JP2019084082A - 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム - Google Patents

粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム Download PDF

Info

Publication number
JP2019084082A
JP2019084082A JP2017215079A JP2017215079A JP2019084082A JP 2019084082 A JP2019084082 A JP 2019084082A JP 2017215079 A JP2017215079 A JP 2017215079A JP 2017215079 A JP2017215079 A JP 2017215079A JP 2019084082 A JP2019084082 A JP 2019084082A
Authority
JP
Japan
Prior art keywords
particle
particle beam
information
secondary particles
energy spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017215079A
Other languages
English (en)
Other versions
JP7061741B2 (ja
Inventor
酒井 真理
Mari Sakai
真理 酒井
隆史 中野
Takashi Nakano
隆史 中野
荒川 和夫
Kazuo Arakawa
和夫 荒川
美貴子 菊地
Mikiko Kikuchi
美貴子 菊地
充孝 山口
Mitsutaka Yamaguchi
充孝 山口
悠人 長尾
Yuto Nagao
悠人 長尾
有木 河地
Naoki Kawachi
有木 河地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
Gunma University NUC
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, National Institutes for Quantum and Radiological Science and Technology filed Critical Gunma University NUC
Priority to JP2017215079A priority Critical patent/JP7061741B2/ja
Publication of JP2019084082A publication Critical patent/JP2019084082A/ja
Application granted granted Critical
Publication of JP7061741B2 publication Critical patent/JP7061741B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

【課題】二次粒子のエネルギー分布に基づいて被照射体の量を算出する。【解決手段】被照射体に入射した粒子線から作用を受けた二次粒子のエネルギースペクトル情報を検出する検出部と、前記検出部により検出された前記二次粒子のエネルギースペクトル情報から、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する算出部と、を備える粒子線モニタリング装置とする。【選択図】図2

Description

本発明は、粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラムに関する。
近年、最先端の放射線がん治療においては、患部に大線量を照射しつつ正常組織線量を飛躍的に低減させる「粒子線治療」が用いられている。粒子線は直進性に優れると共に、ブラッグピークを利用することにより、患部に集中的に線量を与えることが可能である。病巣部位に精密にピンポイントで粒子線を照射するための加速器又はビーム技術として、ビームを細く集束させたペンシルビーム形成やマイクロビーム形成技術などが既に開発されている。
特開2012−170655号公報
しかしながら、現在の粒子線モニタリング技術では、リアルタイムで粒子線の体内到達深度をモニタすることができないため、治療技術の確立・向上を困難にしている。また、照射中の病巣部位への線量分布をリアルタイムに測定することが難しく、治療計画と実験的及び臨床的に蓄積されてきた測定データを基に治療が行われている。
そのため、線量分布のリアルタイムモニタリング技術を実現できれば、病巣部位に粒子線が確実に照射されていることを確認及び実証しながら治療することが可能となり、信頼性確保という観点から医学的にきわめて大きな意味を持つ。
線量分布をモニタリングする手法の1つとして、粒子線照射時に発生する二次粒子を計測するという手法が提案されている。粒子線(一次粒子)が物質(例えば、生体)に入射すると、核反応や電磁相互作用により様々な粒子線や光子線(二次粒子)を発生させる。これらの二次粒子を計測することにより、元の一次粒子の飛程や線量分布を測定しようというものである。
ただし、二次粒子も生体内で周囲の物質と相互作用を起こす。そのため、検出器に到達するまでの生体内の物質分布情報が分からなければ、正確な飛程・線量分布を測定することが難しい。この生体内の物質分布情報を得るために、従来は、粒子線治療装置や二次粒子測定装置とは別にX線断層撮影装置等を準備し利用することが求められていた。しかし、X線断層撮影装置の利用はX線による被ばくを伴う。また、X線断層撮影は治療中に行うことが難しく、通常は治療前もしくは治療後に行う。そのため、治療ビーム照射中の物質分布情報を取得することは困難であった。
本発明は、二次粒子のエネルギー分布に基づいて生体内の物質分布情報を得る方法を提供することを目的とする。
上記課題を解決するために、以下の手段を採用する。
即ち、第1の態様は、
被照射体に入射した粒子線から作用を受けた二次粒子のエネルギースペクトル情報を検出する検出部と、
前記検出部により検出された前記二次粒子のエネルギースペクトル情報から、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する算出部と、
を備える粒子線モニタリング装置とする。
開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
本発明によれば、二次粒子のエネルギー分布に基づいて生体内の物質分布情報を得る方法を提供することができる。
図1は、一次粒子が被照射体に照射された際に発生する二次粒子の発生量と、発生した二次粒子が被照射体を通過して検出器に到達する検出量とのエネルギー依存性の例を示す図である。 図2は、実施形態に係る粒子線モニタリング装置の構成例を示す図である。 図3は、検出部11の構成例を示す図である。 図4は、被照射体2の位置関係に応じて二次粒子のエネルギースペクトルを検出部11が検出する測定方法の例1を示す図である。 図5は、被照射体2の位置関係に応じて二次粒子のエネルギースペクトルを検出部11が検出する測定方法の例2を示す図である。 図6は、実施形態の二次粒子のエネルギースペクトル検出を説明する図である。 図7は、複数の側方幅wについて、R1及びR2の関係を示すグラフである。 図8は、複数の軸方向深さdについて、R1及びR2の関係を示すグラフである。 図9は、図8のR1及びR2の関係のグラフにおいて、側方幅が1cmのものを抽出したグラフである。 図10は、図9と同様のデータにおいて、軸方向深さとR2の関係を示すグラフである。 図11は、複数の側方幅wについて、R1及びR2の関係を示すグラフである。 図12は、複数の軸方向深さdについて、R1及びR2の関係を示すグラフである。 図13は、図12のR1及びR2の関係のグラフにおいて、側方幅が1cmのものを抽出したグラフである。 図14は、図13と同様のデータにおいて、軸方向深さとR2の関係を示すグラフである。 図15は、被照射体における軸方向深さd及び側方幅wの算出の動作フローの例を示す図である。
以下、図面を参照して実施形態について説明する。実施形態の構成は例示であり、発明の構成は、開示の実施形態の具体的構成に限定されない。発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
〔実施形態〕
本実施形態は、粒子線(一次粒子)を被照射体に照射した際に発生する二次粒子(X線、ガンマ線等)の観測による粒子線モニタリング方法である。一次粒子は、例えば、炭素線、陽子線である。本実施形態における二次粒子は、入射粒子線のエネルギーの一部を付与された二次粒子を指す。二次粒子の具体例として、X線、ガンマ線、電子、中性子、陽子、ヘリウム原子核、リチウム原子核、ベリリウム原子核、ホウ素原子核、炭素原子核等が示される。二次粒子の1種であるX線には「被照射体を構成する原子が励起され、脱励起を起こす際に放出されるX線」と「被照射体を構成する原子を構成する電子がイオン化された後、イオン化した電子が放出するX線、つまり、電子制動輻射」とが含まれる。このため、これら両方のX線を二次粒子として検出しても良いし、いずれか一方のX線を二次粒子として検出しても良い。なお、電子制動輻射により生じるX線(二次粒子)は、主に、電磁相互作用によって発生するため、原子核反応よりも反応確率が10から10程度大きい。二次粒子のもつエネルギースペクトルは、粒子線のイオンエネルギーに強い相関を持つ。
二次粒子は、20keVから1000keV程度のエネルギーに広がって分布するスペクトルを有する。この程度のエネルギーの二次粒子(X線、ガンマ線等)は、エネルギーが低いほど相互作用(コンプトン散乱、光電吸収など)を起こしやすいため、二次粒子は検出器まで到達する確率が低い。一方、二次粒子のエネルギーが高いと、二次粒子は検出器まで到達する確率が高い。したがって、スペクトルの形状は、二次粒子が発生から検出器に到達するまでに通過する被照射体の距離(通過距離)に依存する。
つまり、被照射体の各位置における二次粒子のエネルギースペクトルを観測することによって、被照射体中の二次粒子発生位置における粒子線のエネルギー(粒子線の到達距離に対応)及び二次粒子が通過した被照射体の距離を求めることができる。本実施形態では、二次粒子を観察することにより、粒子線リアルタイムモニタリングを行う。
図1は、一次粒子が被照射体に照射された際に発生する二次粒子の発生量と、発生した二次粒子が被照射体を通過して検出器に到達する検出量とのエネルギー依存性の例を示す図である。図1のグラフの横軸は二次粒子のエネルギーであり、縦軸は二次粒子の発生量または検出量を示す。二次粒子の発生量に対する検出量の割合は、二次粒子のエネルギーが大きくなるほど大きくなる。図1では、連続エネルギースペクトルを例示したが、二次粒子のエネルギースペクトルは連続エネルギースペクトルでなくても構わない。つまり、不連続エネルギースペクトルを持っても良い。また、連続エネルギースペクトルと不連続エネルギースペクトルを組み合わせたエネルギースペクトルであっても良い。
(構成例)
図2は、本実施形態に係る粒子線モニタリング装置の構成例を示す図である。図2に示されるとおり、粒子線モニタリング装置1は、検出部11及び演算部12を備える。なお、検出部11は、演算部12により制御可能な状態で接続している。
検出部11は、加速器3から入射した粒子線について、被照射体2中において当該粒子線から作用を受けた二次粒子の放射線情報を、被照射体2の位置関係に応じて検出する。二次粒子の放射線情報は、例えば、一次粒子によって発生するX線又はガンマ線等(二次粒子)のうちの少なくとも一つのエネルギースペクトルである。
図3は、検出部11の構成例を示す図である。図3に示されるとおり、検出部11は、検出器111、電荷有感型増幅器(Charge Sensitive Amplifier)112、整形増幅器(Shaping Amplifier)113、アナログデジタル変換器(Analog Digital Converter)114を備える。
検出器111は、例えば、テルル化カドミウム半導体検出器(CdTe)である。本実施形態では、検出器111は、入射する二次粒子により生成される電気信号により、二次粒子のエネルギースペクトルを得ることができる検出器であれば何でもよい。図3に示されるとおり、検出器111は、HV(High Voltage)、カップリングコンデンサ(Cc)及びバイアス抵抗(Rb)に接続される。これにより、検出器111に生じた電荷の変化分のみがカップリングコンデンサを介して、電荷有感型増幅器112に伝達される。
電荷有感型増幅器112は、検出器111中で生成された電荷を読み出して、電圧に変換する。整形増幅器113は、電荷有感型増幅器112により電圧に変換された信号の波形整形と増幅を施す。そして、当該信号の波高値(パルスハイト)は、アナログデジタル変換器114により読み取られる。
以上により、検出部11は、二次粒子のエネルギースペクトルを取得する。
図4及び図5は、被照射体2の位置関係に応じて二次粒子のエネルギースペクトルを検出部11が検出する測定方法の例を示す図である。
検出部11は、図4に示されるとおり、二次粒子の入射方向に応じて平行光線を作るコリメータ120を更に備えることにより、二次粒子のエネルギースペクトルを被照射体2の位置関係に応じて検出してもよい。この場合、粒子線の照射により放出されるX線又はガンマ線等(二次粒子)は、コリメータ120により入射方向に応じた位置における平行光線となる。したがって、検出部11が備える検出器111は、粒子線の照射により放出されるX線又はガンマ線等(二次粒子)のエネルギースペクトルをより高い位置分解能で測定することができることが好ましい。コリメータ120として、例えば、スリット状コリメータ、筒状コリメータ、ピンホール状コリメータ、パラレルホール状コリメータ、ファンビーム状コリメータが挙げられる。図4では、コリメータ120として、スリット状コリメータの例を挙げている。
また、検出部11は、図5に示されるとおり、演算部12により制御可能な駆動機構121を更に備えることにより、二次粒子のエネルギースペクトルを被照射体2の位置関係に応じて検出してもよい。駆動機構121は、例えば、粒子線の進行方向と平行な方向に動作する。そして、検出部11は、当該駆動機構121により、粒子線の進行方向と平行な方向に移動させられることにより、二次粒子のエネルギースペクトルを被照射体2の位置関係に応じて検出する。図5に示される検出部11は、図4のようにコリメータ120を更に備えてもよい。コリメータは、図4のようなスリット状コリメータに限定されず、上記のような他の種類のコリメータであってもよい。
また、駆動機構121により検出部11を移動させる代わりに、複数個の検出部11を配置してもよい。これによりバックグラウンドの時間変動による測定誤差を相殺でき、精度良い測定が可能となる。
次に、演算部12について説明する。演算部12は、検出部11により検出された位置関係に応じた二次粒子の放射線情報(エネルギースペクトル)から、被照射体中における
粒子線の挙動に関する情報を求める。図2に示されるとおり、演算部12は、ハードウェア構成として、バス23で接続される、記憶部21、制御部22、入出力部24等の既存のハードウェアを有している。
記憶部21は、例えば、ハードディスクであり、制御部22で実行される処理で利用される各種データ及びプログラムを記憶する。
制御部22は、マイクロプロセッサ又はCPU(Central Processing Unit)等の1又は複数のプロセッサであり、このプロセッサの処理に利用される周辺回路(ROM(Read Only Memory)、RAM(Random Access Memory)、インタフェース回路等)を有する。
入出力部24は、例えば、USB(Universal Serial Bus)やLAN(Local Area Network)等であり、データを入出力するためのインタフェースである。本実施形態では、演算部12は、入出力部24を介して検出部11と接続している。例えば、演算部12に含まれる制御部22が、入出力部24を介して検出部11を制御する。より具体的には、例えば、記憶部21に格納されたプログラム等が制御部22の周辺回路であるRAM等に展開され、制御部22のプロセッサにより実行されることによって発生する電気信号が入出力部24を介して検出部11に伝達される。これにより、検出部11は、制御部22によって制御される。
なお、演算部12は、PC(Personal Computer)等のような汎用コンピュータで構成されてもよい。
図2に示されるとおり、制御部22は、算出部31を含む。算出部31は、記憶部21に格納されたプログラム等が制御部22の周辺回路であるRAM等に展開され、制御部22のプロセッサにより実行されることによって実現される。
算出部31は、検出部11により検出された位置関係に応じた二次粒子の放射線情報(エネルギースペクトル)から、被照射体中における粒子線の挙動に関する情報および二次粒子の挙動に関する情報を求める。
(動作例)
図6は、本実施形態の二次粒子のエネルギースペクトル検出を説明する図である。図6で示すように、加速器3で所定のエネルギーに加速された粒子線(一次粒子)ビームは、被照射体2に入射され、ビーム軸方向に距離d、進んだ後に二次粒子を発生させる。二次粒子の発生位置から、ビーム軸方向に垂直に進む二次粒子は、被照射体内を距離w、進み、検出部11で検出される。ここでは、被照射体2として、例えば、生体内物質を模擬した水ファントムが用いられる。水ファントムは、例えば、粒子線のビーム軸方向に距離d以上の厚さ、ビーム軸と垂直な方向に半径wを有する円柱状のアクリル製ファントムに水を注入したものである。ここでは、粒子線モニタリング装置1は、検出部11の位置を変更したり、異なる半径wを有する被照射体を使用することで、様々なd、wについて、二次粒子のエネルギースペクトルを取得する。距離dは、被照射体2における粒子線の到達深度に相当する。
上述のように、二次粒子のエネルギースペクトルの形状は、二次粒子が発生から検出部11に到達するまでに通過する被照射体の距離wに依存する。そのため、粒子線(一次粒子)のエネルギーが1つの値で固定されていれば、二次粒子が通過した直線状の軌跡における生体内物質の量(通過した距離w)を求めることができる。ここで、2つの異なる二次粒子のエネルギーE0、E1における検出器による検出数を、それぞれN0、N1とし
、比N1/N0をR1とする。エネルギーE0、E1の二次粒子の発生数をそれぞれ、M0、M1とする。エネルギーE0、E1の二次粒子の生体内物質における減衰係数をそれぞれμ0、μ1、二次粒子が通過する生体内物質の厚さをwとすると、R1は次のように求まる。
R1=(M1/M0)×exp((μ0−μ1)w)
エネルギーE0、E1を固定すると、μ0−μ1の値は変化しない。また、粒子線のエネルギーが1つの値で固定されればM1/M0も変化しない。よって、R1からwを一意に求めることができる。
また、実際の生体内物質では、粒子線の軌道上に空気や骨が存在することにより密度の変化等が生じることがある。この場合、二次粒子を発生する位置での粒子線(一次粒子)のエネルギーが不明となるので、M1/M0が固定されず、R1からwを一意に求めることが難しい。しかし、この場合でも、3つの異なる二次粒子のエネルギー(E0、E1、E2)における検出量を、それぞれ、N0、N1、N2とし、N1/N0、N2/N0をそれぞれ、R1、R2とすると、R1、R2の値が、「二次粒子が通過した直線状の軌跡における生体内物質の量」と「二次粒子の発生位置における一次粒子のエネルギー」とから一意に決定される。「二次粒子が通過した直線状の軌跡における生体内物質の量」は、側方幅wに対応する。「二次粒子の発生位置における一次粒子のエネルギー」は、軸方向深さdに対応する。側方幅w及び軸方向深さdは、生体内物質が水であるとしたときの換算長さである。生体内物質が水以外を含む場合に、側方幅w及び軸方向深さdは、物理的な長さと異なることがある。物理的な長さとw、dとを比較することにより、生体内物質の成分(水、骨、空気など)の割合を求めることができる。また、複数の位置において、物理的な長さとw、dとを比較することにより、生体内物質の各成分の位置を求めることができる。
ここで、エネルギーE0、E1、E2は、それぞれ、所定の幅を有するエネルギー領域であってもよい。エネルギー領域とすることで、検出量を多くすることができ、ノイズを抑制することができる。また、各エネルギー領域は、互いに重複がないものとする。
粒子線モニタリング装置1は、モンテカルロシミュレーションなどの数値シミュレーションにより、側方幅w及び軸方向深さdと、R1及びR2(二次粒子のエネルギースペクトル)との関係を求めてもよい。
粒子線モニタリング装置1は、複数の側方幅w及び軸方向深さdについての、R1及びR2(二次粒子のエネルギースペクトル)をあらかじめ取得しておく。
以下に、粒子線モニタリング装置1が取得した、側方幅w及び軸方向深さdと、R1及びR2との関係を示す。
図7は、複数の側方幅wについて、R1及びR2の関係を示すグラフである。図7のグラフでは、横軸はR1、縦軸はR2である。ここで、エネルギー領域は、30keV≦E0<40keV、50keV≦E1<60keV、70keV≦E2<80keVである。側方幅wは、0cm、1cm、2cm、3cm、4cm、5cmとしている。側方幅毎に、異なるシンボルのプロットをしている。また、軸方向深さdは、10mmから90mmまでのいずれかである。図7のグラフで示されるように、1つの側方幅のプロットは、一定の領域内に存在し、他の側方幅の領域とほとんど重ならない。よって、何らかの被照射体に粒子線を照射し、発生する二次粒子のエネルギースペクトルからR1及びR2を求めて、図7のグラフと比較することで、当該被照射体の側方幅wを求めることができる。また、図7のグラフから、R1が大きくなるほど側方幅wが大きくなる傾向があるため、
R1だけであっても、ある程度精度で側方幅wを求めることができることがわかる。
図8は、複数の軸方向深さdについて、R1及びR2の関係を示すグラフである。図8のグラフでは、横軸はR1、縦軸はR2である。図8のグラフでは、図7と同じ結果について、側方幅wの代わりに、軸方向深さ毎に異なるシンボルのプロットをしている。ここでは、軸方向深さを3つの領域(10.0〜36.7mm、36.7〜63.3mm、63.3〜90.0mm)に分割して領域毎に異なるシンボルのプロットをしている。図8のグラフで示されるように、1つの軸方向深さのプロットは、一定の領域内に存在し、他の軸方向深さの領域とあまり重ならない。よって、何らかの被照射体に粒子線を照射し、発生する二次粒子のエネルギースペクトルからR1及びR2を求めて、図8のグラフと比較することで、当該被照射体の軸方向深さdを求めることができる。
図9は、図8のR1及びR2の関係のグラフにおいて、側方幅が1cmのものを抽出したグラフである。1つの軸方向深さのプロットは、一定の領域内に存在し、他の軸方向深さの領域とほとんど重なっていないことがわかる。
図10は、図9と同様のデータにおいて、軸方向深さとR2の関係を示すグラフである。図10のグラフでは、横軸は軸方向深さ、縦軸はR2である。ここでは、側方幅は1cmとしている。グラフにおける4つの点は、左から、それぞれ、10〜30mm、30〜50mm、50〜70mm、70〜90mmの軸方向深さのR2及び軸方向深さを平均化したものである。R2が小さくなるほど、軸方向深さが長くなっていることが分かる。
次に、図7から図10までのグラフについて、エネルギー領域の設定を異なるものにした例を示す。
図11は、複数の側方幅wについて、R1及びR2の関係を示すグラフである。図11のグラフでは、横軸はR1、縦軸はR2である。ここで、エネルギー領域は、20keV≦E0<30keV、30keV≦E1<40keV、60keV≦E2<70keVである。側方幅wは、0cm、1cm、2cm、3cm、4cm、5cmとしている。側方幅毎に、異なるシンボルのプロットをしている。また、軸方向深さdは、10mmから90mmまでのいずれかである。図11のグラフで示されるように、1つの側方幅のプロットは、一定の領域内に存在し、他の側方幅の領域と重ならない。よって、何らかの被照射体に粒子線を照射し、発生する二次粒子のエネルギースペクトルからR1及びR2を求めて、図11のグラフと比較することで、当該被照射体の側方幅wを求めることができる。また、図11のグラフから、R1またはR2が大きくなるほど側方幅wが大きくなる傾向があるため、R1またはR2だけであっても、側方幅wを求めることができることがわかる。
図12は、複数の軸方向深さdについて、R1及びR2の関係を示すグラフである。図12のグラフでは、横軸はR1、縦軸はR2である。図12のグラフでは、図11と同じ結果について、側方幅wの代わりに、軸方向深さ毎に異なるシンボルのプロットをしている。ここでは、軸方向深さを3つの領域(10.0〜36.7mm、36.7〜63.3mm、63.3〜90.0mm)に分割して領域毎に異なるシンボルのプロットをしている。図12のグラフで示されるように、1つの軸方向深さのプロットは、一定の領域内に存在し、他の軸方向深さの領域とほとんど重ならない。よって、何らかの被照射体に粒子線を照射し、発生する二次粒子のエネルギースペクトルからR1及びR2を求めて、図12のグラフと比較することで、当該被照射体の軸方向深さdを求めることができる。
図13は、図12のR1及びR2の関係のグラフにおいて、側方幅が1cmのものを抽出したグラフである。1つの軸方向深さのプロットは、一定の領域内に存在し、他の軸方
向深さの領域とほとんど重なっていないことがわかる。
図14は、図13と同様のデータにおいて、軸方向深さとR2の関係を示すグラフである。図14のグラフでは、横軸は軸方向深さ、縦軸はR2である。ここでは、側方幅は1cmとしている。グラフにおける4つの点は、左から、それぞれ、10〜30mm、30〜50mm、50〜70mm、70〜90mmの軸方向深さのR2及び軸方向深さを平均化したものである。R2が小さくなるほど、軸方向深さが長くなっていることが分かる。
軸方向深さdと側方幅wを求める際に使用するエネルギー領域を調整することで、より正確に、軸方向深さdと側方幅wとを求めることができる。
粒子線モニタリング装置1の記憶部21には、取得したR1及びR2と軸方向深さd及び側方幅wとが対応付けられて格納される。
次に、上記の結果を利用した被照射体における軸方向深さd及び側方幅wの算出についての動作例を説明する。
図15は、被照射体における軸方向深さd及び側方幅wの算出の動作フローの例を示す図である。例えば、粒子線モニタリング装置1の演算部12が備える不図示のユーザインタフェースを介したユーザの操作情報に基づいて、記憶部21に格納されたプログラム等が制御部22によって実行されることにより当該動作フローが開始される。
S101では、演算部12の制御部22によって制御された検出部11によって、粒子線の進行方向に対して垂直の方向に放出される二次粒子のエネルギースペクトルが検出される。
S102では、算出部31は、検出された二次粒子のエネルギースペクトルを用いて、エネルギー領域E0、E1、E2についての検出量N0、N1、N2を求める。算出部31は、N0、N1、N2からR1、R2を求める。
S103では、算出部31は、記憶部21に格納されるR1及びR2と軸方向深さd及び側方幅wの対応関係を抽出する。算出部31は、S102で求めたR1、R2と一致するR1、R2を当該対応関係から抽出する。算出部31は、抽出されたR1、R2に対応する軸方向深さd及び側方幅wを、S102で求めたR1、R2に対応する軸方向深さd及び側方幅wとして出力する。また、S102で求めたR1、R2と一致するR1、R2が当該対応関係にない場合、図7のようなグラフにおいて、S102で求めたR1、R2に最も近い距離のR1、R2を抽出する。算出部31は、抽出されたR1、R2に対応する軸方向深さd及び側方幅wを、S102で求めたR1、R2に対応する軸方向深さd及び側方幅wとして出力する。また、算出部31は、図7のようなグラフにおいて、S102で求めたR1、R2に最も近い距離から複数個(例えば3個)のR1、R2を抽出して、抽出されたR1、R2に対応する軸方向深さdの平均値及び側方幅wの平均値をS102で求めたR1、R2に対応する軸方向深さd及び側方幅wとして出力してもよい。
このようにして、粒子線モニタリング装置1は、二次粒子のエネルギースペクトルから、軸方向深さd及び側方幅wを求めることができる。粒子線モニタリング装置1は、複数の位置から二次粒子のエネルギースペクトルを取得してもよい。このとき、それぞれの位置において、軸方向深さd及び側方幅wを求めることができる。
検出部11は、算出部31で使用するエネルギー領域(E0、E1、E2)についてのみ二次粒子の量を検出して、算出部31で使用しないエネルギー領域については二次粒子
の量を検出しなくてもよい。
(その他)
上記の説明では、二次粒子のエネルギースペクトルのうち、一部のエネルギー領域の検出量を用いて、軸方向深さd及び側方幅wを求めている。算出部31は、二次粒子のエネルギースペクトルと対応する軸方向深さd及び側方幅wとの関係をディープラーニングによりニューラルネットワークに学習し、当該学習済みニューラルネットワークを利用して、新たに取得した二次粒子のエネルギースペクトルについて、軸方向深さd及び側方幅wを算出してもよい。即ち、算出部31は、二次粒子のエネルギースペクトルと対応する軸方向深さd及び側方幅wとの関係を機械学習し、当該機械学習結果を利用して、新たに取得した二次粒子のエネルギースペクトルについて、軸方向深さd及び側方幅wを算出してもよい。これにより、二次粒子のエネルギースペクトルの全領域を利用することでより正確に軸方向深さd及び側方幅wを求めることができる。
(実施形態の作用、効果)
本実施形態の構成は、二次粒子と生体内物質の相互作用による影響を評価する方法として、二次粒子のエネルギースペクトルを基に生体内物質の量を算出する方法を実現する。本実施形態の方法では、一次粒子によって誘発される二次粒子を測定するので、X線断層撮影装置等で生じていたような追加の被ばくは生じない。また、この方法で測定する二次粒子は一次粒子の照射とほぼ同時に発生するので、X線断層撮影装置等では実現困難であった、治療ビーム照射中の物質分布情報の取得が可能となる。
粒子線モニタリング装置1は、検出部11を移動して、3次元的な二次粒子のエネルギースペクトルの検出を行えば、3次元的な被照射体(生体内物質)の分布の測定を行うことができる。
粒子線モニタリング装置1は、粒子線の飛程や線量分布のリアルタイムモニタリングができることで、患者に粒子線を照射した場合に、病巣部位に粒子線が確実に照射されていることを確認、検証しながら治療することが可能となる。また、粒子線モニタリング装置1によれば、治療中の生体内での変化(例えば、体内空洞領域における粘液の充填、排出)を認識することが可能となる。リアルタイムモニタリングを行うことで、治療の質、信頼性の向上を図ることができる。
以上の実施形態の構成は、可能な限りこれらを組み合わせて実施され得る。
〈コンピュータ読み取り可能な記録媒体〉
コンピュータその他の機械、装置(以下、コンピュータ等)に上記いずれかの機能を実現させるプログラムをコンピュータ等が読み取り可能な記録媒体に記録することができる。そして、コンピュータ等に、この記録媒体のプログラムを読み込ませて実行させることにより、その機能を提供させることができる。
ここで、コンピュータ等が読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータ等から読み取ることができる記録媒体をいう。このような記録媒体内には、CPU、メモリ等のコンピュータを構成する要素を設け、そのCPUにプログラムを実行させてもよい。
また、このような記録媒体のうちコンピュータ等から取り外し可能なものとしては、例えばフレキシブルディスク、光磁気ディスク、CD−ROM、CD−R/W、DVD、DAT、8mmテープ、メモリカード等がある。
また、コンピュータ等に固定された記録媒体としてハードディスクやROM等がある。
1 :粒子線モニタリング装置
2 :被照射体
3 :加速器
11 :検出部
12 :演算部
21 :記憶部
22 :制御部
23 :バス
24 :入出力部
31 :算出部
111 :検出器
112 :電荷有感型増幅器
113 :整形増幅器
114 :アナログデジタル変換器
120 :コリメータ
121 :駆動機構

Claims (6)

  1. 被照射体に入射した粒子線から作用を受けた二次粒子のエネルギースペクトル情報を検出する検出部と、
    前記検出部により検出された前記二次粒子のエネルギースペクトル情報から、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する算出部と、
    を備える粒子線モニタリング装置。
  2. 前記粒子線の挙動に関する情報は、前記被照射体における前記粒子線の到達深度であり、
    前記二次粒子の挙動に関する情報は、前記被照射体における前記二次粒子の通過距離である
    請求項1に記載の粒子線モニタリング装置。
  3. 前記二次粒子のエネルギースペクトル情報は、互いに重複のない複数のエネルギー領域の二次粒子の検出量である、
    請求項1または2に記載の粒子線モニタリング装置。
  4. 前記算出部は、前記二次粒子のエネルギースペクトル情報と、前記粒子線の挙動に関する情報及び前記二次粒子の挙動に関する情報との関係を機械学習した結果を利用して、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する、
    請求項1または2に記載の粒子線モニタリング装置。
  5. コンピュータが、
    被照射体に入射した粒子線から作用を受けた二次粒子のエネルギースペクトル情報を検出し、
    検出された前記二次粒子のエネルギースペクトル情報から、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する、
    ことを実行する粒子線モニタリング方法。
  6. コンピュータが、
    被照射体に入射した粒子線から作用を受けた二次粒子のエネルギースペクトル情報を検出し、
    検出された前記二次粒子のエネルギースペクトル情報から、前記被照射体における粒子線の挙動に関する情報及び二次粒子の挙動に関する情報を算出する、
    ことを実行するための粒子線モニタリングプログラム。
JP2017215079A 2017-11-07 2017-11-07 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム Active JP7061741B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215079A JP7061741B2 (ja) 2017-11-07 2017-11-07 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215079A JP7061741B2 (ja) 2017-11-07 2017-11-07 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム

Publications (2)

Publication Number Publication Date
JP2019084082A true JP2019084082A (ja) 2019-06-06
JP7061741B2 JP7061741B2 (ja) 2022-05-02

Family

ID=66762035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215079A Active JP7061741B2 (ja) 2017-11-07 2017-11-07 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム

Country Status (1)

Country Link
JP (1) JP7061741B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170655A (ja) * 2011-02-22 2012-09-10 Japan Atomic Energy Agency 粒子線モニタリング装置、粒子線モニタリングプログラム及び粒子線モニタリング方法
JP2012522998A (ja) * 2009-04-07 2012-09-27 ジーエスアイ ヘルムホルツツェントゥルム フュア シュヴェリオーネンフォルシュング ゲーエムベーハー 検出器デバイス
JP2016533505A (ja) * 2013-09-20 2016-10-27 テヒニシェ・ウニヴェルジテート・ドレスデン 放射線治療に関する放射線装置の粒子放射の飛程制御のための方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522998A (ja) * 2009-04-07 2012-09-27 ジーエスアイ ヘルムホルツツェントゥルム フュア シュヴェリオーネンフォルシュング ゲーエムベーハー 検出器デバイス
JP2012170655A (ja) * 2011-02-22 2012-09-10 Japan Atomic Energy Agency 粒子線モニタリング装置、粒子線モニタリングプログラム及び粒子線モニタリング方法
JP2016533505A (ja) * 2013-09-20 2016-10-27 テヒニシェ・ウニヴェルジテート・ドレスデン 放射線治療に関する放射線装置の粒子放射の飛程制御のための方法及び装置

Also Published As

Publication number Publication date
JP7061741B2 (ja) 2022-05-02

Similar Documents

Publication Publication Date Title
Hickling et al. Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications
Jones et al. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital‐based clinical cyclotron
Assmann et al. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy
Hurley et al. Water‐equivalent path length calibration of a prototype proton CT scanner
US20160074675A1 (en) System design and method for verifying 3d dosimetric imaging of charged particles in media
Alsanea et al. Feasibility of RACT for 3D dose measurement and range verification in a water phantom
Spezi et al. Monte Carlo simulation of an x‐ray volume imaging cone beam CT unit
Yu et al. Simulation studies of time reversal‐based protoacoustic reconstruction for range and dose verification in proton therapy
Seco et al. Characterizing the modulation transfer function (MTF) of proton/carbon radiography using Monte Carlo simulations
US8993975B2 (en) Gamma ray detecting apparatus and method for detecting gamma ray using the same
Hueso-González et al. Compact method for proton range verification based on coaxial prompt gamma-ray monitoring: A theoretical study
Ozoemelam et al. Real-time PET imaging for range verification of helium radiotherapy
US8909495B2 (en) Particle radiation monitoring apparatus, recording medium to retain particle radiation monitoring program, and particle radiation monitoring method
Bruzzi et al. Prototype tracking studies for proton CT
Faccini et al. Dose monitoring in particle therapy
Chen et al. A novel design of proton computed tomography detected by multiple‐layer ionization chamber with strip chambers: A feasibility study with Monte Carlo simulation
JP7061741B2 (ja) 粒子線モニタリング装置、粒子線モニタリング方法、粒子線モニタリングプログラム
Doolan et al. Dose ratio proton radiography using the proximal side of the Bragg peak
Sueyasu et al. Ionoacoustic application of an optical hydrophone to detect proton beam range in water
US20210290982A1 (en) Determining water equivalent path length
Kanno et al. Simulation study on the feasibility of current-mode SPECT for B-10 concentration estimation in boron neutron capture therapy
Nelson et al. Patient dose simulations for scanning‐beam digital x‐ray tomosynthesis of the lungs
Tominaga et al. Influence of distant scatterer on air kerma measurement in the evaluation of diagnostic X-rays using Monte Carlo simulation
Parodi Dose verification of proton and carbon ion beam treatments
Lehrack Investigating accuracy and precision of ionoacoustics for range determination of ion beams in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7061741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150