JP2019090709A - Electrode structure - Google Patents

Electrode structure Download PDF

Info

Publication number
JP2019090709A
JP2019090709A JP2017220173A JP2017220173A JP2019090709A JP 2019090709 A JP2019090709 A JP 2019090709A JP 2017220173 A JP2017220173 A JP 2017220173A JP 2017220173 A JP2017220173 A JP 2017220173A JP 2019090709 A JP2019090709 A JP 2019090709A
Authority
JP
Japan
Prior art keywords
electrode
film
layer
substrate
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017220173A
Other languages
Japanese (ja)
Other versions
JP6961469B2 (en
Inventor
邦彦 澁澤
Kunihiko Shibusawa
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Cheical Tech Co Ltd
Taiyo Yuden Cheical Technology Co Ltd
Original Assignee
Taiyo Yuden Cheical Tech Co Ltd
Taiyo Yuden Cheical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Cheical Tech Co Ltd, Taiyo Yuden Cheical Technology Co Ltd filed Critical Taiyo Yuden Cheical Tech Co Ltd
Priority to JP2017220173A priority Critical patent/JP6961469B2/en
Publication of JP2019090709A publication Critical patent/JP2019090709A/en
Application granted granted Critical
Publication of JP6961469B2 publication Critical patent/JP6961469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To eliminate an unexpected change (noise) of a jig, etc., that handles and holds a sample for detecting a detection electrode that constitutes a detection system as much as possible and maintains and improves the limit of detection sensitivity itself as well in a sensor and an evaluation analyzer using a valve metal as an electrode material.SOLUTION: Provided is an electrode structure equipped with a substrate and an electrode composed of a valve metal that is formed on at least a portion of the substrate, in which a protective film composed of an amorphous carbon film or a protective film composed of a dry thin film including one or more of the oxide, nitride, carbide, oxynitride, carbonate, carbonitride and carboxynitride layers of silicon or metal is formed on the electrode, the protective film having a film thickness of more than 10 nm and less than 200 nm. Alternatively, a water-repellent and/or water-and-oil repellent thin-film layer is further provided on the protective film composed of the amorphous carbon film or the protective film composed of the dry thin film.SELECTED DRAWING: None

Description

本発明は、センサー又は評価分析装置に用いる電極構造体に関し、特に、液体や気体を対象とするセンサー又は評価分析装置における測定精度の安定・向上のための電極構造体に関する。   The present invention relates to an electrode structure used in a sensor or an analysis and analysis device, and more particularly to an electrode structure for stabilizing and improving measurement accuracy in a sensor or an analysis and analysis device for liquid or gas.

センサーや評価分析装置は従来、研究施設のラボや手術室、恒温恒湿のクリーンルームなど屋内の整備された温和な特定環境で使用されてきており、またそのような環境下での使用を前提に設計されていた。   Sensors and evaluation analyzers have been used in a laboratory or operating room in a research facility or in a mildly specified indoor environment such as a clean room with constant temperature and humidity. Also, it is assumed that such environment is used. It was designed.

近年、センサーや評価分析装置がマイクロデバイス化され、ITO(インターネット・オン・ツール)の構成機構の一部を占めるようになると、自動車における自動無人運転用の検知装置や、屋外農園における作物の生育状況監視、や水耕栽培工場における水の監視、救急救命医療などにおける事故、災害現場などでの簡易迅速測定や診断など、過酷で変化する環境の屋外に持ち出されることになり、検知装置に降り注ぐ紫外線や腐食性の雨、暴露される腐食性の汚染大気や排出ガス、海水の塩分を含む雰囲気などへの耐性の確保、また、マイナス40℃から80℃近くまでと広範な範囲で刻々と短時間で繰り返される外界でのヒートサイクルによる構成部材の剥離や変形などの構造疲労等、これまでドライ環境での使用を前提に設計されてきたセンサー電極においてまで、ヒートサイクルにより発生する腐食性の結露やガスへの対策などウエットで使用される電極並みの耐性設計付与が必要になるなど、検知装置を取り巻く環境に対する耐候性がその性能の維持、向上に重要な、或いは主要な機能となってきている。   In recent years, when sensors and evaluation and analysis devices are converted to microdevices and occupy a part of the configuration mechanism of ITO (Internet on Tools), detection devices for automatic unmanned operation in automobiles and growth of crops in outdoor farms It will be carried out outdoors in a harsh and changing environment, such as situation monitoring, water monitoring in hydroponic cultivation plants, accidents in emergency critical care, simple quick measurement and diagnosis at disaster sites etc. Ensuring resistance to UV rays, corrosive rain, exposed corrosive polluting atmospheres and exhaust gases, and atmospheres containing salt of seawater, etc. Also, it is short every moment in a wide range from -40 ° C to near 80 ° C It has been designed on the premise of use in dry environment, such as structural fatigue such as peeling and deformation of components due to heat cycles in the external environment repeated in time. In the sensor electrode, it is necessary to provide resistance design equivalent to that of the electrode used in wet, such as measures against corrosive condensation generated by heat cycles and measures against gas, etc. It has become an important or major function for maintenance and improvement.

また、センサーや評価分析装置は携帯用としてより小型、軽量化が求められる一方、例えば医療分野において、疾病患者からの検体採取等においては患者の苦痛を緩和し、生体機能を保全するため、より少量で採取される検体への高い検知能力が、一層低コストで求められている。   In addition, while the sensor and evaluation analysis device are required to be smaller and lighter for portable use, for example, in the medical field, in the case of collecting a sample from a patient with a disease etc., to ease the pain of the patient and maintain the biological function, There is a need for higher detection capabilities for samples collected in small quantities at lower cost.

通常、センサー、評価分析装置等の検知電極の材料としては主に金、白金などの貴金属よりなるものが使用されている。貴金属は、耐食性、導電性に優れ、センシング用の電極として用いる場合、検体や使用環境からの腐食による電気電導性の変化などを起こさないため、安定した精度のよい測定を可能とするものである。   Usually, as a material of a detection electrode such as a sensor, an evaluation analyzer, etc., one made of a noble metal such as gold or platinum is used. Noble metals are excellent in corrosion resistance and conductivity, and when used as electrodes for sensing, they do not cause changes in electrical conductivity due to corrosion from the sample or the environment in which they are used, enabling stable and accurate measurement. .

一方、Al、Ti、Ni、Cr等に代表される「弁金属」は、卑金属ではあるがその表層に酸化膜などの薄い基材に由来する不動態層を自然形成することで貴金属のような耐食性を有する金属であり、その不動態層のもたらす電気容量の安定性や、低コスト面から、電子部品の電極等においては、前記貴金属に変えて使用することが極めて有効な場合がある。
しかしながら、センサーや評価分析装置等においては、検体試料を検知・測定系に投入した際に発生する、または発生している「変化」、例えば電流や電圧、電気抵抗値、電気容量などの変化「量」を正確に、高感度に検出する機能が極めて重要であり、特に微小な変化(量)を正しく検出することが必要であることから、検知電極の材料として、表層に電気抵抗の大きい不動態皮膜を伴う「弁金属」を選定しないことが定石であって、前述のように、通常は、耐食性に優れ、電気抵抗も低い貴金属よりなる電極が使用されている。
On the other hand, “valve metals” represented by Al, Ti, Ni, Cr, etc. are base metals, but they naturally form passive layers derived from thin base materials such as oxide films on their surface like noble metals. It is a metal having corrosion resistance, and from the viewpoint of the stability of the electrical capacity provided by the passive layer and the cost reduction, it may be extremely effective to use the noble metal in the electrode of an electronic component or the like in place of the noble metal.
However, in sensors and evaluation analyzers, etc., “changes” that occur or occur when a sample is introduced into a detection / measurement system, such as changes in current, voltage, electrical resistance, electrical capacity, etc. The ability to accurately detect “quantity” with high sensitivity is extremely important, and in particular it is necessary to detect minute changes (quantity) correctly. It is a rule not to select a "valve metal" with a dynamic film, and as described above, an electrode made of a noble metal having excellent corrosion resistance and low electrical resistance is usually used.

さらに、センサーや評価分析装置等においては、その検出感度を向上させる目的で、電極の検体試料との接触面積を増大させるための電極の単位表面積の拡張、つまり電極の微細化が行なわれる。例えば、櫛形電極においては、櫛の歯の部分(通常導電性の電極部分)の幅と、櫛歯間の間隔(通常、絶縁性の電極の基板表層が露出する電気絶縁部分)を極力狭くし(微小、高精細化し)、一定面積内に導電部と絶縁部を多数配置して、アノード電極とカソード電極間等、電極間を狭隣接化し、電極に物理的に接触する検体試量物との接触面積を増やし、検知、分析感度を向上させる等の、造形、構造的な工夫による改善、改良が進んでいる。   Furthermore, in a sensor, an evaluation analyzer, etc., in order to improve the detection sensitivity, expansion of a unit surface area of the electrode for increasing the contact area of the electrode with the sample of the sample, that is, miniaturization of the electrode is performed. For example, in a comb electrode, the width of the comb teeth (usually the conductive electrode) and the distance between the comb teeth (usually the electrically insulating portion where the substrate surface of the insulating electrode is exposed) are as narrow as possible. (Fine, high definition) A large number of conductive parts and insulating parts are arranged in a certain area to narrowly adjoin between the electrodes such as between the anode electrode and the cathode electrode, and to make physical contact with the sample Improvement by the modeling and structural devices, such as increasing the contact area of, and improving the sensitivity of detection and analysis, etc. is in progress.

特開2016−171168号公報JP, 2016-171168, A 国際公開第2014/163038号International Publication No. 2014/163038 国際公開第2016/056466号International Publication No. 2016/056466

前述のとおり、検知用のセンサーや評価分析装置においては、検体試料を、検知・測定系に投入した際に発生する「変化」、例えば電流や電圧、電気抵抗値、電気容量などの変化「量」を正確に、高感度に検出する機能が極めて重要であり、前記の微小な変化(量)を正しく検出するには検出系を構成する部材、例えば検知電極や検知のために試料をハンドリング、保持する冶具等の不測の変化(ノイズ)を極力排除し、平行して検知自体の限界を向上させる必要がある。
一方、前述のとおり、検知用のセンサーや評価分析装置においては、低コスト化が求められており、貴金属に代えて、前記の卑金属である弁金属を使用することは、低コスト化のための1手法として期待される。
しかしながら、検知用のセンサーや評価分析装置における電極に弁金属を用いることについては、以下のように種々の解決すべき問題がある。
As described above, in the detection sensor or evaluation analyzer, the “change” that occurs when the sample sample is introduced into the detection / measurement system, for example, the change “amount of current, voltage, electric resistance value, electric capacity, etc. "The ability to accurately detect with high sensitivity is extremely important, and in order to detect the minute changes (amounts) correctly, the members that constitute the detection system, such as the detection It is necessary to eliminate the unexpected change (noise) of the jig etc. held as much as possible, and to improve the limit of detection itself in parallel.
On the other hand, as described above, in the sensor for detection and the evaluation analysis device, cost reduction is required, and replacing the noble metal with the valve metal which is the above-mentioned base metal is for cost reduction. It is expected as 1 method.
However, there are various problems to be solved with respect to the use of valve metal in the sensor for detection and the electrode in the evaluation analyzer as follows.

(弁金属表層不動態層へのガスバリア性を含む耐食性の強化)
弁金属(バルブメタル)の一例として、アルミニウムまたはアルミニウム合金の表層には、アルミニウム酸化物及び/又はアルミニウム水酸化物よりなる不動態層が、チタンやチタン合金の表層には、チタン酸化物よりなる不動態層が、ニッケルやニッケル合金の表層にはニッケル酸化物よりなる不動態層が、クロムやクロム合金の表層、さらには表層でクロム量が多いステンレス鋼合金の表層には、クロム水和オキシ酸化物よりなる不動態層が、それぞれ形成されている。これらの不動態層は、酸素供給源(空気中のO、水中のOやO等)により金属上に自然形成されて保護層となるものであるが、形成される不動態層が1〜数十nmと非常に薄い場合があり、該不動態層のみでは、電極が存在する外部環境からの進入ガスや、検出反応時に発生する各種ガス、例えばバッファー液を構成する水や、環境の温度サイクルから不用意に発生し電極表層に付着する結露水等が電気分解して発生する水素による電極の対水素脆性や、水蒸気や酸素などのガス、腐食性の検体自体、検体が含まれる溶液(溶媒)や腐食性雰囲気等に対する耐食性など耐久性、感度の維持向上は十分でない。
(Enhanced corrosion resistance including gas barrier properties to the valve metal surface passivation layer)
As an example of a valve metal (valve metal), a passivation layer made of aluminum oxide and / or aluminum hydroxide is made of titanium oxide in the surface layer of aluminum or aluminum alloy, and a surface layer of titanium or titanium alloy is made of titanium oxide. Passivation layer is nickel or nickel alloy surface layer nickel oxide, passivation layer consisting of nickel oxide, chromium or chromium alloy surface layer, and surface layer of chromium rich stainless steel alloy surface Passivation layers made of oxide are respectively formed. These passivation layers are naturally formed on metal by an oxygen source (O 2 in air, O 2 in water, O 2 and the like) to be a protective layer, but the passivation layer to be formed is 1 There may be a very small thickness of several tens of nm, and if the passive layer alone is used, the ingress gas from the external environment where the electrode is present, various gases generated at the time of detection reaction, such as water constituting buffer solution, environmental Anti-hydrogen embrittlement of the electrode due to hydrogen generated carelessly from the temperature cycle and electrolyzed by dew condensation water etc. adhering to the electrode surface, gas such as water vapor and oxygen, corrosive specimen itself, solution containing the specimen Maintenance and improvement of durability such as corrosion resistance against (solvent) or corrosive atmosphere, etc. and sensitivity are not sufficient.

例えば、前記櫛形電極に対して検体の入ったバッファー液等を滴下してセンシングを行う電気化学センサーは、水溶液からなるバッファー液や液中の試料が化学反応し、イオン化するなどして電極に流れる電気(電流)や印加される電圧、電気容量の変化などを測定、検知するもので、前記反応時、試料の水などの溶媒(水など)が電気分解し発生する水素により電極が脆弱化を起こす(水素脆性)場合も有り、水等の溶液によって腐食する場合も有得る。さらには、直径が非常に小さく、金属中に拡散しやすい水素ガスが電極内部に拡散しイオン化すると、測定電流のノイズとなる場合も発生し得る。   For example, an electrochemical sensor that performs sensing by dropping a buffer solution or the like containing a sample onto the comb-like electrode to perform sensing is such that a buffer solution consisting of an aqueous solution or a sample in the solution chemically reacts and ionizes and flows to the electrode It measures and detects electricity (current), applied voltage, change in electric capacity, etc. At the time of the reaction, the electrode is weakened by hydrogen generated by electrolysis of a solvent such as water of the sample. It may occur (hydrogen embrittlement) and may corrode by solutions such as water. Furthermore, if the hydrogen gas which is very small in diameter and easily diffuses into the metal diffuses into the inside of the electrode and is ionized, it may occur as noise of the measurement current.

(弁金属表層不動態層への保護膜の密着性確保)
また、アルミニウムなどの弁金属で構成される櫛形電極などは、ゴム、樹脂、ガラスエポキシ、ガラス、セラミクス、Si等の半導体表層に形成される絶縁膜など、の絶縁基板(膜、物)の上層に部分的にパターンニング形成される場合が多い。例えば、前記弁金属の耐食性を確保するため、その表層に撥水性材料、撥水撥油材料よりなる皮膜を塗布し、撥水撥油性の樹脂薄膜を形成する方法があるが、弁金属の不動態層表層は反応性や結合性に乏しく、また絶縁基板である樹脂基板等には、結合性の高いカップリング剤よりなる(を含む)撥水撥油性の樹脂薄膜を含めて、定着良く形成することができず、電極の耐侯性の向上もままならないまま、撥水撥油性の樹脂薄膜カップリング剤層が、基板や電極から剥離しコンタミ源(汚染源)となる場合もある。
(Ensuring adhesion of protective film to valve metal surface passivation layer)
In addition, a comb-shaped electrode or the like made of a valve metal such as aluminum is an upper layer of an insulating substrate (film, material) such as rubber, resin, glass epoxy, glass, ceramic, insulating film formed on semiconductor surface such as Si. In many cases, patterning is partially formed. For example, in order to ensure the corrosion resistance of the valve metal, there is a method of applying a film made of a water repellent material and a water and oil repellent material on the surface layer to form a water and oil repellent resin thin film. The surface layer of the dynamic layer has poor reactivity and bondability, and is formed on a resin substrate, etc., which is an insulating substrate, including a water- and oil-repellent resin thin film made of a coupling agent with high bondability. In some cases, the water and oil repellent resin thin film coupling agent layer peels off from the substrate or the electrode and becomes a contamination source (contamination source) without improving the corrosion resistance of the electrode.

(不動態層を伴う弁金属の導電性や検知感度の確保)
このように、前記弁金属に自然形成される不動態層は、電極の耐食性には貢献する一方、電気抵抗は大きく、前記不動態層に追加形成される保護層がさらに絶縁性の場合、微弱な電流を感知するセンサー電極等にとっては逆に存在しないほうが良いものとなってくる。
さらに当然、検知電極、検知機器に供する冶具については、前記不可避の感度の向上のため複雑な造形構造で検体試料をハンドリングし電極に接触させるなど複雑な構造に由来するコスト高や加工限界などの問題が生じる。
(Ensuring conductivity and detection sensitivity of valve metal with passive layer)
Thus, while the passive layer naturally formed on the valve metal contributes to the corrosion resistance of the electrode, the electrical resistance is large, and it is weak if the protective layer additionally formed on the passive layer is further insulating. On the contrary, it is better not to be present for a sensor electrode or the like that senses a large current.
Furthermore, as a matter of course, with regard to the detection electrode and the jig to be used for the detection device, such as cost increase and processing limit derived from the complicated structure such as handling the specimen sample with a complicated modeling structure and contacting the electrode A problem arises.

耐食性を向上させるために、アルミニウム(Al)等に形成される陽極酸化膜(不動態層)を厚くすることが考えられる。また、Al金属への耐食性付与方法として、基材上に陽極酸化皮膜を形成した後、当該陽極酸化皮膜の上にさらに非晶質炭素膜が形成された積層体も開発されている。
しかしながら、陽極酸化膜は絶縁性が高く、一定程度以上に導電性が必要な電極用途には適さない。また、陽極酸化膜の膜厚の制御は極めて困難となる。さらには非晶質炭素膜と密着が悪いなどの改善すべき点もある。
In order to improve the corrosion resistance, it is conceivable to thicken the anodic oxide film (passive layer) formed on aluminum (Al) or the like. Moreover, after forming an anodic oxide film on a base material as a method of providing corrosion resistance to Al metal, a layered product in which an amorphous carbon film is further formed on the anodic oxide film is also developed.
However, the anodized film has high insulating properties and is not suitable for electrode applications requiring conductivity to a certain degree or more. Also, control of the film thickness of the anodic oxide film becomes extremely difficult. Furthermore, there is also a point to be improved such as poor adhesion with the amorphous carbon film.

また、特許文献1には、正極缶と電極が導通している電気化学セルにおいて、正極缶の電解液と接する面に導電性の保護膜を形成することにより、電解液に対する耐食性を確保できるとしており、保護膜の一例として、導電性DLC(ダイヤモンドライクカーボン)膜が記載されている。
しかしながら、導電性のDLCを形成するには、B(ホウ素)やAs(砒素)などの毒性や爆発性の高い、危険でさらに高価な原料ガスの使用が必要になるか、或いは、別の方法では、一度絶縁性のDLC膜を形成した後、または形成しながら真空装置内においてDLC皮膜に逆バイアスの正電圧を印加し高エネルギーの乖離電子などをDLC皮膜に向け照射する必要があるなど、装置を含めコストが高くなるなどの課題がある。
Further, according to Patent Document 1, in the electrochemical cell in which the positive electrode can and the electrode are conducted, by forming a conductive protective film on the surface of the positive electrode can in contact with the electrolytic solution, corrosion resistance to the electrolytic solution can be secured. A conductive DLC (diamond like carbon) film is described as an example of the protective film.
However, the formation of conductive DLC requires the use of more toxic, explosive, dangerous and more expensive source gases such as B (boron) and As (arsenic), or another method In this case, it is necessary to apply a positive voltage of reverse bias to the DLC film in the vacuum apparatus after forming the insulating DLC film once or while forming the insulating film, and to irradiate the DLC film with high energy divergence electrons etc. There is a problem that the cost increases including the device.

さらに、これらの従来技術では、電気化学的な検知を行うため、水などの溶液中で電気を流して使用する電極、さらには使用環境の温度サイクル等から不用意に発生する電極への結露水等において、前記水や、水に含まれる環境からのコンタミ物質などが電気分解して発生(生成)する水素ガスからの電極の保護、ノイズ源化の防止などが検討されていないのが実情である。   Furthermore, in these prior arts, in order to perform electrochemical detection, dew condensation water to the electrode which is used by flowing electricity in a solution such as water, and also carelessly generated from the temperature cycle of the use environment, etc. In fact, protection of the electrode from hydrogen gas generated by the electrolysis of water and contaminants contained in the water from the environment and generated (generated), prevention of noise source generation, etc. have not been studied. is there.

本発明は、以上のような現状を鑑みてなされたものであり、電極材料として弁金属を用いたセンサーや評価分析装置において、従来技術における前記の課題を解決して、検出系を構成する部材、例えば検知電極や検知のための試料をハンドリング保持する冶具等の不測の変化(ノイズ)を極力排除し、平行して検知感度自体の限界を維持、向上させることを目的とするものである。   The present invention has been made in view of the above-described present situation, and in a sensor or evaluation analysis apparatus using a valve metal as an electrode material, a member which solves the above-mentioned problems in the prior art and constitutes a detection system For example, an object of the present invention is to eliminate, as much as possible, unexpected changes (noises) of a detection electrode, a jig for handling and holding a sample for detection, etc., and maintain and improve the limit of detection sensitivity itself in parallel.

本発明者は、上記目的を達成すべく検討した結果、基材と該基材上の少なくとも一部に形成された弁金属よりなる電極を備えた電極構造体において、前記電極上に膜厚が10nmを越え200nm未満の、非晶質炭素膜よりなる保護膜、或いは、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含むドライ薄膜よりなる保護膜を形成することによって、或いは更に、前記非晶質炭素膜よりなる保護膜上又は前記ドライ薄膜よりなる保護膜上に、撥水性及び/または撥水撥油性の薄膜層を設けることにより、従来技術における課題が解決しうることを見いだした。   As a result of investigations to achieve the above object, the inventor of the present invention has found that, in an electrode structure provided with a substrate and an electrode made of a valve metal formed on at least a part of the substrate, a film thickness is formed on the electrode A protective film consisting of an amorphous carbon film having a thickness of more than 10 nm and less than 200 nm, or any of silicon or metal oxide, nitride, carbide, oxynitride, carbide, carbonitride or carbonitride layer By forming a protective film consisting of a dry thin film containing one or more, or further on the protective film consisting of the amorphous carbon film or on the protective film consisting of the dry thin film It has been found that by providing an oily thin film layer, the problems in the prior art can be solved.

本発明は、これらの知見に基づいて完成するに至ったものであって、以下の発明を提供するものである。
[1]基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上に形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、非晶質炭素膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
[2]基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上にドライプロセスにより形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含む薄膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
[3]前記保護層上に、撥水性及び/または撥水撥油性の薄膜層を備えることを特徴とする[1]又は[2]に記載のセンサー用又は評価分析用装置用の電極構造体。
[4]前記薄膜層が、膜厚50nm未満のフッ素含有カップリング剤よりなる樹脂層であることを特徴とする[3]に記載のセンサー用又は評価分析用装置用の電極構造体。
[5]前記弁金属は、その表層に不動態層を備えることを特徴とする[1]〜[4]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[6]負荷電圧0.39v下における電気抵抗が0.45Ω未満である[1]〜[5]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[7]前記電極が形成されていない基材の最表面及び/又は前記電極が形成された部分の最表面に、水及び/または油との表面濡れ性が異なる表面を備えることを特徴とする[1]〜[6]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[8]前記保護膜が、食品、添加物等の規格基準(昭和34年厚生省告示第370号)に適合していることを特徴とする[1]〜[7]のいずれかに記載のセンサー用又は評価分析用装置用の電極構造体。
[9]前記保護膜は前記基材よりも大きな水素ガス透過防止性を有することを特徴とする[1]〜[8]のいずれかに記載のセンサー用又は評価分析用の電極構造体。
[10]前記保護膜の誘電率が50未満であることを特徴とする[1]〜[9]のいずれかに記載のセンサー用又は評価分析用の電極構造体。
The present invention has been completed based on these findings, and provides the following invention.
[1] An electrode comprising a substrate, a valve metal formed on at least a part of the substrate, and a protective layer having a thickness of more than 10 nm and less than 200 nm formed on the electrode,
An electrode structure for a sensor or an evaluation analyzer, wherein the protective layer comprises an amorphous carbon film.
[2] An electrode comprising a substrate, a valve metal formed on at least a part of the substrate, and a protective layer having a thickness of more than 10 nm and less than 200 nm formed by a dry process on the electrode,
A sensor characterized in that the protective layer is a thin film containing any one or more of an oxide, a nitride, a carbide, an oxynitride, a carbonitride, a carbonitride or a carbonitride layer of silicon or metal. Electrode structure for use with or for an analytical analysis device.
[3] An electrode structure for a sensor or an evaluation analysis device according to [1] or [2], comprising a water-repellent and / or water- and oil-repellent thin film layer on the protective layer. .
[4] The electrode structure for a sensor or an evaluation analysis device according to [3], wherein the thin film layer is a resin layer composed of a fluorine-containing coupling agent having a film thickness of less than 50 nm.
[5] An electrode structure for a sensor or an evaluation analysis device according to any one of [1] to [4], wherein the valve metal has a passivation layer on the surface thereof.
[6] An electrode assembly for a sensor or an evaluation analysis device according to any one of [1] to [5], wherein the electrical resistance under a load voltage of 0.39 v is less than 0.45 Ω.
[7] The outermost surface of the substrate on which the electrode is not formed and / or the outermost surface of the portion on which the electrode is formed is characterized by comprising a surface having different surface wettability with water and / or oil. An electrode assembly for a sensor or an evaluation analysis device according to any one of [1] to [6].
[8] The sensor according to any one of [1] to [7], wherein the protective film conforms to the standard (such as Ministry of Health and Welfare Notification No. 370 of the Ministry of Health and Welfare, 1979) of food, additives, etc. Electrode structure for the device for the purpose or evaluation analysis.
[9] The electrode structure for a sensor or evaluation analysis according to any one of [1] to [8], wherein the protective film has a hydrogen gas permeation preventing property larger than that of the base material.
[10] The electrode structure for a sensor or evaluation analysis according to any one of [1] to [9], wherein the dielectric constant of the protective film is less than 50.

本発明によれば、弁金属よりなる電極を用いた検知電極、特に、樹脂やガラスなどの密着をとり難い絶縁性の基材上に、厚さ数百nm以下と薄膜で、基板への接着面積も少なく、一方で、表層面積(電極の外周パターン及び外周延長)は反対に大きく形成されることが多い微細な検知電極において、該電極への特に腐食性液中での密着性の確保や、必要な導電性確保等の必要最小限の機能を維持しつつ、耐侯性、耐食性を向上させること、特に検出時に発生する、さらには検出環境に存在する水素、水蒸気又は酸素に対する劣化を防止することができる。   According to the present invention, a detection electrode using an electrode made of a valve metal, in particular, a thin film having a thickness of several hundred nm or less on an insulating base material such as resin or glass which is difficult to adhere to, adhesion to a substrate In a fine detection electrode, which has a small area and on the other hand a surface area (peripheral pattern and peripheral extension of the electrode) often formed large on the other hand, adhesion to the electrode particularly in a corrosive liquid is secured To improve the weather resistance and corrosion resistance, in particular, to prevent deterioration to hydrogen, water vapor or oxygen present in the detection environment, while maintaining the necessary minimum functions such as securing the required conductivity, etc. be able to.

表面の濡れ性制御による液体のパターンニング性を確認するために、純水を噴霧した表面を撮影した写真A photograph of the surface sprayed with pure water in order to confirm the patterning property of the liquid by surface wettability control 比較例についての摩擦摩耗試験の結果を示す図The figure which shows the result of the friction wear test about a comparative example 実施例についての摩擦摩耗試験の結果を示す図The figure which shows the result of the friction wear test about an example

本発明においては、弁金属よりなる電極を用いた検知電極において、特に弁金属電極表層の不動態層との密着性の確保や、弁金属電極表層の不動態層により既に低下している導電性において、検知電極として必要な導電性確保等の必要最小限の機能を維持しつつ、耐侯性、耐食性を向上させること、加えて特に検出時に発生する、さらには検出環境に存在する水素、水蒸気又は酸素に対する劣化防止のために、以下の実施形態が好ましく採用される。   In the present invention, in the detection electrode using an electrode made of a valve metal, in particular, the adhesion between the surface of the valve metal electrode and the passivation layer is secured, and the conductivity already decreased by the passivation layer of the surface of the valve metal electrode To improve corrosion resistance and corrosion resistance while maintaining the necessary minimum functions such as securing conductivity required as a detection electrode, in addition, hydrogen, water vapor or the like which are generated particularly at the time of detection and further present in the detection environment The following embodiments are preferably employed to prevent the deterioration of oxygen.

本発明の第一の実施形態は、ドライプロセスにより形成される非晶質炭素よりなる保護膜を、弁金属の不動態層との密着を確保可能であり、かつ、電極の導電性を一定程度以上損なわない厚みである200nm未満にて保護膜として形成するものである。
また、本発明の第二の実施形態は、保護膜を、ドライプロセスにより形成される薄膜で、弁金属の不動態層との付きまわりも良く、かつ、皮膜密度が非常に高く、酸素ガス、水蒸気バリア性等を有する、珪素、チタン、アルミニウム、ジルコニウムなどの金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上の素材よりなる膜厚200nm未満の膜とするものである。
さらに、本発明の第三の実施形態は、ガスバリア等の耐侯性目的でドライプロセスにより形成される保護膜のピンフォールに水等の電極を腐食させる極性物質を吸着乃至誘導して腐食を起こすことがないように、保護膜の上に、さらに撥水性又は撥水撥油性の皮膜を付与することである、
以下、順に詳しく説明する。
In the first embodiment of the present invention, the protective film made of amorphous carbon formed by the dry process can ensure close contact with the passivation layer of the valve metal, and the conductivity of the electrode to a certain extent It forms as a protective film in less than 200 nm which is the thickness which does not impair above.
Also, in the second embodiment of the present invention, the protective film is a thin film formed by a dry process, and the adhesion with the passivation layer of the valve metal is also good, and the film density is very high. It is made of one or more materials of oxides, nitrides, carbides, oxynitrides, carbides, carbonitrides, carbonitrides, and the like of metals such as silicon, titanium, aluminum, and zirconium, which have water vapor barrier properties and the like. The film thickness is less than 200 nm.
Furthermore, in the third embodiment of the present invention, corrosion is caused by adsorbing or inducing a polar substance that corrodes an electrode such as water on pin fall of a protective film formed by a dry process for the purpose of weather resistance such as gas barrier. To provide a water-repellent or water- and oil-repellent film on the protective film so that
The details will be described in order below.

前記の耐侯性、耐食性の確保(向上)のためには、ドライプロセスによる保護膜の形成が有効である。
これは、ウエットプロセスで保護膜を形成する場合は、複雑微細な構造を有する電極に対して、液状保護膜の塗布時に重力や表面張力、塗布対象基材の表層濡れ性の影響を受け易く、検知電極等の微細で複雑な凹凸を伴う部分において重力方向に液状保護膜が流動し、例えば凹部で膜が厚く、凸部頂点で膜が薄いなど、膜厚ムラを発生させ、精度良い薄膜を形成することが困難な場合があるためである。また、カップリング剤などの数十ナノメートルの膜厚のものを除き、液状保護膜を、電気抵抗をばらつかせないように薄く、均一に塗布することが困難な場合があるためである。
In order to ensure (improve) the corrosion resistance and corrosion resistance, the formation of a protective film by a dry process is effective.
This is because, when a protective film is formed by a wet process, the electrode having a complex fine structure is easily affected by gravity, surface tension, and surface wettability of a substrate to be coated when the liquid protective film is applied. The liquid protective film flows in the direction of gravity in the part with fine and complicated unevenness such as detection electrode, for example, the film is thick in the concave part, the film is thin in the convex apex, etc. It is because it may be difficult to form. In addition, except for those having a film thickness of several tens of nanometers such as a coupling agent, it may be difficult to apply the liquid protective film thinly and uniformly so as not to disperse the electrical resistance.

さらには、液状保護膜は、一般に形成される皮膜の膜密度が低く、ガスバリア性は殆ど期待できない場合が多い。例えば、ガスバリア性を向上させるウエット皮膜には金属アルコキシドなどを出発原料としたゾル・ゲル法皮膜があるが、高い膜密度やガスバリア性を得るには500℃を超え、1000℃近い塗布後の加熱が必要で、保護対象の電極が酸化、変形破壊される懸念があり、樹脂などを基材にした電極や冶具を使用することが不可能となる。   Furthermore, the liquid protective film generally has a low film density and generally can not be expected to have gas barrier properties. For example, the wet film which improves the gas barrier property includes a sol-gel method film using metal alkoxide etc. as a starting material, but in order to obtain high film density and gas barrier property, heating after application is over 500 ° C and nearly 1000 ° C. Therefore, there is a concern that the electrode to be protected is oxidized, deformed and destroyed, and it becomes impossible to use an electrode or jig based on a resin or the like.

一方、ドライプロセスによる保護膜、特に硬質保護膜はその高い膜密度に由来するガスバリア性の確保や、重力に影響されにくい薄膜での基材着き回り、均一な膜厚での形成が可能となり有効ではあるが、逆にその高い膜密度がもたらす内部(残留)応力由来の基材密着性低下の問題があり、特に本願の通常基材よりも密着のさらに悪い弁金属電極表層への密着性を確保する対応が必要になる。
従来のドライプロセスによる保護膜は耐磨耗、高摺動、耐焼付け、耐食用途等のものが多く、その膜密度は高く、残留内部応力は強力で、その膜厚は500nm以上、場合によっては3μm程度までの厚膜となる場合が多い。さらに電気伝導性などはほぼ検討されない、或いは重要視されていない。
また、弁金属に前記のような保護膜を形成する場合、その表層の不動態層は密着が悪いため、Arなどの不活性ガスプラズマによるスパッタリング前処理(例えばスパッタリング前処理を5分間以上行うなど)で弁金属の不動態層を十分除去し密着を確保することが当業者の常識となっている。
On the other hand, protective film by dry process, especially hard protective film, is effective because it secures the gas barrier property derived from its high film density, and it becomes possible to form a substrate with a thin film that is not easily affected by gravity and uniform film thickness. However, conversely, there is a problem of the base material adhesion decrease due to the internal (residual) stress caused by the high film density, especially the adhesion to the valve metal electrode surface layer which is worse in adhesion than the usual base material of the present application. It is necessary to take action to secure it.
The protective film by the conventional dry process is mostly used for wear resistance, high sliding, seizure resistance, corrosion resistance, etc., its film density is high, residual internal stress is strong, its film thickness is 500 nm or more, and in some cases It is often a thick film up to about 3 μm. Furthermore, the electrical conductivity and the like are hardly considered or not emphasized.
In addition, when forming the protective film as described above on the valve metal, the passivation layer on the surface layer has poor adhesion, so sputtering pretreatment with an inert gas plasma such as Ar (for example, sputtering pretreatment is performed for 5 minutes or more It is common knowledge of those skilled in the art to sufficiently remove the passive layer of the valve metal to ensure close contact.

さらに、弁金属に前記ドライプロセスで形成する内部残留応力の大きな保護膜を形成した場合、その残留応力を受けた(受け止めた)弁金属よりなる電極自体が、弁金属電極が形成されている絶縁基材から応力剥離することも容易である。
例えば、SiやAl、Tiよりなるドライ皮膜の延伸性は1%程度しかなく、延性の大きな金属電極が延伸した場合、その追随性に乏しく、クラックが容易に入り基材からの剥離や、ガス漏れ(外界からのガスの進入)を起こす。
またSiやAl、Tiよりなるドライ皮膜の熱線膨張係数は1桁×10cm・℃程度しかないが、弁金属であるAlは、23×10cm・℃程度、Niで13×10cm・℃程度と1桁大きく、マイナス40℃から80℃近くまでと広範な範囲で刻々と短時間で繰り返される外界でのヒートサイクル、検知する検体試料の滴下に伴う温度変化等により、剥離を起こしやすい状態となる場合が有り得る。
Furthermore, when a protective film having a large internal residual stress formed in the dry process is formed on the valve metal, the electrode itself made of (received) the residual stress is the insulation on which the valve metal electrode is formed. It is also easy to stress-release from the substrate.
For example, the stretchability of a dry film consisting of Si x O y , Al x O y , and Ti x O y is only about 1%, and when a metal electrode with large ductility is stretched, its followability is poor and cracks easily occur. It causes peeling from the base material and gas leakage (ingress of gas from the outside).
The coefficient of thermal expansion of the dry film consisting of Si x O y , Al x O y and Ti x O y is only about one digit × 10 6 cm · ° C., but the valve metal Al is 23 × 10 6 cm · ° C. approximately, 13 × 10 6 cm · ℃ about a 1 digit increase in Ni, heat cycles at ambient repeated every moment a short and wide range of minus 40 ° C. to 80 ° C. near, dripping of the test sample to detect In some cases, it is likely to cause peeling due to a temperature change or the like associated with the above.

例えば、PC/ABSなどの樹脂基材に公知の無電解Ni−Pめっき(膜厚概ね200nm)、電解銅めっき(膜厚概ね10μm)、電解Niめっき(膜厚概ね3μm)、電解クロムめっき(膜厚概ね100nm)と順番に層状にめっきを行い、ビッカース硬さHv1700程度の非晶質炭素幕膜を、厚さ概ね700nm程度で形成した試料と、めっき膜までは同様に作成し、非晶質炭素膜を厚さ概ね200nmで形成したものを準備し、−30℃で3時間、60℃で3時間の冷熱サイクルを20回行う冷熱衝撃試験(使用冷熱試験機器:TSA−200S−W/タバイエスペック)を行った結果では、厚さ700nmの非晶質炭素膜を形成したものは、前記無電解Ni−Pめっき層の基材からの膨れ(剥離)が確認でき、最上層に厚膜で形成した非晶質炭素膜の内部応力が無電解Ni−Pめっき層自体の基材密着を阻害する様子か観察できる。
非晶質炭素膜は1桁×10cm・℃程度の線膨張係数でありながら延伸性は3%程度と大きく各種硬質膜中では柔軟で、本発明の電極構造体の保護膜としての適正が大きいが、しかし、厚膜で形成すると上記のような剥離の問題が発生し得る。
For example, well-known electroless Ni-P plating (film thickness approximately 200 nm), electrolytic copper plating (film thickness approximately 10 μm), electrolytic Ni plating (film thickness approximately 3 μm), electrolytic chromium plating (film thickness approximately 3 μm) on resin substrates such as PC / ABS A sample with a thickness of approximately 700 nm and an amorphous carbon curtain film with a Vickers hardness of approximately Hv 1700, which are plated in layers in order of film thickness of approximately 100 nm) Thermal shock test (performed by using a thermal test equipment: TSA-200S-W / 20) to prepare a carbon dioxide film having a thickness of approximately 200 nm and perform thermal thermal cycling for 20 hours at -30 ° C for 3 hours and 60 ° C for 3 hours As a result of performing Tabei Espec), in the case of forming an amorphous carbon film having a thickness of 700 nm, swelling (peeling) from the substrate of the electroless Ni-P plating layer can be confirmed, and a thick film is formed on the uppermost layer Formed by The internal stress of the amorphous carbon film can be observed or how to inhibit substrate adhesion of the electroless Ni-P plating layer itself.
The amorphous carbon film has a linear expansion coefficient of about 1 digit × 10 6 cm · ° C. and a large stretchability of about 3% and is flexible in various hard films, and is suitable as a protective film of the electrode structure of the present invention However, if it is formed as a thick film, the above-mentioned peeling problem may occur.

以上の点を勘案して、本発明の第一の実施形態は、ドライプロセスにより形成される非晶質炭素よりなる保護膜を電極(特に弁金属の不動態層)との密着を確保可能であり、電極の導電性を一定程度以上損なわない厚み200nm未満にて保護膜として形成するものとする。   Taking the above into consideration, in the first embodiment of the present invention, the protective film made of amorphous carbon formed by the dry process can ensure the adhesion with the electrode (particularly the passivation layer of the valve metal). Therefore, the protective film is formed with a thickness of less than 200 nm so as not to impair the conductivity of the electrode by a certain degree or more.

本発明者はドライプロセスにより形成される非晶質炭素膜は、前記の各種被膜同様、ピンフォールを形成し易いが、油と同様な構成成分で表層が疎水性に近い濡れ性を有し、さらに極性の官能基が極めて少ない極めて不活性な表層を有するため、ピンフォールに水等の電極を腐食させる極性物質を吸着、誘導し難く、腐食を起こし難いことを確認した(実施例参照)。加えて非晶質炭素膜は、水蒸気透過防止性及び酸素透過防止性に加え、水素ガス透過防止性にも優れていることも検証した(実施例参照)。   The inventors of the present invention found that the amorphous carbon film formed by the dry process is likely to form pin fall like the various films described above, but has the same surface component as the oil and wettability near the hydrophobic layer, Furthermore, since it had an extremely inactive surface layer with very few polar functional groups, it was confirmed that it was difficult to adsorb and induce polar substances that would corrode electrodes such as water on pin fall and it was difficult to cause corrosion (see Examples). In addition, it was also verified that the amorphous carbon film is excellent in hydrogen gas permeation prevention as well as water vapor permeation prevention and oxygen permeation prevention (see Examples).

加えて、センサー等の電極は、その経済性や生産性のため、絶縁性の樹脂基板等、樹脂基材上に形成される場合が多い。例えば酸化ケイ素膜やSiを含むドライ薄膜(例えばSiを含む非晶質炭素膜)は、電極の金属素材(不動態層)等への密着性に優れるが、樹脂基板部分への密着はSiを含まない炭素膜(非晶質炭素膜)の方が、密着性が良い。
よって電極と基材に対して同時に非晶質炭素膜を形成する場合、樹脂基板からの非晶質炭素膜の剥離等のコンタミ源の発生を抑制することが可能となる(実施例参照)。
In addition, an electrode such as a sensor is often formed on a resin substrate such as an insulating resin substrate due to its economy and productivity. For example, a silicon oxide film or a dry thin film containing Si (for example, an amorphous carbon film containing Si) is excellent in adhesion to a metal material (passive layer) of an electrode, etc., but adhesion to a resin substrate portion is Si. The carbon film (amorphous carbon film) which does not contain is better in adhesion.
Therefore, when the amorphous carbon film is simultaneously formed on the electrode and the base material, it is possible to suppress the generation of contamination sources such as peeling of the amorphous carbon film from the resin substrate (see Examples).

上述したように、非晶質炭素膜などドライプロセスにて形成される薄膜は一般に膜密度が高いためガスバリア性を持つ代償として、内部残留応力が大きく、弁金属が有する不活性で密着の取り難い不動態層との密着が悪い場合があり、応力剥離の可能性が大きくなる。
このような場合、前記非晶質炭素膜に前記のSi、Ti、Al、Zrなどの各種金属元素を添加し、非晶質炭素膜の皮膜の応力を緩和、基材への密着性を向上させる(特に基材が含む元素と同様な元素を添加する方法)方法や、比較的内部応力の小さい絶縁膜であるSi、Al、Ti、Zr等のシリコンや金属の酸化膜、窒化膜、酸窒化膜、または前記に皮膜に炭素を混ぜたドライ薄膜で代用することが可能となる。
As described above, thin films formed by dry processes such as amorphous carbon films generally have high film density, and as a trade-off for having gas barrier properties, internal residual stress is large and the inertness of valve metals makes it difficult to obtain adhesion. The adhesion with the passivation layer may be poor, and the possibility of stress separation is increased.
In such a case, various metal elements such as Si, Ti, Al, and Zr are added to the amorphous carbon film to reduce the stress of the film of the amorphous carbon film and improve the adhesion to the substrate. makes a method (in particular a method for adding the same element as the element contained in the base material), a small insulating film having a relatively internal stress Si x O y, Al x O y, Ti x O y, Zr x O y , etc. It is possible to substitute the oxide film, the nitride film, the oxynitride film, or the dry thin film obtained by mixing carbon with the film described above.

このように、第二の実施形態として、本発明の一実施形態にかかる前記保護膜は、ドライプロセスにより形成される薄膜で、弁金属からなる電極への付きまわりも良く、皮膜密度が高く、酸素ガス、水蒸気バリア性等を有する珪素、チタン、アルミニウム、ジルコニウムなどの金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上の素材よりなる膜厚200nm未満の保護膜とすることが有効である。
例えば、ドライプロセスにより形成されシリコンの酸化物膜(シリカ膜)、または基材密着向上用の炭素を含むシリコンの酸化物膜などは、太陽電池バックシートや食品包装基材、電子部品の透明硬質ガスバリア保護膜として公知になっている。
As described above, as the second embodiment, the protective film according to the embodiment of the present invention is a thin film formed by a dry process, and the adhesion to the electrode made of valve metal is good, and the film density is high. Materials of one or more of oxygen gas, oxide of metal such as silicon, titanium, aluminum, zirconium, etc. having water vapor barrier property, nitride, carbide, oxynitride, carbonate, carbonitride, carbonate and nitride It is effective to form a protective film having a film thickness of less than 200 nm.
For example, an oxide film (silica film) of silicon formed by a dry process, or an oxide film of silicon containing carbon for improving adhesion to a base material, etc. are transparent hard of solar cell back sheet, food packaging base material, and electronic parts It is known as a gas barrier protective film.

しかしながら、ドライプロセスにより形成される、珪素や金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物、特にガスバリア膜で多用される酸化ケイ素膜や炭素を含む酸化ケイ素膜、酸化チタン膜、Si、Ti、Al、Znとさらに酸素や窒素などの極性の元素を含む非晶質炭素膜などは、その皮膜表層にプラズマにより異常放電で形成されるピンフォールと、極性の官能基、例えばシラノール基、カルボニル基、カルボキシル基などの、極性の官能基を生成し易く、これらを表層に伴うことで、表面の濡れ性が親水性、親水親油方向に移行する。   However, silicon or metal oxides, nitrides, carbides, oxynitrides, carbonates, carbonitrides, carbonitrides, silicon nitrides, particularly silicon oxide films and carbons frequently used in gas barrier films, formed by dry process The silicon oxide film, titanium oxide film, amorphous carbon film containing Si, Ti, Al, Zn, and polar elements such as oxygen and nitrogen, etc. And polar functional groups, such as silanol groups, carbonyl groups, carboxyl groups, etc., which are easily produced, and accompanying these to the surface layer, the wettability of the surface becomes hydrophilic, and the migration to the hydrophilic / lipophilic direction Do.

櫛形電極の配線の幅と間隔は昨今10μm幅よりも狭いものも現れ、電極部分が「上に凸」等の微細な凹凸構造を採る場合、櫛形電極部分が全体として電極が作る凹凸構造に由来する構造撥水性、構造撥油性を不用意に発現する場合があり、電極部分(絶縁部分)に液体試料が十分濡れ広がらない場合がある。つまり、検知電極として機能が不可能な状況になってしまう場合がある。この場合、この第二の実施形態の構造撥水性、構造撥油性を発現する皮膜を形成することで電極、または絶縁部分、または双方を親水性、或いは親水親油性とすることにより、液体試料を十分測定に必要な位置に濡れ広がらせることもできる。このような親水性、親水親油性の櫛形電極は、液滴試料を電極部分に滴下後、該電極、並びに滴下した試料の上にガラスカバーなどを敷設する手間を省くことも可能となる。   The width and interval of the wiring of the comb electrode recently appear narrower than 10 μm width, and when the electrode part has a fine concavo-convex structure such as “convex up”, the comb electrode part is derived from the concavo-convex structure formed by the electrode as a whole In some cases, the water repellency and the structure oil repellency may be exhibited carelessly, and the liquid sample may not be sufficiently wetted and spread on the electrode portion (insulation portion). That is, there is a case where it becomes impossible to function as a detection electrode. In this case, a liquid sample is formed by forming a film that exhibits the structure water repellency and the structure oil repellency of the second embodiment, thereby making the electrode, the insulating portion, or both of them hydrophilic or lipophilic. It can also be wet and spread to the position necessary for sufficient measurement. Such a hydrophilic and hydrophilic / lipophilic comb electrode can also save time and labor for laying a glass cover or the like on the electrode and the dropped sample after dropping the droplet sample onto the electrode portion.

一方、この第二の実施形態の構造撥水性、構造撥油性の皮膜は、その表層に極性の官能基を伴うことで、前記ピンフォールに(を通じて)水等の電極を腐食させる極性物質を吸着し、電極表面に至るまでピンフォール中を誘導し易く、電極の腐食を引き起こし易い懸念があるので、長時間の測定等には不向きな面もある。   On the other hand, the structural water-repellent, structurally oil-repellent coating of this second embodiment has a polar functional group on the surface thereof, thereby adsorbing a polar substance that corrodes an electrode such as water (through) on the pin-fall. In addition, there is a concern that the electrode surface may be easily guided through the pin fall, which may cause corrosion of the electrode, so that it is not suitable for long-time measurement and the like.

さらに前記第二の実施形態の珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物など、極性の官能基をその表層に自然発生(形成)させやすい(ドライプロセスにより形成される皮膜含めて)皮膜を屋外の日光などのUV光や、ヒートサイクルから発生する結露水(特に腐食性や極性成分を含むもの)や検体試料の水中などの酸化雰囲気中に暴露すると、極性の官能基の形成が一層促進され表層が親水性側の表面に移行し易くなる。
例えば、ステンレス鋼板(SUS304 2B基材)上に公知のプラズマCVDプロセスにて各々概ね40nm程度の厚さで、水素と炭素からなる非晶質炭素膜を形成した試料1と、珪素を含む非晶質炭素膜に酸素をプラズマ照射し、極性のシラノール基(Si-OH基)を表層に大量に生成した試料2と、前記試料2の表層に前記シラノール基と脱水縮合反応で皮膜を形成する公知のフッ素含有カップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)よりなる撥水撥油層をスプレー法で概ね20nmの厚さで最表層に追加形成した2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で5分間洗浄した試料3をつくり、試料1、2、3を高温高湿試験用恒温恒湿槽(試験機器:PR−2GP/タバイエスペック)にて温度40℃、湿度93%にて96時間保持した前後で、摩擦磨耗試験(装置:トライボギアHHS−2000新東科学(株)、一定荷重往復測定荷重:50g、圧子:SUJ2 φ2.0mm、50往復摩擦)を行うと、高温高湿槽への投入前後で試料1と試料3は摩擦係数の劣化に大きな差が出ないが、極性のシラノール基(Si−OH基)を表層に大量に生成し親水化した試料2の最大の摩擦係数が、高温高湿槽への投入前の同試料の最大値0.5μ(ミュー)から3倍の1.5μに増大しており、皮膜自体の劣化や基材密着の劣化が確認できる。なお、ステンレス鋼はAlなどに比べ腐食し難い基材であり摩擦係数の劣化から基材の腐食に起因する試料の劣化ではなく、試料自体の高温高湿環境に対する劣化が想定でき、各試料形態での耐久性能の違いが確認できる。
Furthermore, a polar functional group such as a silicon oxide or metal oxide, nitride, carbide, oxynitride, carbonate, carbonitride, carbonitride or the like of the second embodiment is naturally generated (formed) on the surface thereof. Easy (including the film formed by the dry process) UV light such as sunlight in the outdoors, condensation water generated from the heat cycle (especially containing corrosive and polar components) and oxidizing atmosphere such as water of the specimen When exposed to the inside, the formation of polar functional groups is further promoted, and the surface layer is easily transferred to the surface on the hydrophilic side.
For example, a sample 1 in which an amorphous carbon film composed of hydrogen and carbon is formed on a stainless steel plate (SUS304 2B base material) each having a thickness of about 40 nm by a known plasma CVD process, and amorphous containing silicon Of a porous carbon film with oxygen plasma to form a large amount of polar silanol groups (Si-OH groups) on the surface layer, and a known layer 2 on the surface of the sample 2 to form a film by dehydration condensation reaction Two days after additionally forming a water- and oil-repellent layer consisting of a fluorine-containing coupling agent (Fluorosurf FG-5010Z130-0.2, manufactured by Fluorotechnology, Inc.) in a thickness of approximately 20 nm by a spray method, IPA (isopropyl alcohol) The sample 3 was cleaned for 5 minutes with an ultrasonic cleaning tank filled with the sample, and the samples 1, 2 and 3 were subjected to a constant temperature and humidity control bath for high temperature high humidity test (test equipment: PR-2GP / Taba Frictional abrasion test (apparatus: Tribogear HHS-2000 Shinto Scientific Co., Ltd., constant load reciprocating measurement load: 50 g, indenter: SUJ2 φ 2.) When 0 mm, 50 double-stroke friction) is performed, sample 1 and sample 3 do not show a large difference in deterioration of the friction coefficient before and after being added to the high temperature and high humidity tank, but polar silanol group (Si-OH group) The maximum coefficient of friction of the large amount of hydrophilized sample 2 is increased from the maximum value 0.5 μ (mu) of the same sample before being added to the high temperature and high humidity tank to 1.5 μ which is three times higher It is possible to confirm the deterioration of itself and the adhesion of the substrate. Stainless steel is a substrate that is less likely to be corroded than Al etc., and deterioration of the friction coefficient does not cause deterioration of the sample due to the corrosion of the substrate, and deterioration of the sample itself against high temperature and high humidity environment can be assumed. We can confirm the difference in durability performance in

このことから、弁金属の中でも比較的腐食の起こり難い不動態層を伴う基材、特にTi、Ni、Cr、陽極酸化し不動態層を強化したAlなどの弁金属全般に対する試料1、3の形態の保護膜の高温高湿環境に対する有効性が確認できている。
但し、試料3の形態は、本発明に係る保護層に比べ極端に大きな絶縁性を有するフッ素樹脂膜が追加形成されるため導電性の劣化の点では試料2や試料1の形態に比べ劣ることにはなる。
また、前記試料2のような親水性側の濡れ性の皮膜中、例えば皮膜のピンフォール中に水が含まれた後、環境中で当該水が氷結した場合の水の体積膨張による皮膜の劣化は容易に想定が可能である。
From this fact, it is possible to select the substrate 1 with a passivation layer which is relatively resistant to corrosion among the valve metals, particularly Ti, Ni, Cr, samples 1 and 3 for all valve metals such as Al with anodic oxidation and strengthening the passivation layer. The effectiveness of the protective film in the form of high temperature and high humidity has been confirmed.
However, the form of sample 3 is inferior to the form of sample 2 or sample 1 in terms of conductivity deterioration since a fluorine resin film having an extremely large insulating property is additionally formed as compared with the protective layer according to the present invention. Become
In addition, after the water is contained in the wettable film on the hydrophilic side such as the sample 2, for example, in the pin fall of the film, the film is degraded by volumetric expansion of the water when the water freezes in the environment Is easily predictable.

そこで、本発明の第三の実施形態は、ガスバリア等の耐侯性目的でドライプロセスにより形成される、珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のピンフォールに、水等の電極を腐食させる極性物質を吸着乃至誘導して腐食を起こさないように、保護膜の上に、さらに撥水性又は撥水撥油性の皮膜を付与する形態とするものである。
本発明の一実施形態である、ドライプロセスにより形成された皮膜の表面には、シラノール基、カルボニル基、カルボキシル基などの、極性の官能基が多く生成されるため、脱水縮合反応にて基材に結合するカップリング剤等よりなる撥水性又は撥水撥油性の皮膜が強力に密着しやすい。
Therefore, in the third embodiment of the present invention, oxides of silicon or metal, nitrides, carbides, oxynitrides, carbonates, carbonitrides, carbonates, carbonates, etc. formed by a dry process for the purpose of heat resistance such as gas barrier. Water-repellent or water- and oil-repellent coating is further applied to the protective film so that corrosion does not occur by adsorbing or inducing a polar substance that corrodes the electrode, such as water, to pinfall of nitride. It is
A large number of polar functional groups such as silanol groups, carbonyl groups and carboxyl groups are generated on the surface of a film formed by a dry process, which is an embodiment of the present invention A water-repellent or water- and oil-repellent coating made of a coupling agent or the like bonded to the above easily adheres strongly.

なお、通常撥水撥油性皮膜は薄膜のものでもフッ素含有カップリング剤等よりなるフッ素樹脂(層)などに代表され、体積電気抵抗率が、×1015〜20Ω・cmに迫る高い絶縁性であり、絶縁用途に使用されるものが多く、導電性の電極への塗布の適正が無い懸念もあったが、本発明者は、フッ素含有カップリング剤等よりなるフッ素樹脂(層)より成り、少なくとも50nm未満の膜厚の本絶縁皮膜が電気電極用途に使用可能であることを併せて検証した。
前記の、ドライプロセスによる膜厚200nm未満の絶縁性薄膜よりなる耐食性に優れる保護膜と、フッ素含有カップリング剤等よりなるフッ素樹脂(層)より、少なくとも50nm未満の膜厚の複合層を電極の導電性を一定程度以上損なわない厚みで保護膜として形成するものとする。
Even though the water- and oil-repellent coating is a thin film, it is typically represented by a fluorine resin (layer) made of a fluorine-containing coupling agent or the like, and has a high insulation property with a volume electrical resistivity approaching 1015-20 Ω · cm. There are concerns that many are used for insulation applications and there is a concern that the application to the conductive electrode is not appropriate. However, the present inventor is composed of a fluorine resin (layer) made of a fluorine-containing coupling agent or the like. It was also verified that the present insulation film having a thickness of at least 50 nm can be used for electric electrode applications.
A composite layer having a film thickness of at least 50 nm less than that of the above-mentioned protective film excellent in corrosion resistance consisting of an insulating thin film having a film thickness of less than 200 nm by dry process and a fluorine resin (layer) The protective film is formed to a thickness that does not impair the conductivity to a certain degree or more.

なお、本発明にかかる検知電極は検体試料である溶液中や、溶液や不用意な結露水等の液体に接して使用されることが予定されるため、皮膜成分が前記液体中に溶出し検知に影響を与えないようにすることが重要である。
よって、前記の本発明の第三の実施形態における保護膜の上の撥水性又は撥水撥油性皮膜形成も抵抗加熱法や真空プラズマ法などのドライプロセスで行うことが好適である。
例えばフッ素含有カップリング剤溶液中にワークをディップして撥水性又は撥水撥油性皮膜形成する場合、フッ素含有カップリング剤溶液の高濃度の未反応残渣が基材やプライマー層である本発明の一実施形態にかかるドライ薄膜の凹凸部分、または、ドライ薄膜のピンフォール中等に進入、厚く偏在し、また、電極の凹凸構造の凹部に重力によって溜まるなどし、検知電極を使用する際に検体試料である溶液中にフッ素含有カップリング剤(成分含む)が溶出や拡散することのないようにすることが、絶縁性でもあるフッ素含有カップリング剤膜の導電性管理と並んで極めて重要である。
The detection electrode according to the present invention is expected to be used in solution, which is a sample, or in contact with a liquid such as a solution or careless condensed water, so that the film component is eluted and detected in the liquid. It is important not to affect the
Therefore, it is preferable that the formation of a water-repellent or water- and oil-repellent film on the protective film in the third embodiment of the present invention is also performed by a dry process such as a resistance heating method or a vacuum plasma method.
For example, when a workpiece is dipped in a fluorine-containing coupling agent solution to form a water-repellent or water- and oil-repellent coating, unreacted residues of a high concentration of the fluorine-containing coupling agent solution are a substrate or a primer layer. When entering a detection thin film according to one embodiment, or entering a thick thin film of the dry thin film, etc., and accumulating in a concave part of the uneven structure of the electrode by gravity, etc. when using the detection electrode It is very important to prevent the elution and diffusion of the fluorine-containing coupling agent (including the component) in the solution, as well as the conductivity control of the fluorine-containing coupling agent film which is also insulating.

本発明にかかる検知電極の検体試料が生体試料や食品、飲料、医薬品などの場合もあり、よって前述のような電極からの溶出物、溶出成分に問題が無いことを確認することも重要である。
例えば、ステンレス鋼板(SUS304 2B基材)上に公知のプラズマCVDプロセスにて各々概ね40nm程度の厚さで、珪素を含む非晶質炭素膜に酸素をプラズマ照射し、極性のシラノール基(Si−OH基)を表層に大量に生成させ、前記シラノール基と脱水縮合反応で皮膜を形成する公知のフッ素含有カップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)よりなる撥水撥油層をスプレー法で概ね20nmの厚さで最表層に追加形成した2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で35分間洗浄した本発明の一実施形態にかかる試料をつくり、食品、添加物等の規格基準(昭和34年厚生省告示第370号)の第3のDの2 100℃以下))器具及び容器包装規格試験(合成樹脂)一般規格溶出試験(一般財団法人日本食品分析センターにて実施)を行い、本発明前記試料が該規格に適合していること(限度内)が確認できている。
The sample of the detection electrode according to the present invention may be a biological sample, a food, a beverage, a medicine, etc. Therefore, it is also important to confirm that there is no problem in the elution from the electrode and the elution component as described above. .
For example, the amorphous carbon film containing silicon is plasma irradiated with oxygen on a stainless steel plate (SUS304 2B base material) in a thickness of about 40 nm by a known plasma CVD process, and polar silanol groups (Si Water- and oil-repellent layer consisting of a well-known fluorine-containing coupling agent (Fluorosurf FG-5010Z130-0.2 from Florotechnics Ltd.) which forms OH group in a large amount on the surface layer and forms a film by dehydration condensation reaction with the silanol group A sample according to an embodiment of the present invention was prepared by washing for 35 minutes in an ultrasonic cleaning tank filled with IPA (isopropyl alcohol) two days after additionally forming an outermost layer with a thickness of approximately 20 nm by a spray method, food, Additives, etc. Standards standards (3rd D 2 100 ° C or less of Ministry of Health and Welfare Notification No. 370, 1959)) Appliances and containers and packaging standards test (synthetic resin) A general standard dissolution test (conducted by Japan Food Research Laboratories, Inc.) was conducted to confirm that the sample of the present invention conforms to the standard (within limits).

本発明のさらに好適な実施形態は、弁金属の表層の不動態層を損なわない製法でドライ薄膜を形成するものである。
弁金属表層の不動態層は、電極表層に電気二重層を形成しにくく、さらに不動態層自体が有する電気容量の安定性が高いので、検知電極による検出の安定性や再現性確保には極めて有利、有意義な存在となる場合が有り得る。
また、前記弁金属表層の不動態層へのドライ薄膜よりなる保護膜も電気二重層を形成しにくいため、電極も安定化に貢献する。
電気二重層は、電極近傍でのイオンの挙動に大きな影響を与えるため、電気化学などの分野では重要な意味を持つ。また、電気二重層容量は電極の腐食、溶解で電極の面粗度が上昇し電極の表面積が大きくなることによって上昇変化するため、電極の耐食性は測定系にとって非常に重要な性能となる。
A further preferred embodiment of the present invention is to form the dry film in a process that does not damage the passivation layer on the surface of the valve metal.
The passivation layer on the valve metal surface layer is difficult to form an electric double layer on the electrode surface layer, and the stability of the electrical capacity of the passivation layer itself is high. Therefore, it is extremely important for the stability and reproducibility of detection by the detection electrode. It can be advantageous or meaningful.
In addition, since the protective film formed of a dry thin film on the passivation layer of the valve metal surface layer is also difficult to form an electric double layer, the electrode also contributes to the stabilization.
The electric double layer has an important meaning in the field such as electrochemistry because it greatly affects the behavior of ions in the vicinity of the electrode. In addition, the corrosion resistance of the electrode becomes a very important performance for the measurement system because the electric double layer capacity rises and changes as the surface roughness of the electrode increases and the surface area of the electrode increases due to corrosion and dissolution of the electrode.

一方、弁金属表層の不動態層は厚さ1ナノ〜数十ナノと非常に薄い場合もあり、例えば、通常、各種真空プラズマ成膜装置にてドライ薄膜を形成する前にはArなどの不活性ガスやフッ素ガスなどをプラズマ化して成膜対象基材の表層をスパッタリングし、成膜する基材表層の不動態層の除去や、異物のクリーニングを行うが、弁金属表層の不動態層保全のためこのクリーニング行わないものとする、または従来に比べ短時間、低エネルギーな処理とすることができる。   On the other hand, the passivation layer on the valve metal surface layer may be as thin as 1 nm to several tens of nm in thickness. For example, before forming a dry thin film in various vacuum plasma film forming apparatuses, it is usually impossible to The surface layer of the film formation target substrate is sputtered by plasmatizing the active gas and fluorine gas, etc., and removal of the passivation layer on the surface layer of the substrate to be formed and cleaning of foreign matter are carried out. Therefore, this cleaning can not be performed, or the processing can be performed with less energy for a short time as compared with the prior art.

以下、本発明の実施形態にかかる電極構造体を構成する材料等について、順に説明する。   Hereinafter, the material etc. which comprise the electrode structure concerning embodiment of this invention are demonstrated in order.

(基材)
基材は、特に限定されず、様々な金属、樹脂、又はガラス、半導体、セラミクス、セルロースまたは各種素材の混合物や複合体、積層体などからなる。なお絶縁物であることが好ましい場合もある。
さらに、基材の表層の粗さは、必要な機能、例えば表面の濡れ性改質等の要求に合わせ適宜研磨や、ブラスト、ラッピング、ピーニングなどの物理処理や電解研磨や薬液エッチィングなどの化学(電気化学)処理、或いはプラズマ処理やUV処理等にて適宜調整されても良い。
(Base material)
The substrate is not particularly limited, and is made of various metals, resins, or glasses, semiconductors, ceramics, cellulose or mixtures of various materials, composites, laminates and the like. In some cases, it is preferable to be an insulator.
Furthermore, the roughness of the surface layer of the substrate is appropriately adjusted according to the required function, for example, the wettability modification of the surface, physical treatment such as blasting, lapping, peening, etc., chemical treatment such as electropolishing or chemical solution etching It may be appropriately adjusted by (electrochemical) treatment, plasma treatment, UV treatment or the like.

(電極)
本発明の電極材料として用いられる弁金属としては、アルミニウム、クロム、チタン、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、ニッケルなどが例示できる。さらには前記弁金属のいずれか1つ以上を含む各種合金、または複合体とすることもできる。さらに金属結晶の形を採らないアモルファス金属であってもかまわない。
また、電極の加工、形成方法は特に限定されず、公知のフォトリソグラフィー法、めっき法、めっき電鋳法、プレス加工、切削加工、レーザ加工等、様々な方法で行うことができ、特に限定されない。
さらに、電極表層の粗さは、必要な機能、例えば表面の濡れ性改質等の要求に合わせ適宜研磨や、ブラスト、ラッピング、ピーニングなどの物理処理や電解研磨や薬液エッチィングなどの化学(電気化学)処理、或いはプラズマ処理やUV処理等にて適宜調整されても良い。
(electrode)
Examples of the valve metal used as the electrode material of the present invention include aluminum, chromium, titanium, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, nickel and the like. Furthermore, various alloys or composites containing any one or more of the valve metals can also be used. Furthermore, it may be an amorphous metal which does not take the form of a metal crystal.
Further, the processing and forming methods of the electrode are not particularly limited, and can be performed by various methods such as known photolithography method, plating method, plating electroforming method, press processing, cutting processing, laser processing, etc. and is not particularly limited. .
Furthermore, the roughness of the surface layer of the electrode can be appropriately polished according to the required function such as wettability modification of the surface, physical processing such as blasting, lapping, peening etc., chemical processing such as electropolishing or chemical solution etching It may be appropriately adjusted by chemical treatment, plasma treatment, UV treatment or the like.

本発明の電極材料として用いられる弁金属を含む電極は、弁金属が雰囲気中でその表層に自然形成する不動態層を備えるものでも良く、前記弁金属の表層に積極的に不動態層を追加形成したものでも良い。例えば、弁金属を酸素ガスやイオン、ラジカル等が存在する酸素雰囲気中に配置し、前記弁金属の不動態層を強化したり、補修したりしたものでもかまわない。また、水など酸化雰囲気中に配置することもできるし、電解研磨などを行うなど適宜弁金属の表層に不動態層を形成することも可能である。また、弁金属基材に対して窒化処理を行う、アニール処理を行い含有する水素等を排出するなど、弁金属に他の特性を付与する処理を行うことも本発明の趣旨を逸脱しない範囲で行うことができる。   The electrode containing the valve metal used as the electrode material of the present invention may have a passive layer which the valve metal spontaneously forms on the surface thereof in the atmosphere, and the passive layer is positively added to the surface of the valve metal. It may be formed. For example, the valve metal may be disposed in an oxygen atmosphere in which oxygen gas, ions, radicals and the like are present, and the passive layer of the valve metal may be strengthened or repaired. In addition, it can be disposed in an oxidizing atmosphere such as water, and it is also possible to form a passivation layer on the surface layer of the valve metal as appropriate, such as performing electrolytic polishing. In addition, it is possible not to deviate from the spirit of the present invention that the valve metal base is subjected to a nitriding treatment, an annealing treatment is performed, the contained hydrogen and the like are discharged, and another treatment is given to the valve metal. It can be carried out.

本発明の電極材料として用いられる弁金属は、例えば前記基板に真空装置などの無酸素雰囲気であるドライプロセス中で形成される前記弁金属材料も含む。例えば真空中(無酸素雰囲気中)でAlターゲットからのスパッタリングで形成されるAl電極など弁金属電極がある。前記のスパッタリングAl電極を前記真空(無酸素)雰囲気中で形成した後、真空をブレイクすることなく(酸素雰囲気に暴露することなく)その表層に本発明にかかるドライプロセスにより保護膜を連続形成することも可能である。但し、本発明にかかるドライプロセスによる保護膜を前記のように真空中(無酸素雰囲気中)で連続形成しても、本願の前記保護膜には微細な基材に至るピンフォールが必ず発生し、該ピンフォールの存在する部分において後に外気にさらされた段階で不動態層が形成されるため本願の弁金属の特徴、特性を有し、本願の対象とすることができる。   The valve metal used as the electrode material of the present invention also includes, for example, the valve metal material formed in a dry process in an oxygen-free atmosphere such as a vacuum device on the substrate. For example, there is a valve metal electrode such as an Al electrode formed by sputtering from an Al target in a vacuum (in an oxygen-free atmosphere). After the sputtering Al electrode is formed in the vacuum (oxygen-free) atmosphere, the protective film is continuously formed on the surface layer by the dry process according to the present invention without breaking the vacuum (without exposure to the oxygen atmosphere). It is also possible. However, even if the protective film by the dry process according to the present invention is continuously formed in a vacuum (in an oxygen-free atmosphere) as described above, the protective film of the present invention necessarily has pinfall that leads to a fine substrate. Since the passivation layer is formed at the stage where the pin fall is later exposed to the open air, it has the features and characteristics of the valve metal of the present invention and can be the subject of the present application.

本発明にかかる弁金属、並びに弁金属の不動態層は、他の基材の表層に形成されたもの
でも良く、複数の弁金属からなるものでも本発明の趣旨を逸脱しない範囲のものであればかまわない。
The valve metal according to the present invention, and the passive layer of the valve metal may be formed on the surface layer of another base material, or may be made of a plurality of valve metals without departing from the scope of the present invention. I do not mind.

(前処理)
本発明にかかるドライプロセスによる薄膜からなる保護層を形成する前に行う、弁金属
基材に対するクリーニングなどの前処理について説明する。
一般的にドライプロセスによる薄膜を基材上に形成する場合のAr等の不活性ガス、その他エッチィングガスによる処理基材表層のスパッタリング(クリーニング)は、ドライプロセスにより基材上に形成する薄膜を、基材の異物を除去し、酸化物や酸化膜に起因するプラズマのチャージアップを未然に防止し、基材温度を(反応温度)を上昇させ基材を活性化し、ドライ薄膜を密着良く基材に形成するため最も重要な工程として常識的に当業者により実施される重要工程である。
しかしながら、本発明にかかる弁金属の表層に形成されている不動態層は非常に薄いため、前記ドライプロセスによるAr等の不活性ガス、その他エッチィングガスによりスパッタリング(クリーニング)を通常どおり行うと前記弁金属の不動態層が除去、消滅、または部分破壊されてしまう場合がある。
例えば、真空プラズマプロセスでは、DC高圧パルス等で十分バイアスのかかったArイオンなどの基材表層から基材内部への注入深さは30nmを超える場合もあり、例えばArプラズマクリーングをArガス圧2Pa以下程度の状態で、3000ボルトを超える印加電圧でArイオンを基材に加速注入しその処理を10分間程度行えば、数nm程度の薄い前記不動態層はきれいに除去されてしまう場合がある。
よってArプラズマクリーングは長くても概ね5分間未満、好適には3分間未満、または、基材に異物等のないきれいな状態の場合は実施しないことが最良の場合もある
(Preprocessing)
A pretreatment such as cleaning of a valve metal substrate, which is performed before forming a protective layer made of a thin film by a dry process according to the present invention, will be described.
In general, sputtering (cleaning) of the surface layer of the treated substrate with an inert gas such as Ar or other etching gas in the case of forming a thin film by a dry process on a substrate is a thin film formed on the substrate by a dry process Removes foreign substances from the substrate, prevents plasma charge buildup due to oxides and oxide films in advance, raises the substrate temperature (reaction temperature) to activate the substrate, and brings the dry thin film into close contact with the substrate. It is an important process commonly performed by those skilled in the art as the most important process for forming a material.
However, since the passivation layer formed on the surface layer of the valve metal according to the present invention is very thin, the sputtering (cleaning) is normally performed by the inert gas such as Ar by the dry process or other etching gas. The passivation layer of the valve metal may be removed, annihilated or partially destroyed.
For example, in a vacuum plasma process, the implantation depth of Ar ions or the like sufficiently biased by a DC high-voltage pulse or the like from the surface layer of the substrate to the inside of the substrate may exceed 30 nm. If the Ar ion is accelerated and implanted into the substrate at an applied voltage exceeding 3000 volts and the treatment is carried out for about 10 minutes in the following state, the passive layer as thin as several nm may be removed cleanly.
Therefore, it may be best not to carry out Ar plasma cleaning for at most approximately less than 5 minutes, preferably less than 3 minutes, or for clean conditions with no foreign material on the substrate.

(保護層)
本発明にかかるドライ薄膜よりなる保護膜の形成について説明する。
一実施形態として、膜厚200nm未満の非晶質炭素膜よりなる保護層である。保護層の膜厚は厚い場合には保護膜や電極自体に応力剥離や反りなどの変形の恐れがあり、さらには、非晶質炭素膜は本来的に絶縁性の被膜であり電気抵抗が大きくなるなどの理由から、最大の膜厚を200nm未満とすることが好ましく、さらに好適には150nm未満、最適には50nm未満であり、使用条件により適宜選定される。
また、非晶質炭素膜はSi(珪素)、F(フッ素)、B(ホウ素)、S(イオウ)さらには、TiやAlなどの多様な金属など、他の元素が含有されたものでも良い。
または他の実施形態として、膜厚200nm未満の珪素または金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物層のいずれか1つ以上を含むドライ薄膜よりなる保護層となる。
前記ドライ薄膜もプラズマプロセス等で撥水撥油性の元素、例えばフッ素などを添加したものであってもかまわない。
この場合も、保護層の膜厚は厚い場合には保護膜や電極自体に応力剥離や反りなどの変形の恐れがあり、さらには電気抵抗が大きくなるなどの理由から、最大の膜厚を200nm未満とすることが好ましく、さらに好適には150nm未満、最適には50nm未満であり、使用条件により適宜選定される。
但し、本発明のいずれの実施形態においても、本発明にかかるドライ薄膜よりなる保護膜の膜厚は、その厚みが薄い場合、複雑な凹凸構造を伴う本発明にかかる電極や冶具において、凹凸部分や貫通孔の壁面(断面)を構成する面への十分な前記プラズマドライプロセスにより形成される保護膜の着き回り(カバレッジ)が確保できなくなり、着き回りに左右される耐食効果が得難いため最低でも10nmを超える膜厚とすることが望ましい。
(Protective layer)
The formation of a protective film comprising a dry thin film according to the present invention will be described.
In one embodiment, the protective layer is an amorphous carbon film having a thickness of less than 200 nm. When the film thickness of the protective layer is thick, there is a fear of deformation such as stress peeling or warping of the protective film or the electrode itself. Furthermore, the amorphous carbon film is an insulating film inherently and has a large electric resistance. Therefore, the maximum film thickness is preferably less than 200 nm, more preferably less than 150 nm, and most preferably less than 50 nm, and is appropriately selected according to the use conditions.
In addition, the amorphous carbon film may contain other elements such as Si (silicon), F (fluorine), B (boron), S (sulfur) and various metals such as Ti and Al. .
Or as a dry film having a film thickness of silicon or metal having a film thickness of less than 200 nm, nitride, carbide, oxynitride, carbide, carbonitride, carbonitride, or carbonate nitride layer having a thickness of less than 200 nm. Become a protective layer.
The dry thin film may also be one to which a water and oil repellent element such as fluorine is added by a plasma process or the like.
Also in this case, when the film thickness of the protective layer is thick, there is a fear of deformation such as stress peeling or warping of the protective film or the electrode itself, and further, the maximum film thickness is 200 nm because the electrical resistance increases. The thickness is preferably less than 150 nm, more preferably less than 150 nm, and most preferably less than 50 nm, and is appropriately selected according to the use conditions.
However, in any of the embodiments of the present invention, when the thickness of the protective film made of the dry thin film according to the present invention is thin, the uneven portion in the electrode or the jig according to the present invention with a complicated uneven structure. And coverage of the protective film formed by the plasma dry process sufficiently on the surface constituting the wall surface (cross section) of the through hole can not be secured, and it is difficult to obtain corrosion resistance depending on the circumference It is desirable that the film thickness be more than 10 nm.

さらに、保護層の硬度は特に限定されないが、保護膜の内部応力による剥離や変形を抑制するため、保護層の硬度はビッカース硬さでHv4000未満のものが望ましく、さらに好適にはHv3000未満、さらに好適にはHv2000未満のものが良い。但し、硬度の低い保護層はガスバリア性が欠如し易いため、少なくともHv500以上、好適にはHv1000以上であることが望ましい。   Furthermore, the hardness of the protective layer is not particularly limited, but in order to suppress peeling and deformation of the protective film due to internal stress, the hardness of the protective layer is preferably less than Hv 4000 in Vickers hardness, more preferably less than Hv 3000, and more preferably Preferably, those less than Hv 2000 are preferable. However, since a protective layer with low hardness tends to lack gas barrier properties, it is desirable that the protective layer be at least Hv 500 or more, preferably Hv 1000 or more.

本発明にかかるドライ薄膜よりなる保護膜の誘電率(1MHz)ならびに体積電気抵抗率は主なもので下記のようになる。
非晶質炭素膜の誘電率は8〜12程度、体積電気抵抗率は概ね×104〜14Ω・cmである。
誘電率は電極の電気二重層の形成に影響を与えるため、水溶液の誘電率が概ね50〜80、水の誘電率は80となるため、ドライ薄膜よりなる保護膜の誘電率は50未満であることが望ましく、さらに望ましくは12以下となる。
SiO :誘電率:3.7〜3.9 体積電気抵抗率 ×1018Ω・cm
Al:誘電率:9.5〜10 体積電気抵抗率 ×1014Ω・cm
TiO(ルチル):誘電率:113 体積電気抵抗率 ×1010Ω・cm
Si:誘電率:7.3〜10 体積電気抵抗率 ×1014Ω・cm
AlN:誘電率:8.5〜9 体積電気抵抗率 ×1014Ω・cm
TiC:体積電気抵抗率 ×1012Ω・cm
TiN:体積電気抵抗率 ×1012Ω・cm
SiC:体積電気抵抗率 ×1013Ω・cm
The dielectric constant (1 MHz) and the volume resistivity of the protective film made of the dry thin film according to the present invention are mainly as follows.
The dielectric constant of the amorphous carbon film is about 8 to 12, and the volume resistivity is about 10 4 to 14 Ω · cm.
Since the dielectric constant affects the formation of the electric double layer of the electrode, the dielectric constant of the aqueous solution is approximately 50 to 80, and the dielectric constant of water is 80, so the dielectric constant of the protective film consisting of a dry thin film is less than 50 Is more preferably 12 or less.
SiO 2 : dielectric constant: 3.7 to 3.9 volume electrical resistivity × 10 18 Ω · cm
Al 2 O 3 : dielectric constant: 9.5 to 10 volume resistivity 10 14 Ω · cm
TiO 2 (rutile): dielectric constant: 113 volume electrical resistivity × 10 10 Ω · cm
Si 3 N 4 : dielectric constant: 7.3 to 10 volume resistivity 10 14 Ω · cm
AlN: dielectric constant: 8.5 to 9 volume resistivity 10 14 Ω · cm
TiC: volume electrical resistivity × 10 12 Ω · cm
TiN: volume electrical resistivity × 10 12 Ω · cm
SiC: volume resistivity × 10 13 Ω · cm

本発明にかかるドライ薄膜よりなる保護膜は、前記各種薄膜の複数の積層膜でも良く、混合膜であっても本発明の趣旨を逸脱しない範囲のものであれば使用することができる。   The protective film made of the dry thin film according to the present invention may be a plurality of laminated films of the above-mentioned various thin films, and even a mixed film can be used as long as it does not deviate from the scope of the present invention.

本発明の一実施形態において、上記の非晶質炭素膜等の保護層は、プラズマCVD法、プラズマPVD法、大気圧プラズマ法、スパッタリング法、真空蒸着法等の様々なドライプロセスにより形成されるが特に限定されない。
なお、非晶質炭素膜は非晶質炭素膜を形成した後、その表面に酸素によるドライエッチィングを行うことでその面粗さを粗く、尖った形状に適宜調整することができ、抗菌性を付与することで液体試料中の菌体等の増殖を検知中に抑制することも可能となり得る
(上記特許文献3参照)。
In one embodiment of the present invention, the protective layer such as the above-mentioned amorphous carbon film is formed by various dry processes such as plasma CVD, plasma PVD, atmospheric pressure plasma, sputtering, vacuum evaporation and the like. Is not particularly limited.
The surface roughness of the amorphous carbon film can be appropriately adjusted to a sharp and sharp shape by dry etching with oxygen after forming the amorphous carbon film, and the antibacterial property is thus obtained. It may also be possible to suppress the growth of bacteria and the like in the liquid sample during detection by applying (see Patent Document 3 above).

本発明にかかるドライ薄膜よりなる保護膜を矩形の平板状のワークに電界を形成し、電界を利用した真空プラズマプロセスで形成すると前記矩形平板ワークの周辺部分の辺(端)から概ね10〜20mm程度幅の内部までの「額縁状の面」にプラズマのアーキング等によるピンフォールが集中して形成されることを下記のように検証している。
例えば平面視矩形のアルミニウム合金基材(A5052)(100mm×100mm、厚さ1mm)を準備し洗浄後、アルミニウム合金基材を該基材に電圧を印加し、該基材の周囲に電界を形成することで該基材にドライ薄膜を形成可能な、高圧DCμパルスプラズマCVD装置にセットし、当該CVD装置を1×10−3Paまで真空排気を行った。その後、CVD装置に流量30SCCM、ガス圧1.5PaのAr(アルゴン)ガスを導入し、−3kVpの印加電圧によって基材表面を10分間プラズマクリーニングした。続いて、CVD装置からArガスを排気した後、流量30SCCM、ガス圧1.5PaのアセチレンガスをCVD装置に導入し、−4.5kVpの電圧を印加して、基材表面に厚さ概ね1μmの非晶質炭素膜を形成した。この表面に非晶質炭素膜が形成されたアルミニウム合金基材を作成した。
続いて該非晶質炭素膜が形成されたアルミニウム合金基材に塩水噴霧による腐食劣化加速試験を行った。株式会社東洋精機製作所製の塩水噴霧試験機S−800を用い、JISZ2371に準拠して塩水噴霧は24時間行った後、該基材各試料を試験機から取り出して純水で洗浄し、乾燥させた。この乾燥後の該基材をCCDカメラで撮影した結果、前記塩水噴霧試験後の非晶質炭素膜が形成されたアルミニウム合金基材の周辺部分の辺(端)から概ね10〜20mm程度幅の内部の面に腐食部分が集中しており、前記腐食はプラズマのアーキングによる、前記基材の周辺部分の辺(端)から概ね10〜20mm程度の内部の面に発生したピンフォールに起因する腐食と推定できる。
When a protective film made of a dry thin film according to the present invention is formed by a vacuum plasma process using a rectangular flat work by forming an electric field on a rectangular flat work, it is approximately 10 to 20 mm from the side (edge) of the peripheral portion of the rectangular flat work. It is verified as follows that pinholes due to plasma arcing and the like are concentrated and formed on the “frame-like surface” up to the inside of the extent width.
For example, after preparing and washing an aluminum alloy substrate (A 5052) (100 mm × 100 mm, 1 mm thick) having a rectangular shape in plan view, a voltage is applied to the aluminum alloy substrate to form an electric field around the substrate The substrate was set to a high pressure DCμ pulse plasma CVD apparatus capable of forming a dry thin film on the substrate, and the CVD apparatus was evacuated to 1 × 10 −3 Pa. Thereafter, Ar (argon) gas with a flow rate of 30 SCCM and a gas pressure of 1.5 Pa was introduced into the CVD apparatus, and the substrate surface was plasma cleaned for 10 minutes by an applied voltage of -3 kVp. Subsequently, after Ar gas is exhausted from the CVD apparatus, acetylene gas with a flow rate of 30 SCCM and a gas pressure of 1.5 Pa is introduced into the CVD apparatus, a voltage of -4.5 kVp is applied, and a thickness of approximately 1 μm is applied to the substrate surface. Amorphous carbon film was formed. An aluminum alloy substrate having an amorphous carbon film formed on this surface was produced.
Subsequently, the aluminum alloy base on which the amorphous carbon film was formed was subjected to a corrosion deterioration accelerated test by salt spray. After performing salt water spraying for 24 hours according to JIS Z 2371 using a salt spray tester S-800 manufactured by Toyo Seiki Seisakusho Co., Ltd., each base material sample is taken out from the testing machine, washed with pure water and dried. The As a result of photographing the substrate after the drying with a CCD camera, the substrate is about 10 to 20 mm wide from the side (edge) of the peripheral portion of the aluminum alloy substrate on which the amorphous carbon film after the salt spray test is formed. The corrosion portion is concentrated on the inner surface, and the corrosion is caused by pinfall generated in the inner surface of about 10 to 20 mm from the side (edge) of the peripheral portion of the substrate due to plasma arcing. It can be estimated.

以上のことから、本発明にかかるドライ薄膜よりなる保護膜を電極基材に形成する際、該電極基材を一旦該基材より全周囲が20〜50mm以上大きい導電性の他の基板上(仮基板等)に前記電極基材を配置し、前記仮基板に電界を形成し、電界を利用した真空プラズマプロセスで保護膜を形成すると、前記仮基板の周辺部分の辺(端)から概ね10〜20mm程度の内部の面にプラズマのアーキングによるピンフォールが集中して形成され、前記範囲よりさらに内側に配置した電極についてはピンフォール発生の少ない、または電極の表層にピンフォールの少ない、または電極の表層にピンフォールの偏在の少ない本発明にかかる絶縁性のドライ薄膜よりなる保護膜を形成した電極を形成することが可能となり得る。   From the above, when forming the protective film made of the dry thin film according to the present invention on the electrode substrate, the electrode substrate is temporarily formed on another conductive substrate whose entire periphery is 20 to 50 mm or more larger than the substrate When the electrode substrate is disposed on a temporary substrate, etc., an electric field is formed on the temporary substrate, and a protective film is formed by a vacuum plasma process using the electric field, approximately 10 from the edge of the peripheral portion of the temporary substrate. Pinfall due to plasma arcing is concentrated on an inner surface of about -20 mm, and for electrodes arranged further inside than the above range, there is less pinfall, or less pinfall on the surface of the electrode, or an electrode It may be possible to form an electrode having a protective film made of an insulating dry thin film according to the present invention with less uneven distribution of pinfall on the surface of the electrode.

(撥水膜、撥水撥油膜)
本発明の一実施形態において、フッ素含有カップリング剤膜は、フッ素含有カップリング剤からなる薄膜である。本発明の一実施形態におけるフッ素含有カップリング剤膜は、フッ素を含有するカップリング剤を前記ドライプロセスよりなる保護層に塗布することにより形成されるが塗布方法は特に限定されないが、抵抗加熱法や真空プラズマ法などのドライプロセスで行うことが好適である。
撥水撥油層はフッ素を含む絶縁性の被膜であり電気抵抗が大きくなるなどの理由から最大の膜厚を50nm未満することが好ましく、さらに好適には30nm満、最適には20nm未満であり、使用条件により適宜選定される。
なお、フッ素樹脂の誘電率は4.0〜8.0、体積電気抵抗率は×1018〜22Ω・cmと非常に大きな電気抵抗値を有する。
フッ素含有カップリング剤は、その分子構造内にフッ素の置換基を有するカップリング剤であり、撥水・撥油機能を奏する。フッ素含有カップリング剤膜として使用可能なフッ素含有カップリング剤には、以下のものが含まれる。
(Water-repellent film, water- and oil-repellent film)
In one embodiment of the present invention, the fluorine-containing coupling agent film is a thin film comprising a fluorine-containing coupling agent. The fluorine-containing coupling agent film in one embodiment of the present invention is formed by applying a fluorine-containing coupling agent to the protective layer comprising the dry process, but the coating method is not particularly limited. It is preferable to carry out by a dry process such as a vacuum plasma method.
The water- and oil-repellent layer is a fluorine-containing insulating film, and the maximum film thickness is preferably less than 50 nm, more preferably less than 30 nm, and most preferably less than 20 nm, because electrical resistance increases. It is selected appropriately according to the conditions of use.
Note that the dielectric constant of the fluorine resin is 4.0 to 8.0, and the volume electrical resistivity is as large as 1018 to 22 Ω · cm.
The fluorine-containing coupling agent is a coupling agent having a fluorine substituent in its molecular structure, and exhibits a water- and oil-repellent function. The following fluorine-containing coupling agents can be used as the fluorine-containing coupling agent film.

(i) CF(CFCHCHSi(OCH
(ii) CF(CFCHCHSiCHCl
(iii) CF(CFCHCHSiCH(OCH
(iv) (CHSiOSOCF
(v) CFCON(CH)SiCH
(vi) CFCHCHSi(OCH
(vii) CFCHSiCl
(Viii) CF(CFCHCHSiCl
(ix) CF(CFCHCHSi(OCH
(x) CF(CFCHCHSiCl
(i) CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3) 3
(ii) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCH 3 Cl 2
(iii) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCH 3 (OCH 3 ) 2
(iv) (CH 3 ) 3 SiOSO 2 CF 3
(v) CF 3 CON (CH 3 ) SiCH 3
(vi) CF 3 CH 2 CH 2 Si (OCH 3) 3
(vii) CF 3 CH 2 SiCl 3
(Viii) CF 3 (CF 2 ) 5 CH 2 CH 2 SiCl 3
(ix) CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 3) 3
(x) CF 3 (CF 2 ) 7 CH 2 CH 2 SiCl 3

これらのフッ素カップリング剤はあくまで一例であり、本発明に適用可能なフッ素含有カップリング剤はこれらの例に限定されるものではない。フッ素を含有するカップリング剤として、例えば、フロロテクノロジー社のフロロサーフFG−5010Z130−0.2の溶液(フッ素樹脂0.02〜0.2%、フッ素系溶剤99.8%〜99.98%)を用いることができる。   These fluorine coupling agents are just an example, and the fluorine-containing coupling agents applicable to the present invention are not limited to these examples. As a fluorine-containing coupling agent, for example, a solution of Fluorosurf FG-5010Z130-0.2 (Fluororesin 0.02 to 0.2%, fluorine-based solvent 99.8% to 99.98%) Can be used.

本発明の他の実施形態においては、フッ素を含有しないカップリング剤を基材に塗布した後に、当該塗布されたカップリング剤の薄膜にフッ素が導入される。フッ素含有カップリング剤は、基材上に直接形成してもよく、基材上に形成されたフッ素を含有しないカップリング剤のさらに上層に形成してもよい。   In another embodiment of the present invention, fluorine is introduced into the thin film of the applied coupling agent after the fluorine-free coupling agent is applied to the substrate. The fluorine-containing coupling agent may be formed directly on the substrate, or may be formed on the upper layer of the fluorine-free coupling agent formed on the substrate.

本発明に適用し得るカップリング剤には、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、及びジルコネート系カップリング剤が含まれる。これらのカップリング剤は、他の種類のカップリング剤と混合して用いることもできる。   Coupling agents applicable to the present invention include silane coupling agents, titanate coupling agents, aluminate coupling agents, and zirconate coupling agents. These coupling agents can also be used in combination with other types of coupling agents.

シランカップリング剤は、例示するまでもなく広く普及している。本発明の実施形態においては、市販されている様々なシランカップリング剤を用いることができる。本発明に適用可能なシランカップリング剤の一例は、デシルトリメトキシシラン(商品名「KBM−3103」信越化学工業(株))等である。   Silane coupling agents are widely spread without being exemplified. In the embodiments of the present invention, various commercially available silane coupling agents can be used. An example of a silane coupling agent applicable to the present invention is decyltrimethoxysilane (trade name "KBM-3103" Shin-Etsu Chemical Co., Ltd.) and the like.

撥水撥油層を構成する本発明に適用可能なチタネート系カップリング剤には、テトラメトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、テトライソプロポキシチタネート、テトラブトキシチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジ−トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、及びイソプロピルトリクミルフェニルチタネートが含まれる。商品名「プレンアクト38S」(味の素ファインテクノ株式会社)が市販されている。   Examples of titanate coupling agents applicable to the present invention constituting the water and oil repellent layer include tetramethoxytitanate, tetraethoxytitanate, tetrapropoxytitanate, tetraisopropoxytitanate, tetrabutoxytitanate, isopropyltriisostearoyltitanate, isopropyltriol. Decylbenzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis ( Dioctyl pyrophosphate) Oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctano Ruchitaneto, and include isopropyl tricumylphenyl titanate. The trade name "Plenact 38S" (Ajinomoto Fine Techno Co., Ltd.) is commercially available.

撥水撥油層を構成する本発明に適用可能なアルミネート系カップリング剤には、アルミニウムアルキルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムイソプロピレート、アルミニウムジイソプロピレートモノセカンダリーブチレート、アルミニウムセカンダリーブチレート、アルミニウムエチレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート、アルミニウムトリスアセチルアセトネート、及びアルミニウムモノイソプロポキシモノオレキシエチルアセトアセテートが含まれる。商品名「プレンアクトAL−M」(アルキルアセテートアルミニウムジイソプロピレート、味の素ファインテクノ(株)製)が市販されている。   Examples of the aluminate coupling agent applicable to the present invention constituting the water and oil repellent layer include aluminum alkylacetoacetate / diisopropylate, aluminum ethylacetoacetate / diisopropylate, aluminum trisethylacetoacetate, aluminum isopropylate, Aluminum diisopropylate monosecondary butyrate, aluminum secondary butyrate, aluminum ethylate, aluminum bisethylacetoacetate monoacetylacetonate, aluminum trisacetylacetonate, and aluminum monoisopropoxy mono orexyethyl acetoacetate. A trade name "Plenact AL-M" (alkyl acetate aluminum diisopropylate, manufactured by Ajinomoto Fine Techno Co., Ltd.) is commercially available.

撥水撥油層を構成する本発明に適用可能なジルコニア系カップリング剤には、ネオペンチル(ジアリル)オキシ、トリメタクリルジルコネイト、テトラ(2、2ジアリロキシメチル)ブチル、ジ(ジトリデシル)ホスフェイトジルコネイト、及びシクロ[ジネオペンチル(ジアリル)]ピロホスフェイトジネオペンチル(ジアリル)ジルコネイトが含まれる。商品名「ケンリアクトNZ01」(ケンリッチ社)が市販されている。   Examples of the zirconia-based coupling agent applicable to the present invention constituting the water and oil repellent layer include neopentyl (diallyl) oxy, trimethacryl zirconate, tetra (2,2 diaryloxymethyl) butyl, di (ditridecyl) phosphate Zirconite and cyclo [dinopentyl (diallyl)] pyrophosphate dineopentyl (diallyl) zirconate are included. The trade name "Kenreact NZ01" (Kenrich) is commercially available.

次に、前記の耐侯性、耐食性を向上させるために犠牲になる電極の検知感度、その他を補う方法などについて説明する。   Next, the detection sensitivity of the electrode to be sacrificed in order to improve the corrosion resistance and the corrosion resistance, and a method of compensating for the others will be described.

(表面改質)
本発明の一実施形態に用いる非晶質炭素膜は、本来的に絶縁性であるため、非晶質炭素膜を電極の表層に形成すると導電性が低下し、電気的な感度が低下する場合があるが、非晶質炭素膜に非晶質炭素膜が蒸散しない程度のレーザ光、電子ビーム等の電磁波を照射すると照射部分において残存部分を電気導電体に改質できることが公知になっている(上記特許文献2参照)。
よって、本発明の一実施形態の電極上に形成された非晶質炭素膜において、導電性が必要な部分に、レーザ光を全面照射、またはパターニング照射して、レーザ照射部分のみを導電性とすることによって、1面の非晶質炭素膜を、全面、または部分的に電気導電性部分に改質するができる。また、非晶質炭素膜の本来の絶縁部分とレーザ照射して形成した導電部分とでパターンニングされた炭素材料からなる電極も形成可能となる。
当該レーザ光を照射した部分は、レーザ光照射の酸素アシストガスや熱による酸化などから極性の官能基が生成し、親水性を示す。また、面粗度が荒くなることから濡れ性が向上し、当該部分に液状の試料を集め、濡れ広がらせることができるため、本実施形態も、導電性に劣る弁金属上に非晶質炭素からなる保護膜を有する電極の電気導電性や感度や腐食への安定性を向上させるために有効である。
さらに前記非晶質炭素膜にレーザ光等の電磁波を照射して改質形成した導電体(導電性の炭素)は、イオンマイグレーション、ガルバニ腐食などを起こしにくいため、電極機能の劣化、変質を抑制し得る。
(Surface modification)
Since the amorphous carbon film used in one embodiment of the present invention is intrinsically insulating, when the amorphous carbon film is formed on the surface of the electrode, the conductivity is lowered and the electrical sensitivity is lowered. It is known that when the amorphous carbon film is irradiated with an electromagnetic wave such as laser light or electron beam to such an extent that the amorphous carbon film does not evaporate, the remaining portion can be reformed into an electrical conductor in the irradiated portion (See Patent Document 2 above).
Therefore, in the amorphous carbon film formed on the electrode according to the embodiment of the present invention, the laser light is irradiated to the entire surface of the portion requiring conductivity or patterning irradiation is performed, and only the laser irradiation portion is made conductive. By doing this, the amorphous carbon film on one side can be reformed to the entire surface or a portion that is electrically conductive. In addition, it is possible to form an electrode made of a carbon material patterned by the original insulating portion of the amorphous carbon film and the conductive portion formed by laser irradiation.
The portion irradiated with the laser beam exhibits a hydrophilic functional group due to the formation of a polar functional group from the oxygen assist gas of laser beam irradiation or oxidation by heat. In addition, since the surface roughness is roughened, the wettability is improved, and a liquid sample can be collected in the relevant part and the wet spread can be made. It is effective for improving the electrical conductivity and sensitivity to an electrode having a protective film comprising the above, and the stability against corrosion.
Further, the conductor (carbon with conductivity) formed by modifying the amorphous carbon film by irradiating an electromagnetic wave such as a laser beam (electroconductive carbon) is less likely to cause ion migration, galvanic corrosion, etc. It can.

前記本発明の一実施形態の電極上に形成された非晶質炭素膜において、レーザ光等を照射して導電性とする構造体は、3D立体部品(電極)等の非平面表面にもレーザ光等を照射して任意のレーザスキャニング部分を導電体に改質可能なため、検査分析に必要な3D形状の電極が簡単に作成できることになる。
また、レーザ光は公知の金属加工用のYAGレーザなどが使用でき、特に限定されないが、例えば波長340nm付近のUV光、パルス周波数10kHzで照射を使ったUV−YAGパルスレーザなども使用可能である。
In the amorphous carbon film formed on the electrode according to the embodiment of the present invention, the structure that is made conductive by irradiating a laser beam or the like is a laser also on a non-planar surface such as a 3D three-dimensional component (electrode) or the like. Since any laser scanning portion can be reformed into a conductor by irradiation with light or the like, a 3D-shaped electrode necessary for inspection analysis can be easily created.
Further, as the laser light, known metal processing YAG lasers and the like can be used, and although not particularly limited, for example, UV light around a wavelength of 340 nm, UV-YAG pulse laser using irradiation with a pulse frequency of 10 kHz, etc. can also be used. .

(電極や検査冶具の表面濡れ性制御、特にパターニング部分濡れ性制御の活用)
また、本発明の第二の実施形態の、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含むドライ薄膜に、酸素や窒素のプラズマを照射することで、大量に極性の官能基を表層に形成し、強く安定的な親水性(親水親油性)の表層も簡単に同一のプラズマ装置(プロセスで)形成することが可能となる。
(Use of surface wettability control of electrodes and inspection jigs, especially utilization of patterning part wettability control)
In addition, a dry thin film including any one or more of silicon or metal oxide, nitride, carbide, oxynitride, carbide, carbonitride, carbonitride or carbonate layer according to the second embodiment of the present invention By irradiating the plasma of oxygen or nitrogen, a large amount of polar functional groups are formed on the surface layer, and the strongly stable hydrophilic (hydrophilic / lipophilic) surface layer is also easily formed with the same plasma device (in process). It is possible to

なお、前記の表面の親水性や濡れ性を向上させる効果は、前記本発明の第三の実施形態の珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物のいずれか1つ以上を含むドライ薄膜にさらに撥水性又は撥水撥油性の皮膜を付与する場合にも得ることができる。
さらに電極に限らず、検知機器に供する冶具の表面に、撥水性、撥水撥油性、親水性、親水親油の皮膜等を適宜形成することで、検知機器に供する冶具の表面の濡れ性制御(表面自由エネルギーの制御)を行うことができる。
The above-mentioned effect of improving the hydrophilicity and wettability of the surface is the oxide, nitride, carbide, oxynitride, carbonate, carbonitride or silicon or metal of the third embodiment of the present invention. It is also possible to obtain a water-repellent or water- and oil-repellent coating on a dry thin film containing any one or more of carbonic nitrides.
Furthermore, the wettability of the surface of the jig to be provided to the detection device is controlled by appropriately forming a film of water repellency, water / oil repellency, hydrophilicity, hydrophilic / lipophilic etc. on the surface of the jig to be provided not only for the electrode but also for the detection device. (Control of surface free energy) can be performed.

(パターニング電極や検知機器に供する冶具)
この場合の一実施形態においては、絶縁部分(例えば絶縁性の電極基板上に)に、電極を構成する導電部分がパターニングされたもの(櫛形電極など)の場合、前記、絶縁基板部分を除く、電極部分の表層部分のみ、絶縁部分に比べ強い撥水性、撥水撥油性とすること、または、前記絶縁部分を電極部分よりも強い親水性、親水親油性とすることもできる。
このように、電極部分と絶縁部分の表面濡れ性を全部、または必要な部分において変えることで、液体試料の配置を適宜濡れ性の強い部分に誘導し、液体試料が電極の表層を占めること(接触すること)による腐食の加速を防止すると伴に、検体の液体試料が電極と電極の間(絶縁基板)上に収集配置され、少ない量の液体試料の付与で隈なく電極や冶具の必要部分(通電部分等)に試料を誘導し、また、必要に応じて濡れ性改質を行った所望の形状で液体試料を配置することが容易となり、貴金属電極等他の全ての電極でも共通で有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上、耐食性付与に好適である。
(Jig for patterning electrodes and detection equipment)
In one embodiment in this case, in the case where the conductive portion constituting the electrode is patterned on the insulating portion (for example, on the insulating electrode substrate) (such as a comb-like electrode), the insulating substrate portion is excluded. Only the surface layer portion of the electrode portion can be made more water repellent and water and oil repellent as compared to the insulating portion, or the insulating portion can be made more hydrophilic and hydrophilic and lipophilic than the electrode portion.
As described above, by changing the surface wettability of the electrode portion and the insulating portion entirely or in necessary portions, the arrangement of the liquid sample is appropriately guided to the portion having high wettability, and the liquid sample occupies the surface layer of the electrode ( The liquid sample of the sample is collected and disposed between the electrode and the electrode (insulation substrate) while preventing the acceleration of corrosion due to contact), and the necessary part of the electrode or jig is properly applied with a small amount of liquid sample It is easy to guide the sample to the (electrically conductive part etc.) and to arrange the liquid sample in the desired shape with wettability modification as required, and it is common to all other electrodes such as noble metal electrode etc. However, it is particularly suitable for complementing the sensitivity, improving the sensitivity, and imparting corrosion resistance of the electrode which is less sensitive to electricity with the passivity of the valve metal and the like according to the present invention.

またこの場合、電極を、本発明にかかる金属層(弁金属層)とドライ薄膜からなる積層構造体とすることで、電極と絶縁性のドライ薄膜を交互に「地層」のように幾重にも積層形成し、検体試料と電極接触面を前記地層のような積層体の厚み方向の露出断面とすることにより、前記露出断面部分に於いて絶縁性のドライ薄膜(厚み)部分を挟んで幾重にも層状に露出する電極(の厚み)を1本の電極線幅とし、前記電極が1本、または複数、多数の極細線で露出した電極を容易に、また安価に形成できる。
この積層電極構造を採ることで電極の平面視の面積を広げないで電極の試料への絶対接触面積を確保することも可能となることから、貴金属電極等他の全ての電極においても有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上に好適である。また本発明の一実施形態において、前記のように形成した積層構造断面部分の濡れ性を他の部分に対して良く設計し、または他の部分の濡れ性を悪く設計することで、当該断面からなる積層電極部分に液体試料を誘導し、効率良く充填することが容易になる。
Also, in this case, the electrode and the insulating dry thin film are alternately arranged in layers as in the “layer” by forming the electrode as a laminated structure including the metal layer (valve metal layer) according to the present invention and the dry thin film. By laminating and forming the sample contact and the electrode contact surface with the exposed cross section in the thickness direction of the layered product like the above-mentioned stratum, the insulating dry thin film (thickness) part is sandwiched in the exposed cross-sectional part. Also, it is possible to easily and inexpensively form an electrode exposed with (one thickness of) an electrode exposed in a layer shape as one electrode width, and one or a plurality of the electrodes, and a plurality of very thin wires exposed.
By adopting this laminated electrode structure, it is also possible to secure the absolute contact area of the electrode with the sample without expanding the area of the electrode in plan view, and therefore, it is also effective in all other electrodes such as noble metal electrodes. However, it is suitable for complementing the sensitivity of the electrode with poor sensitivity to electricity and improving the sensitivity particularly with the passivity of the valve metal and the like according to the present invention. In one embodiment of the present invention, the wettability of the cross-sectional portion of the laminated structure formed as described above is designed well with respect to the other portion, or the wettability of the other portion is designed to be poor. It becomes easy to introduce | transduce a liquid sample to the lamination | stacking electrode part which becomes, and to be filled efficiently.

櫛形電極の配線の幅と間隔は昨今10μm幅よりも狭いものも現れ、電極部分が「上に凸」の構造を採る場合、櫛形電極部分が全体として電極が作る凹凸構造に由来する構造撥水性、構造撥油性を発現する場合があり、電極部分(絶縁部分)に液体試料が十分濡れ広がらない場合がある。この場合、電極またはドライ膜部分、または双方を親水性、或いは親水親油性とすることにより、液体試料を十分測定に必要な位置に濡れ広がらせることもできる。   Recently, the width and interval of the wiring of the comb-shaped electrode appear narrower than 10 μm width, and when the electrode part has a “convex upward” structure, the structure water repellency derived from the concavo-convex structure formed by the electrode as a whole In some cases, the structure may exhibit oil repellency, and the liquid sample may not be sufficiently spread on the electrode portion (insulation portion). In this case, by making the electrode or the dry membrane part or both of them hydrophilic or hydrophilic / lipophilic, it is possible to wet and spread the liquid sample to a position necessary for measurement.

(一面電極や検知機器に供する冶具)
本発明の一実施形態にかかるドライプロセスにより形成される、珪素や金属の酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物、炭酸窒化物にさらに撥水性、撥水撥油性の皮膜(以下撥水膜、または撥水層という場合もある)を単一の面からなる電極に付与する場合、撥水部分、または撥水撥油性部分で取り囲んだ該電極面上の例えば中央部分に前記撥水部分、または撥水撥油性部分に比べ、親水性表面、或いは親水親油性表面等を含むさらに濡れ性の良い部分を形成、付与する形態とすることができる。
この場合、液体試料を同一電極上の濡れ性の高い部分に所望の形状や配置で集め、また液体試料が水滴状にならないよう電極の表層にもれなく濡れ広げることが可能となり、貴金属電極等他の全ての電極でも有効ではあるが、特に本発明にかかる弁金属などの不動態を伴い電気への感度の劣る電極の感度補完、感度向上に好適である。
(Jig used for one-sided electrodes and detection equipment)
More water and oil repellent to silicon and metal oxides, nitrides, carbides, oxynitrides, carbonates, carbonitrides and carbonitrides formed by the dry process according to one embodiment of the present invention In the case where a film (hereinafter also referred to as a water repellent film or a water repellent layer) of the following is applied to an electrode consisting of a single surface, for example, the center on the electrode surface surrounded by the water repellent portion or the water and oil repellent portion It is possible to form and impart a more wettable portion including a hydrophilic surface or a hydrophilic / lipophilic surface or the like to the water-repellent portion or the water- and oil-repellent portion.
In this case, it is possible to collect the liquid sample in a highly wettable part on the same electrode in a desired shape and arrangement, and to allow the liquid sample to spread without wetting on the surface of the electrode so that it does not form water droplets. Although all the electrodes are effective, they are particularly suitable for complementing the sensitivity and improving the sensitivity of the electrode having poor electrical sensitivity due to the passivity of the valve metal and the like according to the present invention.

通常、液体試料など流動性を伴う試料に対して検知、計測、分析、解析等を行う場合、凹形状や、すり鉢状とした基材の中に液体試料を保持して行うことが多い。この場合、例えば、凹部を構成する部分の壁面に毛管圧力等にて液体試料が濡れ上がると凹部底部において、試料が偏在したり、不足したり、凹部に保持収納した液体試料が凹部壁面部分で壁面に濡れ上がり、凹部保持収納部分内において液面が「下に凸」(凹形の)の局面を形成してしまう場合がある。
このような事態を回避するため、例えば、液体試料を保持する凹部分の壁面部分を撥水性や撥水撥油性の壁面とすること、または凹部壁面に比べ、底部の液体試料濡れ性を高くすること(例えば親水性や親水親油性の表面とする)などの対応方法がある。
Usually, when performing detection, measurement, analysis, analysis, etc. on a fluid sample such as a liquid sample, the liquid sample is often held in a concave or mortar-shaped base material. In this case, for example, when the liquid sample is wetted by capillary pressure or the like on the wall surface of the portion constituting the recess, the sample is unevenly distributed or insufficient at the bottom of the recess, or the liquid sample held and stored in the recess is the wall surface portion In some cases, the liquid surface may form a “convex downward” (concave) aspect in the concave portion holding and housing portion when it gets wet on the wall surface.
In order to avoid such a situation, for example, the wall portion of the concave portion holding the liquid sample is made to be a water-repellent, water- and oil-repellent wall surface, or the liquid sample wettability of the bottom is made higher than that of the concave wall. There is a corresponding method such as (for example, a hydrophilic or hydrophilic / lipophilic surface).

さらには、仕切りのない平面基材上に、液体試料が良く濡れる部分を所望の形状にて形成し、さらには該部分の回りを液体試料の濡れ難い部分(弾く部分)とすること、つまり、液体試料に接する電極や冶具面に大して、液体試料に対する濡れ性の異なる部分を部分形成することにより、液体試料の流失防止や保持を目的とした仕切りを無くし、液体試料の凹部壁面への濡れ上がりなどの不具合を解決することができる。
この部分的に濡れ性の異なる部分の作成においては、撥水性や撥水撥油性の部分と親水性や親水親油性部分とでなることが理想ではあるが、部分的に濡れ性の異なる部分間の接触角の差が油の場合で概ね20°以上、水の場合では概ね40°以上とすることで、液体が異なる濡れ性の面に進出する際に現れる「濡れのピン止め効果」「濡れのヒステリシス効果」を利用し液体試料の流動、流出を制御することができる。
Furthermore, a portion where the liquid sample is well wetted is formed in a desired shape on a flat substrate without a partition, and furthermore, the portion around the portion is made difficult to wet (a repelling portion) of the liquid sample, that is, By partially forming a portion having different wettability to the liquid sample on the electrode or jig surface in contact with the liquid sample, the partition for the purpose of prevention or retention of the liquid sample is eliminated, and the liquid sample becomes wet to the concave wall surface And other problems can be solved.
Although it is ideal to form the water-repellent or water- and oil-repellent portion and the hydrophilic or hydrophilic-lipophilic portion in the formation of the partially different portions of the wettability, it is ideal to form the portions having different wettability. In the case of oil, the difference in the contact angle is approximately 20 ° or more in the case of oil, and approximately 40 ° or more in the case of water, the “pinning effect of wetting” which appears when the liquid advances to different wettability surfaces The “hysteresis effect” can be used to control the flow and outflow of the liquid sample.

前記のように同一面上に部分的に濡れ性の異なる部分の作成においては、撥水性や撥水撥油性の部分と親水性や親水親油性部分と、未処理の基材自体(基材本来)の濡れ性の部分とを細かく区切ってあることで表層に接する液体の流動性(洗浄性や保持性)を制御することが可能となり得る。
該構造を検知電極や検知用の冶具の表面に採用することで、検体である液体試料を測定後、速やかにまた完全に廃棄し、電極への残留を抑制し、次なる試料の同一電極や冶具での再測定が可能、容易となり得る。
As described above, in the preparation of the portions having different wettability on the same surface, the water-repellent or water- and oil-repellent portion, the hydrophilic or hydrophilic / lipophilic portion, and the untreated substrate itself (the substrate itself It is possible to control the flowability (washability and holdability) of the liquid in contact with the surface layer by finely dividing it from the wetness part).
By adopting the structure on the surface of the detection electrode and the jig for detection, the liquid sample which is the sample is immediately and completely discarded after measurement, and the residue on the electrode is suppressed, and the same electrode of the next sample or Re-measurement with a jig is possible and may be easy.

(保護膜表層のゼータ電位の活用)
様々な検体のうち、タンパク質などの生体分子を主成分とするもの、例えば細菌や毛髪は、pH7付近の中性条件下で、その表面のカルボキシル基やリン酸基などが解離し負に帯電しているので、弱酸性領域に等電点を有することが通常であるため、例えばステンレス鋼始めとする金属など、アルカリ性領域に等電点を有し中性条件下で正に帯電する基材(検知用の電極や検知用の冶具等)に吸着されやすい。また、微生物細胞も、pH7近傍の中性条件で通常正に帯電している金属電極や冶具表面に吸着(付着)しやすい状態になっている。
このように、基材である電極や冶具が中性条件下に存在する場合には、基材(例えば検知用の電極や検知用の冶具等)が金属である場合は殆ど正に帯電する一方、タンパク質などの生体分子を主成分とする物質は負に帯電するので、この物質が電極や冶具などの基材に電気的に吸着されてしまうことになる。
本発明の実施形態においては、検知用の電極や検知用の冶具等の表層に形成する非晶質炭素膜等の保護膜の等電点を調整すること、或いは、生体分子を含む液体試料のpHを調整することで、検知用の電極や検知用の冶具等とタンパク質等生体分子を主成分とする検体の極性の違いを利用し、生体分子よりなる検体を検知用の電極や検知用の冶具等の表層に吸着させたり、逆に反発させ引き離したりすることが可能となる。
(Utilization of zeta potential of protective film surface)
Among various samples, those mainly composed of biomolecules such as proteins, such as bacteria and hair, are negatively charged because the carboxyl groups and phosphate groups on the surface are dissociated under neutral conditions around pH 7. Since it is common to have an isoelectric point in a weakly acidic region, a base material that has an isoelectric point in an alkaline region and is positively charged under neutral conditions, such as metals such as stainless steel It is easy to be adsorbed by the electrode for detection, the jig for detection, etc. In addition, microbial cells are also in a state of being easily adsorbed (adhered) to the surface of a metal electrode or jig that is normally positively charged under neutral conditions near pH 7.
As described above, when the electrode or jig as the substrate is present under neutral conditions, the substrate (for example, the electrode for detection, the jig for detection, etc.) is almost positively charged if it is metal. Since substances containing biomolecules, such as proteins, as their main components are negatively charged, the substances are electrically adsorbed to a substrate such as an electrode or jig.
In the embodiment of the present invention, adjusting the isoelectric point of a protective film such as an amorphous carbon film formed on the surface of an electrode for detection, a jig for detection or the like, or a liquid sample containing a biomolecule By adjusting the pH, the difference between the polarity of electrodes for detection, jigs for detection, etc. and the sample mainly composed of biomolecules such as protein is used to detect the sample composed of biomolecules or the electrode for detection It becomes possible to make it adsorb to the surface layer of a jig or the like, or to repel it in reverse.

ここで、タンパク質とは、任意のサイズ、構造及び機能を有するタンパク質、ポリペプチド及びオリゴペプチドを含み、例えば、各種タンパク質、酵素、抗原、抗体、レクチン又は細胞膜レセプター等を挙げることができる。   Here, the protein includes proteins, polypeptides and oligopeptides having any size, structure and function, and examples thereof include various proteins, enzymes, antigens, antibodies, lectins, cell membrane receptors and the like.

本発明の一実施形態においては、非晶質炭素膜に酸素プラズマや窒素プラズマを照射することにより、非晶質炭素膜の表層に、カルボキシル基(−COOH)、水酸基(−OH)等の官能基を形成することができる。これらの官能基のHイオンがアルカリ液中に存在する水酸化物イオン(OH)に奪われると,非晶質炭素膜の表層に負にイオン化した−COO基や−O基が生成されるので、非晶質炭素膜の表層を負に帯電させることができる。
このように、非晶質炭素膜の表層にカルボキシル基(−COOH)や水酸基(−OH)を形成することにより、非晶質炭素膜をさらに負に帯電させて、負に帯電したタンパク質などの生体分子を主成分とする検体の付着を抑制することができる。
In one embodiment of the present invention, the amorphous carbon film is irradiated with oxygen plasma or nitrogen plasma to form a surface layer of the amorphous carbon film with a functional group such as a carboxyl group (-COOH) or a hydroxyl group (-OH). It is possible to form a group. Once deprived, -COO ionized negatively on the surface layer of the amorphous carbon film - H + ions of these functional groups hydroxide ion present in an alkali solution (OH) - group or -O - groups As it is generated, the surface layer of the amorphous carbon film can be negatively charged.
Thus, by forming the carboxyl group (-COOH) and the hydroxyl group (-OH) on the surface layer of the amorphous carbon film, the amorphous carbon film is further negatively charged, and negatively charged protein etc. It is possible to suppress the adhesion of a sample whose main component is a biomolecule.

また、一実施形態におけるSiを含む非晶質炭素膜にさらに酸素プラズマを照射した構造体、またSiO(石英,等電点はpH2.5前後程度)は,Siを含まない水素と炭素からなる非晶質炭素膜の等電点や、PET(等電点がpH4程度,pH8〜9付近で最低ゼータ電位が−70mV程度)等の樹脂の等電点よりもさらに酸性領域側に等電点を有する(例えば、pH4未満の等電点を有する)から,より酸性側に広い領域で付着防止対象物質の付着を防止することが可能となる。 In one embodiment, the structure in which the amorphous carbon film containing Si is further irradiated with oxygen plasma, and SiO 2 (quartz, whose isoelectric point is about pH 2.5) is obtained from hydrogen and carbon not containing Si. The isoelectric point of the amorphous carbon film and the isoelectric point further on the acidic region side than the isoelectric point of the resin such as PET (the lowest iseta potential is about -70 mV at about pH 4 and about pH 8 to 9). Since it has a point (for example, having an isoelectric point of less than pH 4), it becomes possible to prevent the adhesion of the adhesion preventing target substance in a wider area on the more acidic side.

水素と炭素から構成される非晶質炭素膜を形成したものの等電点はpH3.8付近に確認することができる。よって検体がマイナスに帯電しているものの場合、pHを3.8未満の酸性にすれば電極に形成したマイナスのゼータ電位を持つ水素と炭素から構成される非晶質炭素膜から(マイナスに帯電している検体は)反発し、pHを3.8を超える領域にすれば、プラスのゼータ電位を持つ水素と炭素から構成される非晶質炭素膜に(マイナスに帯電している検体は)吸着し易くなる。
このように電極に検体を付着させたり、反発させ引き離したりすることが可能となり得る。
The isoelectric point of what formed the amorphous carbon film | membrane comprised from hydrogen and carbon can be confirmed at pH 3.8 vicinity. Therefore, if the sample is negatively charged, if the pH is made less than 3.8, the amorphous carbon film composed of hydrogen and carbon with a negative zeta potential formed on the electrode (minusly charged (Rather than negatively charged specimens) on an amorphous carbon film composed of hydrogen and carbon with positive zeta potential if the pH is in the range above 3.8. It becomes easy to adsorb.
In this way, it may be possible to attach the sample to the electrode, to repel it, and to separate it.

一方、水素と炭素から構成される非晶質炭素膜にSiとOを付加したものの等電点 はpH2.5よりも更に酸性側にあることが確認できる。
水素と炭素から構成される非晶質炭素膜のゼータ電位は概ね、pH4:−5mV,pH5:−50mV、pH6:−80mV、pH7:−95mV、pH8:−105mVである。
また水素と炭素から構成される非晶質炭素膜にSiとOを付加したものゼータ電位は概ね、pH4:−50mV、pH5:−85mV、pH6:−98mV、pH7:−100mV、pH8:−105mVである。このように,非晶質炭素膜を例えばSiと酸素を含有させた非晶質炭素膜等に改質することで,その等電点が酸性側にシフトすることが確認できた。さらには同一pHの環境にて、より大きなマイナスのゼータ電位が得られることができる。
On the other hand, it can be confirmed that the isoelectric point of one obtained by adding Si and O to an amorphous carbon film composed of hydrogen and carbon is more acidic than pH 2.5.
The zeta potential of an amorphous carbon film composed of hydrogen and carbon is approximately pH 4: -5 mV, pH 5: -50 mV, pH 6: -80 mV, pH 7:-95 mV, pH 8--105 mV.
In addition, the zeta potential of an amorphous carbon film composed of hydrogen and carbon and Si and O added thereto is generally pH 4: 50 mV, pH 5: 85 mV, pH 6: 98 mV, pH 7: 100 mV, pH 8: 105 mV It is. Thus, it has been confirmed that the isoelectric point shifts to the acid side by modifying the amorphous carbon film to, for example, an amorphous carbon film containing Si and oxygen. Furthermore, larger negative zeta potential can be obtained in the same pH environment.

以上のように、電極の表層に形成する保護膜のゼータ電位を正しく理解、調整することにより、検知用のセンサーや評価、分析、解析装置において、検出系を構成する部材、例えば検知電極や検知のために試料をハンドリング、保持する冶具等の不測の変化(検体である生体分子等の検知電極への不測の吸着や反発等のノイズ)を把握、または極力排除し、平行して検知自体の限界を向上させ得る。   As described above, by properly understanding and adjusting the zeta potential of the protective film formed on the surface layer of the electrode, in the sensor for detection, evaluation, analysis, and analysis device, members constituting the detection system, for example, the detection electrode and detection To handle or hold the sample etc. Unpredictable changes (such as unexpected adsorption or repulsion noise to the detection electrode of the biological molecule which is the sample, etc.) of the jig etc. are grasped or eliminated as much as possible. It can improve the limits.

以下、本発明の様々な実施形態に係る実施例を説明するが、以下の実施例は、例示であり、本発明は以下に述べる実施例に限定されるものではない。   EXAMPLES Examples according to various embodiments of the present invention will be described below, but the following examples are exemplifications, and the present invention is not limited to the examples described below.

《腐食雰囲気における導電性についての検証》
アルミニウム箔(サイズ100mm×100mm)の基材(以下、単に「アルミ箔基材」ということもある)を必要枚数準備し、以下の、比較例1及び実施例1〜3により4種のサンプルを作成した。
Verification of conductivity in corrosive atmosphere
A required number of aluminum foil (size: 100 mm × 100 mm) base materials (hereinafter sometimes referred to simply as “aluminum foil base materials”) are prepared, and four types of samples are prepared according to Comparative Example 1 and Examples 1 to 3 below. Created.

(比較例1)
まず無処理のアルミ箔基材を比較例1のサンプルとした。
(Comparative example 1)
First, an untreated aluminum foil substrate was used as a sample of Comparative Example 1.

(実施例1)
準備したアルミ箔基材の表面に、公知の方法でSiを含有する非晶質炭素膜を20nmの厚さで、以下のようにして形成した。
まず、準備したアルミ箔基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1×10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、アルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでトリメチルシランガスを導入し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマを形成し、アルミ箔基材上にSiを含有する非晶質炭素膜を概ね20nmの厚みで形成した。得られたものを実施例1のサンプルとした。
Example 1
On the surface of the prepared aluminum foil base, an amorphous carbon film containing Si was formed with a thickness of 20 nm by the known method as follows.
First, the prepared aluminum foil base was put into a high pressure pulse plasma CVD apparatus, and the reaction container of the CVD apparatus was vacuum-decompressed to 1 × 10 −3 Pa. Usually, argon gas is introduced first and the substrate is cleaned by argon gas plasma, but the cleaning step is omitted to preserve the passivation layer. Next, a trimethylsilane gas is introduced at a flow rate of 30 SCCM and a gas pressure of 2 Pa into the CVD apparatus, a plasma is formed under the conditions of an applied voltage of -4 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and Si is contained on an aluminum foil substrate. An amorphous carbon film was formed with a thickness of approximately 20 nm. The obtained product was used as a sample of Example 1.

(実施例2)
実施例1の方法で作成したSiを含む非晶質炭素膜が形成されたアルミ箔基材の表面(非晶質炭素膜が形成された面)に、フッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)を旭化成株式会社製のベンコット(製品名)を用いて塗布した。2日後、IPA(イソプロピルアルコール)を満たした超音波洗浄槽で1分間洗浄した後、得られたものを実施例2のサンプルとした。
(Example 2)
A fluorine-containing silane coupling agent (Fluoro Technology Co., Ltd.) was formed on the surface (the surface on which the amorphous carbon film was formed) of the aluminum foil substrate on which the amorphous carbon film containing Si formed by the method of Example 1 was formed. Fluorosurf FG-5010 Z130-0.2) was applied using Bencot (product name) manufactured by Asahi Kasei Corporation. Two days later, after being cleaned for 1 minute in an ultrasonic cleaning tank filled with IPA (isopropyl alcohol), the obtained sample was used as a sample of Example 2.

(実施例3)
準備したアルミ箔基材の表面に、以下のようにして、非晶質炭素膜を20nmの厚さで形成した。
まず、準備したアルミ箔基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1×10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、アルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでアセチレンガスを導入し、印加電圧−4kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマを形成し、アルミ箔基材上に非晶質炭素膜を概ね20nmの厚みで形成した。得られたものを実施例3のサンプルとした。
(Example 3)
An amorphous carbon film was formed to a thickness of 20 nm on the surface of the prepared aluminum foil base as follows.
First, the prepared aluminum foil base was put into a high pressure pulse plasma CVD apparatus, and the reaction container of the CVD apparatus was vacuum-decompressed to 1 × 10 −3 Pa. Usually, argon gas is introduced first and the substrate is cleaned by argon gas plasma, but the cleaning step is omitted to preserve the passivation layer. Next, an acetylene gas is introduced at a flow rate of 30 SCCM and a gas pressure of 2 Pa into the CVD apparatus, a plasma is formed under the conditions of an applied voltage of -4 kV, a pulse frequency of 10 kHz and a pulse width of 10 μs, and amorphous carbon is deposited on an aluminum foil substrate. The film was formed with a thickness of approximately 20 nm. The obtained product was used as a sample of Example 3.

(各サンプルの腐食)
JISZ2371に準拠したキャス試験の条件で各サンプルを腐食させた。
キャス試験は、サンプルの腐食(さび)具合を調べるための環境試験であり、試験に使用する液は、酢酸を用いて酸性(pH3.1〜3.3)にし、さらに塩化銅を加えた塩化ナトリウム水溶液であり、同様の試験である中性の食塩水を用いた試験に比べ、腐食促進試験として効果的で、短い試験時間で評価することができる。
具体的には、
○キャス試験機
CAP−90 スガ試験機株式会社
○JISZ2371(キャス試験)準拠
・試験液:塩化ナトリウム 50±5g/L、塩化銅(II) 0.205±0.015g/L、pH=3.1〜3.3(酢酸酸性)
・噴霧室内温度:50±2℃
・噴霧量:1.5±0.5mL/h(80cm
○噴霧:噴霧塔方式(噴霧室中央に噴霧塔があります)
○試験槽の大きさ:奥行60cm×幅86cm×高さ22cm
○試験時間:6時間
(Corrosion of each sample)
Each sample was corroded under the conditions of Cass test according to JIS Z2371.
The Cass test is an environmental test to determine the degree of corrosion (rust) of a sample, and the liquid used for the test is made acidic (pH 3.1 to 3.3) with acetic acid and further chlorided with copper chloride added. It is effective as a corrosion promotion test and can be evaluated in a short test time as compared with the test using a sodium chloride aqueous solution and using a neutral salt solution which is the same test.
In particular,
○ Cass tester CAP-90 Suga Test Instruments Co., Ltd. ○ According to JIS Z2371 (Cas test) • Test solution: Sodium chloride 50 ± 5 g / L, copper (II) chloride 0.205 ± 0.015 g / L, pH = 3. 1 to 3.3 (acetic acid)
· Spraying room temperature: 50 ± 2 ° C
Spray amount: 1.5 ± 0.5 mL / h (80 cm 2 )
○ Spraying: Spray tower method (There is a spray tower at the center of the spray chamber)
○ Size of the test tank: Depth 60 cm × width 86 cm × height 22 cm
○ Test time: 6 hours

(電気抵抗の測定)
6時間キャス試験の状態で各サンプルの腐食を保持加速させた後、公知の4端子測定法にて負荷電圧は概ね0.39v付近で電気抵抗を測定した。抵抗測定器はAgilent社製34420Aを使用した。
結果を、表1に示す。
(Measurement of electrical resistance)
After the corrosion of each sample was maintained and accelerated under the condition of 6 hours cast test, the electrical resistance was measured at a load voltage of about 0.39 v by a known four-terminal measurement method. The resistance measurement device used Agilent 34420A.
The results are shown in Table 1.

各サンプルの基材であるアルミニウム箔の電気抵抗は0.0000982Ωである。また、キャス試験投入前の各実施例の電気抵抗は実施例1が0.01344Ω、実施例2が0.03554Ω、実施例3が0.012262Ωであった。
まずこのことから、保護膜をアルミ箔基材に形成してある各実施例のサンプルの電気抵抗(Ω)は×10−2(−2剰代)であり、電極として使用可能なレベルであることが確認できる。
キャス試験投入後はいずれの実施例も、比較例に比べキャス試験投入前後の抵抗の上昇が低く抑制されており、アルミ箔が腐食から守られていることでアルミニウムの腐食膜による電気抵抗の上昇が極端に低く抑えられていることがわかる。また、各実施例における抵抗の増加率の有意差も確認でき、本キャス試験における腐食の防止効果の差として理解できる。
The electrical resistance of the aluminum foil which is a base material of each sample is 0.0000982 Ω. Further, the electric resistance of each example before the cast test was 0.01344 Ω in Example 1, 0.03554 Ω in Example 2, and 0.012262 Ω in Example 3.
First of all, the electric resistance (Ω) of the sample of each example in which the protective film is formed on the aluminum foil substrate is × 10 -2 (-2 excess production), which is a level usable as an electrode You can confirm that.
After the cast test, the increase in resistance before and after the cast test is suppressed to a low level compared to the comparative example in any of the examples, and the aluminum foil is protected from corrosion and the electrical resistance is increased by the corrosion film of aluminum. Is extremely low. Moreover, the significant difference of the increase rate of resistance in each Example can also be confirmed, and it can be understood as the difference of the corrosion prevention effect in this cast test.

検証の結果、比較例のサンプル(無処理のアルミ箔)の電気抵抗は3桁上昇し、保護膜を形成した各実施例のサンプルの電気抵抗値よりも逆に大きくなった。
また各実施例のサンプルは、皮膜剥離も発生せず、さらに電極として使用可能な×10−2(−2剰代)の低い導電性の電気抵抗を維持しており、中でも保護膜の表層に、さらに薄膜フッ素樹脂層を形成した実施例2は電気抵抗の上昇率が最も低く、安定性(耐食保護性能)を発揮したことが確認できた。
As a result of the verification, the electrical resistance of the sample of the comparative example (untreated aluminum foil) increased by three orders of magnitude, and was conversely larger than the electrical resistance value of the sample of each example in which the protective film was formed.
In addition, the samples of each example do not cause film exfoliation, and further maintain low electrical conductivity of × 10 -2 (-2 excess production) that can be used as an electrode, and in particular, in the surface layer of the protective film Further, in Example 2 in which the thin film fluororesin layer was formed, it was confirmed that the rate of increase in the electrical resistance was the lowest, and the stability (corrosion resistant protection performance) was exhibited.

前記腐食試験前の、実施例1のサンプル及び実施例3のサンプルの皮膜について、その表面電気抵抗率の測定を、2重リング法(定電圧電流測定法)による面抵抗の測定で行った。
測定装置は、Agilent Technologies社製ハイレジスタンスメータ 4339B、Agilent Technologies社製レジスティビティ・セル16008B
主電極サイズ26mmφ、対電極内径38mmφ、カード電極110mm×110mm
荷重1kgfの条件である。
また、測定環境は、温度:23±1℃、湿度:50%±5%、電磁気計測室(シールドルーム)内にて測定を行っている。
About the film of the sample of Example 1 and the sample of Example 3 before the said corrosion test, the measurement of the surface electrical resistivity was performed by the measurement of the sheet resistance by the double ring method (constant voltage amperometry).
The measuring device is Agilent Technologies High Resistance Meter 4339B, Agilent Technologies Resistance Cell 16008B
Main electrode size 26 mmφ, counter electrode inner diameter 38 mmφ, card electrode 110 mm × 110 mm
It is a condition of a load of 1 kgf.
In addition, the measurement environment is measuring temperature: 23 ± 1 ° C., humidity: 50% ± 5%, in the electromagnetic measurement room (shield room).

試験電圧10Vでの表面抵抗率の測定結果は、実施例3のサンプルが2.9×10Ω/□、実施例1のサンプルが1.6×1012Ω/□となり、実施例3のSiを含まない非晶質炭素膜に比べ、実施例1のSiを含む非晶質炭素膜の方が、表面抵抗率が極端に大きいことが確認された。 The measurement results of surface resistivity at a test voltage of 10 V are 2.9 × 10 9 Ω / □ for the sample of Example 3 and 1.6 × 10 12 Ω / □ for the sample of Example 1; It was confirmed that the amorphous carbon film containing Si in Example 1 has an extremely larger surface resistivity than the amorphous carbon film not containing Si.

《櫛形電極における応力剥離の状況の確認》
弁金属よりなる微細幅、間隔で配置される櫛形電極は、表面積に比べ、面積当りの周囲の辺部延長が長く、細かな浮き島状態のため基材密着が取りにくい電極である。
このような電極に対してドライプロセスにて形成する薄膜を形成した場合の応力剥離の状況を、以下のようにして確認した。
100mm×100mm矩形で、厚さ1mmのソーダライムガラス基板を準備した。
超音波洗浄を行った後、公知のフォトリソグラフィー法にて幅30μm、隣接する対抗電極なでのスペースが30μmの微細な櫛形電極をレジストで描画形成し「型」とした。
<< Confirmation of the state of stress separation in the comb electrode>
The comb-shaped electrodes made of valve metal and arranged at intervals have a long side extension per area compared to the surface area, and are electrodes in which adhesion of the substrate is difficult because of fine floating island state.
The situation of stress separation in the case of forming a thin film formed by a dry process on such an electrode was confirmed as follows.
A soda lime glass substrate of 100 mm × 100 mm rectangle and 1 mm thick was prepared.
After ultrasonic cleaning, a fine comb-shaped electrode having a width of 30 μm and a space of 30 μm, such as an adjacent counter electrode, was drawn and formed with a resist by a known photolithography method to form a “mold”.

続いて、SRDS−7000T型汎用小型成膜装置(サンユー電子製)を用いてアルミニウム薄膜をスパッタリング形成した。このスパッタリングは、スパッタリングガスとして流量100sccm、圧力3PaのArガスを用い、初期真空度が10−3Pa、DCが400W、TS距離が100mm、OFSが55mm、試料台回転速度が10rpmの条件において5分間行った。ガラス基板上には概ね厚さ100nmのアルミニウム薄膜を形成し、その後エッチィングでレジストを除去し、アルミニウムよりなる櫛形電極を形成した。
Alターゲットは、株式会社高純度化学研究所製、Al 4N 4“φ×5t 純度99.99%を使用した。
Then, sputtering formation of the aluminum thin film was carried out using SRDS-7000T type | mold general-purpose small film-forming apparatus (made by Sanyu Electronics). This sputtering uses Ar gas with a flow rate of 100 sccm and a pressure of 3 Pa as a sputtering gas, an initial vacuum of 10 -3 Pa, a DC of 400 W, a TS distance of 100 mm, an OFS of 55 mm, and a sample table rotation speed of 10 rpm 5 I went for a minute. An aluminum thin film having a thickness of about 100 nm was formed on a glass substrate, and then the resist was removed by etching to form a comb electrode made of aluminum.
As the Al target, Al 4 N 4 “φ × 5t purity 99.99%” was used.

次に、実施例1と同様にして、以下のとおり、ドライ保護膜を形成した。
まず予め、スパッタリング法にて、Al(アルミニウム)電極を形成したガラス基板全体に、公知のプラズマCVD法でSiを含有する非晶質炭素膜を200nmの厚さで形成した。
Siを含む非晶質炭素膜の形成は以下のようにして行った。まず、準備したガラス基材を高圧パルスプラズマCVD装置に投入し、CVD装置の反応容器を1x10−3Paまで真空減圧した。通常は最初にアルゴンガスを導入し、通常はここでアルゴンガスプラズマにより基材をクリーニングするが、不動態層を保全するためクリーニング工程を省略した。次に当該CVD装置に、流量30SCCM、ガス圧2Paでトリメチルシランガスを導入し、印加電圧−5kV、パルス周波数10kHz、パルス幅10μsの条件でプラズマし、Al(アルミニウム)電極上にSiを含有する非晶質炭素膜を概ね200nmの厚みで形成した。
Next, in the same manner as in Example 1, a dry protective film was formed as follows.
First, an amorphous carbon film containing Si was formed to a thickness of 200 nm in advance by a known plasma CVD method on the entire glass substrate on which an Al (aluminum) electrode was formed by a sputtering method.
The formation of the amorphous carbon film containing Si was performed as follows. First, the prepared glass substrate was put into a high pressure pulse plasma CVD apparatus, and the reaction vessel of the CVD apparatus was vacuum reduced to 1 × 10 −3 Pa. Usually, argon gas is introduced first, and the substrate is usually cleaned here by argon gas plasma, but the cleaning step is omitted to preserve the passivation layer. Next, a trimethylsilane gas is introduced at a flow rate of 30 SCCM and a gas pressure of 2 Pa into the CVD apparatus, and plasma is applied under the conditions of an applied voltage of -5 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs, and non-Si containing Al (aluminum) electrode. A crystalline carbon film was formed with a thickness of approximately 200 nm.

上記処理後1週間経過した後、Siを含有する非晶質炭素膜を概ね200nmの厚みで形成されたAl電極の状況を観察したが、Al電極と基材間、Al電極とSiを含有する非晶質炭素膜間で応力剥離等が発生していないことが確認できた。
さらに、作成したSiを含む非晶質炭素膜が形成されたAl電極の表面(非晶質炭素膜が形成された面)に、フッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)をスプレー塗布し、処理後1週間経過した後、Al電極の状況を観察したが、Al電極と基材間、Al電極とSiを含有する非晶質炭素膜間で応力剥離等が発生していないことが確認できた。
フッ素含有シランカップリング剤は表面張力が低く、剥離の隙間に這いいりこみ皮膜の浮きを助長し易いが問題が発生しないレベルの密着が取れていることが確認できた。
One week after the above treatment, the condition of the Al electrode in which the amorphous carbon film containing Si was formed to a thickness of about 200 nm was observed, but it contains Al electrode and base, Al electrode and Si. It was confirmed that no stress separation or the like occurred between the amorphous carbon films.
Further, on the surface of the Al electrode on which the amorphous carbon film containing Si is formed (the surface on which the amorphous carbon film is formed), a fluorine-containing silane coupling agent (Fluorosurf FG-5010Z130- from Fluoro Technology) is formed. 0.2) was spray applied, and one week after treatment, the condition of the Al electrode was observed, but stress peeling etc. between the Al electrode and the base, between the Al electrode and the amorphous carbon film containing Si, etc. Was confirmed to have not occurred.
It was confirmed that the fluorine-containing silane coupling agent had a low surface tension, and the adhesion between the peeling gap and the film was apt to promote the floating of the film, but no problem occurred.

《バリア性の確認》
次に、実施例3と同様の方法で、東レ株式会社のPETフィルム(ルミラーT60(t=25μm)上に非晶質炭素膜を概ね35nmの厚みで形成し、水素、水蒸気、酸素バリア性を確認した。
なお測定は、GTRテック製GTR−10XFKS、JIS−K7176−2ガスクログラム法(25℃DRY)にて実施した。
«Confirmation of barrier property»
Next, an amorphous carbon film is formed with a thickness of about 35 nm on a PET film (Lumirror T60 (t = 25 μm) of Toray Industries, Inc.) in the same manner as in Example 3, and hydrogen, water vapor, and oxygen barrier properties are obtained. confirmed.
In addition, the measurement was implemented by GTR Tech GTR-10XFKS, JIS-K7176-2 gas chromatograph method (25 degree CDRY).

その結果、無処理のPETフィルム ルミラーT60(t=25μm)自体のガス透過率は、
・水素透過率:2599ml/(m・24h/atm)
・水蒸気透過率:64.0g/(m・2day)
・酸素透過率:79.0cc/(m・day/atm)
であったが、非晶質炭素膜形成後は、
・水素透過率:73.5ml/(m・24h/atm) 概ね93%のガス透過防止性
・水蒸気透過率:2.0g/(m・2day)
・酸素透過率:9.0cc/(m・day/atm)
と非常に高いガスバリア性が確認された。
As a result, the gas permeability of untreated PET film Lumirror T60 (t = 25 μm) itself is
・ Hydrogen permeability: 2599 ml / (m 2 · 24 h / atm)
- water vapor transmission rate: 64.0g / (m 2 · 2day )
Oxygen permeability: 79.0 cc / (m 2 · day / atm)
However, after forming the amorphous carbon film,
· Hydrogen permeability: 73.5 ml / (m 2 · 24 h / atm) approximately 93% of gas permeation prevention · water vapor permeability: 2.0 g / (m 2 · 2 days)
-Oxygen permeability: 9.0 cc / (m 2 · day / atm)
And very high gas barrier properties were confirmed.

例えば、AlやSiの皮膜についてもその膜密度などに由来する実施例3と同等以上の高い水蒸気、酸素バリア性を有しており、実施例3と同様に水素バリア性が
あることが推定できる。
For example, a film of Al x O y or Si x O y also has high water vapor and oxygen barrier properties equal to or higher than that of Example 3 derived from its film density and the like. It can be estimated that there is

《表面の濡れ性制御による液体のパターンニング性》
表面の濡れ性制御による液体のパターンニング性について確認した。
まずPETフィルム ルミラーT60(t=100μm)幅600mm長さ600mmの矩形のシートに、全面親水性の表面処理を行った。
このPETフィルムをCVD装置にセットし、当該CVD装置を1×10−3Paまで
真空排気を行った。その後、CVD装置に流量30SCCM、ガス圧2Paのアルゴンガスを導入し、−3kVpの印加電圧によって基材表面を2分間プラズマクリーニングした。続いて、CVD装置からアルゴンガスを排気した後、流量30SCCM、ガス圧1PaのトリメチルシランガスをCVD装置に導入し、−3kVpの電圧を印加して、基材表面に厚さ30nmのSiを含有する非晶質炭素膜を形成した。
その後CVD装置からトリメチルシランガスを排気した後、流量30SCCM、ガス圧1Paの酸素ガスをCVD装置に導入し、−3kVpの電圧を印加して、1分間基材表面に酸素プラズマを照射して親水親油性表面を形成した。
<< Patternability of liquid by surface wettability control >>
It confirmed about the patterning property of the liquid by wettability control of the surface.
First, a rectangular sheet of PET film Lumirror T60 (t = 100 μm) width 600 mm length 600 mm was subjected to surface treatment of hydrophilicity on the entire surface.
The PET film was set in a CVD apparatus, and the CVD apparatus was evacuated to 1 × 10 −3 Pa. Thereafter, argon gas with a flow rate of 30 SCCM and a gas pressure of 2 Pa was introduced into the CVD apparatus, and the substrate surface was plasma cleaned for 2 minutes by an applied voltage of -3 kVp. Subsequently, after argon gas is exhausted from the CVD apparatus, trimethylsilane gas having a flow rate of 30 SCCM and a gas pressure of 1 Pa is introduced into the CVD apparatus, a voltage of -3 kVp is applied, and Si of 30 nm thickness is contained on the substrate surface. An amorphous carbon film was formed.
After exhausting trimethylsilane gas from the CVD apparatus, oxygen gas with a flow rate of 30 SCCM and a gas pressure of 1 Pa is introduced into the CVD apparatus, a voltage of -3 kVp is applied, and the substrate surface is irradiated with oxygen plasma for 1 minute. An oily surface was formed.

続いて、プラズマプロセスにおけるマスキング(パターンニング)に使用可能で、かつ形成後に水で簡単に除去可能なスクリーン印刷用インク(互応化学製インクTMS−397)をパターンニングレジストとして使用し、概ねφ500μmの六角形部分にインクが残り、六角形の周囲6辺が100μmの幅でインクが印刷されないパターンにて、前記親水親油性表面上に前記インクを転写させた。
続いてPETフィルム全面にフッ素含有シランカップリング剤(フロロテクノロジー社のフロロサーフFG−5010Z130−0.2)をスプレー塗布し1日間乾燥定着させ作成したパターンの「インクが印刷されないパターン」100μm幅の六角形を囲む線部に、フッ素含有シランカップリング剤よりなる撥水撥油層を形成した。
続いて、超音波洗浄機に前記PETフィルムを投入しインク部分を剥離し、インクでマスキングされていた下層の親水親油性のSiと酸素を含む非晶質炭素膜を露出させ概ね500μmφの直径の六角形の親水親油性部分を100μm幅の撥水撥油性表面が囲む表面を形成した。
当該親水親油性表面部分と撥水撥油性表面部分よりなる表面に純水を噴霧した。
Subsequently, a screen printing ink (Reagent Chemical ink TMS-397) usable for masking (patterning) in plasma process and easily removable with water after formation is used as a patterning resist and has a diameter of approximately φ500 μm. The ink was transferred onto the hydrophilic / lipophilic surface in a pattern in which the ink remained in the hexagonal portion and the ink was not printed with a width of 100 μm and six sides of the hexagonal portion.
Subsequently, the entire surface of the PET film is spray-coated with a fluorine-containing silane coupling agent (Fluorosurf FG-5010Z130-0.2, manufactured by Fluoro Technology) and dried and fixed for 1 day to form a pattern of "ink not printed" 100 μm wide A water and oil repellent layer made of a fluorine-containing silane coupling agent was formed on the wire part surrounding the square.
Subsequently, the PET film is charged into an ultrasonic cleaning machine, the ink portion is peeled off, and the lower layer hydrophilic / lipophilic Si and oxygen-containing amorphous carbon film which has been masked by the ink is exposed to a diameter of about 500 μmφ. A 100 μm wide water- and oil-repellent surface formed a surface surrounding a hexagonal hydrophilic and lipophilic portion.
Pure water was sprayed on the surface consisting of the hydrophilic and lipophilic surface portion and the water and oil repellent surface portion.

図1は、純水を噴霧した両表面を撮影した写真である。なお、中央に白く見える部分はCCDカメラのライトの映りこみ部分である。
写真から純水が親水親油性の六角形部分にのみ濡れ広がっていることは確認できる。
このように、表面の濡れ性(の差)を形成することで、液体試料を適宜必要な場所に
所望の形で配置することが可能となることが確認できた。
FIG. 1 is a photograph of both surfaces sprayed with pure water. The part that appears white in the center is the reflected part of the light of the CCD camera.
It can be confirmed from the photograph that pure water is spread only in the hydrophilic and lipophilic hexagonal part.
As described above, it has been confirmed that it is possible to dispose the liquid sample in a desired form in a desired form as needed by forming (the difference of) the surface wettability.

《Siを含む非晶質炭素膜と含まない非晶質炭素膜の樹脂密着性比較試験》
NBCメッシュ製のポリエステルメッシュで大きさ縦横100mmの方形を2枚準備した。
(有機高分子基材へ水素フリーで炭素が60%未満のSiを含む非晶質炭素膜密着層を形成した後、Siを含まない非晶質炭素膜層を形成した試料の作成)
前記ポリエステルメッシュ試料をステンレス鋼板上に平置きし、前記ステンレス鋼板にマイナス電圧が印加可能なように直流パルス方式の公知のプラズマCVD装置の成膜室の反応容器内に設置し、ポリエステルメッシュ試料のステンレス鋼と接する面の反対面に非晶炭素膜を成膜した。具体的には、成膜室反応容器を1×10−3Paの真空度まで排気した。次にArガスをガス流量30SCCM、ガス圧2Paで導入し、印加電圧−3kVpの条件でArガスプラズマを発生させ、試料台上の基材を1分間クリーニングした。Arガスを排気し15分間冷却した後、反応容器にトリメチルシランガスを流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3kVp、パルス幅10μs、パルス周波数10kHzの条件で1分間Siを含む非晶質炭素膜を成膜した。当該Siを含む非晶質炭素膜の基材密着層の水素フリー基準での炭素含有量は概ね53.2at%、Siの含有量は概ね37.6at%であった。
トリメチルシランガスを排気し、15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.5kVp、パルス幅10μs、パルス周波数10kHzの条件で3分間Siを含まない、水素と炭素のみからなる晶質炭素膜を成膜し、一旦成膜を中断、15分間冷却した後、再度同じ条件でSiを含まない水素と炭素のみからなる非晶質炭素膜を同様の成膜時間と冷却時間で繰り返し成膜し、膜厚が概ね100nmの非晶質炭素膜を形成した。その後真空容器を常圧に戻し、ポリエステルメッシュ試料を取り出して比較例とした。
Comparison of resin adhesion of amorphous carbon film containing Si and amorphous carbon film not containing Si
Two squares of 100 mm in size and 100 mm in size were prepared from polyester mesh made of NBC mesh.
(Formation of a sample in which an amorphous carbon film layer containing no Si is formed after forming an amorphous carbon film adhesion layer containing Si less than 60% of hydrogen free to an organic polymer base material)
The polyester mesh sample is placed flat on a stainless steel plate, and the polyester mesh sample is placed in a reaction vessel of a film forming chamber of a known plasma CVD apparatus of a direct current pulse system so that a negative voltage can be applied to the stainless steel plate. An amorphous carbon film was formed on the side opposite to the side in contact with the stainless steel. Specifically, the deposition chamber reaction container was evacuated to a vacuum of 1 × 10 −3 Pa. Next, Ar gas was introduced at a gas flow rate of 30 SCCM, gas pressure 2 Pa, Ar gas plasma was generated under the condition of applied voltage -3 kVp, and the substrate on the sample table was cleaned for 1 minute. After Ar gas is exhausted and cooled for 15 minutes, trimethylsilane gas is introduced into the reaction vessel at a flow rate of 30 SCCM, 1.5 Pa gas pressure, applied voltage -3 kVp, pulse width 10 μs, pulse frequency 10 kHz and contains Si for 1 minute An amorphous carbon film was formed. The carbon content of the base material adhesion layer of the amorphous carbon film containing Si is about 53.2 at% on a hydrogen free basis, and the content of Si is about 37.6 at%.
After exhausting trimethylsilane gas and cooling for 15 minutes, acetylene gas is introduced into the reaction vessel at a flow rate of 30 SCCM, 1.5 Pa gas pressure, applied voltage-3.5 kVp, pulse width 10 μs, pulse frequency 10 kHz for 3 minutes A crystalline carbon film not containing Si, consisting only of hydrogen and carbon was formed, and once the film formation was interrupted and cooled for 15 minutes, amorphous carbon consisting only of hydrogen and carbon containing no Si under the same conditions again. A film was repeatedly formed at the same film forming time and cooling time to form an amorphous carbon film having a film thickness of approximately 100 nm. Thereafter, the vacuum vessel was returned to normal pressure, and a polyester mesh sample was taken out to be a comparative example.

(有機高分子基材へ水素と炭素のみを含む非晶質炭素膜密着層を形成した後、Siを含まない非晶質炭素膜層を形成した試料の作成)
続いて、他方のポリエステルメッシュ試料をステンレス鋼板上に平置きし、前記ステンレス鋼板にマイナス電圧が印加可能なように直流パルス方式の公知のプラズマCVD装置の成膜室の反応容器内に設置し、非晶炭素膜を成膜した。成膜室反応容器を1×10−3Paの真空度まで排気した。次にArガスをガス流量30SCCM、ガス圧2Paで導入し、印加電圧−3kVpの条件でArガスプラズマを発生させ、試料台上の基材を1分間クリーニングした。Arガスを排気し15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.0kVp、パルス幅10μs、パルス周波数10kHzの条件で1分間Siを含まない、水素と炭素のみからなる非晶質炭素膜(Siを含まない密着層に相当する部分)を成膜し、一旦成膜を中断、15分間冷却した後、アセチレンガスを反応容器に流量30SCCM、1.5Paのガス圧で導入し、印加電圧−3.5kVp、パルス幅10μs、パルス周波数10kHzの条件で3分間Siを含まない、水素と炭素のみからなる晶質炭素膜を成膜し、一旦成膜を中断、15分間冷却した後、再度同じ条件でSiを含まない水素と炭素のみからなる非晶質炭素膜を同様の成膜時間と冷却時間で繰り返し成膜し、膜厚が概ね100nmの非晶質炭素膜を形成した。その後真空容器を常圧に戻し、ポリエステルメッシュ試料を取り出して実施例とした
(Formation of a sample in which an amorphous carbon film layer containing only hydrogen and carbon is formed on an organic polymer substrate and then an Si-free amorphous carbon film layer is formed)
Subsequently, the other polyester mesh sample is placed flat on a stainless steel plate, and is installed in a reaction vessel of a film forming chamber of a known plasma CVD apparatus of a direct current pulse system so that a negative voltage can be applied to the stainless steel plate. An amorphous carbon film was formed. The film forming chamber reaction vessel was evacuated to a vacuum of 1 × 10 −3 Pa. Next, Ar gas was introduced at a gas flow rate of 30 SCCM, gas pressure 2 Pa, Ar gas plasma was generated under the condition of applied voltage -3 kVp, and the substrate on the sample table was cleaned for 1 minute. After Ar gas is exhausted and cooled for 15 minutes, acetylene gas is introduced into the reaction vessel at a flow rate of 30 SCCM, 1.5 Pa gas pressure, applied voltage-3.0 kVp, pulse width 10 μs, pulse frequency 10 kHz for 1 minute Si Amorphous carbon film (part corresponding to the adhesion layer not containing Si) containing only hydrogen and carbon, which does not contain hydrogen, is temporarily suspended, cooled for 15 minutes, then acetylene gas is added to the reaction vessel A crystalline carbon film consisting only of hydrogen and carbon, which contains no Si and is introduced at a flow rate of 30 SCCM and a gas pressure of 1.5 Pa, applied voltage-3.5 kVp, pulse width 10 μs, pulse frequency 10 kHz for 3 minutes Once the film formation was interrupted and cooled for 15 minutes, an amorphous carbon film consisting of only hydrogen and carbon containing no Si was repeatedly formed under the same conditions under the same film formation time and cooling time. An amorphous carbon film having a thickness of about 100 nm was formed. After that, the vacuum vessel was returned to normal pressure, and a polyester mesh sample was taken out and used as an example.

比較例、実施例について、摩擦摩耗試験を行った。
摩擦摩耗試験は、新東科学株式会社製のトライボギアHHS−2000を用い、常温、無潤滑にて以下の測定条件により、各試料の非晶質炭素膜が形成された面上で、直径2.0mmのSUJ2の圧子を繰り返し往復させながら各試料表面の摩擦係数を測定した。この摩擦係数の測定は、一定加圧往復測定により実施した。
測定条件
・測定距離: 20mm
・測定速度: 5mm/sec
・圧子の荷重: 100g一定
The friction and wear test was performed on the comparative example and the example.
The friction and wear test was carried out using Tribo Gear HHS-2000 manufactured by Shinto Scientific Co., Ltd. under the following measurement conditions at normal temperature and without lubrication on the surface on which the amorphous carbon film of each sample was formed. The coefficient of friction of each sample surface was measured while repeatedly reciprocating 0 mm SUJ 2 indenter. The measurement of the coefficient of friction was carried out by constant pressure reciprocating measurement.
Measurement conditions and distance: 20 mm
・ Measurement speed: 5mm / sec
・ Load of indenter: 100g constant

比較例及び実施例の結果を、それぞれ図2及び図3に示す。
図2、3のグラフは、縦軸が摩擦係数(μ)、横軸が摩擦往復回数を示している。
比較例は、概ね5往復目付近で摩擦係数(縦軸)が0.3(μ)を超え、非晶質炭素膜が通常示す0.2μ未満を大きく超えており、非晶質炭素膜が部分剥離していることが推定できる。
これに対して、実施例の摩擦係数(縦軸)は0.2μ未満で50往復まで安定していることが確認でき、非晶質炭素膜の基材密着性に優れていることが推定できる。
The results of the comparative example and the example are shown in FIG. 2 and FIG. 3, respectively.
In the graphs of FIGS. 2 and 3, the vertical axis represents the coefficient of friction (μ), and the horizontal axis represents the number of reciprocations of friction.
In the comparative example, the coefficient of friction (vertical axis) exceeds 0.3 (μ) in the vicinity of the 5th reciprocation, and largely exceeds less than 0.2 μ that the amorphous carbon film usually exhibits. It can be estimated that partial peeling has occurred.
On the other hand, it can be confirmed that the coefficient of friction (vertical axis) of the example is less than 0.2 μm and stable up to 50 cycles, and it can be estimated that the base material adhesiveness of the amorphous carbon film is excellent. .

以上の結果から、樹脂やゴムなど有機高分子よりなる基材に非晶質炭素膜を密着良く形成する場合は、樹脂など有機高分子の組成であるC(炭素)、H(水素)と同様の組成からなる水素と炭素からなる非晶質炭素膜を直接形成したものの方が、金属基材に非晶質炭素膜を密着良く形成する場合に多用されるSiを含む非晶質炭素膜からなる中間層を密着層として形成した後に水素と炭素からなる非晶質炭素膜を形成したものよりも、密着性に優れることが推定できた。
このことは、例えば非晶質炭素膜よりなる水蒸気と酸素の双方のガスバリア膜を効率良く形成したい場合、水素と炭素からなる非晶質炭素膜は水蒸気の透過防止性に優れており、Si(さらにはSiと酸素)を含む非晶質炭素膜は酸素ガスの透過防止性能に優れていることが知られている。よって、樹脂などの有機高分子材料よりなる基材への水蒸気、並びに酸素の双方の透過防止を行う場合は、水素と炭素からなる非晶質炭素膜を基材にまず形成した後、その後Siを含む非晶質炭素膜を形成する方法が、有機高分子材料よりなる基材へ直接Siを含む非晶質炭素膜を形成し、後に水素と炭素からなる非晶質炭素膜を形成する方法より優れていることが推定できた。無論、Siを含む非晶質炭素膜、水素と炭素からなる非晶質炭素膜をその後続けて複数層積層等することも可能である。
From the above results, when forming an amorphous carbon film in close contact with a substrate made of an organic polymer such as resin or rubber, it is the same as C (carbon) and H (hydrogen) which are compositions of organic polymers such as resin. An amorphous carbon film containing Si, which is often used when forming an amorphous carbon film in close contact with a metal substrate, in the case of directly forming an amorphous carbon film consisting of hydrogen and carbon consisting of the composition It can be estimated that the adhesion is superior to that in which an amorphous carbon film consisting of hydrogen and carbon is formed after the intermediate layer is formed as the adhesion layer.
This means that, for example, when it is desired to efficiently form a gas barrier film of both water vapor and oxygen consisting of an amorphous carbon film, the amorphous carbon film consisting of hydrogen and carbon is excellent in the water vapor permeation preventing property and Si ( Furthermore, it is known that an amorphous carbon film containing Si and oxygen is excellent in oxygen gas permeation prevention performance. Therefore, in the case of preventing permeation of both water vapor and oxygen to the base material made of an organic polymer material such as resin, an amorphous carbon film made of hydrogen and carbon is first formed on the base material and then Si A method of forming an amorphous carbon film containing Si, forming an amorphous carbon film containing Si directly on a substrate made of an organic polymer material, and forming an amorphous carbon film consisting of hydrogen and carbon later It could be estimated that it was better. Of course, it is also possible to successively stack a plurality of layers or the like after that, an amorphous carbon film containing Si or an amorphous carbon film consisting of hydrogen and carbon.

Claims (10)

基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上に形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、非晶質炭素膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
A substrate, an electrode made of at least a part of a valve metal formed on the substrate, and a protective layer having a thickness of more than 10 nm and less than 200 nm formed on the electrode;
An electrode structure for a sensor or an evaluation analyzer, wherein the protective layer comprises an amorphous carbon film.
基材と、該基材上の少なくとも一部に形成された弁金属よりなる電極と、該電極上にドライプロセスにより形成された膜厚が10nmを超え200nm未満の保護層を備え、
該保護層が、珪素又は金属の、酸化物、窒化物、炭化物、酸窒化物、炭酸化物、炭窒化物又は炭酸窒化物層のいずれか1つ以上を含む薄膜よりなることを特徴とするセンサー用又は評価分析装置用の電極構造体。
A substrate, an electrode made of at least a part of a valve metal formed on the substrate, and a protective layer having a thickness of more than 10 nm and less than 200 nm formed by a dry process on the electrode;
A sensor characterized in that the protective layer is a thin film containing any one or more of an oxide, a nitride, a carbide, an oxynitride, a carbonitride, a carbonitride or a carbonitride layer of silicon or metal. Electrode structure for use with or for an analytical analysis device.
前記保護層上に、撥水性及び/または撥水撥油性の薄膜層を備えることを特徴とする請求項1又は2に記載のセンサー用又は評価分析用装置用の電極構造体。   The electrode structure for a device for a sensor or an evaluation analysis device according to claim 1 or 2, wherein a water-repellent and / or water- and oil-repellent thin film layer is provided on the protective layer. 前記薄膜層が、膜厚50nm未満のフッ素含有カップリング剤よりなる樹脂層であることを特徴とする請求項3記載のセンサー用又は評価分析用装置用の電極構造体。   The said thin film layer is a resin layer which consists of a fluorine-containing coupling agent with a film thickness of less than 50 nm, The electrode structure for the apparatus for sensors for sensors or evaluation analysis of Claim 3 characterized by the above-mentioned. 前記弁金属は、その表層に不動態層を備えることを特徴とする請求項1〜3のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。   The said valve metal equips the surface layer with a passivity layer, The electrode structure for the apparatus for sensors for sensors or evaluation analysis of any one of the Claims 1-3 characterized by the above-mentioned. 負荷電圧0.39v下における電気抵抗が0.45Ω未満である請求項1〜5のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。   The electrode structure for a sensor or a device for evaluation analysis according to any one of claims 1 to 5, wherein the electrical resistance under a load voltage of 0.39 v is less than 0.45 Ω. 前記電極が形成されていない基材の最表面及び/又は前記電極が形成された部分の最表面に、水及び/または油との表面濡れ性が異なる表面を備えることを特徴とする請求項1〜6のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。   The outermost surface of the substrate on which the electrode is not formed and / or the outermost surface of the portion on which the electrode is formed is provided with a surface having different surface wettability with water and / or oil. An electrode structure for the sensor or the device for evaluation analysis according to any one of. 前記保護膜が、食品、添加物等の規格基準(昭和34年厚生省告示第370号)に適合していることを特徴とする請求項1〜7のいずれか1項に記載のセンサー用又は評価分析用装置用の電極構造体。   8. The sensor or evaluation according to any one of claims 1 to 7, wherein the protective film conforms to the standard of food, additives, etc. (Ministry of Health and Welfare Notification No. 370 of 1959). Electrode structure for analytical devices. 前記保護膜は前記基材よりも大きな水素ガス透過防止性を有することを特徴とする請求項1〜8のいずれか1項に記載のセンサー用又は評価分析用の電極構造体。   The electrode structure for a sensor or evaluation analysis according to any one of claims 1 to 8, wherein the protective film has a hydrogen gas permeation preventing property larger than the base material. 前記保護膜の誘電率が50未満であることを特徴とする請求項1〜9のいずれか1項に記載のセンサー用又は評価分析用の電極構造体。   The electrode structure for a sensor or evaluation analysis according to any one of claims 1 to 9, wherein a dielectric constant of the protective film is less than 50.
JP2017220173A 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure. Active JP6961469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220173A JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220173A JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Publications (2)

Publication Number Publication Date
JP2019090709A true JP2019090709A (en) 2019-06-13
JP6961469B2 JP6961469B2 (en) 2021-11-05

Family

ID=66836205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220173A Active JP6961469B2 (en) 2017-11-15 2017-11-15 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.

Country Status (1)

Country Link
JP (1) JP6961469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504890A (en) * 2020-04-28 2020-08-07 烟台大学 Rapid detection method for weather resistance of titanium dioxide
WO2021193564A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Gas molecule adsorbent and gas sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154886A (en) * 2011-01-28 2012-08-16 Hitachi High-Technologies Corp Electrode for electrochemical measurement and electrochemical analyzer
JP2013063539A (en) * 2011-09-16 2013-04-11 Taiyo Kagaku Kogyo Kk Amorphous carbon film laminated member and method for manufacturing the same
JP2013103487A (en) * 2011-11-16 2013-05-30 Taiyo Kagaku Kogyo Kk Corrosion resistant laminate
JP2014521828A (en) * 2011-11-09 2014-08-28 国立大学法人信州大学 Electrochemical electrode and method for producing the same
WO2014148479A1 (en) * 2013-03-19 2014-09-25 太陽化学工業株式会社 Structure provided with antifouling amorphous carbon film and method for forming antifouling amorphous carbon film
WO2014163038A1 (en) * 2013-04-02 2014-10-09 太陽化学工業株式会社 Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
JP2017019279A (en) * 2015-07-14 2017-01-26 太陽誘電ケミカルテクノロジー株式会社 Structure having water repellent and oil repellent surface, and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154886A (en) * 2011-01-28 2012-08-16 Hitachi High-Technologies Corp Electrode for electrochemical measurement and electrochemical analyzer
JP2013063539A (en) * 2011-09-16 2013-04-11 Taiyo Kagaku Kogyo Kk Amorphous carbon film laminated member and method for manufacturing the same
JP2014521828A (en) * 2011-11-09 2014-08-28 国立大学法人信州大学 Electrochemical electrode and method for producing the same
JP2013103487A (en) * 2011-11-16 2013-05-30 Taiyo Kagaku Kogyo Kk Corrosion resistant laminate
WO2014148479A1 (en) * 2013-03-19 2014-09-25 太陽化学工業株式会社 Structure provided with antifouling amorphous carbon film and method for forming antifouling amorphous carbon film
WO2014163038A1 (en) * 2013-04-02 2014-10-09 太陽化学工業株式会社 Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
JP2017019279A (en) * 2015-07-14 2017-01-26 太陽誘電ケミカルテクノロジー株式会社 Structure having water repellent and oil repellent surface, and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193564A1 (en) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 Gas molecule adsorbent and gas sensor
CN111504890A (en) * 2020-04-28 2020-08-07 烟台大学 Rapid detection method for weather resistance of titanium dioxide
CN111504890B (en) * 2020-04-28 2022-11-22 烟台大学 Rapid detection method for weather resistance of titanium dioxide

Also Published As

Publication number Publication date
JP6961469B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US20180094358A1 (en) Method of Preparing Corrosion Resistant Coatings
JP4987911B2 (en) Inside the plasma processing vessel
CN1227391C (en) Method and system of preventing fouling and corrosion of biomedical devices and structures
US20150345018A1 (en) Methods for Obtaining Hydrophilic Fluoropolymers
WO2016056466A1 (en) Antibacterial laminate structure and method for manufacturing same
Fossati et al. Corrosion resistance properties of plasma nitrided Ti–6Al–4V alloy in nitric acid solutions
de Lima Neto et al. Sol-gel ZrO 2 coatings for Chemical protection of Stainless steel
TW200829720A (en) Corrosion-resisting member and method for making the same
Chou et al. Characterization and haemocompatibility of fluorinated DLC and Si interlayer on Ti6Al4V
Vasilescu et al. Microstructure, surface characterization, and electrochemical behavior of new Ti-Zr-Ta-Ag alloy in simulated human electrolyte
US20160281216A1 (en) Structure having stain-proofing amorphous carbon film and method of forming stain-proofing amorphous carbon film
JP2019090709A (en) Electrode structure
Ensinger The influence of ion irradiation during film growth on the chemical stability of film/substrate systems
Hassan et al. Super-hydrophobic green corrosion inhibitor on carbon steel
Gao et al. Properties of hydrophobic carbon–PTFE composite coating with high corrosion resistance by facile preparation on pure Ti
JP4728306B2 (en) Electrostatic chuck member and manufacturing method thereof
Arablou et al. Investigation of chemical etching and surface modification effect on the superhydrophobic, self-cleaning and corrosion behaviour of aluminium substrate
Cheng et al. Plasma electrolytic oxidation behavior and corrosion resistance of brass in aluminate electrolyte containing NaH2PO4 or Na2SiO3
JP5286528B2 (en) Method for manufacturing member for semiconductor processing apparatus
Metikoš-Huković et al. Corrosion resistance of amorphous aluminium–molybdenum alloys in an acidic chloride environment
JP6083889B2 (en) Amorphous carbon film coated member
Lee et al. Enhancement of wettability by wet surface modification and application of rare-earth element in sealing of ceramic oxide thin film on al alloy
Martin et al. XPS depth profile study of porous zirconia films deposited on stainless steel by spray pyrolysis: the problem of substrate corrosion
Moretti et al. Corrosion protection and mechanical performance of SiO2 films deposited via PECVD on OT59 brass
US20220373509A1 (en) A multi-layered electrode for sensing ph

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6961469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150