble blister can be effectively suppressed.

また、本発明は、石英ガラスルツボのほか、様々な製品にも応用出来る。但し、ガラスの材質、製法、製品ごとで酸素過剰欠陥量−赤色蛍光強度比間の検量線の傾きが異なるため、検量線はその都度作成する必要がある。   In addition to the quartz glass crucible, the present invention can also be applied to various products. However, since the slope of the calibration curve between the oxygen excess defect amount and the red fluorescence intensity ratio differs depending on the material, manufacturing method, and product of glass, it is necessary to create a calibration curve each time.

Claims (5)

石英ガラス部材の酸素過剰欠陥を評価する方法であって、
レーザラマン分光分析法と電子スピン共鳴法とを用いて石英ガラス部材における、赤色蛍光強度比と酸素過剰欠陥の検量線を得る工程と、前記レーザラマン分光分析法により測定した前記石英ガラス部材の赤色蛍光強度比から前記検量線を用いて、酸素過剰欠陥の単位重量あたりの個数を算出する工程と、を含み、
前記レーザラマン分光分析法と電子スピン共鳴法とを用いて石英ガラス部材における赤色蛍光強度比と酸素過剰欠陥の検量線を得る工程は、
試料となる石英ガラス部材を用意する工程と、
前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程と、
前記赤色蛍光強度比の分布から赤色蛍光強度比の変動係数が20%以下の低変動領域を特定する工程と、
前記石英ガラス部材における前記低変動領域を切り出し、粉砕して検量線作成用試料を作成する工程と、
前記検量線作成用試料の酸素過剰欠陥の量を前記電子スピン共鳴法により測定する工程と、
前記赤色蛍光強度比の分布と前記酸素過剰欠陥量とから検量線を作成する工程と、
を含むことを特徴とする石英ガラス部材の評価方法。
A method for evaluating excess oxygen defects in a quartz glass member, comprising:
Obtaining a red fluorescence intensity ratio and an oxygen excess defect calibration curve in the quartz glass member using laser Raman spectroscopy and electron spin resonance, and measuring the red fluorescence intensity of the quartz glass member measured by the laser Raman spectroscopy Calculating the number of oxygen excess defects per unit weight from the ratio using the calibration curve.
The process of obtaining the calibration curve of the red fluorescence intensity ratio and the oxygen excess defect in the quartz glass member using the laser Raman spectroscopy and the electron spin resonance method
Preparing a quartz glass member to be a sample;
Measuring the red fluorescence intensity ratio at a plurality of locations at predetermined intervals in the quartz glass member by the laser Raman spectroscopy to obtain a distribution of the red fluorescence intensity ratio;
Identifying a low fluctuation region in which the variation coefficient of the red fluorescence intensity ratio is 20% or less from the distribution of the red fluorescence intensity ratio;
Cutting out the low-variation region in the quartz glass member and crushing to prepare a sample for calibration curve preparation;
Measuring the amount of oxygen excess defects in the calibration curve preparation sample by the electron spin resonance method;
Creating a calibration curve from the distribution of the red fluorescence intensity ratio and the oxygen excess defect amount;
The evaluation method of the quartz glass member characterized by including.
前記赤色蛍光強度比は、赤色蛍光(4000〜4100cm−1)の面積強度を石英ガラスの内部標準ピーク (700〜900cm−1)の面積強度で除することにより算出されることを特徴とする請求項1記載の石英ガラス部材の評価方法。 The red fluorescence intensity ratio is calculated by dividing the area intensity of red fluorescence (4000 to 4100 cm -1 ) by the area intensity of the internal standard peak (700 to 900 cm -1 ) of quartz glass. The evaluation method of the quartz glass member of claim 1. 前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程において、レーザラマン分光分析法で用いる測定光の波長の2倍以上1mm以下の間隔で複数箇所、測定することを特徴とする請求項1に記載された石英ガラス部材の評価方法。   In the process of measuring the red fluorescence intensity ratio at a plurality of locations at predetermined intervals in the quartz glass member by the laser Raman spectroscopy and obtaining the distribution of the red fluorescence intensity ratio, twice the wavelength of the measurement light used in the laser Raman spectroscopy 2. The method of evaluating a quartz glass member according to claim 1, wherein the measurement is performed at a plurality of points at intervals of 1 mm or less. 前記レーザラマン分光分析法により、前記石英ガラス部材において所定間隔で複数箇所の赤色蛍光強度比を測定し、赤色蛍光強度比の分布を得る工程において、0.01mm以上1mm以下の間隔で少なくとも10箇所の赤色蛍光強度比を測定することを特徴とする請求項1または請求項3に記載された石英ガラス部材の評価方法。   In the step of measuring the red fluorescence intensity ratio at a plurality of locations at predetermined intervals in the quartz glass member by the laser Raman spectroscopy and obtaining the distribution of the red fluorescence intensity ratio, at least 10 locations at intervals of 0.01 mm or more and 1 mm or less The method for evaluating a quartz glass member according to claim 1 or 3, wherein a red fluorescence intensity ratio is measured. 前記請求項1乃至請求項4に記載された石英ガラス部材の評価方法に測定され、赤色蛍光強度比が0.05以下であり、酸素過剰欠陥量が3×1011個/g以下であり、かつ石英ガラスルツボに用いられることを特徴とする石英ガラス部材。 The red fluorescence intensity ratio is 0.05 or less, and the amount of oxygen excess defects is 3 × 10 11 pieces / g or less, which is measured by the evaluation method of the quartz glass member described in the first to fourth aspects. And a quartz glass member characterized in that it is used for a quartz glass crucible.
JP2018198178A 2017-11-10 2018-10-22 Evaluation method of quartz glass member Active JP7128083B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216898 2017-11-10
JP2017216898 2017-11-10

Publications (2)

Publication Number Publication Date
JP2019090794A true JP2019090794A (en) 2019-06-13
JP7128083B2 JP7128083B2 (en) 2022-08-30

Family

ID=66836270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198178A Active JP7128083B2 (en) 2017-11-10 2018-10-22 Evaluation method of quartz glass member

Country Status (1)

Country Link
JP (1) JP7128083B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021117098A (en) * 2020-01-24 2021-08-10 日立金属株式会社 Crosslinked fluorine resin and method for managing the same
CN113493925A (en) * 2020-04-08 2021-10-12 阔斯泰公司 Quartz glass crucible and method for producing same
KR20210125430A (en) 2020-04-08 2021-10-18 쿠어스택 가부시키가이샤 Quartz glass crucible and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344536A (en) * 1999-06-01 2000-12-12 Toshiba Ceramics Co Ltd Quartz glass crucible and its manufacture
JP2003114347A (en) * 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The Single mode optical fiber, method and device for manufacturing the same
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
JP2011003432A (en) * 2009-06-19 2011-01-06 Osaka Titanium Technologies Co Ltd Silicon oxide and negative electrode material for lithium ion secondary battery
US20120269711A1 (en) * 2011-04-20 2012-10-25 Shin-Etsu Quartz Products Co., Ltd. Synthetic silica glass, especially for the cladding of an optical fiber and a manufacturing method for the synthetic silica glass
JP2014065622A (en) * 2012-09-25 2014-04-17 Covalent Materials Corp Manufacturing method of silica glass crucible for pulling silicon single crystal and manufacturing apparatus for the same
JP2016124718A (en) * 2014-12-26 2016-07-11 クアーズテック株式会社 Quartz glass crucible, and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344536A (en) * 1999-06-01 2000-12-12 Toshiba Ceramics Co Ltd Quartz glass crucible and its manufacture
JP2003114347A (en) * 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The Single mode optical fiber, method and device for manufacturing the same
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
JP2011003432A (en) * 2009-06-19 2011-01-06 Osaka Titanium Technologies Co Ltd Silicon oxide and negative electrode material for lithium ion secondary battery
US20120269711A1 (en) * 2011-04-20 2012-10-25 Shin-Etsu Quartz Products Co., Ltd. Synthetic silica glass, especially for the cladding of an optical fiber and a manufacturing method for the synthetic silica glass
JP2014065622A (en) * 2012-09-25 2014-04-17 Covalent Materials Corp Manufacturing method of silica glass crucible for pulling silicon single crystal and manufacturing apparatus for the same
JP2016124718A (en) * 2014-12-26 2016-07-11 クアーズテック株式会社 Quartz glass crucible, and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021117098A (en) * 2020-01-24 2021-08-10 日立金属株式会社 Crosslinked fluorine resin and method for managing the same
JP7347236B2 (en) 2020-01-24 2023-09-20 株式会社プロテリアル Crosslinked fluororesin and its management method
CN113493925A (en) * 2020-04-08 2021-10-12 阔斯泰公司 Quartz glass crucible and method for producing same
KR20210125430A (en) 2020-04-08 2021-10-18 쿠어스택 가부시키가이샤 Quartz glass crucible and manufacturing method thereof
KR102494261B1 (en) * 2020-04-08 2023-02-06 모멘티브 테크놀로지스 야마가타 가부시키가이샤 Quartz glass crucible and manufacturing method thereof

Also Published As

Publication number Publication date
JP7128083B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP2019090794A (en) Method for evaluating quartz glass member and quartz glass member
Meier On art and science in curve-fitting vibrational spectra
US20080280373A1 (en) Method and apparatus for measuring pH of low alkalinity solutions
Stone et al. Advice from the CCL on the use of unstabilized lasers as standards of wavelength: the helium–neon laser at 633 nm
Yarema et al. Gain saturation in phosphate laser glasses
Itoh et al. Development of a polystyrene reference material for raman spectrometer (NMIJ RM 8158-a)
Ouyang et al. Temperature dependence of the zero-field splitting parameter of nitrogen-vacancy centre ensembles in diamond considering microwave and laser heating effect
Wang et al. On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS
US7944558B2 (en) Method and system for physicochemical analysis using a laser pulsed ablation
JP2009500628A (en) Calibration scheme for use with lateral flow analysis test strips
Tello et al. Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains
Vranckx et al. A temperature dependence kinetic study of O (1 D)+ CH 4: overall rate coefficient and product yields
US9097584B2 (en) Method and apparatus for detecting cadmium with optical emission spectroscopy
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
CN108226082B (en) Calibration method for damping response time of moisture meter
CN109298320B (en) Detection method, device and equipment for BGA packaged product and storage medium
US20170052069A1 (en) Method for determining the temperature of an infrared-active gas by means of infrared spectroscopy
JP4653430B2 (en) Method for quantitative determination of pulsed laser resistance of synthetic quartz glass
Fukazawa et al. Raman spectra of translational lattice vibrations in polar ice
Koulikov et al. Potential improvements aimed at high precision δ13C isotopic ratio determinations in CO2 mixtures using optical absorption spectrometry
Acko et al. Verification of the conventional measuring uncertainty evaluation model with Monte Carlo simulation
JP2012078194A (en) Liquid-containing state evaluation method of porous material and liquid-containing evaluation system of porous material
JP2012177679A (en) Granularity representative value estimation device and granularity representative value estimation method
Hubschmid Molecular relaxations in mixtures of O 2 with CO 2 observed on laser-induced gratings
Wimpory et al. Minimizing and characterizing uncertainties in neutron strain measurements with special attention to grain size effects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350