JP2019081829A - Photon up-conversion film and manufacturing method therefor - Google Patents

Photon up-conversion film and manufacturing method therefor Download PDF

Info

Publication number
JP2019081829A
JP2019081829A JP2017209162A JP2017209162A JP2019081829A JP 2019081829 A JP2019081829 A JP 2019081829A JP 2017209162 A JP2017209162 A JP 2017209162A JP 2017209162 A JP2017209162 A JP 2017209162A JP 2019081829 A JP2019081829 A JP 2019081829A
Authority
JP
Japan
Prior art keywords
photon
acceptor
carbon atoms
donor
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017209162A
Other languages
Japanese (ja)
Other versions
JP6429158B1 (en
Inventor
岳志 森
Takeshi Mori
岳志 森
智博 森
Tomohiro Mori
智博 森
茜 齋藤
Akane Saito
茜 齋藤
仁志 竿本
Hitoshi Saomoto
仁志 竿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2017209162A priority Critical patent/JP6429158B1/en
Priority to KR1020207004312A priority patent/KR102118303B1/en
Priority to CN201880057879.XA priority patent/CN111247461B/en
Priority to PCT/JP2018/038959 priority patent/WO2019087813A1/en
Priority to US16/648,785 priority patent/US10875983B2/en
Application granted granted Critical
Publication of JP6429158B1 publication Critical patent/JP6429158B1/en
Publication of JP2019081829A publication Critical patent/JP2019081829A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Abstract

To provide a novel solid-based up-conversion film high in luminous efficiency and a manufacturing method therefor.SOLUTION: The up-conversion film is a stretched film consisting of a composition containing at least an acceptor, a donor, and a matrix resin. The manufacturing method of the up-conversion film includes a process for stretching the composition containing at least the acceptor, the donor, and the matrix resin, in which the acceptor and the donor are water soluble, the matrix resin is a polyvinyl alcohol resin and the stretching is wet stretching in a boric acid solution.SELECTED DRAWING: None

Description

本発明は、励起光の照射に対し、励起光よりも短波長側の発光を示すフォトンアップコンバージョンフィルム及びその製造方法に関する。   The present invention relates to a photon up-conversion film that emits light at a shorter wavelength side than excitation light with respect to irradiation of excitation light, and a method of manufacturing the same.

低エネルギーの光を高エネルギーの光に変換するフォトンアップコンバージョン(以下、単に「アップコンバージョン」と表記することがある)現象は、一般には観測されない特殊な現象であり、この技術を実用化できればこれまでの光の利用方法と異なる応用展開(太陽電池分野、光触媒分野、バイオイメージング分野、光学機器分野など)が期待できる。   Photon up conversion (hereinafter sometimes simply referred to as “up conversion”) phenomenon that converts low energy light into high energy light is a special phenomenon that is generally not observed, and this technology can be put to practical use. Applications of light and applications different from that of light (solar cell field, photocatalyst field, bioimaging field, optical instrument field, etc.) can be expected.

有機材料におけるアップコンバージョン発光として、三重項状態の分子同士が衝突して起こる三重項―三重項消滅(TTA)を利用した技術が知られている。
TTAを利用するアップコンバージョンのうち、ドナー分子とアクセプター分子を溶媒に溶解した溶液系では、ドナー分子とアクセプター分子の拡散によりエネルギーの授受が効率的に行われる。
しかし、溶液系では実用化できる分野が限定的になり、将来の応用展開の可能性を広げることができない。
A technique using triplet-triplet annihilation (TTA), which is caused by collision of molecules in a triplet state, is known as upconversion emission in organic materials.
In the upconversion using TTA, in a solution system in which a donor molecule and an acceptor molecule are dissolved in a solvent, energy is efficiently transferred due to the diffusion of the donor molecule and the acceptor molecule.
However, in the solution system, the field which can be put to practical use becomes limited, and the possibility of future application development can not be expanded.

そこで、固体状態での高効率アップコンバージョン発光の研究開発も進められている。
しかし、固体状態では分子の拡散はほとんど起こらない。そのため、マトリックス中に高濃度に分子を混合することでTTAの確率を大きくしてアップコンバージョン現象を実現することも検討されているが、拡散に制限があるためTTAの確率の大幅な向上は望めない。
Therefore, research and development of high efficiency upconversion luminescence in the solid state is also in progress.
However, in the solid state, diffusion of molecules hardly occurs. Therefore, it has been considered to increase the TTA probability by mixing molecules in a high concentration in the matrix to realize the upconversion phenomenon, but since diffusion is limited, it is hoped that the TTA probability will be greatly improved. Absent.

以上のような背景の下、精密に制御された結晶構造を有するMOF(metal organic framework)錯体を利用する方法も提案されている(例えば、特許文献1参照。)。   Under the background as described above, a method of using a metal organic framework (MOF) complex having a precisely controlled crystal structure has also been proposed (see, for example, Patent Document 1).

国際公開第2016/204301号International Publication No. 2016/204301

MOF錯体を利用する上記手法では、これらの錯体の特徴である秩序良く配置された分子により、三重項エネルギーが分子間を効率よく移動し、優れたアップコンバージョン特性を示すことが報告されている。
しかしながら、極めて微小なMOF錯体のみで成形物を作製することは非常に難しい。そして、樹脂と複合化した場合には、材料全体での効率は著しく低下してしまう。
そこで、本発明は、従来とは異なる観点から検討し、発光効率の高い、固体系の新規なアップコンバージョンフィルムとその製造方法を提供することを課題とする。
In the above-described method using MOF complexes, it has been reported that triplet energy is efficiently transferred between molecules due to the well-arranged molecules characteristic of these complexes to exhibit excellent up-conversion characteristics.
However, it is very difficult to produce moldings only with extremely minute MOF complexes. And when compounded with resin, the efficiency in the whole material will fall remarkably.
Then, this invention makes it a subject to consider the novel up conversion film of solid type with high luminous efficiency, and its manufacturing method, examined from a different viewpoint from the former.

本発明は、上記課題を解決するため、以下の構成を備える。
すなわち、本発明のアップコンバージョンフィルムは、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物からなる延伸フィルムである。
また、本発明のアップコンバージョンフィルムの製造方法は、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物を延伸する工程を含むフォトンアップコンバージョンフィルムの製造方法であって、前記アクセプター及び前記ドナーが水溶性であり、前記マトリックス樹脂がポリビニルアルコール系樹脂であり、前記延伸がホウ酸水溶液中での湿式延伸である。
The present invention is provided with the following composition in order to solve the above-mentioned subject.
That is, the upconversion film of the present invention is a stretched film composed of a composition containing at least an acceptor, a donor and a matrix resin.
Moreover, the method for producing an upconversion film of the present invention is a method for producing a photon upconversion film including the step of stretching a composition comprising at least an acceptor, a donor and a matrix resin, wherein the acceptor and the donor are water soluble The matrix resin is a polyvinyl alcohol-based resin, and the stretching is wet stretching in a boric acid aqueous solution.

本発明によれば、ドナーからアクセプターへの三重項エネルギーの移動が効率よく行われ、かつ、固体系のフィルムとして提供できるために応用可能性が高いのみならず、その作製も簡易になし得るという利点もある。   According to the present invention, transfer of triplet energy from a donor to an acceptor can be efficiently performed, and since the film can be provided as a solid film, it has high applicability and can be easily produced. There is also an advantage.

図1は三重項−三重項消滅に基づくアップコンバージョンの機構の概念図を示す。FIG. 1 shows a conceptual diagram of the mechanism of upconversion based on triplet-triplet annihilation. 図2は実施例1,2及び比較例1にかかるフィルムの発光特性を示すグラフである。FIG. 2 is a graph showing the light emission characteristics of the films according to Examples 1 and 2 and Comparative Example 1. 図3は実施例3及び比較例2にかかるフィルムの発光特性を示すグラフである。FIG. 3 is a graph showing the light emission characteristics of the films according to Example 3 and Comparative Example 2. 図4は実施例4及び比較例3にかかるフィルムの発光特性を示すグラフである。FIG. 4 is a graph showing the light emission characteristics of the films according to Example 4 and Comparative Example 3. 図5は実施例5及び比較例4にかかるフィルムの発光特性を示すグラフである。FIG. 5 is a graph showing the light emission characteristics of the films according to Example 5 and Comparative Example 4. 図6は実施例1にかかるフィルムの発光状態を示す写真である。FIG. 6 is a photograph showing the light emission state of the film according to Example 1. 図7は実施例4にかかるフィルムの発光状態を示す写真である。FIG. 7 is a photograph showing the light emission state of the film according to Example 4.

〔アップコンバージョンの機構〕
本発明は三重項−三重項消滅に基づくアップコンバージョンの機構を利用している。
この機構について、図1に概念図を示す。
図1に示すように、まず、ドナーが入射光を吸収し、励起一重項状態からの系間交差により励起三重項状態を与える。
その後、ドナーからアクセプターへ三重項−三重項エネルギー移動が生じ、アクセプターの励起三重項状態が生成する。
次に、励起三重項状態のアクセプター同士が拡散・衝突することで、三重項−三重項消滅を起こし、より高いエネルギーレベルの励起一重項を生成し、アップコンバージョン発光をもたらす。
このような機構自体は公知である。
Mechanism of upconversion
The present invention utilizes the mechanism of upconversion based on triplet-triplet annihilation.
A conceptual diagram of this mechanism is shown in FIG.
As shown in FIG. 1, first, a donor absorbs incident light and gives an excited triplet state by intersystem crossing from an excited singlet state.
Thereafter, triplet-triplet energy transfer occurs from the donor to the acceptor to form an excited triplet state of the acceptor.
Next, due to diffusion / collision between the acceptors in the excitation triplet state, triplet-triplet annihilation occurs to generate an excitation singlet at a higher energy level, resulting in upconversion emission.
Such mechanisms themselves are known.

〔アクセプター〕
アクセプターは、上記機構から明らかなように、ドナーから三重項−三重項エネルギーの移動を受け、励起三重項状態を生成するとともに、励起三重項状態のアクセプター同士が拡散・衝突することで、三重項−三重項消滅を起こし、より高いエネルギーレベルの励起一重項を生成するものである。
このようなアクセプターとしては、縮合芳香族環を有する種々の化合物が知られている。例えば、ナフタレン構造、アントラセン構造、ピレン構造、ペリレン構造、テトラセン構造、Bodipy構造(borondipyrromethene構造)を有する化合物が好ましく挙げられる。
[Acceptor]
As apparent from the above mechanism, the acceptor receives a triplet-triplet energy transfer from the donor to form an excited triplet state, and the acceptors in the excited triplet state diffuse and collide with each other to form a triplet. -It causes triplet annihilation to generate excitation singlets at higher energy levels.
As such an acceptor, various compounds having a fused aromatic ring are known. For example, a compound having a naphthalene structure, an anthracene structure, a pyrene structure, a perylene structure, a tetracene structure, and a Bodipy structure (borondipyrromethene structure) is preferably mentioned.

中でも、アントラセン構造を有する化合物として、下式(1)で表される9,10−ジフェニルアントラセン及びその置換体が好ましく採用できる。   Among them, 9,10-diphenylanthracene represented by the following formula (1) and a substitution product thereof can be preferably adopted as the compound having an anthracene structure.

上式(1)において、R1〜R8はそれぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜8の分岐を有してもよいアルキル鎖を有するアミノ基、炭素数1〜12の分岐を有してもよいアルキル基、炭素数1〜12の分岐を有してもよいアルコキシ基、下式(2)もしくは下式(3)で表されるエチレンオキシド鎖、又は、下式(4)で表されるアンモニウムイオンを表す。 In the above formula (1), each of R 1 to R 8 independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group having an alkyl chain which may have 1 to 8 carbon atoms, and 1 carbon atom Alkyl group optionally having 12 to 12 branches, alkoxy group optionally having 1 to 12 carbon atoms, ethylene oxide chain represented by the following formula (2) or formula (3), or It represents an ammonium ion represented by the formula (4).

上式(2)において、R9は炭素数1〜3のアルキル基を表し、nは1〜4の整数を表す。 In the above formula (2), R 9 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 1 to 4.

上式(3)において、R10,R11はそれぞれ独立して、炭素数1〜3のアルキル基を表し、m及びlはそれぞれ独立して1〜4の整数を表す。 In the above formula (3), R 10 and R 11 each independently represent an alkyl group having 1 to 3 carbon atoms, and m and l each independently represent an integer of 1 to 4.

上式(4)において、oは1〜8の整数を表し、R12〜R15はそれぞれ独立して、炭素数1〜6の分岐を有してもよいアルキル基を表す。 In the above formula (4), o represents an integer of 1 to 8, and R 12 to R 15 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a branch.

以下に、好適な化合物を具体的に例示する。   Preferred compounds are specifically exemplified below.

アルコキシ基、アルキレンオキシド鎖(エチレンオキシド鎖、プロピレンオキシド鎖など)、ヒドロキシ基、カルボキシル基、アミノ基、アンモニウムイオンなどの親水性基を有するアクセプターは、水溶性を有するため、湿式延伸において好適に用いることができる。
これらの官能基の数やアルキレンオキシド鎖の鎖長などを適宜選定することで、水溶性の程度を制御することも可能である。
An acceptor having a hydrophilic group such as an alkoxy group, an alkylene oxide chain (ethylene oxide chain, propylene oxide chain, etc.), a hydroxy group, a carboxyl group, an amino group, or an ammonium ion is preferably used in wet stretching since it has water solubility. Can.
The degree of water solubility can also be controlled by appropriately selecting the number of these functional groups, the chain length of the alkylene oxide chain, and the like.

〔ドナー〕
ドナーは、上記機構から明らかなように、入射光を吸収し、励起一重項状態からの系間交差により励起三重項状態となるとともに、かつ、アクセプターに三重項−三重項エネルギー移動を生じさせるものである。
このようなドナーとしては、例えば、ポルフィリン構造、フタロシアニン構造又はフラーレン構造を有するものが好ましい。構造内に、Pt、Pd、Zn、Ru、Re、Ir、Os、Cu、Ni、Co、Cd、Au、Ag、Sn、Sb、Pb、P、Asなどの金属原子を有するものであってもよい。
〔donor〕
As is apparent from the above mechanism, the donor absorbs incident light, becomes an excited triplet state by intersystem crossing from an excited singlet state, and causes the acceptor to generate triplet-triplet energy transfer It is.
As such a donor, for example, one having a porphyrin structure, a phthalocyanine structure or a fullerene structure is preferable. Even if the structure has metal atoms such as Pt, Pd, Zn, Ru, Re, Ir, Os, Cu, Ni, Co, Cd, Au, Ag, Sn, Sb, Pb, P, As, etc. Good.

中でも、ポルフィリン構造を有する下記一般式(5)で表される化合物が好ましく採用できる。   Among them, a compound represented by the following general formula (5) having a porphyrin structure can be preferably employed.

上式(5)において、R16〜R23はそれぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜8の分岐を有してもよいアルキル鎖を有するアミノ基、炭素数1〜12の分岐を有してもよいアルキル基、炭素数1〜12の分岐を有してもよいアルコキシ基、又は、下式(6)で表されるエチレンオキシド鎖を表し、Mは水素原子、白金、パラジウム、亜鉛もしくは銅を表し、Ar1〜Ar4はそれぞれ独立して水素原子、下式(7)、下式(8)もしくは下式(9)で表される置換基、又は、下式(10)で表されるアンモニウムイオンを表す。 In the above formula (5), each of R 16 to R 23 independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group having a branched alkyl chain having 1 to 8 carbon atoms, 1 carbon atom R 12 represents an alkyl group which may have a branch of 12 to 12, an alkoxy group which may have a branch having 1 to 12 carbon atoms, or an ethylene oxide chain represented by the following formula (6), and M represents a hydrogen atom, Represents platinum, palladium, zinc or copper, and Ar 1 to Ar 4 each independently represent a hydrogen atom, a substituent represented by the following formula (7), a formula (8) or a formula (9), or It represents an ammonium ion represented by the formula (10).

上式(6)において、R24は炭素数1〜3のアルキル基を表し、pは1〜4の整数を表す。 In the above formula (6), R 24 represents an alkyl group having 1 to 3 carbon atoms, and p represents an integer of 1 to 4.

上式(9)において、R25は炭素数1〜3のアルキル基を表し、qは1〜4の整数を表す。 In the above formula (9), R 25 represents an alkyl group having 1 to 3 carbon atoms, and q represents an integer of 1 to 4.

上式(10)において、rは1〜8の整数を表し、R26〜R29はそれぞれ独立して炭素数1〜6の分岐を有してもよいアルキル基を表す。 In the above formula (10), r represents an integer of 1 to 8, and R 26 to R 29 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a branch.

以下に、好適な化合物を具体的に例示する。   Preferred compounds are specifically exemplified below.

アルコキシ基、アルキレンオキシド鎖(エチレンオキシド鎖、プロピレンオキシド鎖など)、ヒドロキシ基、カルボキシル基、アミノ基、アンモニウムイオンなどの親水性基を有するドナーは、水溶性を有するため、湿式延伸において好適に用いることができる。
これらの官能基の数やアルキレンオキシド鎖の鎖長などを適宜選定することで、水溶性の程度を制御することも可能である。
Donors having hydrophilic groups such as alkoxy groups, alkylene oxide chains (ethylene oxide chains, propylene oxide chains, etc.), hydroxy groups, carboxyl groups, amino groups, ammonium ions, etc. are suitably used in wet stretching because they have water solubility. Can.
The degree of water solubility can also be controlled by appropriately selecting the number of these functional groups, the chain length of the alkylene oxide chain, and the like.

〔マトリックス樹脂〕
マトリックス樹脂は、上記ドナーとアクセプターによるアップコンバージョン蛍光体を固体系として提供するために用いられ、ドナーとアクセプターを含んだ状態でフィルム化でき、かつ、延伸可能な樹脂が選択される。
このようなマトリックス樹脂としては、ポリビニルアルコール系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリメチル(メタ)アクリレート系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂などが挙げられる。
上記において、「系」との記載は、例えば、ポリビニルアルコール系樹脂について言えば、ポリビニルアルコールの他、ポリビニルアルコール−ポリエチレン共重合体などの他のモノマーとの共重合体をも包含する趣旨である。
[Matrix resin]
The matrix resin is used to provide the above-described donor and acceptor upconversion phosphor as a solid system, and a resin that can be filmed in a state including the donor and the acceptor and is stretchable is selected.
As such a matrix resin, polyvinyl alcohol resin, polyurethane resin, polystyrene resin, polymethyl (meth) acrylate resin, polycarbonate resin, epoxy resin and the like can be mentioned.
In the above, for example, in the case of a polyvinyl alcohol-based resin, the description “system” is intended to encompass, besides polyvinyl alcohol, a copolymer with other monomers such as polyvinyl alcohol-polyethylene copolymer and the like. .

〔組成物〕
本発明における組成物は、上記ドナーと上記アクセプターと上記マトリックス樹脂とを少なくとも含む。
ドナー及びアクセプターと、マトリックス樹脂とは、相溶性の高い組合せを選択することが好ましい。
特に、ドナー及びアクセプターとして、水溶性の化合物及び/又はその塩を用い、マトリックス樹脂として水溶性樹脂を組み合わせる態様が好ましい。これら水溶性材料の具体例等については、既に上述した。
このような水溶性材料を用いることで、湿式延伸が可能となり、高い延伸倍率を得る上で好ましい。延伸に関する点について、詳しくは、後述する。
〔Composition〕
The composition in the present invention contains at least the donor, the acceptor, and the matrix resin.
It is preferable to select a highly compatible combination of the donor and the acceptor and the matrix resin.
In particular, an embodiment in which a water-soluble compound and / or a salt thereof is used as a donor and an acceptor, and a water-soluble resin is combined as a matrix resin is preferable. Specific examples of these water-soluble materials have already been described above.
Use of such a water-soluble material enables wet stretching, which is preferable in order to obtain a high stretch ratio. The details regarding the stretching will be described later.

組成物におけるドナーの配合割合としては、組成物全量に対し、0.0001〜1質量%であることが好ましい。
組成物におけるアクセプターの配合割合としては、組成物全量に対し、0.01〜20質量%であることが好ましい。
組成物におけるマトリックス樹脂の配合割合としては、組成物全量に対し、79〜99.9質量%であることが好ましい。
It is preferable that it is 0.0001-1 mass% with respect to the composition whole quantity as a mixture ratio of the donor in a composition.
As a mixture ratio of the acceptor in a composition, it is preferable that it is 0.01-20 mass% with respect to the composition whole quantity.
The blending proportion of the matrix resin in the composition is preferably 79 to 99.9% by mass with respect to the total amount of the composition.

〔延伸フィルム〕
本発明にかかるアップコンバージョンフィルムは、上記組成物からなる延伸フィルムである。
[Stretch film]
The upconversion film according to the present invention is a stretched film comprising the above composition.

延伸の方法については、特に限定されず、固定端延伸、自由端延伸のいずれでも良いが、自由端延伸のほうが好ましい。その理由について説明すると、フィルム端部を固定しない自由端延伸においては、延伸する方向に対して垂直方向(すなわち幅方向)にフィルムが収縮する。すなわち、収縮を抑制することなく延伸する方法であるため、延伸によりマトリックス樹脂の主鎖間が縮まり延伸方向に分子が配向する。その結果として、延伸倍率の増加に伴い配向関数も大きくなる。   The method of stretching is not particularly limited, and either fixed end stretching or free end stretching may be used, but free end stretching is preferable. The reason is as follows. In free end stretching in which the film end is not fixed, the film shrinks in a direction perpendicular to the stretching direction (that is, in the width direction). That is, since it is a method of stretching without suppressing shrinkage, between the main chains of the matrix resin is shrunk by stretching, and molecules are oriented in the stretching direction. As a result, the orientation function also increases as the stretching ratio increases.

延伸の方法については、また、一軸延伸、二軸延伸のいずれでも良い。もっとも、本発明における延伸の技術的意義は、分子を配向させ、三重項エネルギーの移動を促進するという点にあるから、一方向のみに延伸する一軸延伸の方が好ましい。
延伸は一段階で行っても良いし、多段階で行ってもよい。
The stretching method may be either uniaxial stretching or biaxial stretching. However, since the technical significance of the stretching in the present invention is to orient the molecules and promote the transfer of triplet energy, uniaxial stretching in which stretching is performed only in one direction is preferable.
Stretching may be performed in one step or in multiple steps.

延伸の方法については、また、フィルムを延伸浴中で延伸する湿式延伸、空気中で延伸する乾式延伸のいずれでもよく、両者を併用しても良い。
比較的穏やかな条件で高倍率の延伸が可能であるという点では、湿式延伸が好ましい。
The stretching method may be either wet stretching in which the film is stretched in a stretching bath or dry stretching in air, or both may be used in combination.
Wet stretching is preferred in that high magnification stretching is possible under relatively mild conditions.

延伸倍率としては、元長に対して、2.0倍以上が好ましく、4.0倍以上がより好ましい。
多段階で延伸を行う場合は、各段階の延伸倍率の積が、延伸フィルムの最終的な延伸倍率となる。
また、延伸フィルムの配向関数としては、例えば、0.05以上が好ましく、0.19以上がより好ましい。一定の上限はあろうが、一般論としては、配向関数が高いほど分子配向に伴う三重項エネルギー移動の高効率化が期待される。
As a draw ratio, 2.0 times or more is preferable with respect to original length, and 4.0 times or more is more preferable.
When drawing in multiple steps, the product of the draw ratio in each step is the final draw ratio of the drawn film.
Moreover, as an orientation function of a stretched film, for example, 0.05 or more is preferable, and 0.19 or more is more preferable. Although there is a fixed upper limit, generally speaking, the higher the orientation function, the higher the efficiency of triplet energy transfer accompanying molecular orientation is expected.

本発明者の検討によれば、組成物を構成する各材料として水溶性材料を用い、湿式延伸する方法が、高倍率の延伸に有利であった。
特に、アクセプター及びドナーとして水溶性化合物を用いるとともに、マトリックス樹脂としてポリビニルアルコール系樹脂を用いるようにし、かつ、延伸をホウ酸水溶液中での湿式延伸とした場合に、高い延伸倍率、配向関数が実現できることが分かった。これにより、ドナーからアクセプターへの三重項エネルギー移動の高効率化が実現できる。
According to the study of the present inventor, a method of wet stretching using a water-soluble material as each material constituting the composition was advantageous for stretching at a high magnification.
In particular, when using a water-soluble compound as an acceptor and a donor, using a polyvinyl alcohol-based resin as a matrix resin, and performing stretching as wet stretching in a boric acid aqueous solution, high stretch ratio and orientation function are realized It turned out that it can be done. Thereby, high efficiency of triplet energy transfer from the donor to the acceptor can be realized.

延伸フィルムの厚みとしては、特に限定するわけではないが、例えば、20〜40μmである。   The thickness of the stretched film is not particularly limited, but is, for example, 20 to 40 μm.

以下、実施例を用いて、本発明にかかるアップコンバージョンフィルム及びその製造方法について詳しく説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the upconversion film and the method for producing the same according to the present invention will be described in detail using examples, but the present invention is not limited to these examples.

〔合成例1:アクセプターAの合成〕
下記の合成スキームによりアクセプターAを合成した。
Synthesis Example 1: Synthesis of Acceptor A
The acceptor A was synthesized according to the following synthesis scheme.

具体的には以下のとおりである。
<化合物1の合成>
窒素雰囲気下でp−ブロモアニソール(1g,5.35mmol)を脱水THF(20ml)に入れ撹拌した。
反応溶液を−78℃に冷却しながら2.6Mのn−ブチルリチウム(2.3ml,5.89mmol)を滴下し、冷却しながら1時間反応させた。
2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(1.19ml,5.89mmol)を加え、室温で一晩反応させた。
反応溶液に水を加え、酢酸エチルで抽出した。
減圧乾燥後、透明の液体1.03gを得た(収率82%)。
1H NMR(400MHz,CDCl3) δ:7.75(d,J=8.7Hz,2H),6.89(d,J=8.7Hz,2H),3.82(s,3H),1.31(s,12H)
Specifically, it is as follows.
<Synthesis of Compound 1>
Under nitrogen atmosphere, p-bromoanisole (1 g, 5.35 mmol) was poured into dry THF (20 ml) and stirred.
While the reaction solution was cooled to −78 ° C., 2.6 M n-butyllithium (2.3 ml, 5.89 mmol) was added dropwise and allowed to react for 1 hour while cooling.
2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.19 ml, 5.89 mmol) was added and allowed to react overnight at room temperature.
Water was added to the reaction solution and extracted with ethyl acetate.
After drying under reduced pressure, 1.03 g of a clear liquid was obtained (yield 82%).
1 H NMR (400 MHz, CDCl 3 ) δ: 7.75 (d, J = 8.7 Hz, 2 H), 6.89 (d, J = 8.7 Hz, 2 H), 3.82 (s, 3 H), 1.31 (s, 12 H)

<化合物2の合成>
窒素雰囲気下で化合物1(1.03g,4.4mmol)及び9,10−ジブロモアントラセン(0.652g,1.94mmol)を脱水トルエン(20ml)に入れ撹拌した。
テトラキス(トリフェニルホスフィン)パラジウム(0)(0.11g,0.095mmol)及び2Mの炭酸カリウム水溶液(7ml)を反応溶液に滴下し、一晩反応させた。
エタノール(5ml)を反応溶液に加え、さらに一晩反応させた。反応溶液に水を加え、酢酸エチル及びクロロホルムで抽出した。
クロロホルム/メタノールで再結晶し、薄黄色の結晶0.736gを得た(収率97%)。
1H NMR(400MHz,CDCl3) δ:7.74(m,4H),7.39(d,J=8.7Hz,4H),7.33(m,4H),7.14(d,J=8.7Hz,4H),3.96(s,6H)
<Synthesis of Compound 2>
Compound 1 (1.03 g, 4.4 mmol) and 9,10-dibromoanthracene (0.652 g, 1.94 mmol) were added to dehydrated toluene (20 ml) and stirred under a nitrogen atmosphere.
Tetrakis (triphenylphosphine) palladium (0) (0.11 g, 0.095 mmol) and 2 M aqueous potassium carbonate solution (7 ml) were added dropwise to the reaction solution and allowed to react overnight.
Ethanol (5 ml) was added to the reaction solution and allowed to react further overnight. Water was added to the reaction solution, and extracted with ethyl acetate and chloroform.
Recrystallization with chloroform / methanol gave 0.736 g of pale yellow crystals (yield 97%).
1 H NMR (400 MHz, CDCl 3 ) δ: 7.74 (m, 4 H), 7.39 (d, J = 8.7 Hz, 4 H), 7.33 (m, 4 H), 7.14 (d, 7 J = 8.7 Hz, 4 H), 3.96 (s, 6 H)

<化合物3の合成>
窒素雰囲気下で化合物2(0.65g,1.66mmol)を脱水ジクロロメタン(150ml)に入れ撹拌した。
−78℃に冷却しながら1Mの三臭化ホウ素(8.5ml,8.5mmol)を滴下し、滴下終了後しばらく撹拌した後、室温で一晩反応させた。
氷水に溶液を加え、クロロホルム及び酢酸エチルで抽出した。
減圧乾燥し、薄黄色の固体0.533g(収率88%)を得た。
1H NMR(400MHz,DMSO) δ:9.74(s,1H),7.65(m,2H),7.39(m,2H),7.23(d,J=8.5Hz,2H),7.03(d,J=8.5Hz,2H)
<Synthesis of Compound 3>
Compound 2 (0.65 g, 1.66 mmol) was placed in dry dichloromethane (150 ml) and stirred under nitrogen atmosphere.
While cooling to −78 ° C., 1 M boron tribromide (8.5 ml, 8.5 mmol) was added dropwise, and after stirring for a while after completion of the addition, the mixture was allowed to react overnight at room temperature.
The solution was added to ice water and extracted with chloroform and ethyl acetate.
Drying under reduced pressure gave 0.533 g of a pale yellow solid (yield 88%).
1 H NMR (400 MHz, DMSO) δ: 9.74 (s, 1 H), 7.65 (m, 2 H), 7. 39 (m, 2 H), 7.23 (d, J = 8.5 Hz, 2 H ), 7.03 (d, J = 8.5 Hz, 2 H)

<化合物4の合成>
化合物3(0.150g、0.414mmol)と炭酸カリウム(0.171g,0.124mmol)とをN,N−ジメチルホルムアミド(DMF)(5ml)に入れ、80℃で撹拌した。
反応溶液に、ブロモ吉草酸エチル(0.259g,1.24mmol)を滴下し、一晩反応させた。
反応終了後、室温に戻し、反応液を水に入れ、析出した固体を濾過した。
得られた固体を酢酸エチル/ヘキサンで再結晶した。
薄黄色の結晶0.190gを得た(収率74%)。
1H NMR(400MHz,CDCl3) δ:7.77−7.70(m,4H),7.37(d,J=8.7Hz,4H),7.36−7.30(m,4H),7.12(d,J=8.7Hz,4H),4.21−4.09(m,9H),2.46(br t,J=7.0Hz,4H),2.01−1.84(m,8H),1.57(s,6H),1.29(t,J=7.2Hz,6H)
<Synthesis of Compound 4>
Compound 3 (0.150 g, 0.414 mmol) and potassium carbonate (0.171 g, 0.124 mmol) were placed in N, N-dimethylformamide (DMF) (5 ml) and stirred at 80.degree.
To the reaction solution, ethyl bromovalerate (0.259 g, 1.24 mmol) was added dropwise and allowed to react overnight.
After completion of the reaction, the temperature was returned to room temperature, the reaction solution was poured into water, and the precipitated solid was filtered.
The resulting solid was recrystallized with ethyl acetate / hexane.
0.190 g of pale yellow crystals were obtained (yield 74%).
1 H NMR (400 MHz, CDCl 3 ) δ: 7.77 to 7.70 (m, 4 H), 7.37 (d, J = 8.7 Hz, 4 H), 7.36 to 7.30 (m, 4 H) ), 7.12 (d, J = 8.7 Hz, 4 H), 4.21-4.09 (m, 9 H), 2.46 (br t, J = 7.0 Hz, 4 H), 2.01- 1.84 (m, 8 H), 1.57 (s, 6 H), 1. 29 (t, J = 7.2 Hz, 6 H)

<化合物5の合成>
化合物4(0.150g、0.242mmol)をメタノール(10ml)中で撹拌した。
次いで、1M水酸化カリウム水溶液(5ml)を滴下して80℃で一晩反応させた。
反応終了後、室温に戻し、反応液を水に入れ希塩酸で酸性にした。析出した固体をろ過した。
減圧乾燥後、薄黄色の結晶0.11gを得た(収率81%)。
1H NMR(400MHz,DMSO) δ:12.40−11.81(m,2H),7.67−7.61(m,4H),7.43−7.39(m,4H),7.35(d,J=8.6Hz,4H),7.20(d,J=8.7Hz,4H),4.13(t,J=6.2Hz,4H),2.36(t,J=7.3Hz,4H),1.95−1.62(m,8H)
<Synthesis of Compound 5>
Compound 4 (0.150 g, 0.242 mmol) was stirred in methanol (10 ml).
Then, 1 M aqueous potassium hydroxide solution (5 ml) was added dropwise and allowed to react overnight at 80 ° C.
After completion of the reaction, the temperature was returned to room temperature, and the reaction solution was poured into water and acidified with dilute hydrochloric acid. The precipitated solid was filtered.
After drying under reduced pressure, 0.11 g of pale yellow crystals were obtained (yield 81%).
1 H NMR (400 MHz, DMSO) δ: 12.40-11.81 (m, 2H), 7.67-7.61 (m, 4H), 7.43-7.39 (m, 4H), 7 .35 (d, J = 8.6 Hz, 4 H), 7. 20 (d, J = 8.7 Hz, 4 H), 4. 13 (t, J = 6.2 Hz, 4 H), 2. 36 (t, J = 7.3 Hz, 4 H), 1.95 to 1.62 (m, 8 H)

<アクセプターAの合成>
化合物5(0.100g、0.178mmol)を水(20ml)に入れ、撹拌した。
次いで、反応溶液に水酸化テトラブチルアンモニウム10%水溶液(0.83ml)を滴下した。
室温で2時間反応させた後、ろ過した。
ろ液を減圧乾燥し、薄黄色の固体0.22gを得た(収率100%)。
1H NMR(400MHz,CD3OD) δ:7.70−7.64(m,4H),7.34−7.23(m,8H),7.15(d,J=8.6Hz,4H),4.14(t,J=6.1Hz,4H),3.24−3.16(m,16H),2.30(t,J=7.2Hz,4H),1.96−1.82(m,8H),1.69−1.57(m,17H),1.39(sxt,J=7.4Hz,17H),1.00(t,J=7.3Hz,24H)
<Synthesis of acceptor A>
Compound 5 (0.100 g, 0.178 mmol) was taken in water (20 ml) and stirred.
Then, 10% aqueous solution of tetrabutylammonium hydroxide (0.83 ml) was added dropwise to the reaction solution.
After reacting for 2 hours at room temperature, it was filtered.
The filtrate was dried under reduced pressure to obtain 0.22 g of a pale yellow solid (yield 100%).
1 H NMR (400 MHz, CD 3 OD) δ: 7.70-7.64 (m, 4 H), 7.34-7.23 (m, 8 H), 7.15 (d, J = 8.6 Hz, 4H), 4.14 (t, J = 6.1 Hz, 4H), 3.24-3.16 (m, 16H), 2.30 (t, J = 7.2 Hz, 4H), 1.96- 1.82 (m, 8 H), 1.69-1.57 (m, 17 H), 1. 39 (sxt, J = 7.4 Hz, 17 H), 1.00 (t, J = 7.3 Hz, 24 H )

〔合成例2:アクセプターBの合成〕
下記の合成スキームによりアクセプターBを合成した。
Synthesis Example 2: Synthesis of Acceptor B
The acceptor B was synthesized by the following synthesis scheme.

具体的には以下のとおりである。
窒素雰囲気下で化合物3(0.100g,0.276mmol)とt−ブトキシナトリウム(0.0583g,0.607mmol)を脱水エタノール(5ml)に入れ、80℃で撹拌した。
次いで、1,3−ビス(2−(2−(2−メトキシエトキシ)エトキシ)エトキシ)プロパン−2−イル−トルエンスルホネート(0.327g,0.607mmol)を滴下し、3日間反応させた。
反応終了後、室温に戻し、反応液を酢酸エチルに入れ水で抽出後、シリカゲルカラム(酢酸エチル:メタノール=50:1)で精製した。
薄黄色の液体0.100gを得た(収率33%)。
1H NMR(400MHz,CDCl3) δ:7.77−7.71(m,4H),7.39−7.30(m,8H),7.21(d,J=8.8Hz,4H),4.78−4.64(m,2H),3.89−3.82(m,7H),3.79−3.73(m,8H),3.73−3.61(m,32H),3.58−3.50(m,8H),3.36(s,12H)
Specifically, it is as follows.
Compound 3 (0.100 g, 0.276 mmol) and t-butoxy sodium (0.0583 g, 0.607 mmol) were added to dehydrated ethanol (5 ml) under a nitrogen atmosphere and stirred at 80 ° C.
Then, 1,3-bis (2- (2- (2-methoxyethoxy) ethoxy) propan-2-yl-toluenesulfonate (0.327 g, 0.607 mmol) was added dropwise and allowed to react for 3 days.
After completion of the reaction, the reaction solution was returned to room temperature, and the reaction solution was poured into ethyl acetate and extracted with water, and then purified with a silica gel column (ethyl acetate: methanol = 50: 1).
0.100 g of pale yellow liquid was obtained (yield 33%).
1 H NMR (400 MHz, CDCl 3 ) δ: 7.77-7.71 (m, 4 H), 7.39-7.30 (m, 8 H), 7.21 (d, J = 8.8 Hz, 4 H ), 4.78-4.64 (m, 2H), 3.89-3.82 (m, 7H), 3.79-3.73 (m, 8H), 3.73-3.61 (m) , 32H), 3.58-3.50 (m, 8H), 3.36 (s, 12H)

〔合成例3:アクセプターCの合成〕
下記の合成スキームによりアクセプターCを合成した。
Synthesis Example 3: Synthesis of Acceptor C
The acceptor C was synthesized by the following synthesis scheme.

具体的には以下のとおりである。
化合物3(0.150g、0.414mmol)と炭酸カリウム(0.144g,1.04mmol)とをN,N−ジメチルホルムアミド(DMF)(10ml)に入れ、80℃で撹拌した。
反応溶液に、2−(2−(2−メトキシエトキシ)エトキシ)エチル4−メチルベンゼンスルホネート(0.331g,1.04mmol)を滴下し、一晩反応させた。
反応終了後、室温に戻し、反応液を水に入れ、析出した固体を濾過した。
得られた固体を酢酸エチル/ヘキサンで再結晶した。
薄黄色の結晶0.220gを得た(収率81%)。
1H NMR(400MHz,CDCl3) δ:7.75−7.70(m,4H),7.37(d,J=8.6Hz,4H),7.36−7.30(m,5H),7.15(d,J=8.8Hz,4H),4.33−4.26(m,4H),4.01−3.93(m,4H),3.86−3.79(m,4H),3.77−3.69(m,8H),3.66−3.53(m,4H),3.41(s,6H)
Specifically, it is as follows.
Compound 3 (0.150 g, 0.414 mmol) and potassium carbonate (0.144 g, 1.04 mmol) were placed in N, N-dimethylformamide (DMF) (10 ml) and stirred at 80.degree.
To the reaction solution, 2- (2- (2-methoxyethoxy) ethoxy) ethyl 4-methylbenzenesulfonate (0.331 g, 1.04 mmol) was added dropwise and allowed to react overnight.
After completion of the reaction, the temperature was returned to room temperature, the reaction solution was poured into water, and the precipitated solid was filtered.
The resulting solid was recrystallized with ethyl acetate / hexane.
0.220 g of pale yellow crystals were obtained (yield 81%).
1 H NMR (400 MHz, CDCl 3 ) δ: 7.75-7. 70 (m, 4 H), 7. 37 (d, J = 8.6 Hz, 4 H), 7.36-7.30 (m, 5 H) ), 7.15 (d, J = 8.8 Hz, 4 H), 4.33-4.26 (m, 4 H), 4.01-3.93 (m, 4 H), 3.86-3.79 (M, 4H), 3.77-3.69 (m, 8H), 3.66-3.53 (m, 4H), 3.41 (s, 6H)

〔合成例4:ドナーAの合成〕
下記の合成スキームによりドナーを合成した。
Synthesis Example 4: Synthesis of Donor A
The donor was synthesized by the following synthesis scheme.

具体的には以下のとおりである。
<化合物6の合成>
エチル−5−(4−ホルミルフェノキシ)ペンタノエート(4.00g、16.0mmol)とピロール(1.18ml,17.0mmol)とをプロピオン酸(160ml)に入れ、2時間還流させた。
反応終了後、室温に戻し、反応液を水に入れ、析出した固体を濾過した。
紫色の固体0.4gを得た(収率8%)。
1H NMR(400MHz,CD2Cl2) δ:8.92(s,8H),8.15(d,J=8.7Hz,8H),7.33(d,J=8.7Hz,8H),4.32(s,8H),4.21(d,J=7.2Hz,8H),2.54(t,J=7.2Hz,8H),2.13−1.95(m,16H),1.34(t,J=7.2Hz,12H)
Specifically, it is as follows.
<Synthesis of Compound 6>
Ethyl-5- (4-formylphenoxy) pentanoate (4.00 g, 16.0 mmol) and pyrrole (1.18 ml, 17.0 mmol) were placed in propionic acid (160 ml) and refluxed for 2 hours.
After completion of the reaction, the temperature was returned to room temperature, the reaction solution was poured into water, and the precipitated solid was filtered.
0.4 g of a purple solid was obtained (yield 8%).
1 H NMR (400 MHz, CD 2 Cl 2 ) δ: 8.92 (s, 8 H), 8. 15 (d, J = 8.7 Hz, 8 H), 7.33 (d, J = 8.7 Hz, 8 H ), 4.32 (s, 8 H), 4.21 (d, J = 7.2 Hz, 8 H), 2.54 (t, J = 7.2 Hz, 8 H), 2.13-1.95 (m , 16H), 1.34 (t, J = 7.2 Hz, 12 H)

<化合物7の合成>
化合物6(0.0352g、0.0295mmol)をベンゾニトリル(40ml)に入れ、溶解させた。
次いで、塩化パラジウム(0.0105g,0.0590mmol)を加え、5時間還流させた。
反応終了後、室温に戻し、溶媒を減圧除去した。
得られた固体を酢酸エチルで再結晶し、赤色の結晶0.03gを得た。得られた化合物はそのまま次の反応に使用した。
<Synthesis of Compound 7>
Compound 6 (0.0352 g, 0.0295 mmol) was placed in benzonitrile (40 ml) and dissolved.
Then, palladium chloride (0.0105 g, 0.0590 mmol) was added and refluxed for 5 hours.
After completion of the reaction, the temperature was returned to room temperature, and the solvent was removed under reduced pressure.
The obtained solid was recrystallized with ethyl acetate to obtain 0.03 g of red crystals. The obtained compound was used for the next reaction as it was.

<ドナーAの合成>
化合物7(0.0200g,0.0154mmol)をメタノール/テトラヒドロフラン(3ml/3ml)に入れ、1M水酸化カリウム水溶液(3ml)を加え、2日間還流させた。
次いで、1M塩酸で中和し、赤色の固体を得た。
得られた固体を乾燥後、水に入れ、水酸化テトラメチルアンモニウム10質量%水溶液(0.485ml)を加え、室温で1時間撹拌した。
反応後、溶媒を減圧除去し、得られた固体をジクロロメタンで洗浄した。
赤色の固体0.017gを得た(収率74%)。
1H NMR(400MHz,CD3OD) δ:8.80(s,7H),7.99(d,J=8.6Hz,8H),7.28(d,J=8.7Hz,8H),4.81(s,192H),4.34−4.15(m,8H),2.37−2.28(m,8H),2.02−1.84(m,16H)
<Synthesis of Donor A>
Compound 7 (0.0200 g, 0.0154 mmol) was placed in methanol / tetrahydrofuran (3 ml / 3 ml), 1 M aqueous potassium hydroxide solution (3 ml) was added, and the mixture was refluxed for 2 days.
It was then neutralized with 1 M hydrochloric acid to give a red solid.
The obtained solid was dried, poured into water, 10% by mass aqueous solution of tetramethylammonium hydroxide (0.485 ml) was added, and the mixture was stirred at room temperature for 1 hour.
After the reaction, the solvent was removed under reduced pressure and the obtained solid was washed with dichloromethane.
0.017 g of red solid was obtained (yield 74%).
1 H NMR (400 MHz, CD 3 OD) δ: 8.80 (s, 7 H), 7.99 (d, J = 8.6 Hz, 8 H), 7. 28 (d, J = 8.7 Hz, 8 H) , 4.81 (s, 192 H), 4.34 to 4.15 (m, 8 H), 2.37 to 2.28 (m, 8 H), 2.02 to 1.84 (m, 16 H)

〔合成例5:ドナーBの合成〕
下記の合成スキームによりドナーを合成した。
Synthesis Example 5 Synthesis of Donor B
The donor was synthesized by the following synthesis scheme.

具体的には以下のとおりである。
<化合物8の合成>
テトラキス(4−カルボキシフェニル)ポルフィリン(0.0700g、0.0885mmol)と炭酸カリウム(0.0979g,0.124mmol)とをN,N−ジメチルホルムアミド(DMF)(15ml)に入れ、80℃で撹拌した。
反応溶液に、2−(2−(2−メトキシエトキシ)エトキシ)エチル4−メチルベンゼンスルホネート(0.169g,0.531mmol)を滴下し、一日反応させた。
反応終了後、室温に戻し、反応液を酢酸エチルに入れ水で抽出後、アセトン、ヘキサンで洗浄し紫色の固体0.05gを得た(収率41%)。
1H NMR(400MHz,(CD32CO) δ:9.27−8.62(m,8H),8.54−8.42(m,8H),8.42−8.31(m,8H),4.73−4.54(m,8H),4.07−3.90(m,8H),3.75(s,8H),3.70−3.60(m,16H),3.53−3.47(m,8H),3.29(s,12H)
Specifically, it is as follows.
<Synthesis of Compound 8>
Tetrakis (4-carboxyphenyl) porphyrin (0.0700 g, 0.0885 mmol) and potassium carbonate (0.0979 g, 0.124 mmol) are placed in N, N-dimethylformamide (DMF) (15 ml) and stirred at 80 ° C. did.
To the reaction solution, 2- (2- (2-methoxyethoxy) ethoxy) ethyl 4-methylbenzenesulfonate (0.169 g, 0.531 mmol) was added dropwise and allowed to react for one day.
After completion of the reaction, the reaction solution is returned to room temperature, and the reaction solution is poured into ethyl acetate and extracted with water, and then washed with acetone and hexane to obtain 0.05 g of a purple solid (yield 41%).
1 H NMR (400 MHz, (CD 3 ) 2 CO) δ: 9.27-8.62 (m, 8 H), 8.54-8. 42 (m, 8 H), 8.42-8.31 (m , 8H), 4.73 to 4.54 (m, 8H), 4.07 to 3.90 (m, 8H), 3.75 (s, 8H), 3.70 to 3.60 (m, 16H) ), 3.53 to 3.47 (m, 8H), 3.29 (s, 12H)

<ドナーBの合成>
化合物8(0.0300g、0.0218mmol)をベンゾニトリル(10ml)に入れ、溶解させた。
次いで、塩化パラジウム(0.00773g,0.0436mmol)を加え、一晩還流させた。
反応終了後、室温に戻し、溶媒を減圧除去した。
得られた固体をアセトン、ヘキサンで洗浄し0.025gを得た(収率77%)。
1H NMR(400MHz,CD2Cl2) δ:8.74(s,8H),8.36(d,J=7.5Hz,8H),8.19(d,J=7.5Hz,8H),4.54(dd,J=4.0,5.5Hz,9H),3.93−3.78(m,8H),3.71−3.63(m,8H),3.62−3.52(m,16H),3.49−3.38(m,8H),3.25(s,12H)
<Synthesis of Donor B>
Compound 8 (0.0300 g, 0.0218 mmol) was placed in benzonitrile (10 ml) and dissolved.
Then palladium chloride (0.00773 g, 0.0436 mmol) was added and refluxed overnight.
After completion of the reaction, the temperature was returned to room temperature, and the solvent was removed under reduced pressure.
The obtained solid was washed with acetone and hexane to obtain 0.025 g (yield 77%).
1 H NMR (400 MHz, CD 2 Cl 2 ) δ: 8.74 (s, 8 H), 8. 36 (d, J = 7.5 Hz, 8 H), 8. 19 (d, J = 7.5 Hz, 8 H ), 4.54 (dd, J = 4.0, 5.5 Hz, 9 H), 3.93 to 3.78 (m, 8 H), 3.71 to 3.63 (m, 8 H), 3.62 -3.52 (m, 16H), 3.49-3.38 (m, 8 H), 3.25 (s, 12 H)

〔実施例1〕
ポリビニルアルコール10質量%水溶液100質量部に対し、合成例4で得たドナーA0.001質量部、合成例1で得たアクセプターA0.5質量部の割合で配合し、混合・撹拌した。
30分間脱泡した後、ガラス板上に塗布した。
90℃で15分間乾燥した後、フィルムをガラス板から剥離して、未延伸フィルムを得た。
上記未延伸フィルムについて、ホウ酸3質量%水溶液中で、両端を挟持しながら長手方向に一軸延伸した(延伸倍率:4倍)。
その後、60℃で5分間乾燥することにより、実施例1の延伸フィルムを得た。
Example 1
0.001 parts by mass of donor A obtained in Synthesis Example 4 and 0.5 parts by mass of acceptor A obtained in Synthesis Example 1 were mixed with 100 parts by mass of a 10% by mass aqueous solution of polyvinyl alcohol, and mixed and stirred.
After degassing for 30 minutes, it was applied on a glass plate.
After drying at 90 ° C. for 15 minutes, the film was peeled from the glass plate to obtain an unstretched film.
The unstretched film was uniaxially stretched in the longitudinal direction while holding both ends in a 3% by mass aqueous solution of boric acid (stretching ratio: 4 times).
Then, the stretched film of Example 1 was obtained by drying at 60 degreeC for 5 minutes.

〔実施例2〕
延伸倍率を2倍としたこと以外は実施例1と同様にして、実施例2の延伸フィルムを得た。
Example 2
A stretched film of Example 2 was obtained in the same manner as in Example 1 except that the draw ratio was doubled.

〔比較例1〕
実施例1における延伸前の未延伸フィルムを比較例1とした。
Comparative Example 1
The unstretched film before stretching in Example 1 was taken as Comparative Example 1.

〔実施例3〕
アクセプターA0.5質量部に代えて、合成例2で得たアクセプターB0.5質量部を用いたこと以外は、実施例1と同様にして、実施例3の延伸フィルムを得た。
[Example 3]
A stretched film of Example 3 was obtained in the same manner as Example 1, except that 0.5 part by mass of the acceptor A was used instead of 0.5 part by mass of the acceptor A.

〔比較例2〕
実施例3における延伸前の未延伸フィルムを比較例2とした。
Comparative Example 2
The unstretched film before stretching in Example 3 was taken as Comparative Example 2.

〔実施例4〕
アクセプターA0.5質量部に代えて、合成例3で得たアクセプターC0.5質量部を用いたこと、及び延伸倍率を6倍としたこと以外は、実施例1と同様にして、実施例4の延伸フィルムを得た。
Example 4
Example 4 was carried out in the same manner as Example 1, except that 0.5 part by mass of the acceptor C obtained in Synthesis Example 3 was used instead of 0.5 part by mass of the acceptor A, and that the stretching ratio was 6 times. A stretched film of

〔比較例3〕
実施例4における延伸前の未延伸フィルムを比較例3とした。
Comparative Example 3
The unstretched film before stretching in Example 4 was taken as Comparative Example 3.

〔実施例5〕
ドナーA0.001質量部に代えて、合成例5で得たドナーB0.001質量部を用いたこと、及び延伸倍率を6倍としたこと以外は、実施例1と同様にして、実施例5の延伸フィルムを得た。
[Example 5]
Example 5 in the same manner as Example 1, except that 0.001 part by mass of donor B obtained in Synthesis Example 5 was used instead of 0.001 part by mass of donor A, and that the stretching ratio was 6 times. A stretched film of

〔比較例4〕
実施例5における延伸前の未延伸フィルムを比較例4とした。
Comparative Example 4
The unstretched film before stretching in Example 5 was taken as Comparative Example 4.

〔アップコンバージョン発光特性の測定〕
上記で得た実施例1〜5及び比較例1〜4の各フィルムに、レーザークリエイト社製の光源(532nm、CWレーザー、260mW/cm2(空気中))からレーザー光を照射し、得られる発光を分光器(QE65000、オーシャンオプティクス社製)で測定した。入射光源(532nm)が直接分光器に入らないように、分光器の直前にノッチフィルター(エドモンドオプティクスジャパン社製#86−120)を配置した。
[Measurement of upconversion emission characteristics]
It is obtained by irradiating a laser beam from a light source (532 nm, CW laser, 260 mW / cm 2 (in air)) manufactured by Laser Create, to each of the films of Examples 1 to 5 and Comparative Examples 1 to 4 obtained above. The luminescence was measured with a spectrometer (QE 65000, manufactured by Ocean Optics, Inc.). A notch filter (Edmond Optics Japan # 86-120) was placed in front of the spectroscope so that the incident light source (532 nm) did not directly enter the spectroscope.

〔配向度の測定〕
上記で得た実施例1〜5及び比較例1〜4の各フィルムを、偏光フィルタを挿入したATR測定用アタッチメント(ATR PRO610P−S(ZnSeプリズム)、日本分光社製)付きフーリエ変換赤外分光光度計(FT/IR−4700、日本分光社製)を用いて、赤外線入射方向に対して延伸方向が平行した場合と、垂直にした場合の赤外吸収スペクトルを測定した。得られたスペクトルから、1325cm-1のピーク強度において、平行方向に対しての垂直方向の強度比から配向関数を算出した。
[Measurement of degree of orientation]
Fourier transform infrared spectroscopy with an attachment for ATR measurement (ATR PRO 610 P-S (ZnSe prism), JASCO Corp.) with polarizing filter inserted into each film of Examples 1 to 5 and Comparative Examples 1 to 4 obtained above Using a photometer (FT / IR-4700, manufactured by Nippon Bunko Co., Ltd.), infrared absorption spectra were measured when the stretching direction was parallel to the infrared incident direction and when it was perpendicular. From the obtained spectrum, the orientation function was calculated from the intensity ratio in the direction perpendicular to the parallel direction at a peak intensity of 1325 cm −1 .

〔結果及び考察〕
励起光の532nmより短波長域のアクセプターから得られるアップコンバージョン発光と、長波長域のドナーのりん光発光のピーク値の比を延伸倍率ごとに調べることで、延伸による効果を検証した。
実施例1、2及び比較例1の結果を図2にまとめて示す。
また、下表1に実施例1、2及び比較例1の各フィルムにおける710nmピークに対する457nmの強度をまとめた。
[Results and discussion]
The effect of stretching was verified by examining, for each stretching ratio, the ratio of the upconversion emission obtained from the acceptor in a wavelength range shorter than 532 nm of excitation light to the peak value of the phosphorescence emission of a long wavelength range donor.
The results of Examples 1 and 2 and Comparative Example 1 are summarized in FIG.
Moreover, the intensity | strength of 457 nm with respect to the 710 nm peak in each film of Example 1, 2 and the comparative example 1 was put together in the following table 1.

上記結果より、未延伸ではアップコンバージョン発光はほぼ起こらないが、延伸することでアップコンバージョン発光が起こりやすくなっていることが分かる。この傾向は、延伸倍率が高いほど顕著であった。
この結果は、延伸によりアップコンバージョン発光分子が配向され、三重項エネルギーの移動が効率よく起こっていることを示唆するものである。
From the above results, it can be seen that upconversion emission hardly occurs in the unstretched state, but upconversion emission is more likely to occur by drawing. This tendency was more remarkable as the draw ratio was higher.
This result suggests that the up-conversion light emitting molecule is oriented by stretching, and that triplet energy transfer occurs efficiently.

実施例3及び比較例2の結果を図3にまとめて示す。
また、下表2に実施例3及び比較例2の各フィルムにおける710nmピークに対する450nmの強度をまとめた。
The results of Example 3 and Comparative Example 2 are summarized in FIG.
Moreover, the intensity | strength of 450 nm with respect to the 710 nm peak in each film of Example 3 and Comparative Example 2 was put together in following Table 2.

実施例4及び比較例3の結果を図4にまとめて示す。
また、下表3に実施例4及び比較例3の各フィルムにおける710nmピークに対する446nmの強度をまとめた。
The results of Example 4 and Comparative Example 3 are summarized in FIG.
Moreover, the intensity | strength of 446 nm with respect to the 710 nm peak in each film of Example 4 and Comparative Example 3 was put together in the following Table 3.

実施例5及び比較例4の結果を図5にまとめて示す。
また、下表4に実施例5及び比較例4の各フィルムにおける693nmピークに対する457nmの強度をまとめた。
The results of Example 5 and Comparative Example 4 are summarized in FIG.
Moreover, the intensity | strength of 457 nm with respect to the 693 nm peak in each film of Example 5 and Comparative Example 4 was put together in the following Table 4.

これら実施例2〜5、比較例2〜4の結果から、ドナーやアクセプターの種類を代えた場合においても、延伸によって、アップコンバージョン発光特性が顕著に向上することが確認できた。   From the results of Examples 2 to 5 and Comparative Examples 2 to 4, it was confirmed that the upconversion emission characteristics were significantly improved by stretching even when the types of donors and acceptors were changed.

また、実施例1におけるアップコンバージョン発光の様子を撮影した写真を図6に示し、実施例4におけるアップコンバージョン発光の様子を撮影した写真を図7に示す。   Further, FIG. 6 shows a photograph of the upconversion light emission in the first embodiment, and FIG. 7 shows a photograph of the upconversion light emission in the fourth embodiment.

図6,7に示すとおり、照射された部分がアップコンバージョン発光し、フィルムのどの位置でも発光することを確認した。大面積な発光に期待ができ、様々な用途に展開することが可能である。   As shown in FIGS. 6 and 7, it was confirmed that the irradiated part up-converted and emitted light at any position on the film. Large area light emission can be expected, and can be developed for various applications.

本発明のアップコンバージョンフィルムは、例えば、膜厚20〜40μm程度のフィルムとして種々の用途に利用でき、特に、空気中で繰り返し光を照射しても安定にアップコンバージョン発光するため、空気中での使用にも適している。しかも、加工しやすく安価なフィルムであるため、様々な用途に展開することが可能である。   The upconversion film of the present invention can be used, for example, as a film having a film thickness of about 20 to 40 μm, for various applications, and in particular, it stably emits upconversion light even when it is repeatedly irradiated with light in air. It is also suitable for use. Moreover, since the film is easy to process and inexpensive, it can be developed for various applications.

本発明は、上記課題を解決するため、以下の構成を備える。
すなわち、本発明のアップコンバージョンフィルムは、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物からなる配向した延伸フィルムであって、前記マトリックス樹脂がポリビニルアルコール系樹脂である
また、本発明のアップコンバージョンフィルムの製造方法は、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物を延伸する工程を含むフォトンアップコンバージョンフィルムの製造方法であって、前記マトリックス樹脂がポリビニルアルコール系樹脂であり、前記延伸がホウ酸水溶液中での湿式延伸である。
The present invention is provided with the following composition in order to solve the above-mentioned subject.
In other words, up-conversion film of the present invention, I oriented stretched film Der comprising the composition comprising at least a acceptor and donor and the matrix resin, the matrix resin is a polyvinyl alcohol resin.
The manufacturing method of upconversion film of the present invention is a method for producing a photon upconversion film comprising a step of stretching a composition comprising at least an acceptor and donor and the matrix resin, before Symbol matrix resin of polyvinyl alcohol It is a resin, and the stretching is a wet stretching in an aqueous boric acid solution.

本発明は、上記課題を解決するため、以下の構成を備える。
すなわち、本発明のアップコンバージョンフィルムは、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物からなる延伸フィルムであって、前記マトリックス樹脂がポリビニルアルコール系樹脂であり、延伸により前記マトリックス樹脂が配向している
また、本発明のアップコンバージョンフィルムの製造方法は、アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物を延伸する工程を含むフォトンアップコンバージョンフィルムの製造方法であって、前記マトリックス樹脂がポリビニルアルコール系樹脂であり、前記延伸がホウ酸水溶液中での湿式延伸である。
The present invention is provided with the following composition in order to solve the above-mentioned subject.
In other words, up-conversion film of the present invention is an extension Shin film ing from a composition comprising at least a acceptor and donor and the matrix resin, the matrix resin Ri polyvinyl alcohol resin der, the matrix resin by stretching It is oriented .
The manufacturing method of upconversion film of the present invention is a method for producing a photon upconversion film comprising a step of stretching a composition comprising at least an acceptor and donor and the matrix resin, before Symbol matrix resin of polyvinyl alcohol It is a resin, and the stretching is a wet stretching in an aqueous boric acid solution.

Claims (9)

アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物からなる延伸フィルムである、フォトンアップコンバージョンフィルム。   The photon up conversion film which is a stretched film which consists of a composition which contains an acceptor, a donor, and matrix resin at least. 前記アクセプターが、ナフタレン構造、アントラセン構造、ピレン構造、ペリレン構造、テトラセン構造又はBodipy構造を有する化合物である、請求項1に記載のフォトンアップコンバージョンフィルム。   The photon upconversion film according to claim 1, wherein the acceptor is a compound having a naphthalene structure, an anthracene structure, a pyrene structure, a perylene structure, a tetracene structure or a Bodipy structure. 前記アクセプターが下式(1)で表される化合物である、請求項2に記載のフォトンアップコンバージョンフィルム。
上式(1)において、R1〜R8はそれぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜8の分岐を有してもよいアルキル鎖を有するアミノ基、炭素数1〜12の分岐を有してもよいアルキル基、炭素数1〜12の分岐を有してもよいアルコキシ基、下式(2)もしくは下式(3)で表されるエチレンオキシド鎖、又は、下式(4)で表されるアンモニウムイオンを表す。
上式(2)において、R9は炭素数1〜3のアルキル基を表し、nは1〜4の整数を表す。
上式(3)において、R10,R11はそれぞれ独立して、炭素数1〜3のアルキル基を表し、m及びlはそれぞれ独立して1〜4の整数を表す。
上式(4)において、oは1〜8の整数を表し、R12〜R15はそれぞれ独立して、炭素数1〜6の分岐を有してもよいアルキル基を表す。
The photon up conversion film according to claim 2, wherein the acceptor is a compound represented by the following formula (1).
In the above formula (1), each of R 1 to R 8 independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group having an alkyl chain which may have 1 to 8 carbon atoms, and 1 carbon atom Alkyl group optionally having 12 to 12 branches, alkoxy group optionally having 1 to 12 carbon atoms, ethylene oxide chain represented by the following formula (2) or formula (3), or It represents an ammonium ion represented by the formula (4).
In the above formula (2), R 9 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 1 to 4.
In the above formula (3), R 10 and R 11 each independently represent an alkyl group having 1 to 3 carbon atoms, and m and l each independently represent an integer of 1 to 4.
In the above formula (4), o represents an integer of 1 to 8, and R 12 to R 15 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a branch.
前記ドナーが、ポルフィリン構造、フタロシアニン構造又はフラーレン構造を有する化合物である、請求項1から3までのいずれかに記載のフォトンアップコンバージョンフィルム。   The photon upconversion film according to any one of claims 1 to 3, wherein the donor is a compound having a porphyrin structure, a phthalocyanine structure or a fullerene structure. 前記ドナーが下式(5)で表される化合物である、請求項4に記載のフォトンアップコンバージョンフィルム。
上式(5)において、R16〜R23はそれぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1〜8の分岐を有してもよいアルキル鎖を有するアミノ基、炭素数1〜12の分岐を有してもよいアルキル基、炭素数1〜12の分岐を有してもよいアルコキシ基、又は、下式(6)で表されるエチレンオキシド鎖を表し、Mは水素原子、白金、パラジウム、亜鉛もしくは銅を表し、Ar1〜Ar4はそれぞれ独立して水素原子、下式(7)、下式(8)もしくは下式(9)で表される置換基、又は、下式(10)で表されるアンモニウムイオンを表す。
上式(6)において、R24は炭素数1〜3のアルキル基を表し、pは1〜4の整数を表す。
上式(9)において、R25は炭素数1〜3のアルキル基を表し、qは1〜4の整数を表す。
上式(10)において、rは1〜8の整数を表し、R26〜R29はそれぞれ独立して炭素数1〜6の分岐を有してもよいアルキル基を表す。
The photon up conversion film according to claim 4, wherein the donor is a compound represented by the following formula (5).
In the above formula (5), each of R 16 to R 23 independently represents a hydrogen atom, a halogen atom, a cyano group, an amino group having a branched alkyl chain having 1 to 8 carbon atoms, 1 carbon atom R 12 represents an alkyl group which may have a branch of 12 to 12, an alkoxy group which may have a branch having 1 to 12 carbon atoms, or an ethylene oxide chain represented by the following formula (6), and M represents a hydrogen atom, Represents platinum, palladium, zinc or copper, and Ar 1 to Ar 4 each independently represent a hydrogen atom, a substituent represented by the following formula (7), a formula (8) or a formula (9), or It represents an ammonium ion represented by the formula (10).
In the above formula (6), R 24 represents an alkyl group having 1 to 3 carbon atoms, and p represents an integer of 1 to 4.
In the above formula (9), R 25 represents an alkyl group having 1 to 3 carbon atoms, and q represents an integer of 1 to 4.
In the above formula (10), r represents an integer of 1 to 8, and R 26 to R 29 each independently represent an alkyl group having 1 to 6 carbon atoms which may have a branch.
前記マトリックス樹脂が、ポリビニルアルコール系樹脂、ポリウレタン系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂又はポリ(メタ)アクリレート系樹脂である、請求項1から5までのいずれかに記載のフォトンアップコンバージョンフィルム。   The photon up conversion film according to any one of claims 1 to 5, wherein the matrix resin is a polyvinyl alcohol resin, a polyurethane resin, a polystyrene resin, a polycarbonate resin or a poly (meth) acrylate resin. 前記マトリックス樹脂がポリビニルアルコール系樹脂である、請求項6に記載のフォトンアップコンバージョンフィルム。   The photon up conversion film according to claim 6, wherein the matrix resin is a polyvinyl alcohol resin. 配向関数が0.05以上である、請求項1から7までのいずれかに記載のフォトンアップコンバージョンフィルム。   A photon upconversion film according to any of the preceding claims, wherein the orientation function is greater than or equal to 0.05. アクセプターとドナーとマトリックス樹脂とを少なくとも含む組成物を延伸する工程を含むフォトンアップコンバージョンフィルムの製造方法であって、前記アクセプター及び前記ドナーが水溶性であり、前記マトリックス樹脂がポリビニルアルコール系樹脂であり、前記延伸がホウ酸水溶液中での湿式延伸である、フォトンアップコンバージョンフィルムの製造方法。   A method for producing a photon up-conversion film, comprising the step of stretching a composition containing at least an acceptor, a donor and a matrix resin, wherein the acceptor and the donor are water-soluble, and the matrix resin is a polyvinyl alcohol resin. The method for producing a photon up-conversion film, wherein the stretching is a wet stretching in an aqueous solution of boric acid.
JP2017209162A 2017-10-30 2017-10-30 Photon upconversion film and manufacturing method thereof Active JP6429158B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017209162A JP6429158B1 (en) 2017-10-30 2017-10-30 Photon upconversion film and manufacturing method thereof
KR1020207004312A KR102118303B1 (en) 2017-10-30 2018-10-19 Photon upconversion film and its manufacturing method
CN201880057879.XA CN111247461B (en) 2017-10-30 2018-10-19 Photonic upconversion film and method for manufacturing same
PCT/JP2018/038959 WO2019087813A1 (en) 2017-10-30 2018-10-19 Photon upconversion film and method of manufacture therefor
US16/648,785 US10875983B2 (en) 2017-10-30 2018-10-19 Photon upconversion film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017209162A JP6429158B1 (en) 2017-10-30 2017-10-30 Photon upconversion film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP6429158B1 JP6429158B1 (en) 2018-11-28
JP2019081829A true JP2019081829A (en) 2019-05-30

Family

ID=64480519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017209162A Active JP6429158B1 (en) 2017-10-30 2017-10-30 Photon upconversion film and manufacturing method thereof

Country Status (5)

Country Link
US (1) US10875983B2 (en)
JP (1) JP6429158B1 (en)
KR (1) KR102118303B1 (en)
CN (1) CN111247461B (en)
WO (1) WO2019087813A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199582A (en) * 2018-05-18 2019-11-21 国立大学法人東京工業大学 Light wavelength conversion element and article containing the same
JPWO2021060370A1 (en) * 2019-09-26 2021-04-01
JP7307921B2 (en) 2019-11-15 2023-07-13 国立大学法人九州大学 photon upconversion material
JP7435960B2 (en) 2019-10-11 2024-02-21 国立研究開発法人産業技術総合研究所 optical upconversion materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200022270A (en) * 2018-08-22 2020-03-03 서강대학교산학협력단 Photocatalyst, method for preparing the same and water splitting apparatus comprising the same
JP7312392B1 (en) 2021-10-28 2023-07-21 和歌山県 Photon up-conversion film and manufacturing method thereof
CN116041319B (en) * 2022-11-08 2023-08-25 江苏中利集团股份有限公司 Preparation method of indolyl tetrahydroisoquinoline derivative

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049824A (en) * 2003-06-02 2005-02-24 Sony Internatl Europ Gmbh Composition for photon-energy up-conversion
JP2008506798A (en) * 2004-07-15 2008-03-06 メルク パテント ゲーエムベーハー Use of polymers for upconversion and devices for upconversion
EP2420547A1 (en) * 2010-08-20 2012-02-22 Sony Corporation Polymeric nanoparticles comprising a medium for photon up-conversion
WO2016204301A1 (en) * 2015-06-18 2016-12-22 国立大学法人九州大学 Composite material, photon upconversion material, and photon upconverter
JP2017107174A (en) * 2015-11-30 2017-06-15 大日本印刷株式会社 Method of manufacturing laminate, laminate, backlight device, and display
JP2017171699A (en) * 2016-03-18 2017-09-28 国立大学法人東京工業大学 Wavelength conversion material and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613468B (en) * 2014-09-30 2018-02-01 Lg 化學股份有限公司 Preparing method for thin polarizer, and thin polarizer manufactured by using the same
EP3316910A4 (en) 2015-07-02 2019-05-01 Children's Medical Center Corporation Triplet-triplet annihilation-based upconversion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049824A (en) * 2003-06-02 2005-02-24 Sony Internatl Europ Gmbh Composition for photon-energy up-conversion
JP2008506798A (en) * 2004-07-15 2008-03-06 メルク パテント ゲーエムベーハー Use of polymers for upconversion and devices for upconversion
EP2420547A1 (en) * 2010-08-20 2012-02-22 Sony Corporation Polymeric nanoparticles comprising a medium for photon up-conversion
WO2016204301A1 (en) * 2015-06-18 2016-12-22 国立大学法人九州大学 Composite material, photon upconversion material, and photon upconverter
JP2017107174A (en) * 2015-11-30 2017-06-15 大日本印刷株式会社 Method of manufacturing laminate, laminate, backlight device, and display
JP2017171699A (en) * 2016-03-18 2017-09-28 国立大学法人東京工業大学 Wavelength conversion material and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199582A (en) * 2018-05-18 2019-11-21 国立大学法人東京工業大学 Light wavelength conversion element and article containing the same
JP7054090B2 (en) 2018-05-18 2022-04-13 国立大学法人東京工業大学 An article containing an optical wavelength conversion element and its optical wavelength conversion element.
JPWO2021060370A1 (en) * 2019-09-26 2021-04-01
WO2021060370A1 (en) * 2019-09-26 2021-04-01 富士フイルム株式会社 Photon upconversion film and multilayer body
JP7200394B2 (en) 2019-09-26 2023-01-06 富士フイルム株式会社 Photon upconversion film, laminate
JP7435960B2 (en) 2019-10-11 2024-02-21 国立研究開発法人産業技術総合研究所 optical upconversion materials
JP7307921B2 (en) 2019-11-15 2023-07-13 国立大学法人九州大学 photon upconversion material

Also Published As

Publication number Publication date
KR102118303B1 (en) 2020-06-03
JP6429158B1 (en) 2018-11-28
KR20200030091A (en) 2020-03-19
US20200270419A1 (en) 2020-08-27
CN111247461A (en) 2020-06-05
US10875983B2 (en) 2020-12-29
CN111247461B (en) 2021-12-28
WO2019087813A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6429158B1 (en) Photon upconversion film and manufacturing method thereof
JP2020111751A (en) Solventless photon up-conversion system
JP2001151868A (en) Functional copolymer and organic electroluminescence element, photo-memory and positive hole transporting element by using the same polymer
CN109790185B (en) Nitrogen-containing compound and color conversion film comprising same
Tian et al. Investigations and facile synthesis of a series of novel multi-functional two-photon absorption materials
CN109734736A (en) Seven yuan of fluorine boron fluorescent dyes of one kind and its synthetic method
Martin et al. Design, synthesis and amplified spontaneous emission of 1, 2, 5-benzothiadiazole derivatives
Hohnholz et al. Synthesis and studies on luminescent biphenyl compounds
TW202102647A (en) Boron-containing cyclic emissive compounds and color conversion film containing the same
Detert et al. Quadrupolar donor–acceptor substituted oligo (phenylenevinylene) s—synthesis and solvatochromism of the fluorescence
Guo et al. Intrinsic persistent room temperature phosphorescence derived from 1H-benzo [f] indole itself as a guest
JP5747247B2 (en) Organic / fluorescent metal hybrid polymer and its ligand
KR20090088588A (en) Derivatives of rhodamine capable of fret off-on and manufacturing method thereof
Yu et al. Near-infrared (NIR) luminescent PMMA-based hybrid materials doped with Ln-β-diketonate (Ln= Nd or Yb) complexes
CN110437133B (en) Long-life room-temperature phosphorescent material and preparation method and application thereof
Mori et al. Enhanced upconversion emission in air using novel stretched poly (vinyl alcohol) thin films
JP2019168337A (en) Vibration visualization sensor
Zhou et al. Stimuli-responsive room-temperature phosphorescence regulation based on molecular packing mode conversion
JP5629873B2 (en) Light emitting material and light emitting element
CN114671882B (en) Tri-indenyl bridged zinc porphyrin-coumarin star-type triplet photosensitizer and preparation method and application thereof
Jin et al. Photo-and Oxygen-Synergistically Controlled Selective Expression of Organic Phosphorescence Units
JP7435960B2 (en) optical upconversion materials
Ruduss et al. Symmetrical versus asymmetrical molecular configuration in metal-assisted-through-space charge transfer TADF
CN113666969B (en) Self-repairing platinum metal gel material and preparation method and application thereof
CN115197162B (en) Light activated organic long afterglow material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6429158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250