JP2019087420A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2019087420A
JP2019087420A JP2017215042A JP2017215042A JP2019087420A JP 2019087420 A JP2019087420 A JP 2019087420A JP 2017215042 A JP2017215042 A JP 2017215042A JP 2017215042 A JP2017215042 A JP 2017215042A JP 2019087420 A JP2019087420 A JP 2019087420A
Authority
JP
Japan
Prior art keywords
negative electrode
solid
metal
discharge
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017215042A
Other languages
Japanese (ja)
Other versions
JP6828656B2 (en
Inventor
真祈 渡辺
Masaki Watanabe
真祈 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017215042A priority Critical patent/JP6828656B2/en
Publication of JP2019087420A publication Critical patent/JP2019087420A/en
Application granted granted Critical
Publication of JP6828656B2 publication Critical patent/JP6828656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an all-solid battery suppressing a decrease in a discharge capacity.SOLUTION: The all-solid battery includes a positive electrode, a solid electrolyte and a negative electrode. The negative electrode includes a negative electrode member, and the negative electrode member has a surface of stainless mesh covered with at least one metal selected from a group comprised of Mg, Ag, Al and Au. During discharge, an ionization reaction of Li accelerates at the negative electrode member surface and during charge, a precipitation reaction of Li accelerates at the negative electrode member surface.SELECTED DRAWING: Figure 2

Description

本開示は、全固体電池に関する。   The present disclosure relates to all solid state batteries.

リチウムイオン二次電池に関し、様々な構造を持つ集電体を採用する技術が知られている。例えば特許文献1には、少なくとも活物質層と接触する表面において、ステンレス製ワイヤを縦方向および横方向に織り込むことにより形成され、前記活物質層の少なくとも一部が内部に埋め込まれるメッシュ構造を有するリチウムイオン二次電池用の集電体が開示されている。   With respect to lithium ion secondary batteries, techniques are known in which current collectors having various structures are employed. For example, Patent Document 1 has a mesh structure which is formed by weaving stainless steel wires longitudinally and laterally on at least the surface in contact with the active material layer, and at least a part of the active material layer is embedded therein. A current collector for a lithium ion secondary battery is disclosed.

特開2016−192380号公報JP, 2016-192380, A

しかしながら、特許文献1に記載の集電体をリチウム全固体電池に用いた場合、放電時のLi溶出により、負極中のLiと固体電解質との間のLi伝導パスが途絶える結果、放電容量が低下するという問題があった。その推定メカニズムの詳細を以下説明する。   However, when the current collector described in Patent Document 1 is used for a lithium all-solid-state battery, the discharge capacity is reduced as a result of the interruption of the Li conduction path between Li in the negative electrode and the solid electrolyte due to elution of Li during discharge. Had the problem of The details of the estimation mechanism will be described below.

図5(a)〜(c)は、従来の全固体電池において、放電容量が低下する推定メカニズムを説明する模式図である。ここでいう従来の全固体電池とは、ステンレスメッシュ構造を有する負極集電体を用いた電池を指す。図5(a)〜(c)は、いずれも全固体電池の負極側200aの断面模式図であり、具体的には、固体電解質11とステンレスメッシュ集電体13aとの界面近傍の断面構造を示した模式図である。なお、図5(a)〜(c)中の13aは、具体的には、ステンレスメッシュ集電体を構成する各ワイヤの断面を示す。また、これらの図中、「Li」と記載された図形は金属Liを示す。
図5(a)は、充電直後の全固体電池の負極側200aの断面模式図である。図5(a)に示すように、充電によって、ステンレスメッシュ集電体13aにおけるステンレスワイヤ表面に、金属Liが析出する。
図5(b)は、放電中の全固体電池の負極側200aの断面模式図である。放電中は、固体電解質11と金属Liとの界面において、金属Liのイオン化反応が進行する。Liイオンが固体電解質11を介して正極へ、電子がステンレスメッシュ集電体13aを介して外部負荷へ、それぞれ供給されることにより、放電反応が完了する。放電反応は当該界面から始まるため、当該界面における金属Liが優先的に消費される。Li拡散による当該界面への金属Liの補充が遅い場合、図5(b)に示すように、主に当該界面側の金属Li表面に空孔が生じる。
図5(c)は、放電後の全固体電池の負極側200aの断面模式図である。金属Li表面の空孔同士が繋がって、固体電解質11と金属Liとの界面に隙間が生じる結果、金属Liと固体電解質との接触が絶たれる。そのため、一部の金属Liが消費されることなくステンレスメッシュ集電体13a表面に残留する。
FIGS. 5 (a) to 5 (c) are schematic diagrams illustrating an estimation mechanism in which the discharge capacity decreases in the conventional all solid state battery. The conventional all-solid-state battery referred to herein indicates a battery using a negative electrode current collector having a stainless steel mesh structure. FIGS. 5 (a) to 5 (c) are all schematic cross-sectional views of the negative electrode side 200a of the all solid battery, specifically, the cross sectional structure in the vicinity of the interface between the solid electrolyte 11 and the stainless steel mesh current collector 13a. It is a schematic diagram shown. In addition, 13a in FIG. 5 (a)-(c) shows specifically the cross section of each wire which comprises a stainless steel mesh collector. Moreover, the figure described as "Li" in these figures shows metal Li.
FIG. 5 (a) is a schematic cross-sectional view of the negative electrode side 200a of the all-solid-state battery immediately after charging. As shown in FIG. 5A, metal Li is deposited on the surface of the stainless steel wire in the stainless steel mesh current collector 13a by charging.
FIG.5 (b) is a cross-sectional schematic diagram of the negative electrode side 200a of the all-solid-state battery in discharge. During the discharge, the ionization reaction of metal Li proceeds at the interface between the solid electrolyte 11 and the metal Li. The discharge reaction is completed by supplying Li ions to the positive electrode through the solid electrolyte 11, and electrons to the external load through the stainless steel mesh current collector 13a. Since the discharge reaction starts from the interface, metal Li at the interface is preferentially consumed. When the replenishment of metal Li to the interface by the diffusion of Li is slow, as shown in FIG. 5 (b), vacancies are mainly generated on the surface of the metal Li on the interface side.
FIG.5 (c) is a cross-sectional schematic diagram of the negative electrode side 200a of the all-solid-state battery after discharge. The pores on the surface of the metal Li are connected to form a gap at the interface between the solid electrolyte 11 and the metal Li, and as a result, the contact between the metal Li and the solid electrolyte is cut off. Therefore, part of the metal Li remains on the surface of the stainless steel mesh current collector 13a without being consumed.

このように、従来の全固体電池においては、充放電に寄与しない、不活性なリチウム金属が徐々に負極に蓄積される。これに伴い、当該電池においては、充放電に寄与するリチウムの量が徐々に減る。そのため、充放電回数を重ねる程、負極が不可逆的に劣化していく結果、全固体電池全体の放電容量が低下するという課題があった。
本開示は全固体電池に関する上記実情を鑑みて成し遂げられたものであり、本開示の目的は、放電容量の低下を抑制できる全固体電池を提供することである。
Thus, in the conventional all solid battery, inactive lithium metal which does not contribute to charge and discharge is gradually accumulated in the negative electrode. Along with this, in the battery, the amount of lithium contributing to charge and discharge gradually decreases. Therefore, as the number of times of charge and discharge is increased, the negative electrode is irreversibly deteriorated, resulting in a problem that the discharge capacity of the entire all solid battery decreases.
The present disclosure has been achieved in view of the above-described situation regarding the all-solid-state battery, and an object of the present disclosure is to provide an all-solid-state battery capable of suppressing a decrease in discharge capacity.

本開示の全固体電池は、正極と、固体電解質と、負極とを有する全固体電池において、負極は、負極部材を備え、負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行することを特徴とする。   The all solid battery of the present disclosure is an all solid battery having a positive electrode, a solid electrolyte, and a negative electrode, wherein the negative electrode includes a negative electrode member, and the negative electrode member is made of Mg, Ag, Al and Au on the surface of a stainless steel mesh. At least one metal selected from the group consisting of: is coated, the ionization reaction of Li proceeds on the surface of the negative electrode member at the time of discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member at the time of charging.

本開示によれば、負極部材がステンレスメッシュ表面にLiと固溶可能な金属を含むため、放電時に溶出したLiが当該金属内を拡散することができる結果、固体電解質との接触がない金属Liも当該金属内を拡散することができ、Li伝導パスが途絶えることがないため、全固体電池の放電容量の低下を抑えることができる。   According to the present disclosure, since the negative electrode member contains a metal capable of solid solution with Li on the surface of the stainless steel mesh, Li eluted at the time of discharge can diffuse in the metal, and as a result, metal Li without contact with the solid electrolyte Since the metal can also diffuse in the metal and the Li conduction path is not interrupted, the decrease in discharge capacity of the all solid battery can be suppressed.

本開示の全固体電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。It is a figure which shows an example of the laminated constitution of the all-solid-state battery of this indication, Comprising: It is the figure which showed typically the cross section cut | disconnected in the lamination direction. 本開示の全固体電池の一実施形態における、充放電の推定メカニズムを説明する模式図である。It is a schematic diagram explaining the presumed mechanism of charging / discharging in one embodiment of the all-solid-state battery of this indication. 実施例1〜実施例4及び比較例1の全固体電池について充放電サイクル試験を実施した際の放電容量維持率の変化を示すグラフである。It is a graph which shows the change of the discharge capacity maintenance factor at the time of implementing a charge / discharge cycle test about the all-solid-state battery of Example 1- Example 4 and the comparative example 1. FIG. 実施例1と比較例1の全固体電池の2サイクル目の各充放電曲線を重ねて示したグラフである。It is the graph which accumulated and showed each charging / discharging curve of the 2nd cycle of the all-solid-state battery of Example 1 and Comparative Example 1. ステンレスメッシュ構造を有する集電体を用いた従来の全固体電池において、放電容量が低下する推定メカニズムを説明する模式図である。In the conventional all-solid-state battery using the current collector which has a stainless steel mesh structure, it is a schematic diagram explaining the presumed mechanism in which discharge capacity falls.

本開示の全固体電池は、正極と、固体電解質と、負極とを有する全固体電池において、負極は、負極部材を備え、負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行することを特徴とする。   The all solid battery of the present disclosure is an all solid battery having a positive electrode, a solid electrolyte, and a negative electrode, wherein the negative electrode includes a negative electrode member, and the negative electrode member is made of Mg, Ag, Al and Au on the surface of a stainless steel mesh. At least one metal selected from the group consisting of: is coated, the ionization reaction of Li proceeds on the surface of the negative electrode member at the time of discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member at the time of charging.

図1は、本開示の全固体電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。全固体電池100は、固体電解質1、正極2、負極3を備える。図1に示すように、固体電解質1の一方の面に正極2が存在し、固体電解質1の他方の面に負極3が存在する。
なお、本開示の全固体電池は、必ずしもこの例のみに限定されるものではない。
FIG. 1 is a view showing an example of the layer configuration of the all-solid-state battery of the present disclosure, and a view schematically showing a cross section cut in the stacking direction. The all-solid battery 100 includes a solid electrolyte 1, a positive electrode 2, and a negative electrode 3. As shown in FIG. 1, the positive electrode 2 is present on one side of the solid electrolyte 1, and the negative electrode 3 is present on the other side of the solid electrolyte 1.
In addition, the all-solid-state battery of this indication is not necessarily limited only to this example.

本開示の全固体電池においては、放電時に負極部材表面においてLiのイオン化反応が進行し、充電時に負極部材表面においてLiの析出反応が進行する。より具体的に、本開示の負極部材表面における放電反応及び充電反応は、下記式(I)に従い進行する。   In the all-solid-state battery of the present disclosure, the ionization reaction of Li proceeds on the surface of the negative electrode member during discharge, and the precipitation reaction of Li proceeds on the surface of the negative electrode member during charging. More specifically, the discharge reaction and charge reaction on the surface of the negative electrode member of the present disclosure proceed according to the following formula (I).

(上記式(I)中、左式から右式への矢印は放電反応を示し、右式から左式への矢印は充電反応を示す。) (In the above formula (I), the arrows from the left equation to the right equation indicate the discharge reaction, and the arrows from the right equation to the left equation indicate the charge reaction).

図2(a)〜(c)は、本開示の全固体電池の一実施形態における、充放電の推定メカニズムを説明する模式図である。図2(a)〜(c)は、いずれも全固体電池の負極側100aの断面模式図であり、具体的には、固体電解質1と負極部材3Aとの界面近傍の断面構造を示した模式図である。図2(a)〜(c)中の固体電解質1及び負極3は、図1中の固体電解質1又は負極3にそれぞれ対応する。図2(a)〜(c)中の3Aは、具体的には、ステンレスメッシュを構成する各ワイヤに、金属層が被覆した状態の断面を示す。また、これらの図中、「Li」と記載された図形は金属Liを示す。なお、本開示の全固体電池は、必ずしもこの実施形態のみに限定されるものではない。
図2(a)は、充電直後の全固体電池の負極側100aの断面模式図である。負極3は負極部材3Aを備える。負極部材3Aは、ステンレスメッシュ3aの表面に、金属層3bが被覆してなる。金属層3bは、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属からなる。図2(a)に示すように、充電後の負極部材3A表面には、金属Liが析出している。
図2(b)は、放電中(初期)の全固体電池の負極側100aの断面模式図である。放電中は、固体電解質1と金属Liとの界面に加えて、負極部材3Aと金属Liとの界面において、金属Liのイオン化反応が進行する。その理由は、金属層3bに使用される金属(Mg、Ag、Al及びAu)がいずれもLiと固溶可能である結果、金属層3b中をLiイオンが拡散し得るためである。したがって、Liイオンが固体電解質1(及び必要な場合には金属層3b)を介して正極へ、電子が負極部材3Aを介して外部負荷へ、それぞれ供給されることにより、放電反応が完了する。放電反応は主にこれら2種類の界面から始まるが、Liイオンの移動経路がより短い分、固体電解質1と金属Liとの界面における金属Liが優先的に消費される。Li拡散による当該界面への金属Liの補充が遅い場合、図2(b)に示すように、主に当該界面側の金属Li表面に空孔が生じる。
Fig.2 (a)-(c) is a schematic diagram explaining the presumed mechanism of charging / discharging in one embodiment of the all-solid-state battery of this indication. FIGS. 2 (a) to 2 (c) are all schematic cross-sectional views of the negative electrode side 100a of the all solid battery, specifically, a schematic diagram showing a cross-sectional structure in the vicinity of the interface between the solid electrolyte 1 and the negative electrode member 3A. FIG. The solid electrolyte 1 and the negative electrode 3 in FIGS. 2A to 2C correspond to the solid electrolyte 1 or the negative electrode 3 in FIG. 1, respectively. Specifically, 3A in FIGS. 2 (a) to 2 (c) shows a cross section in a state where each wire constituting the stainless steel mesh is covered with a metal layer. Moreover, the figure described as "Li" in these figures shows metal Li. In addition, the all-solid-state battery of this indication is not necessarily limited only to this embodiment.
Fig.2 (a) is a cross-sectional schematic diagram of the negative electrode side 100a of the all-solid-state battery immediately after charge. The negative electrode 3 includes a negative electrode member 3A. The negative electrode member 3A is formed by covering the surface of the stainless steel mesh 3a with a metal layer 3b. The metal layer 3b is made of at least one metal selected from the group consisting of Mg, Ag, Al and Au. As shown in FIG. 2 (a), metal Li is deposited on the surface of the negative electrode member 3A after charging.
FIG.2 (b) is a cross-sectional schematic diagram of the negative electrode side 100a of the all-solid-state battery in discharge (initial stage). During the discharge, in addition to the interface between the solid electrolyte 1 and the metal Li, the ionization reaction of the metal Li proceeds at the interface between the negative electrode member 3A and the metal Li. The reason is that as a result of all the metals (Mg, Ag, Al and Au) used for the metal layer 3b being in solid solution with Li, Li ions can diffuse in the metal layer 3b. Therefore, the discharge reaction is completed by supplying Li ions to the positive electrode through the solid electrolyte 1 (and the metal layer 3b if necessary) and electrons to the external load through the negative electrode member 3A. The discharge reaction mainly starts from the interface of these two types, but since the migration path of Li ions is shorter, metal Li at the interface between the solid electrolyte 1 and the metal Li is preferentially consumed. When the replenishment of metal Li to the interface by the diffusion of Li is slow, as shown in FIG. 2 (b), vacancies are mainly generated on the surface of the metal Li on the interface side.

図2(c)は、放電中(終盤)の全固体電池の負極側100aの断面模式図である。金属Li表面の空孔同士が繋がって、固体電解質1と金属Liとの界面に隙間が生じる結果、金属Liと固体電解質1との接触が絶たれる。しかし、負極部材3Aと金属Liとの界面は残る。
ここで、上述したように、金属層3bに使用される金属はいずれもLiと固溶可能であるため、金属層3b中をLiが拡散することができる。その結果、放電時に固体電解質1との接触が断たれた金属Liであっても、金属層3b中を拡散することにより、最終的に固体電解質1を介して正極に到達することができる。したがって、十分な量の金属Liを充放電反応に供することができると共に、Li伝導パスの断絶及びそれに伴うLiの不活性化を抑制することができる。
FIG.2 (c) is a cross-sectional schematic diagram of the negative electrode side 100a of the all-solid-state battery in discharge (final stage). The pores on the surface of the metal Li are connected to form a gap at the interface between the solid electrolyte 1 and the metal Li, so that the contact between the metal Li and the solid electrolyte 1 is broken. However, the interface between the negative electrode member 3A and the metal Li remains.
Here, as described above, since any of the metals used for the metal layer 3b can form a solid solution with Li, Li can diffuse in the metal layer 3b. As a result, even the metal Li whose contact with the solid electrolyte 1 is broken at the time of discharge can finally reach the positive electrode through the solid electrolyte 1 by diffusing in the metal layer 3 b. Therefore, a sufficient amount of metal Li can be supplied to the charge and discharge reaction, and the interruption of the Li conduction path and the accompanying deactivation of Li can be suppressed.

このように、本開示の全固体電池においては、不活性なリチウム金属の量が従来よりも少ないため、充放電に寄与するリチウムの量を常に一定以上確保することができる。そのため、充放電回数を重ねても、従来よりも負極が不可逆的に劣化しにくい結果、放電容量の低下を抑えることができる。   As described above, in the all solid state battery of the present disclosure, since the amount of inactive lithium metal is smaller than that of the prior art, the amount of lithium contributing to charge and discharge can be always ensured at a certain level or more. Therefore, even if the number of times of charge and discharge is repeated, as a result, the negative electrode is less likely to be irreversibly deteriorated than in the prior art, so that the decrease in discharge capacity can be suppressed.

負極は、負極部材を備える。負極部材中のステンレスメッシュは、電池部材(例えば、負極集電体等)として通常使用されるものであれば特に限定されない。電池部材として通常使用されるステンレスメッシュは、金属Liと反応しない部材である。
ステンレスメッシュは市販品でもよく、例えば、SUS網(ニラコ社製、#640)等を使用することができる。
金属Liは充電時に主にステンレスメッシュの網目の中に析出し、放電時はこの網目の中から溶出する。このように、金属Liの析出及び溶出(イオン化反応)は網目の中で生じる。また、金属Liの析出量は、通常、網目の形状や構造を著しく変形させるには至らない。したがって、本開示の負極部材においては、充放電による金属Liの析出及び溶出(イオン化反応)に伴う膨張収縮が、実質的に存在しない。
The negative electrode comprises a negative electrode member. The stainless steel mesh in the negative electrode member is not particularly limited as long as it is usually used as a battery member (for example, a negative electrode current collector etc.). The stainless steel mesh usually used as a battery member is a member which does not react with metal Li.
The stainless steel mesh may be a commercially available product, and, for example, SUS mesh (manufactured by Niraco, # 640) or the like can be used.
The metal Li mainly precipitates in the mesh of the stainless steel mesh during charging, and elutes from the mesh during discharge. Thus, precipitation and elution (ionization reaction) of metallic Li occurs in the network. Also, the amount of precipitation of metallic Li usually does not lead to significant deformation of the shape or structure of the mesh. Therefore, in the negative electrode member of the present disclosure, expansion and contraction due to precipitation and elution (ionization reaction) of metal Li due to charge and discharge do not substantially exist.

ステンレスメッシュの表面には、4種類の金属(Mg、Ag、Al及びAu)の内少なくともいずれか1つが被覆されている。つまり、ステンレスメッシュを被覆する金属は、1種類のみであってもよいし、2種類以上であってもよい。ステンレスメッシュ表面の少なくとも一部に当該金属が存在していれば、放電容量の低下抑制の効果が発揮されるため(図2(a)〜(c)参照)、当該金属の被覆範囲は、ステンレスメッシュ表面の一部であってもよいし、全部であってもよい。また、金属による被覆の態様は特に限定されない。ステンレスメッシュと当該金属とは互いに接していてもよいし、ステンレスメッシュと当該金属との間に他の層が介在していてもよい。
ステンレスメッシュ表面への金属の被覆方法は、特に限定されない。被覆方法の一例としては、ステンレスメッシュに対し当該金属を蒸着する方法が挙げられる。蒸着によって、ステンレスメッシュを構成するワイヤ表面に、金属層を均一に形成することができる。
蒸着方法の例は以下の通りである。DCスパッタリング装置等の蒸着装置を用いて、ステンレスメッシュに対し、上記4種類の金属の内少なくともいずれか1つを蒸着させ、金属膜(金属層)を成膜する。ステンレスメッシュは脱脂洗浄済みであってもよい。製膜時の温度は、例えば、室温であってもよい。
以上の蒸着方法により、ステンレスメッシュ中の各ワイヤの表面に対し、目的とする平均厚さで金属層を形成することができる。
なお、目的とする金属層とステンレスメッシュとの密着性を向上させるため、予め他の金属(例えば、チタン等)がステンレスメッシュに被覆されていてもよい。
2種類以上の金属を被覆に用いる場合には、金属を順に1種類ずつ被覆させてもよいし、2種類以上の金属を同時に被覆させてもよいし、2種類以上の金属を含む合金を被覆させてもよい。
金属層の平均厚さは特に限定されない。金属Li及びLiイオンが十分拡散でき、かつ導電性を妨げないという理由から、金属層の平均厚さは、例えば0.1μmであってもよい。金属層の平均厚さは、例えば、金属層について10〜20点ほど測定点をとり、各測定点における厚さの平均から求めてもよい。蒸着装置を用いて金属膜を成膜する場合には、ステンレスメッシュ付近に設置した膜厚計により測定した膜厚を、その金属層の平均厚さとしてもよい。
The surface of the stainless steel mesh is coated with at least one of four metals (Mg, Ag, Al and Au). That is, the metal covering the stainless steel mesh may be only one type or two or more types. If the metal is present on at least a part of the surface of the stainless steel mesh, the effect of suppressing the decrease in the discharge capacity is exhibited (see FIGS. 2A to 2C). It may be part or all of the mesh surface. Also, the mode of the metal coating is not particularly limited. The stainless steel mesh and the metal may be in contact with each other, or another layer may be interposed between the stainless steel mesh and the metal.
The method of coating the metal on the stainless mesh surface is not particularly limited. One example of the coating method is a method of vapor-depositing the metal on a stainless steel mesh. By vapor deposition, a metal layer can be uniformly formed on the surface of the wire constituting the stainless steel mesh.
The example of the vapor deposition method is as follows. At least one of the four types of metals is deposited on the stainless steel mesh using a deposition apparatus such as a DC sputtering apparatus to form a metal film (metal layer). The stainless steel mesh may be degreased and cleaned. The temperature at the time of film formation may be, for example, room temperature.
By the above vapor deposition method, a metal layer can be formed on the surface of each wire in the stainless steel mesh with a target average thickness.
In addition, in order to improve the adhesiveness of the metal layer made into the objective, and a stainless steel mesh, another metal (for example, titanium etc.) may be previously coat | covered by the stainless steel mesh.
When two or more metals are used for coating, the metals may be coated one by one in order, or two or more metals may be coated simultaneously, or an alloy containing two or more metals may be coated. You may
The average thickness of the metal layer is not particularly limited. The average thickness of the metal layer may be, for example, 0.1 μm, because metal Li and Li ions can diffuse sufficiently and do not interfere with the conductivity. The average thickness of the metal layer may be determined, for example, from about 10 to 20 measurement points of the metal layer, and the average thickness at each measurement point. When a metal film is formed using a vapor deposition apparatus, the film thickness measured by a film thickness meter provided in the vicinity of a stainless steel mesh may be used as the average thickness of the metal layer.

本開示の全固体電池は、単にめっきされた負極集電体を備える従来の電池とは、全く異なる。このような従来の電池においては、通常、負極に比較的高い作動電位の負極活物質(例えば、チタン酸リチウム(LTO)等(作動電位:1.5V vs.Li/Li))が使用されることが多い。
これに対し、本開示の全固体電池は、金属Liのイオン化反応(溶出反応)及び析出反応を利用する電池であり、その作動電位は0V(vs.Li/Li)である。このような比較的低い作動電位の全固体電池において、負極集電体に金属を被覆することは、通常は考えられない。特に、MgやAl等、酸化還元電位の低い(すなわち、イオン化傾向の高い)金属を負極集電体に被覆することは、従来技術の水準ではおよそ考えられない。
本開示では、従来の電池とは異なり、金属Liのイオン化反応(溶出反応)時に、負極中における金属Liの孤立化を抑える狙いがあってこそ、負極集電体に金属を被覆するという技術思想に至るものである。
The all-solid-state battery of the present disclosure is quite different from the conventional battery comprising simply plated negative electrode current collectors. In such a conventional battery, a negative electrode active material having a relatively high operating potential (for example, lithium titanate (LTO) etc. (operating potential: 1.5 V vs. Li / Li + )) is usually used for the negative electrode. Often.
On the other hand, the all-solid-state battery of the present disclosure is a battery utilizing ionization reaction (elution reaction) and precipitation reaction of metallic Li, and its operating potential is 0 V (vs. Li / Li + ). In such a relatively low working potential all-solid-state battery, it is usually not conceivable to coat the negative electrode current collector with metal. In particular, coating a negative electrode current collector with a metal having a low redox potential (that is, a high ionization tendency), such as Mg and Al, is roughly unthinkable in the level of the prior art.
In the present disclosure, unlike the conventional battery, it is a technical idea that the negative electrode current collector is coated with metal only when there is an aim to suppress the isolation of the metallic Li in the negative electrode during the ionization reaction (elution reaction) of metal Li. The

正極は、通常、正極活物質を含む。正極活物質としては、例えば、リチウム化合物が挙げられる。リチウム化合物には、リチウム合金及びリチウム錯体が含まれる。リチウム化合物としては、例えば、LiNi1/3Co1/3Mn1/3等を用いることができる。 The positive electrode usually contains a positive electrode active material. As a positive electrode active material, a lithium compound is mentioned, for example. Lithium compounds include lithium alloys and lithium complexes. As the lithium compound, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 or the like can be used.

正極は、必要であれば、さらに導電助剤及び固体電解質等を適宜含む。
導電助剤としては、例えば、短繊維状カーボン等の炭素材料や、金属材料等、全固体電池に通常使用されるものを用いることができる。
正極に使用される固体電解質としては、例えば、硫化物系固体電解質等を用いることができる。
The positive electrode optionally further includes a conductive auxiliary agent, a solid electrolyte, and the like.
As the conductive additive, for example, carbon materials such as short fibrous carbon, metal materials, and the like that are usually used in all solid batteries can be used.
As a solid electrolyte used for a positive electrode, a sulfide type solid electrolyte etc. can be used, for example.

正極の形成に使用される正極合材は、正極活物質、導電助剤及び固体電解質等を適宜混合することにより調製される。混合比は特に限定されないが、例えば、正極活物質:固体電解質:導電助剤=66:31:3(質量比)等が挙げられる。
正極合材の調製方法は特に限定されず、例えば、上記正極用の材料を混合する方法が挙げられる。
The positive electrode mixture used for forming the positive electrode is prepared by appropriately mixing a positive electrode active material, a conductive additive, a solid electrolyte, and the like. Although a mixing ratio is not specifically limited, For example, a positive electrode active material: solid electrolyte: conductive support agent = 66: 31: 3 (mass ratio) etc. are mentioned.
The method of preparing the positive electrode mixture is not particularly limited, and examples thereof include a method of mixing the materials for the positive electrode.

正極集電体の材料は、全固体電池に通常使用されるものであれば特に限定されず、例えば、鋼等が挙げられる。   The material of the positive electrode current collector is not particularly limited as long as it is generally used for an all solid battery, and examples thereof include steel.

固体電解質は、正極と負極との間に存在する層である。固体電解質を介して、正極と負極との間にイオンが伝導する。
固体電解質の材料は、全固体電池に通常使用されるものであれば特に限定されず、例えば、硫化物系固体電解質等が挙げられる。
The solid electrolyte is a layer present between the positive electrode and the negative electrode. Ions are conducted between the positive electrode and the negative electrode through the solid electrolyte.
The material of the solid electrolyte is not particularly limited as long as it is usually used for an all solid battery, and examples thereof include a sulfide-based solid electrolyte.

全固体電池の製造方法の一例を以下説明する。まず、成型した固体電解質の一方の面に正極を形成する。次に、当該固体電解質の他方の面に負極部材を配置して成型し、全固体電池が完成する。   An example of the manufacturing method of an all-solid-state battery is demonstrated below. First, a positive electrode is formed on one side of the molded solid electrolyte. Next, the negative electrode member is disposed on the other surface of the solid electrolyte and molded to complete an all solid battery.

1.全固体電池の製造
[実施例1]
(1)正極合材の調製
下記正極用の材料を有機溶媒中で湿式混合し、正極合材を調製した。
・正極活物質(LiNi1/3Co1/3Mn1/3) 66.2質量%
・硫化物系固体電解質 31.0質量%
・導電助剤(短繊維状カーボン) 2.8質量%
1. Production of All-Solid-State Battery [Example 1]
(1) Preparation of Positive Electrode Mixture Material The following materials for the positive electrode were wet mixed in an organic solvent to prepare a positive electrode mixture.
・ Positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) 66.2% by mass
· Sulfide-based solid electrolyte 31.0% by mass
・ Conductive agent (short fibrous carbon) 2.8% by mass

(2)負極部材の作製
ステンレスメッシュとして、SUS網(ニラコ社製、#640)を準備した。このSUS網に対しMg層を以下の手順により蒸着させた。
複数のターゲットを備えるDCスパッタリング装置にて、脱脂洗浄済みのSUS網に対し、まずTiを蒸着させ、膜厚10nmのTi膜(Ti層)を製膜した。予めステンレスメッシュをTi膜により被覆した理由は、Mg層とSUSの密着性を向上させる為である。
次に、上記装置にて、Ti製膜後のSUS網に対し、Mgを蒸着させ、膜厚0.1μmのMg膜(Mg層)を製膜した。
なお、以上の製膜操作は全て室温にて行われた。また、Ti膜の膜厚、及びMg膜の膜厚は、いずれも、DCスパッタリング装置内の、SUS網付近に設置された水晶振動子式膜厚計にて測定した値である。
その結果、SUS網を構成する各ステンレスワイヤの表面に、平均厚さ0.1μmのMg層が被覆した負極部材が得られた。
(2) Preparation of Negative Electrode Member As a stainless steel mesh, a SUS mesh (manufactured by Niraco, # 640) was prepared. An Mg layer was deposited on the SUS mesh in the following procedure.
In a DC sputtering apparatus equipped with a plurality of targets, Ti was first deposited on the degreased and cleaned SUS mesh to form a Ti film (Ti layer) having a thickness of 10 nm. The reason for covering the stainless steel mesh with the Ti film in advance is to improve the adhesion between the Mg layer and the SUS.
Next, Mg was vapor-deposited on the SUS mesh after Ti film formation using the above-described apparatus to form a Mg film (Mg layer) having a thickness of 0.1 μm.
The above film forming operations were all performed at room temperature. Further, the film thickness of the Ti film and the film thickness of the Mg film are values measured with a quartz crystal oscillator type film thickness meter installed near the SUS mesh in the DC sputtering apparatus.
As a result, a negative electrode member was obtained in which an Mg layer having an average thickness of 0.1 μm was coated on the surface of each stainless steel wire constituting the SUS mesh.

(3)積層体の成型
まず、粉末状の硫化物系固体電解質粉末を、アルミナ製円筒状ダイ(断面積:1cm)に詰めた後、鋼製のパンチ棒を用いて荷重10kNで一軸圧縮成型することにより、固体電解質を成型した。
次に、成型後の固体電解質の一方の面上に正極合材を加えた後、パンチ棒を用いて荷重10kNで一軸圧縮成型することにより、正極と固体電解質との積層体を得た。
続いて、前記積層体において、固体電解質の他方の面上に負極部材を加えた後、パンチ棒を用いて荷重40kNで一軸圧縮成型することにより、正極、固体電解質及び負極部材が積層した、実施例1の全固体電池を得た。
(3) Molding of the Laminate First, the powdery sulfide-based solid electrolyte powder is packed into a cylindrical die (cross-sectional area: 1 cm 2 ) made of alumina, and then uniaxially compressed at a load of 10 kN using a steel punch rod. The solid electrolyte was molded by molding.
Next, after the positive electrode mixture was added onto one surface of the molded solid electrolyte, uniaxial compression molding was performed with a load of 10 kN using a punch rod to obtain a laminate of the positive electrode and the solid electrolyte.
Subsequently, in the laminate, after the negative electrode member is added on the other surface of the solid electrolyte, the positive electrode, the solid electrolyte, and the negative electrode member are laminated by uniaxial compression molding with a load of 40 kN using a punch bar. The all solid state battery of Example 1 was obtained.

[実施例2〜実施例4]
上記実施例1の「(2)負極部材の作製」において、Mgを、Ag(実施例2、Ag層の平均厚さ:0.1μm)、Al(実施例3、Al層の平均厚さ:0.1μm)、又はAu(実施例4、Au層の平均厚さ:0.1μm)に替えたこと以外は、実施例1と同様の工程により、実施例2〜実施例4の全固体電池を得た。
[Examples 2 to 4]
In “(2) Preparation of negative electrode member” in Example 1 above, Mg is Ag (Example 2, average thickness of Ag layer: 0.1 μm), Al (Example 3, average thickness of Al layer: All-solid-state batteries of Examples 2 to 4 according to the same process as in Example 1 except that 0.1 μm) or Au (Example 4, average thickness of Au layer: 0.1 μm) was used. I got

[比較例1]
上記実施例1において、「(2)負極部材の作製」を実施せず、かつ、「(3)全固体電池の製造」において、負極部材の替わりにSUS網(ニラコ社製、#640)を用いたこと以外は、実施例1と同様の工程により、比較例1の全固体電池を作製した。
Comparative Example 1
In Example 1 above, “(2) Production of negative electrode member” is not carried out, and in “(3) Production of all-solid battery”, SUS mesh (manufactured by Niraco, # 640) is used instead of the negative electrode member. An all-solid-state battery of Comparative Example 1 was produced in the same manner as in Example 1 except for the use.

2.充放電試験
実施例1〜実施例4及び比較例1の全固体電池について、パンチ棒により積層方向に沿って荷重200Nを加えた状態で、パンチ棒を集電体としても使用しながら、以下の条件で充放電を9サイクル行い、放電容量を測定した。比較例1については、さらに10サイクル目の充放電を行い、放電容量を測定した。
・充放電レート: CC:1/10C → CV:1/100C
・充電電位:3.0Vから4.27Vまで
・放電電位:4.27Vから3.0Vまで
・温度:25℃
2. Charge / Discharge Test The all-solid-state batteries of Examples 1 to 4 and Comparative Example 1 were subjected to the following using a punch bar as a current collector in a state where a load of 200 N was applied by a punch bar along the stacking direction. 9 cycles of charge and discharge were performed under the conditions, and the discharge capacity was measured. About the comparative example 1, charge and discharge of the 10th cycle were performed further, and discharge capacity was measured.
・ Charge / discharge rate: CC: 1 / 10C → CV: 1 / 100C
Charge potential: 3.0 V to 4.27 V Discharge potential: 4.27 V to 3.0 V Temperature: 25 ° C.

3.考察
図3は、実施例1〜実施例4及び比較例1の全固体電池について、25℃、1/10Cで充放電サイクル試験を実施した際の放電容量維持率(%)の変化を示すグラフである。ここで、放電容量維持率とは、下記式Aにより示される値である。
式A: R=(C/C)*100
(上記式A中、Rは各全固体電池のxサイクル目の放電容量維持率(%)を、Cは各全固体電池のxサイクル目の放電容量を、Cは各全固体電池の1サイクル目の放電容量を、それぞれ示す。なお、xは1〜10の自然数である。)
3. 3. Discussion FIG. 3 is a graph showing a change in discharge capacity retention rate (%) when performing charge / discharge cycle tests at 25 ° C. and 1/10 C. for all the solid batteries of Examples 1 to 4 and Comparative Example 1. It is. Here, the discharge capacity retention rate is a value represented by the following formula A.
Formula A: R x = (C x / C 1 ) * 100
(In the above-mentioned formula A, R x is the discharge capacity maintenance ratio (%) of the all cycles of all solid batteries, C x is the discharge capacity of all cycles of all solid batteries, C 1 is each all solid battery The discharge capacity of the first cycle of is shown, where x is a natural number of 1 to 10.)

まず、比較例1の全固体電池において、9サイクル目の放電容量維持率は20%を下回る。9サイクル目の放電容量維持率が20%未満となるのは、比較例1のみである。したがって、SUS網表面に金属リチウムが直接析出した負極を用いた場合、放電容量が著しく低下し、顕著なサイクル劣化を示すことが分かる。
これに対し、実施例1〜実施例4の全固体電池においては、9サイクルの充放電を経た後も、放電容量維持率が20%を超える。特に、実施例1(Mg層)の全固体電池、及び実施例3(Al層)の全固体電池は、9サイクル目の放電容量維持率が40%を超える。
以上の結果より、ステンレスメッシュ表面に金属が被覆してなる負極部材を用いた全固体電池(実施例1〜実施例4)は、ステンレスメッシュをそのまま負極とする全固体電池(比較例1)と比較して、サイクル劣化が抑えられることが実証された。
First, in the all-solid-state battery of Comparative Example 1, the discharge capacity retention ratio at the 9th cycle is less than 20%. It is only Comparative Example 1 that the discharge capacity retention rate at the 9th cycle is less than 20%. Accordingly, it can be seen that when the negative electrode in which metallic lithium is directly deposited on the surface of the SUS mesh is used, the discharge capacity is significantly reduced, and significant cycle deterioration is exhibited.
On the other hand, in the all-solid batteries of Examples 1 to 4, the discharge capacity retention rate exceeds 20% even after 9 cycles of charge and discharge. In particular, the all-solid-state battery of Example 1 (Mg layer) and the all-solid-state battery of Example 3 (Al layer) have a discharge capacity maintenance ratio of 9th cycle exceeding 40%.
From the above results, all solid batteries (Examples 1 to 4) using the negative electrode member in which the metal is coated on the surface of the stainless steel mesh (Examples 1 to 4) are compared with the all solid battery (Comparative Example 1) using the stainless steel mesh as the negative electrode as it is In comparison, it was demonstrated that cycle deterioration was suppressed.

図4は、実施例1と比較例1の全固体電池の2サイクル目の各充放電曲線を重ねて示したグラフである。
比較例1の充放電曲線によれば、充電容量が約130mAh/gであるのに対し、放電容量が100mAh/g未満である。すなわち、比較例1の全固体電池においては、放電容量が充電容量よりも30mAh/g程度小さい。
これに対し、実施例1の充放電曲線によれば、実施例1の全固体電池の充電容量及び放電容量は共に約150mAh/gである。実施例1の全固体電池においては、放電容量と充電容量の差が10mAh/g未満と小さい。
以上の結果より、ステンレスメッシュ表面に金属が被覆してなる負極部材を用いた全固体電池(実施例1)は、ステンレスメッシュをそのまま負極とする全固体電池(比較例1)と比較して、放電容量と充電容量の差が小さいため、負極において不可逆的に生じる劣化が小さいことが裏付けられる。
FIG. 4 is a graph showing the charge-discharge curves of the second cycle of the all-solid-state batteries of Example 1 and Comparative Example 1 in an overlapping manner.
According to the charge and discharge curve of Comparative Example 1, the discharge capacity is less than 100 mAh / g while the charge capacity is about 130 mAh / g. That is, in the all-solid-state battery of Comparative Example 1, the discharge capacity is about 30 mAh / g smaller than the charge capacity.
On the other hand, according to the charge-discharge curve of Example 1, both the charge capacity and the discharge capacity of the all-solid-state battery of Example 1 are about 150 mAh / g. In the all-solid-state battery of Example 1, the difference between the discharge capacity and the charge capacity is as small as less than 10 mAh / g.
From the above results, the all-solid-state battery (Example 1) using the negative electrode member in which the metal is coated on the surface of the stainless steel mesh (Example 1) is compared with the all-solid-state battery (Comparative Example 1) using the stainless steel mesh as the negative electrode as it is. Since the difference between the discharge capacity and the charge capacity is small, it is supported that the deterioration caused irreversibly in the negative electrode is small.

1 固体電解質
2 正極
3 負極
3A 負極部材
3a ステンレスメッシュ
3b 金属層
11 固体電解質
13a ステンレスメッシュ集電体
100 全固体電池
100a,200a 全固体電池の負極側
DESCRIPTION OF SYMBOLS 1 solid electrolyte 2 positive electrode 3 negative electrode 3A negative electrode member 3a stainless steel mesh 3b metal layer 11 solid electrolyte 13a stainless steel current collector 100 all solid battery 100a, 200a all solid battery negative electrode side

Claims (1)

正極と、固体電解質と、負極とを有する全固体電池において、
負極は、負極部材を備え、
負極部材は、ステンレスメッシュの表面に、Mg、Ag、Al及びAuからなる群より選ばれる少なくとも1つの金属が被覆してなり、
放電時に負極部材表面においてLiのイオン化反応が進行し、
充電時に負極部材表面においてLiの析出反応が進行することを特徴とする、全固体電池。
In an all-solid-state battery having a positive electrode, a solid electrolyte, and a negative electrode,
The negative electrode comprises a negative electrode member,
The negative electrode member is obtained by coating the surface of a stainless steel mesh with at least one metal selected from the group consisting of Mg, Ag, Al and Au,
During discharge, the ionization reaction of Li proceeds on the surface of the negative electrode member,
An all solid battery characterized in that a deposition reaction of Li proceeds on the surface of the negative electrode member during charging.
JP2017215042A 2017-11-07 2017-11-07 All solid state battery Active JP6828656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215042A JP6828656B2 (en) 2017-11-07 2017-11-07 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215042A JP6828656B2 (en) 2017-11-07 2017-11-07 All solid state battery

Publications (2)

Publication Number Publication Date
JP2019087420A true JP2019087420A (en) 2019-06-06
JP6828656B2 JP6828656B2 (en) 2021-02-10

Family

ID=66763247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215042A Active JP6828656B2 (en) 2017-11-07 2017-11-07 All solid state battery

Country Status (1)

Country Link
JP (1) JP6828656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153582A (en) * 2018-03-02 2019-09-12 株式会社Gsユアサ Alkali metal ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126770A (en) * 1984-11-26 1986-06-14 Hitachi Ltd All solid type lithium cell
JP2015519711A (en) * 2013-05-07 2015-07-09 エルジー・ケム・リミテッド Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
JP2015207494A (en) * 2014-04-22 2015-11-19 シャープ株式会社 battery container and metal-air battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126770A (en) * 1984-11-26 1986-06-14 Hitachi Ltd All solid type lithium cell
JP2015519711A (en) * 2013-05-07 2015-07-09 エルジー・ケム・リミテッド Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
JP2015207494A (en) * 2014-04-22 2015-11-19 シャープ株式会社 battery container and metal-air battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153582A (en) * 2018-03-02 2019-09-12 株式会社Gsユアサ Alkali metal ion battery
JP7447396B2 (en) 2018-03-02 2024-03-12 株式会社Gsユアサ alkali metal ion battery

Also Published As

Publication number Publication date
JP6828656B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
Meng Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition
JP5128695B2 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, lithium ion secondary battery using the electrode
JP4219391B2 (en) Non-aqueous electrolyte secondary battery
KR101975508B1 (en) Methods and energy storage devices utilizing electrolytes having surface-smoothing additives
US20150118572A1 (en) Solid-state battery and methods of fabrication
Lee et al. Leveraging Titanium to Enable Silicon Anodes in Lithium‐Ion Batteries
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP4338506B2 (en) Lithium secondary battery and manufacturing method thereof
JP4497899B2 (en) Lithium secondary battery
JP2017111930A (en) All-solid battery and production method thereof
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2006278104A (en) Lithium secondary battery
JP2016207636A (en) Positive electrode for lithium ion battery and lithium ion battery using the same
JP2013165250A (en) Collector and electrode, and power storage element using the same
JP2008047306A (en) Nonaqueous electrolyte secondary battery
Meng et al. Atomic layer deposition of nanophase materials for electrical energy storage
JP2019087420A (en) All-solid battery
JP2013151730A (en) Copper foil, negative pole electrode of secondary battery, secondary battery, and printed circuit board
JP5058381B1 (en) Current collector and electrode, and power storage device using the same
JP2008066279A (en) Negative electrode for nonaqueous electrolyte secondary battery
US20220200002A1 (en) All-solid-state battery comprising lithium storage layer having multilayer structure and method of manufacturing same
JP2009272243A (en) Nonaqueous electrolyte secondary battery
WO2009084329A1 (en) Positive electrode for nonaqueous electrolyte secondary battery
JP4954902B2 (en) Non-aqueous electrolyte secondary battery
JP2007273381A (en) Lithium ion secondary battery negative electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R151 Written notification of patent or utility model registration

Ref document number: 6828656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151