JP2019090381A - Swirl flow generator of intake system - Google Patents

Swirl flow generator of intake system Download PDF

Info

Publication number
JP2019090381A
JP2019090381A JP2017220582A JP2017220582A JP2019090381A JP 2019090381 A JP2019090381 A JP 2019090381A JP 2017220582 A JP2017220582 A JP 2017220582A JP 2017220582 A JP2017220582 A JP 2017220582A JP 2019090381 A JP2019090381 A JP 2019090381A
Authority
JP
Japan
Prior art keywords
swirl flow
duct
axial center
flow generation
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017220582A
Other languages
Japanese (ja)
Other versions
JP7008479B2 (en
Inventor
範岳 伊藤
Noritaka Ito
範岳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filter Systems Japan Corp
Original Assignee
Mahle Filter Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filter Systems Japan Corp filed Critical Mahle Filter Systems Japan Corp
Priority to JP2017220582A priority Critical patent/JP7008479B2/en
Priority to PCT/EP2018/080939 priority patent/WO2019096739A1/en
Publication of JP2019090381A publication Critical patent/JP2019090381A/en
Application granted granted Critical
Publication of JP7008479B2 publication Critical patent/JP7008479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/0204Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof for connecting or joining to other devices, e.g. pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0212Multiple cleaners
    • F02M35/0216Multiple cleaners arranged in series, e.g. pre- and main filter in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/022Air cleaners acting by gravity, by centrifugal, or by other inertial forces, e.g. with moistened walls
    • F02M35/0223Air cleaners acting by gravity, by centrifugal, or by other inertial forces, e.g. with moistened walls by centrifugal forces, e.g. cyclones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • F02M35/084Dust collection chambers or discharge sockets, e.g. chambers fed by gravity or closed by a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10013Means upstream of the air filter; Connection to the ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10118Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements with variable cross-sections of intake ducts along their length; Venturis; Diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To provide a structure capable of suppressing deterioration of dust separation efficiency, or cyclone efficiency, in a case where a swirl flow generation unit and an inner cylinder cannot be arranged coaxially.SOLUTION: A swirl flow generator of an intake system comprises: an outside air introduction duct 3 bent into an elbow shape; a swirl flow generation blade member 6 having a plurality of blades 6b inclined to an axial center of the outside air introduction duct 3; and an outlet duct 7 provided on a downstream side with respect to the swirl flow generation blade member 6, of which an inflow port 7b is opened toward the swirl flow generation blade member 6, and an axial center is eccentric to the swirl flow generation blade member 6. The swirl flow generation blade member 6 is coaxially arranged at a bent part of the outside air introduction duct 3, and an opening end surface of the inflow port 7b of the outlet duct 7 is inclined to the axial center.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の吸気系に設けられて旋回流を発生させる旋回流発生装置に関する。   The present invention relates to a swirl flow generating device provided in an intake system of an internal combustion engine to generate a swirl flow.

内燃機関の一部の吸気系では、エアクリーナよりも上流側にプリクリーナとも称される旋回流発生装置を設けることが行われている。例えば特許文献1,2には、エアクリーナの上流側に設けたダクト内に旋回流生成のための複数枚の固定式の羽根部を設けると共に、羽根部の下流側にはダクトよりも小径の内筒を同心状に設けたものが開示されている。   In an intake system of a part of an internal combustion engine, it is practiced to provide a swirling flow generating device, also referred to as a precleaner, upstream of an air cleaner. For example, in Patent Documents 1 and 2, a plurality of fixed type vanes for generating a swirling flow are provided in a duct provided on the upstream side of the air cleaner, and at the downstream side of the vanes, A concentric arrangement of the tubes is disclosed.

このような旋回流発生装置では、エアクリーナに吸引される前の空気に積極的に旋回流を発生させて、いわゆるサイクロン方式の遠心分離の原理で吸気に含まれるダスト(異物)を分離して、ダクトと内筒との間の空間に捕集する一方、旋回流を付与された中心部分の空気のみを内筒を介してエアクリーナ側に送出するようになっている。   In such a swirling flow generating device, a swirling flow is positively generated in the air before being sucked by the air cleaner, and dust (foreign matter) contained in the suction is separated by a so-called cyclone type centrifugal separation principle, While collecting in the space between the duct and the inner cylinder, only the air of the central portion given the swirling flow is sent out to the air cleaner side through the inner cylinder.

特開2006−274948号公報Unexamined-Japanese-Patent No. 2006-274948 特開2015−206353号公報JP, 2015-206353, A

例えば内燃機関の吸気系に近接する他の機器との配置上の制約から、旋回流発生装置を含むダクトの形状としてストレートな形状(真直形状)を確保できない場合がある。このような場合に、特に引用文献1,2に記載されたものとは異なり、羽根部と内筒とを同一軸線上に配置することができなくなると、本来の目的であるサイクロン効率、すなわちダストの分離効率が悪くなるという問題がある。   For example, due to the restriction on the arrangement with other devices close to the intake system of the internal combustion engine, it may not be possible to secure a straight shape (straight shape) as the shape of the duct including the swirl flow generating device. In such a case, unlike the ones described in the cited documents 1 and 2, especially when the blade and the inner cylinder can not be arranged on the same axis, the cyclone efficiency which is the original purpose, that is, dust There is a problem that the separation efficiency of

本発明はこのような課題に着目してなされたものであり、特に旋回流生成部として機能する羽根部と内筒とを同一軸線上に配置することができない場合であっても、サイクロン効率であるダストの分離効率の低下を抑制できるようにした吸気系の旋回流発生装置を提供するものである。   The present invention has been made focusing on such problems, and in particular, it is possible to use cyclone efficiency even when the vanes functioning as the swirling flow generating unit and the inner cylinder can not be arranged on the same axis. It is an object of the present invention to provide a swirl flow generating device of an intake system capable of suppressing a reduction in the separation efficiency of certain dust.

本発明は、エルボ状に屈曲している外筒と、前記外筒の内周面と中心部との間において当該外筒の軸心に対して傾斜するように配置された複数の羽根を有する旋回流生成部と、前記外筒のうち前記旋回流生成部よりも下流側に設けられ、流入口が前記外筒の内部で前記旋回流生成部に向かって開口していると共に、軸心が前記旋回流生成部に対して偏倚している内筒と、を備えている吸気系の旋回流発生装置である。その上で、前記エルボ状に屈曲している外筒の屈曲部に当該外筒と軸心を同じくするように前記旋回流生成部が配置されていると共に、前記内筒の流入口の開口端面が当該内筒の軸心に対して傾斜していることを特徴とする。   The present invention has an outer cylinder bent in an elbow shape, and a plurality of blades arranged to be inclined with respect to the axial center of the outer cylinder between the inner peripheral surface of the outer cylinder and the central portion. A swirling flow generation unit, provided downstream of the swirling flow generation unit in the outer cylinder, and an inflow port is opened toward the swirling flow generation unit inside the outer cylinder, and the axial center is It is a rotational flow generation device of the intake system provided with an inner cylinder which is biased to the above-mentioned rotational flow generation part. In addition, the swirl flow generation unit is disposed at the bending portion of the outer tube bent in an elbow shape so as to have the same axial center as the outer cylinder, and the opening end face of the inlet of the inner cylinder Are inclined with respect to the axial center of the inner cylinder.

この場合、外筒と内筒との間の空間がダスト捕集のための空間として機能し、必要に応じて上記空間に連通するダスト取り出し口が形成されていることが望ましい。   In this case, it is desirable that a space between the outer cylinder and the inner cylinder functions as a space for collecting dust, and a dust outlet communicating with the space is formed as needed.

望ましい態様としては、前記外筒のうち前記旋回流生成部よりも下流側部分が上流側部分よりも大径化されていて、前記外筒のうち前記旋回流生成部よりも上流側部分の軸心に対して下流側部分の軸心が、前記内筒の軸心と共に偏倚しているものとする。   As a desirable mode, a portion of the outer cylinder on the downstream side of the swirl flow generation unit in the outer cylinder is larger in diameter than an upstream portion, and an axis of the outer cylinder on the upstream side of the swirl flow generation unit It is assumed that the axial center of the downstream portion with respect to the heart is offset with the axial center of the inner cylinder.

同様に、望ましい態様としては、前記内筒の内周面が、前記流入口に向かって次第に小径となる円錐形状のものとして形成されているものとする。   Similarly, as a desirable mode, the inner circumferential surface of the inner cylinder is formed as a conical shape whose diameter is gradually reduced toward the inlet.

さらに望ましい態様としては、前記内筒の流入口の開口端面近傍が前記旋回流生成部に向かって拡径化されているものとする。   As a further desirable aspect, the vicinity of the open end face of the inflow port of the inner cylinder is enlarged toward the swirling flow generating portion.

本発明によれば、旋回流生成部の軸心に対して内筒の軸心が偏倚していても、サイクロン効率であるダスト分離効率の低下を抑制することができる。そのため、旋回流生成部で得た旋回力を維持することができて、遠心分離されたダストを外筒と内筒との間の空間に効率良く導くことができる。その結果、旋回流発生装置の下流側に位置することなるエアクリーナのエアエレメント(エアフィルタ)の長寿命化に寄与することができる。   According to the present invention, even if the axial center of the inner cylinder is offset with respect to the axial center of the swirling flow generation unit, it is possible to suppress the reduction of the dust separation efficiency which is the cyclone efficiency. Therefore, the swirling force obtained by the swirling flow generation unit can be maintained, and the centrifugally separated dust can be efficiently introduced to the space between the outer cylinder and the inner cylinder. As a result, it is possible to contribute to prolonging the life of the air element (air filter) of the air cleaner located downstream of the swirling flow generating device.

本発明に係る吸気系の旋回流発生装置についてその第1の実施の形態を示す図で、内燃機関の吸気系の一部をエアクリーナのケースの外側から見た要部斜視図。1 is a view showing a first embodiment of a swirl flow generating device for an intake system according to the present invention, and a perspective view of a main part of a part of an intake system of an internal combustion engine as viewed from the outside of a case of an air cleaner. 図1に示した吸気系の一部をエアクリーナのケースの内側から見た要部斜視図。The principal part perspective view which looked at a part of intake system shown in Drawing 1 from the inside of the case of an air cleaner. 図1,2に示した外気導入ダクトの軸線に沿った拡大断面図。The expanded sectional view which followed the axis line of the external air introduction duct shown to FIG. 図3に示した旋回流生成羽根部材の詳細を示す斜視図。FIG. 4 is a perspective view showing details of the swirling flow generating blade member shown in FIG. 3; 図3に示した外気導入ダクトでの機能を説明するための説明図。Explanatory drawing for demonstrating the function in the external air introduction | transduction duct shown in FIG. 図3に示した旋回流発生装置におけるアウトレットダクトの流入口の角度(θ)とサイクロン効率Q(%)との関係を示すグラフ。The graph which shows the relationship between the angle ((theta)) of the inlet of the outlet duct and the cyclone efficiency Q (%) in the rotational flow generation apparatus shown in FIG. 本発明に係る吸気系の旋回流発生装置についてその第2の実施の形態を示す図で、図3と同様に外気導入ダクトの軸線に沿った拡大断面図。It is a figure which shows the 2nd Embodiment about the swirling flow production | generation apparatus of the intake system which concerns on this invention, and is an expanded sectional view along the axis line of an external air introduction duct like FIG. 図7に示した外気導入ダクトでの機能を説明するための説明図。Explanatory drawing for demonstrating the function in the external air introduction | transduction duct shown in FIG. 図7に示した旋回流発生装置におけるアウトレットダクトの口径比(D2/D1)とサイクロン効率Q(%)との関係を示すグラフ。The graph which shows the relationship between the aperture ratio (D2 / D1) of the outlet duct and cyclone efficiency Q (%) in the rotational flow generation apparatus shown in FIG.

図1〜6は本発明に係る吸気系の旋回流発生装置を実施するためのより具体的な第1の形態を示し、特に図1は内燃機関の吸気系の一部をエアクリーナのケースの外側から見た要部斜視図であり、また、図2は図1に示した吸気系の一部をエアクリーナのケースの内側から見た要部斜視図である。また、図3は図1,2に示した外気導入ダクトの軸線に沿った拡大断面図である。   1 to 6 show a first specific embodiment for carrying out a swirl flow generating device for an intake system according to the present invention, and in particular, FIG. 1 shows a part of the intake system of an internal combustion engine outside the case of an air cleaner. FIG. 2 is a perspective view of an essential part of the air intake system shown in FIG. 1 as viewed from the inside of a case of an air cleaner. FIG. 3 is an enlarged cross-sectional view along the axis of the outside air introduction duct shown in FIGS.

図1,2に示すように、エアクリーナ1のうち例えば角形をなすケース2の周壁部には、ダーティサイド側(入口側)となる外気導入ダクト3が接続されている。この外気導入ダクト3を外筒として、それ自体に内蔵された後述の旋回流生成部としての旋回流生成羽根部材6や内筒としてのアウトレットダクト7と共に旋回流発生装置が形成されている。なお、ケース2の内部空間は、周知のように図示を省略したエアエレメント(エアフィルタ)の収容空間となる。   As shown in FIGS. 1 and 2, an outside air introduction duct 3 which is a dirty side (inlet side) is connected to a peripheral wall portion of a case 2 having a square shape, for example, of the air cleaner 1. A swirling flow generating device is formed together with a swirling flow generating blade member 6 as a swirling flow generating unit described later contained in the outer air introducing duct 3 as an outer cylinder and an outlet duct 7 as an inner cylinder. In addition, the internal space of case 2 becomes an accommodation space of the air element (air filter) which abbreviate | omitted illustration so that it may be known.

外気導入ダクト3は、概略的には、図3に示すように、その一端部がケース2の接続フランジ部2aに挿入されることで嵌合接続されていて、ケース2の直近位置で略エルボ状に屈曲している。そして、この屈曲形状部において後述する旋回流生成羽根部材6を保持するために、本実施の形態での外気導入ダクト3は、ケース2側となる下流側ダクト4と上流側ダクト5とのいわゆる2ピース構造のもとして形成されている。   The outside air introduction duct 3 is generally fitted and connected by inserting one end thereof into the connection flange portion 2a of the case 2 as shown in FIG. It is bent in the shape of a circle. And in order to hold the swirling flow generation blade member 6 mentioned later in this bent shape part, the open air introduction duct 3 in this embodiment is the so-called of the downstream duct 4 which becomes the case 2 side, and the upstream duct 5 It is formed as a two-piece structure.

上流側ダクト5は、後述する旋回流生成羽根部材6に嵌合接続される大径の嵌合フランジ部5aを有し、他方、下流側ダクト4は、旋回流生成羽根部材6に嵌合接続される流入口側端部4aと、ケース2側の接続フランジ部2aに嵌合接続される流出口側端部4bと、を有している。流入口側端部4aと流出口側端部4bとを有する下流側ダクト4は、それ自体が所定の曲率でエルボ状に屈曲している。   The upstream duct 5 has a large diameter fitting flange portion 5a fitted and connected to the swirling flow generating blade member 6 described later, while the downstream duct 4 is fitted and connected to the swirling flow generating blade member 6 And an outlet end 4b fitted and connected to the connection flange 2a on the case 2 side. The downstream duct 4 having the inlet end 4a and the outlet end 4b is itself bent in an elbow shape with a predetermined curvature.

下流側ダクト4と上流側ダクト5とからなる外気導入ダクト3の長手方向の中間部には、旋回流生成部として機能する旋回流生成羽根部材6が介装されている。図4はこの旋回流生成羽根部材6のみを拡大した斜視図である。旋回流生成羽根部材6は、図3のほか図4に示すように、円環状の胴部6aの一端の内側に、軸心に対し螺旋状をなして傾斜しつつ屈曲した複数枚の羽根6bを等ピッチで放射状に配置したものである。旋回流生成羽根部材6を形成している複数枚の羽根6bは胴部6aの中心部で集約されていて、各羽根6bは胴部6aから上流側ダクト5の内部に向かって突出しているとともに、中心部から外周側に向かって高さが次第に小さくなるように徐変している。   A swirling flow generating blade member 6 functioning as a swirling flow generating unit is interposed at an intermediate portion in the longitudinal direction of the external air introducing duct 3 including the downstream side duct 4 and the upstream side duct 5. FIG. 4 is an enlarged perspective view of only the swirling flow generating blade member 6. As shown in FIG. 4 and FIG. 4 in addition to FIG. 3, the swirling flow generating blade member 6 has a plurality of blades 6 b which are bent in a spiral shape with respect to the axial center inside the one end of the annular body 6 a. Are arranged radially at equal pitches. The plurality of blades 6b forming the swirling flow generating blade member 6 are gathered at the central portion of the body portion 6a, and each blade 6b protrudes from the body portion 6a toward the inside of the upstream duct 5 The height gradually changes from the central portion toward the outer peripheral side.

そして、この旋回流生成羽根部材6を継手部材として用い、旋回流生成羽根部材6の両側から、当該旋回流生成羽根部材6を内側にして、上流側ダクト5の嵌合フランジ部5aと下流側ダクト4の流入口側端部4aをそれぞれ嵌合接続することで、略エルボ状に屈曲した外気導入ダクト3が形成されている。同時に、下流側ダクト4と上流側ダクト5とからなる外気導入ダクト3の長手方向の中間部に旋回流生成羽根部材6が介装されていることになる。これにより、少なくとも嵌合フランジ部5aを含む上流側ダクト5と旋回流生成羽根部材6とは軸心を同じくする同心状のものとなっていて、外気導入ダクト3内を流れる空気が旋回流生成羽根部材6を通過することで旋回流が付与される。   Then, the swirl flow generation blade member 6 is used as a joint member, and from the both sides of the swirl flow generation blade member 6, with the swirl flow generation blade member 6 inside, the fitting flange portion 5a of the upstream duct 5 and the downstream side By fitting and connecting the inflow port side end portions 4a of the ducts 4, the outside air introducing duct 3 bent in a substantially elbow shape is formed. At the same time, the swirling flow generating blade member 6 is interposed in the longitudinal middle portion of the outside air introducing duct 3 composed of the downstream side duct 4 and the upstream side duct 5. Thereby, the upstream duct 5 including at least the fitting flange portion 5a and the swirling flow generating blade member 6 are concentric with each other having the same axial center, and the air flowing in the outside air introducing duct 3 generates the swirling flow By passing the blade member 6, a swirling flow is provided.

また、下流側ダクト4の流出口4cを含む流出口側端部4bは、上記のように旋回流生成羽根部材6に嵌合される流入口側端部4aよりも大径に形成されている。この下流側ダクト4の流出口4cはエアクリーナ1のケース2内に臨んでいて、流出口4cには内筒として機能するフランジ部7a付きで且つストレート形状(真直形状)のアウトレットダクト7が嵌合接続されている。これにより、下流側ダクト4のうち流出口4cに近い部分では、流出口側端部4bとアウトレットダクト7とが重なり合っていて、実質的に二重筒構造となっている。   Further, the outlet side end 4b including the outlet 4c of the downstream side duct 4 is formed larger in diameter than the inlet side end 4a fitted to the swirling flow generating blade member 6 as described above . The outlet 4c of the downstream side duct 4 faces the inside of the case 2 of the air cleaner 1, and the outlet 4c is fitted with a straight (straight) outlet duct 7 with a flange portion 7a functioning as an inner cylinder. It is connected. As a result, at the portion of the downstream side duct 4 close to the outlet 4c, the outlet side end 4b and the outlet duct 7 overlap each other to form a substantially double cylindrical structure.

このアウトレットダクト7の直径は、下流側ダクト4における流出口側端部4bの直径よりも小さいものとして形成されていて、アウトレットダクト7の一端に形成した大径のフランジ部7aを下流側ダクト4の流出口4cに着座させるようにして嵌合接続している。これにより、下流側ダクト4の流出口4cは閉塞されている。そして、アウトレットダクト7の流入口7bの開口端面はそれ自体の軸心に対して斜めに形成されていると共に、アウトレットダクト7は下流側ダクト4の流出口側端部4bと軸心を同じくする同心状のものとして形成されている。   The diameter of the outlet duct 7 is smaller than the diameter of the outlet end 4 b of the downstream side duct 4, and the large diameter flange portion 7 a formed at one end of the outlet duct 7 is used as the downstream side duct 4. It is fittingly connected in such a way as to be seated at the outlet 4c of the Thereby, the outlet 4c of the downstream side duct 4 is closed. The open end face of the inlet 7 b of the outlet duct 7 is formed obliquely with respect to its own axis, and the outlet duct 7 has the same axial center as the outlet end 4 b of the downstream duct 4. It is formed concentrically.

ここで、図3に示すように、略エルボ状に屈曲している下流側ダクト4の曲率部分の内周側(曲率周長の短い側)を内隅部8とすると、流入口側端部4aの軸心に対して流出口側端部4bの軸心は所定量だけ内隅部8側に偏倚(オフセット)している。具体的には、上流側ダクト5の軸心と旋回流生成羽根部材6の軸心および下流側ダクト4の流入口側端部4aの軸心は相互に一致している。ここでは、これらに共通する軸心を上流側の軸心L1と言う。同時に、下流側ダクト4の流出口側端部4bの軸心とアウトレットダクト7の軸心は相互に一致している。ここでは、これらに共通する軸心を下流側の軸心L2と言う。その一方で、上流側の軸心L1に対して下流側の軸心L2が所定量だけ内隅部8側に偏倚(オフセット)している。   Here, as shown in FIG. 3, assuming that the inner peripheral side (the short side of the curvature circumferential length) of the curvature portion of the downstream side duct 4 bent in a substantially elbow shape is the inner corner portion 8, the inflow side end portion The axial center of the outlet end 4b is offset to the inner corner 8 by a predetermined amount with respect to the axial center of 4a. Specifically, the axial center of the upstream duct 5, the axial center of the swirling flow generating blade member 6, and the axial center of the inflow inlet end 4a of the downstream duct 4 coincide with each other. Here, an axial center common to them is referred to as an upstream axial center L1. At the same time, the axis of the outlet end 4b of the downstream duct 4 and the axis of the outlet duct 7 coincide with each other. Here, an axial center common to these is referred to as an axial center L2 on the downstream side. On the other hand, the axial center L2 on the downstream side is offset to the inner corner 8 by a predetermined amount with respect to the axial center L1 on the upstream side.

また、アウトレットダクト7の流入口7bの開口端面はそれ自体の軸心に対して斜めに形成されていることは先に述べた通りである。このアウトレットダクト7の流入口7bについては、図3に示すように、アウトレットダクト7のうち、下流側ダクト4の曲率部分の内隅部8に近い部分の胴長を、内隅部8から遠い部分の胴長に比べて次第に短くなるように形成することで、結果としてアウトレットダクト7の流入口7bの開口端面が斜めに形成されている。   Further, as described above, the open end face of the inlet 7b of the outlet duct 7 is formed obliquely with respect to the axis of itself. As for the inlet 7b of the outlet duct 7, as shown in FIG. 3, the trunk length of the portion of the outlet duct 7 near the inner corner 8 of the curved portion of the downstream duct 4 is far from the inner corner 8. As a result, the opening end face of the inflow port 7b of the outlet duct 7 is formed obliquely by forming it so as to be gradually shorter than the length of the portion.

下流側ダクト4の流出口側端部4bとアウトレットダクト7とが重なり合っている部分であって、それら両者で囲まれた空隙部Rは、後述するように、旋回流を付与された空気に含まれるダストを収集するための空間として機能する。この空隙部Rと連通するように、下流側ダクト4の流出口側端部4bの一部には、短いパイプ状のダスト取り出し口9が外側に向かって突出形成されている。さらに、このダスト取り出し口9の外側には可撓性に富んだダストカップ10が装着されている。そして、後述するように、空隙部Rで収集したダストをダスト取り出し口9を介してダストカップ10に集約した上で、外部に排出するようになっている。   A void R, which is a portion where the outlet side end 4b of the downstream side duct 4 and the outlet duct 7 overlap each other, and is surrounded by both, is included in the air to which the swirling flow is given as described later. It functions as a space for collecting dust. A short pipe-like dust outlet 9 is formed to project outward at a part of the outlet end 4b of the downstream side duct 4 so as to communicate with the gap R. Further, a flexible dust cup 10 is attached to the outside of the dust outlet 9. Then, as described later, the dust collected in the space R is collected into the dust cup 10 through the dust outlet 9 and then discharged to the outside.

なお、ダストカップ10の機構上、図3に示すように、エアクリーナ1は、車載状態でダストカップ10が下向きとなるような姿勢で配置される。また、ダストカップ10は、それ自体を二分するようなサイプ(切り込み)が形成されていて、微細な外力でサイプが開閉する公知の構造のものである。   Due to the mechanism of the dust cup 10, as shown in FIG. 3, the air cleaner 1 is disposed in such a posture that the dust cup 10 is directed downward in the vehicle mounted state. In addition, the dust cup 10 has a sipe (cut) that divides itself into two, and has a known structure in which the sipe opens and closes by a minute external force.

このように構成された吸気系の旋回流発生装置では、内燃機関の吸気行程時に、燃焼室内での燃焼に必要な空気を吸引することになるので、外気導入ダクト3とエアクリーナ1とを介して外気が燃焼室内に供給される。   In the swirl flow generating device of the intake system configured as described above, the air necessary for combustion in the combustion chamber is sucked during the intake stroke of the internal combustion engine, so the external air introduction duct 3 and the air cleaner 1 are used. Outside air is supplied into the combustion chamber.

その際に、外気導入ダクト3のうち上流側ダクト5を介して吸引された外気が旋回流生成羽根部材6を通過する過程で旋回流を付与される。すなわち、旋回流生成羽根部材6を形成しているところの羽根6b,6b同士の間の隙間を外気が通流する過程で旋回流を付与され、その旋回流となった空気が下流側ダクト4に流入する。   At that time, the swirling flow is given in the process of passing the swirling flow generating blade member 6 with the outside air sucked through the upstream duct 5 of the outside air introducing duct 3. That is, the swirling flow is applied in the process of flowing the outside air through the gap between the blades 6 b and 6 b forming the swirling flow generating blade member 6, and the air that has become the swirling flow is the downstream side duct 4 Flow into

図5は、図3に示した外気導入ダクト3での機能を説明するための説明図である。上記のように旋回流生成羽根部材6を通過することで旋回流となった空気のなかにダスト(異物)が含まれていると、質量(重量)の大きなダストは、いわゆる旋回流による遠心分離の原理(サイクロン効果)で、例えば図5に符号Q1で示すように、下流側ダクト4内の外周側(下流側ダクト4の軸直角断面での外周側)に追いやられる。そのため、旋回流となって下流側ダクト4内を流れる空気のうち、質量の大きなダストが除去された中央部分(下流側ダクト4の軸直角断面での中央部分)の空気のみがアウトレットダクト7を通ってエアクリーナ1に流入する。   FIG. 5 is an explanatory view for explaining the function of the outside air introduction duct 3 shown in FIG. As described above, if dust (foreign matter) is contained in the air that has become a swirling flow by passing through the swirling flow generating blade member 6, the dust with a large mass (weight) is separated by centrifugal separation by so-called swirling flow On the principle (cyclone effect) of (1), for example, as indicated by a symbol Q1 in FIG. 5, it is driven to the outer peripheral side (the outer peripheral side of the downstream side duct 4 in a cross section perpendicular to the axis) of the downstream side duct 4. Therefore, of the air flowing in the downstream duct 4 as a swirling flow, only the air in the central portion (central portion at the cross section perpendicular to the axis of the downstream duct 4) from which the large dust is removed is the outlet duct 7 It flows into the air cleaner 1 through it.

そして、エアクリーナ1では、下流側ダクト4で取り除くことのできなかった微細なダストが図示を省略したエアエレメントで除去され、最終的には、エアクリーナ1を通過することで清浄化された空気のみが燃焼室に供給されることになる。   Then, in the air cleaner 1, fine dust that could not be removed by the downstream duct 4 is removed by an air element (not shown), and finally, only the air cleaned by passing through the air cleaner 1 It will be supplied to the combustion chamber.

また、旋回流による遠心分離の原理で下流側ダクト4内の外周側に追いやられた質量の大きなダストは、図5に符号Q1で示すように、下流側ダクト4の流出口側端部4bとアウトレットダクト7の間の空隙部Rに集められる。そして、やがては、上記吸気行程での吸気脈動に伴って、ダスト取り出し口9を通してダストカップ10内に集められた上で、上記吸気脈動またはそれに伴う振動によってダストカップ10が開閉することで外部に排出される。   Also, the large-mass dust driven to the outer peripheral side in the downstream duct 4 by the principle of centrifugal separation by the swirling flow is, as shown by a symbol Q1 in FIG. 5, an outlet end 4b of the downstream duct 4 and The air is collected in the space R between the outlet ducts 7. Then, after being collected in the dust cup 10 through the dust outlet 9 along with the suction pulsation in the suction stroke, the dust cup 10 is opened and closed by the suction pulsation or the vibration accompanying the suction pulsation. Exhausted.

このように本実施の形態での吸気系の旋回流発生装置によれば、外筒としての外気導入ダクト3が略エルボ状に屈曲している場合であって、且つその外気導入ダクト3内に配置される内筒部材としてのアウトレットダクト7の軸心が、同じく外気導入ダクト3内に配置される旋回流生成部材としての旋回流生成羽根部材6の軸心に対して偏倚していて、両者が同一軸心上にない場合であっても、アウトレットダクト7の流入口7bの開口端面をそれ自体の軸心に対して傾斜させることにより、旋回流の付与によるサイクロン効率の低下を抑制することができる。このサイクロン効率の低下の抑制には、上流側ダクト5に比べ下流側ダクト4の方が大径化されていることも寄与しているものと推測される。なお、サイクロン効率の定義は後述する。   As described above, according to the swirl flow generation device of the intake system in the present embodiment, the outside air introduction duct 3 as the outer cylinder is bent in a substantially elbow shape, and in the outside air introduction duct 3 The axial center of the outlet duct 7 as the inner cylindrical member to be disposed is biased with respect to the axial center of the swirling flow generating blade member 6 as the swirling flow generating member similarly disposed in the outside air introduction duct 3 To prevent the cyclone efficiency from decreasing due to the application of the swirling flow by inclining the open end face of the inlet 7b of the outlet duct 7 with respect to its own axis even when the two are not on the same axial center Can. It is inferred that the diameter of the downstream side duct 4 is larger than that of the upstream side duct 5 to suppress the decrease in the cyclone efficiency. The definition of cyclone efficiency will be described later.

したがって、例えば吸気系のレイアウト上の制約から、旋回流生成羽根部材6を含む外気導入ダクト3の形状としてストレート形状を採用できない場合であっても、サイクロン効率の低下を抑制して、所期の目的を達成することができるようになる。   Therefore, even if it is not possible to adopt a straight shape as the shape of the outside air introduction duct 3 including the swirl flow generating blade member 6 due to, for example, the restriction on the layout of the intake system, the reduction of the cyclone efficiency is suppressed. Become able to achieve the purpose.

ここで、本実施の形態では、図3に示したアウトレットダクト7について、図5に示すように、その流入口7bの開口端面の傾斜角度θを10度に設定している。そこで、ここでは、旋回流の付与により遠心分離の原理(いわゆるサイクロン効果)でダストを捕集して回収・排出することができた度合いであるダストの分離効率をサイクロン効率Q(%)と定義する。その上で、上記傾斜角度θを10度とした場合のほか、傾斜角度θを5度とした場合、および傾斜角度θを0度(流入口7bの開口端面がアウトレットダクト7の軸心に対して直角)とした場合のそれぞれについて、サイクロン効率Q(%)として計測してみた。   Here, in the present embodiment, as shown in FIG. 5 for the outlet duct 7 shown in FIG. 3, the inclination angle θ of the open end face of the inflow port 7b is set to 10 degrees. Therefore, here, the dust separation efficiency, which is the degree to which dust can be collected, collected and discharged by the principle of centrifugal separation (so-called cyclone effect) by the application of swirling flow, is defined as cyclone efficiency Q (%). Do. Furthermore, in addition to the case where the inclination angle θ is 10 degrees, when the inclination angle θ is 5 degrees, and the inclination angle θ is 0 degrees (the open end face of the inlet 7 b is with respect to the axis of the outlet duct 7 And the cyclone efficiency Q (%).

その結果、サイクロン効率Q(%)は、傾斜角度θが10度の場合に43%、傾斜角度θが5度の場合に38%、傾斜角度θが0度の場合に30%となった。これらの結果をグラフ化したものを図6に示す。なお、サイクロン効率Q(%)は下記式(1)にて表される。   As a result, the cyclone efficiency Q (%) was 43% when the inclination angle θ was 10 degrees, 38% when the inclination angle θ was 5 degrees, and 30% when the inclination angle θ was 0 degrees. What these results were graphed is shown in FIG. The cyclone efficiency Q (%) is represented by the following formula (1).

サイクロン効率Q(%)=B÷(A−B)×100‥‥(1)
ただし、Aはダスト投入量、Bはサイクロン効果によるダストの回収・排出量である。
Cyclone efficiency Q (%) = B ÷ (A-B) x 100 ... (1)
However, A is the amount of dust input, and B is the amount of dust collected and discharged by the cyclone effect.

図6から明らかなように、上記傾斜角度θとサイクロン効率Q(%)との相関として両者の間には比例関係があり、傾斜角度θ=10度の場合に、サイクロン効率Q(%)が最も高くなることが判明した。この場合において、傾斜角度θが0度の場合には、アウトレットダクト7が単純なストレート形状であるために、アウトレットダクト7の存在がかえって図5に符号Q1で示した旋回流の抵抗となり、サイクロン効率Q(%)が最も低くなるものと推測される。   As is clear from FIG. 6, there is a proportional relationship between the inclination angle θ and the cyclone efficiency Q (%), and in the case of the inclination angle θ = 10 degrees, the cyclone efficiency Q (%) is It turned out to be the highest. In this case, when the inclination angle θ is 0 degree, the outlet duct 7 has a simple straight shape, so the presence of the outlet duct 7 becomes the resistance of the swirling flow indicated by a symbol Q1 in FIG. It is estimated that the efficiency Q (%) is the lowest.

このように、本実施の形態によれば、旋回流生成部としての旋回流生成羽根部材6の軸心に対して内筒としてのアウトレットダクト7の軸心が偏倚していても、ダスト分離効率であるサイクロン効率の低下を抑制することができる。そのため、旋回流生成羽根部材6で得た旋回力を維持することができて、遠心分離されたダストを下流側ダクト4とアウトレットダクト7との間の空隙部Rに効率良く導くことができる。その結果として、アウトレットダクト7の下流側に位置することなるエアクリーナ1のエアエレメント(エアフィルタ)の長寿命化に寄与することができるようになる。   As described above, according to the present embodiment, the dust separation efficiency can be obtained even if the axial center of the outlet duct 7 as the inner cylinder is biased with respect to the axial center of the swirling flow generating blade member 6 as the swirling flow generation unit. It is possible to suppress the decrease in cyclone efficiency, which is Therefore, the swirling force obtained by the swirling flow generating blade member 6 can be maintained, and the centrifugally separated dust can be efficiently introduced to the gap R between the downstream duct 4 and the outlet duct 7. As a result, it is possible to contribute to prolonging the life of the air element (air filter) of the air cleaner 1 located downstream of the outlet duct 7.

図7〜9は本発明に係る吸気系の旋回流発生装置の第2の実施の形態を示している。この第2の実施の形態での説明にあたっては、図3と共通する部分には同一符号を付して、重複する説明は省略するものとする。   7 to 9 show a second embodiment of the swirl flow generating device for an intake system according to the present invention. In the description of the second embodiment, the same reference numerals as in FIG. 3 denote the same parts as in FIG. 3, and a duplicate description will be omitted.

図7に示した第2の実施の形態では、内筒として機能するアウトレットダクト12の形状が図3に示したものと異なっている。図7に示したアウトレットダクト12は、その直径が旋回流生成羽根部材6に向かって次第に小径となるように円錐形状のもとして形成されている。より具体的には、旋回流生成羽根部材6を通過することで旋回流を付与された空気の流れが、下流側ダクト4からアウトレットダクト12を通ってエアクリーナ1のケース2の内部に向かう際の流れの円滑性を考慮して、図7に示すように、アウトレットダクト12が円錐形状に形成されているのに加えて、その円錐形状のアウトレットダクト12の周壁部は、内側に向かって凸形状となるような滑らかな湾曲形状または円弧状のものとして形成されている。   In the second embodiment shown in FIG. 7, the shape of the outlet duct 12 functioning as an inner cylinder is different from that shown in FIG. The outlet duct 12 shown in FIG. 7 is formed in a conical shape so that the diameter thereof gradually decreases toward the swirling flow generating blade member 6. More specifically, the flow of the air to which the swirling flow is given by passing the swirling flow generating blade member 6 passes from the downstream side duct 4 to the inside of the case 2 of the air cleaner 1 through the outlet duct 12. In consideration of flow smoothness, as shown in FIG. 7, in addition to the outlet duct 12 being formed in a conical shape, the circumferential wall portion of the conical outlet duct 12 has a convex shape directed inward. It is formed as a smooth curved shape or an arc shape which becomes

また、アウトレットダクト12の流入口12bの開口端面近傍を旋回流生成羽根部材6に向かって拡径化させるべく拡径部11が折り曲げ形成されていて、いわゆるベルマウス形状に形成されている。   The diameter-increased portion 11 is bent so as to expand the diameter toward the swirling flow generating blade member 6 in the vicinity of the opening end face of the inlet 12b of the outlet duct 12, and is formed in a so-called bellmouth shape.

図8は、図7に示した外気導入ダクト3での機能を説明するための説明図である。図8に示すように、アウトレットダクト12の流入口12bの開口端面の傾斜角度θは、図3と同様に10度に設定されている。さらに、アウトレットダクト12の流入口12bと流出口12cの大きさの口径比に着目した場合、流入口12bの直径D1と流出口12cの直径D2との口径比D2/D1は1.4に設定されている。   FIG. 8 is an explanatory view for explaining the function of the outside air introduction duct 3 shown in FIG. As shown in FIG. 8, the inclination angle θ of the open end face of the inlet 12 b of the outlet duct 12 is set to 10 degrees as in FIG. 3. Furthermore, when focusing on the aperture ratio of the sizes of the inlet 12b and the outlet 12c of the outlet duct 12, the aperture ratio D2 / D1 of the diameter D1 of the inlet 12b to the diameter D2 of the outlet 12c is set to 1.4. It is done.

図3に示した第1の実施の形態では、図6に基づいて先に説明したように、アウトレットダクト7の流入口7bの開口端面の傾斜角度θが10度に設定されていると、傾斜角度θが10度よりも小さい場合と比べて、サイクロン効率Q(%)が向上することが判明している。   In the first embodiment shown in FIG. 3, as described above with reference to FIG. 6, when the inclination angle θ of the opening end face of the inlet 7 b of the outlet duct 7 is set to 10 degrees, the inclination is It has been found that the cyclone efficiency Q (%) is improved as compared to the case where the angle θ is smaller than 10 degrees.

その一方、図3に示した第1の実施の形態では、アウトレットダクト7がストレート形状(真直形状)のものであることは先に述べた通りである。この場合、旋回流生成羽根部材6を通過することで旋回流を付与された空気の流れがアウトレットダクト7に向かう際に、アウトレットダクト7の開口面積全体が有効に活用されずに、図5に符号Q2で示すように、主として下流側ダクト4のうち内隅部8に近い部分に偏った状態で通過する傾向があることが判明した。そして、この流れの偏り傾向が、先に述べたサイクロン効率Q(%)に何らかの影響を及ぼしているものと推測される。   On the other hand, in the first embodiment shown in FIG. 3, the outlet duct 7 has a straight shape (straight shape) as described above. In this case, when the air flow imparted with the swirling flow by passing the swirling flow generating blade member 6 is directed to the outlet duct 7, the entire opening area of the outlet duct 7 is not effectively utilized, as shown in FIG. It has been found that, as indicated by symbol Q2, the downstream duct 4 tends to pass through in a state biased to a portion near the inner corner portion 8. And it is presumed that this flow bias tendency has some effect on the cyclone efficiency Q (%) mentioned above.

これに対して、図7に示した第2の実施の形態では、アウトレットダクト12が円錐形状のものとして形成されていて、しかも流入口12bの近傍が拡径化されたいわゆるベルマウス形状のものとなっている。そのため、先に述べたような空気の流れの偏りが解消されて、図8に符号Q3で示すように、アウトレットダクト12の開口面積全体が有効に活用されることで、サイクロン効率が一段と向上することが判明した。   On the other hand, in the second embodiment shown in FIG. 7, the outlet duct 12 is formed in a conical shape, and the diameter in the vicinity of the inflow port 12b is expanded, and in the so-called bellmouth shape. It has become. Therefore, the deviation of the air flow as described above is eliminated, and as shown by reference numeral Q3 in FIG. 8, the entire opening area of the outlet duct 12 is effectively utilized, thereby further improving the cyclone efficiency. It has been found.

また、図7に示したアウトレットダクト12の周囲での流れ解析を行ったところ、旋回流生成羽根部材6を通過することで生成された旋回流が、ダスト取り出し口9の入口にあたって逆回転となった旋回流とぶつかって、当該位置で流速を急激に落とす結果となることが判明した。これにより、ダストがダスト取り出し口9に向かって下降しやすい流れ場が形成されたものと考えられ、サイクロン効率がさらなる向上に寄与するものと推測される。   Further, when the flow analysis around the outlet duct 12 shown in FIG. 7 is performed, the swirling flow generated by passing the swirling flow generating blade member 6 is reversely rotated at the inlet of the dust outlet 9. It turned out that it collides with the swirling flow, and it results in the result that the flow velocity drops rapidly at the relevant position. Thereby, it is considered that a flow field in which dust tends to descend toward the dust outlet 9 is formed, and it is presumed that the cyclone efficiency contributes to further improvement.

本実施の形態では、図7に示したアウトレットダクト12について、図8に示すように、その流入口12bの開口端面の傾斜角度θを第1の実施の形態と同様に10度に設定している。その上で、アウトレットダクト12の流入口10bと流出口12cとの口径比に着目した場合、流入口12bの直径D1と流出口12cの直径D2との口径比D2/D1を1.4に設定している。   In the present embodiment, for the outlet duct 12 shown in FIG. 7, as shown in FIG. 8, the inclination angle θ of the open end face of the inflow port 12 b is set to 10 degrees as in the first embodiment. There is. Furthermore, when focusing on the aperture ratio between the inlet 10b and the outlet 12c of the outlet duct 12, the aperture ratio D2 / D1 between the diameter D1 of the inlet 12b and the diameter D2 of the outlet 12c is set to 1.4. doing.

そこで、アウトレットダクト12の流入口12bの開口端面の傾斜角度θを10度とした上で、上記の口径比D2/D1を1.4とした場合のほか、口径比D2/D1を1.2とした場合、および口径比D2/D1を1とした場合のそれぞれについて、先の第1の実施の形態と同様にサイクロン効率Q(%)を計測してみた。   Therefore, after setting the inclination angle θ of the opening end face of the inlet 12b of the outlet duct 12 to 10 degrees, the aperture ratio D2 / D1 is set to 1.4, and the aperture ratio D2 / D1 is set to 1.2. The cyclone efficiency Q (%) was measured in the same manner as in the first embodiment described above for each of the cases where the aperture ratio D2 / D1 was 1.

その結果、サイクロン効率Q(%)は、口径比D2/D1が1.4の場合に55%、口径比D2/D1が1.2の場合に52%、口径比D2/D1が1の場合に43%となった。これらの結果をグラフ化したものを図9に示す。なお、サイクロン効率Q(%)は上記と同様に式(1)にて表される。   As a result, the cyclone efficiency Q (%) is 55% when the aperture ratio D2 / D1 is 1.4, 52% when the aperture ratio D2 / D1 is 1.2, and 1 when the aperture ratio D2 / D1 is 1. To 43%. What these results were graphed is shown in FIG. In addition, cyclone efficiency Q (%) is represented by Formula (1) similarly to the above.

図9から明らかなように、上記口径比D2/D1とサイクロン効率Q(%)との相関として両者の間には比例関係があり、口径比D2/D1が1.4の場合に、サイクロン効率Q(%)が最も高くなることが判明した。   As is clear from FIG. 9, there is a proportional relationship between the above-mentioned aperture ratio D2 / D1 and the cyclone efficiency Q (%), and the cyclone efficiency is obtained when the aperture ratio D2 / D1 is 1.4. It turned out that Q (%) becomes the highest.

そして、図6と図9とに基づいて総合的に考察するに、アウトレットダクト12の流入口12bの開口端面の傾斜角度θが10度で、且つ上記の口径比D2/D1を1.4とした場合に、サイクロン効率Q(%)が最も高くなることが判明した。   6 and 9, the inclination angle θ of the open end face of the inlet 12b of the outlet duct 12 is 10 degrees, and the above aperture ratio D2 / D1 is 1.4. It was found that the cyclone efficiency Q (%) is the highest when the

このように本実施の形態によれば、先の第1の実施の形態と同様の効果が奏されることはもちろんのこと、サイクロン効率が一段と向上することになる。   As described above, according to the present embodiment, the cyclone efficiency can be further improved as well as the same effect as the first embodiment can be obtained.

3…外気導入ダクト(外筒)
4…下流側ダクト
5…上流側ダクト
6…旋回流生成羽根部材(旋回流生成部)
6b…羽根
7…アウトレットダクト(内筒)
7b…流入口
9…ダスト取り出し口
11…拡径部
12…アウトレットダクト(内筒)
12b…流入口
3 ... Outside air introduction duct (outer cylinder)
4 ... downstream duct 5 ... upstream duct 6 ... swirl flow generation blade member (swirl flow generation section)
6b ... vane 7 ... outlet duct (inner cylinder)
7b: Inlet 9: Dust outlet 11: Expanded diameter portion 12: Outlet duct (inner cylinder)
12b ... inlet

Claims (5)

エルボ状に屈曲している外筒と、
前記外筒の内周面と中心部との間において当該外筒の軸心に対して傾斜するように配置された複数の羽根を有する旋回流生成部と、
前記外筒のうち前記旋回流生成部よりも下流側に設けられ、流入口が前記外筒の内部で前記旋回流生成部に向かって開口していると共に、軸心が前記旋回流生成部に対して偏倚している内筒と、
を備えていて、
前記エルボ状に屈曲している外筒の屈曲部に当該外筒と軸心を同じくするように前記旋回流生成部が配置されていると共に、
前記内筒の流入口の開口端面が当該内筒の軸心に対して傾斜していることを特徴とする吸気系の旋回流発生装置。
An outer tube bent in an elbow shape,
A swirl flow generation unit having a plurality of blades arranged to be inclined with respect to the axial center of the outer cylinder between the inner circumferential surface and the central portion of the outer cylinder;
The outer cylinder is provided on the downstream side of the swirl flow generation unit, the inflow port is opened toward the swirl flow generation unit inside the outer cylinder, and the axial center is open to the swirl flow generation unit. The inner cylinder is biased against
Equipped with
The swirling flow generating unit is disposed at the bending portion of the elbow-shaped outer cylinder so as to have the same axial center as the outer cylinder.
An inlet end face of an inlet of the inner cylinder is inclined with respect to an axial center of the inner cylinder.
前記外筒のうち前記旋回流生成部よりも下流側部分が上流側部分よりも大径化されていて、
前記外筒のうち前記旋回流生成部よりも上流側部分の軸心に対して下流側部分の軸心が、前記内筒の軸心と共に偏倚していることを特徴とする請求項1に記載の吸気系の旋回流発生装置。
The diameter of the portion of the outer cylinder downstream of the swirling flow generating portion is larger than that of the upstream portion,
The axial center of the downstream side portion is offset with the axial center of the inner cylinder with respect to the axial center of the upstream side portion of the outer cylinder with respect to the swirl flow generation unit. Swirling flow generation device for the intake system of
前記内筒の内周面が、前記流入口に向かって次第に小径となる円錐形状のものとして形成されていることを特徴とする請求項1または2に記載の吸気系の旋回流発生装置。   The swirl flow generating device for an intake system according to claim 1 or 2, wherein the inner peripheral surface of the inner cylinder is formed as a conical shape whose diameter decreases gradually toward the inflow port. 前記内筒の流入口の開口端面近傍が前記旋回流生成部に向かって拡径化されていることを特徴とする請求項3に記載の吸気系の旋回流発生装置。   The swirl flow generation device for an intake system according to claim 3, wherein a diameter of the vicinity of the opening end face of the inflow port of the inner cylinder is expanded toward the swirl flow generation unit. 前記外筒のうち前記内筒の流入口近傍に相当する位置にダスト取り出し口が形成されていることを特徴とする請求項4に記載の吸気系の旋回流発生装置。   5. A swirl flow generating device for an intake system according to claim 4, wherein a dust outlet is formed at a position corresponding to the vicinity of the inlet of the inner cylinder in the outer cylinder.
JP2017220582A 2017-11-16 2017-11-16 Intake system swirl flow generator Active JP7008479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017220582A JP7008479B2 (en) 2017-11-16 2017-11-16 Intake system swirl flow generator
PCT/EP2018/080939 WO2019096739A1 (en) 2017-11-16 2018-11-12 Swirling flow generator for intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220582A JP7008479B2 (en) 2017-11-16 2017-11-16 Intake system swirl flow generator

Publications (2)

Publication Number Publication Date
JP2019090381A true JP2019090381A (en) 2019-06-13
JP7008479B2 JP7008479B2 (en) 2022-01-25

Family

ID=64277707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220582A Active JP7008479B2 (en) 2017-11-16 2017-11-16 Intake system swirl flow generator

Country Status (2)

Country Link
JP (1) JP7008479B2 (en)
WO (1) WO2019096739A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106762A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. INTAKE SYSTEM
CN115247620B (en) * 2022-08-16 2023-11-14 山东艾泰克环保科技股份有限公司 High-order intake pipe of balanced air current

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050123A (en) * 1999-08-06 2001-02-23 Toyoda Spinning & Weaving Co Ltd Precleaner for internal combustion engine
JP2001073889A (en) * 1999-08-31 2001-03-21 Tokyo Roki Co Ltd Precleaner
JP2006274948A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Swirl flow generating device and air guide device having the same
JP2011196314A (en) * 2010-03-23 2011-10-06 Honda Motor Co Ltd Air cleaner device
JP2015175242A (en) * 2014-03-13 2015-10-05 トヨタ紡織株式会社 Air cleaner
JP2015206353A (en) * 2014-04-23 2015-11-19 トヨタ紡織株式会社 Intake device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031192A1 (en) * 2009-09-14 2011-03-17 Volvo Lastvagnar Ab Particle trap and filter device comprising a particle trap
MX349790B (en) * 2013-10-18 2017-08-11 Nissan Motor Air intake pathway structure for internal combustion engine.
US9234484B2 (en) * 2014-02-26 2016-01-12 Ford Global Technologies, Llc Snorkel intake dirt inertial separator for internal combustion engine
SE538030C2 (en) * 2014-06-10 2016-02-16 Scania Cv Ab Device for air purification and air intake system provided with such device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050123A (en) * 1999-08-06 2001-02-23 Toyoda Spinning & Weaving Co Ltd Precleaner for internal combustion engine
JP2001073889A (en) * 1999-08-31 2001-03-21 Tokyo Roki Co Ltd Precleaner
JP2006274948A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Swirl flow generating device and air guide device having the same
JP2011196314A (en) * 2010-03-23 2011-10-06 Honda Motor Co Ltd Air cleaner device
JP2015175242A (en) * 2014-03-13 2015-10-05 トヨタ紡織株式会社 Air cleaner
JP2015206353A (en) * 2014-04-23 2015-11-19 トヨタ紡織株式会社 Intake device

Also Published As

Publication number Publication date
WO2019096739A1 (en) 2019-05-23
JP7008479B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP5145007B2 (en) Fan platform fins
US7543561B2 (en) Swirl generator
US6508052B1 (en) Particle separator
JP6171948B2 (en) Precleaner
JP6551541B2 (en) Discharge part structure of centrifugal compressor
JP2019090381A (en) Swirl flow generator of intake system
WO2019159701A1 (en) Precleaner for internal combustion engine
WO2014136666A1 (en) Suction noise reduction device
JP6297497B2 (en) Cyclone vacuum cleaner and cyclone separator
US6511286B2 (en) Centrifugal blower and portable power working machine
WO2016057186A1 (en) Concentric resonators for machines
CN103775260A (en) Filter
JP2013019385A (en) Centrifugal compressor
JP6375821B2 (en) Centrifugal blower and air cleaner equipped with the same
JP7091765B2 (en) Centrifugal blower
JP6252774B2 (en) Intake device
JP2018025191A (en) Intake port sound absorber
JPS61138900A (en) Casing of centrifugal type fluid machine
JPS63192951A (en) Centrifugal precleaner
JP6471608B2 (en) Inlet inlet structure
JP5210830B2 (en) Pre-cleaner structure
JP2019148258A (en) Precleaner of internal combustion engine
JP2019002358A (en) Pre-cleaner for internal combustion engine
JP6806551B2 (en) Centrifugal compressor, turbocharger
JP6996409B2 (en) Internal combustion engine pre-cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7008479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350