JP2019080415A - Psr current control system with llc structure - Google Patents

Psr current control system with llc structure Download PDF

Info

Publication number
JP2019080415A
JP2019080415A JP2017204847A JP2017204847A JP2019080415A JP 2019080415 A JP2019080415 A JP 2019080415A JP 2017204847 A JP2017204847 A JP 2017204847A JP 2017204847 A JP2017204847 A JP 2017204847A JP 2019080415 A JP2019080415 A JP 2019080415A
Authority
JP
Japan
Prior art keywords
current
zero
circuit
output
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017204847A
Other languages
Japanese (ja)
Inventor
森泰 楊
Shintai Yo
森泰 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yu Jing Energy Tech Co Ltd
Yu Jing Energy Technology Co Ltd
Original Assignee
Yu Jing Energy Tech Co Ltd
Yu Jing Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Jing Energy Tech Co Ltd, Yu Jing Energy Technology Co Ltd filed Critical Yu Jing Energy Tech Co Ltd
Priority to JP2017204847A priority Critical patent/JP2019080415A/en
Publication of JP2019080415A publication Critical patent/JP2019080415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

To provide a PSR current control system with a LLC structure that acquires a transformer current signal at a primary side and calculates an output current to stably control it.SOLUTION: A PSR current control system with a LLC structure comprises: a voltage polarity conversion circuit; a current signal sampling circuit; a current crossover detection circuit; a zero current detection circuit; and a current integration circuit. After the voltage polarity conversion circuit acquires a voltage signal from a primary side of a LLC transformer to output a positive voltage signal, the current integration circuit acquires respective current input signal output from the current signal sampling circuit, zero point current point output from the current crossover detection circuit, and zero current state output by the zero current detection circuit. Based on the zero point current point and a zero current state, a minimum current level of the current input signal is increased up to a zero point current and a current integration waveform is generated. After the integration, an output current is generated and the LLC transformer acquires an output current for controlling an output state of a secondary side directly from the primary side.SELECTED DRAWING: Figure 1

Description

本発明はLLC構造でのPSR電流制御システムに関し、特に、一次側で変圧器電流信号を取得し、出力電流を推算することで、安定的に制御するLLC構造でのPSR電流制御システムを達成するものである。   The present invention relates to a PSR current control system in an LLC structure, and in particular, achieves a PSR current control system in an LLC structure that controls stably by acquiring a transformer current signal on the primary side and estimating an output current. It is a thing.

近年、民生用電子製品及びLED駆動回路の市場は絶えず成長しており、電源コンバータにおいては省電力で小型化が必要となってきている。LLC構造はすでに高効率の電圧変換システム、例えばPC、サーバのパワーサプライ、照明又はネットワークコミュニケーション電源等に大量に使用されている。多見されるLLC制御では、従来の二次側でフィードバックを調節し、二次側の一組のフォトカプラ及び比較器(Error Amplifier)により定電圧及び定電流制御を達成する。二次側回路中での主な用途は二次側の信号を一次側に送信するというものであり、フィードバック回路がこの信号によりパルス信号のデューティ比を調整することで、出力負荷が変動したときでも、該パワーサプライはなおも安定した電流及び電圧を出力負荷での使用に供することができるよう達成するものであって、負荷の変化に伴って、LLCの動作周波数にはマイナス関係の変化が現れて、変圧器電流には以下のような三つのモードで動作する可能性がある:動作周波数が共振周波数よりも低い時、変圧器の電流動作モードは不連続接続モード(DCM)に移行する;動作周波数が共振周波数に等しい時、変圧器の電流動作モードは臨界モードに移行する;動作周波数が共振周波数よりも高い時、変圧器の電流動作モードは連続接続モード(CCM)に移行する。従来の制御方法は二次側での部品点数、PCB空間及びコストが増加するうえ、しかも二次側の検知回路では電力損失が生じて、待機電力消費に影響する。よって、数多くの当業者ではPSR(Primary-Side Regulation、一次側レギュレーション)に向けて発展してきている。   In recent years, the market for consumer electronic products and LED drive circuits is constantly growing, and power supply converters are required to be miniaturized and to save power. The LLC structure is already used in large quantities for high efficiency voltage conversion systems, such as PCs, server power supplies, lighting or network communication power supplies. In LLC control, which is often seen, feedback is adjusted on the conventional secondary side, and constant voltage and constant current control is achieved by a set of photocouplers and a comparator (Error Amplifier) on the secondary side. The main application in the secondary circuit is to transmit the signal on the secondary side to the primary side, and when the feedback circuit adjusts the duty ratio of the pulse signal with this signal, the output load fluctuates. However, the power supply is still able to provide stable current and voltage for use in the output load, and there is a negative change in the operating frequency of the LLC as the load changes. Emerging, transformer current can operate in three modes as follows: When the operating frequency is lower than the resonant frequency, the current operating mode of the transformer shifts to discontinuous connection mode (DCM) When the operating frequency is equal to the resonant frequency, the current operating mode of the transformer shifts to the critical mode; when the operating frequency is higher than the resonant frequency, the current operating mode of the transformer is the continuous connection mode To migrate to de (CCM). The conventional control method increases the number of parts on the secondary side, PCB space and cost, and power loss occurs in the detection circuit on the secondary side, which affects standby power consumption. Therefore, many persons skilled in the art have developed towards PSR (Primary-Side Regulation).

PSRは二次側のフィードバック回路を必要とせずとも、一次側を通じて出力負荷状況を制御することで、定電流及び定電圧制御を達成することができる。この制御方法は一次側変圧器の付加巻線上の電圧信号を検知することを通じて、パルス信号のデューティ比を制御することで出力負荷状況を安定化するというものである。   PSR can achieve constant current and constant voltage control by controlling the output load condition through the primary side, without requiring a feedback circuit on the secondary side. This control method is to stabilize the output load condition by controlling the duty ratio of the pulse signal by detecting the voltage signal on the additional winding of the primary side transformer.

最も多用されるPSR制御の構造はFlyback(フライバック制御)というものであるが、Flybackは臨界モード、又は不連続接続モードで動作しなければならず、一旦、連続接続モード(COM)に移行すると、FlybackのPSR制御は機能しなくなる。しかしLLC構造では周波数を変更することで出力の利得を変更する。よってLLCの動作がどのモードになるかを制限することはできない。
従来の上記欠点に鑑み、発明者は前記欠点への研究改善の道に対して、ようやく本発明を発案するに至った。
The most frequently used PSR control structure is called Flyback, but Flyback must operate in the critical mode or discontinuous connection mode, and once enters the continuous connection mode (COM). , Flyback's PSR control will not work. However, in the LLC structure, the output gain is changed by changing the frequency. Therefore, it is not possible to limit which mode the LLC operation is in.
In view of the above-mentioned disadvantages of the prior art, the inventor finally came up with the present invention for the path of research improvement to the above-mentioned disadvantages.

本発明の主な目的は、一次側で変圧器電流信号を取得し、出力電流を算出して、安定的に制御するLLC構造でのPSR電流制御システムを達成するところにある。   The main object of the present invention is to achieve a PSR current control system with LLC structure to obtain transformer current signal on the primary side, calculate output current and control it stably.

上記目的及び効果を達成するために、本発明が採用する技術手段は、
予め設けられたLLC変圧器の一次側に電気的に接続されて、電圧信号中の負電圧を正電圧に変換するとともに正電圧信号を出力する電圧極性変換回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取って電流入力信号を取得する電流信号サンプリング回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取るとともにゼロ点電流点を算出する電流クロスオーバー検知回路と、
前記LLC変圧器の一次側に電気的に接続されており、ゼロ電流状態を検知するゼロ電流検知回路と、
前記電流信号サンプリング回路、電流クロスオーバー検知回路及びゼロ電流検知回路にそれぞれ電気的に接続されており、電流入力信号、ゼロ点電流点及びゼロ電流状態を受取って、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流点にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成する電流積分回路と、を備えており、
これにより、電圧極性変換回路が前記LLC変圧器の一次側から電圧信号を取得するとともに正電圧信号を出力した後、電流積分回路が、電流信号サンプリング回路が出力した電流入力信号、電流クロスオーバー検知回路が出力したゼロ点電流点、ゼロ電流検知回路が出力したゼロ電流状態をそれぞれ取得し、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成し、LLC変圧器が、二次側の出力状態を制御するための出力電流を直接一次側から取得する。
The technical means adopted by the present invention in order to achieve the above objects and effects is
A voltage polarity conversion circuit electrically connected to a primary side of an LLC transformer provided in advance and converting a negative voltage in a voltage signal into a positive voltage and outputting a positive voltage signal;
A current signal sampling circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal to acquire a current input signal;
A current crossover detection circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal and calculating a zero point current point;
A zero current sensing circuit electrically connected to the primary side of the LLC transformer for sensing a zero current condition;
The current signal sampling circuit, the current crossover detection circuit and the zero current detection circuit are respectively electrically connected to receive the current input signal, the zero point current point and the zero current state, and the zero point current point and the zero current state And raising the lowest current level of the current input signal to the zero point current point to generate a current integration waveform and generate an output current after integration, and
As a result, after the voltage polarity conversion circuit acquires a voltage signal from the primary side of the LLC transformer and outputs a positive voltage signal, the current integration circuit detects the current input signal output from the current signal sampling circuit, current crossover detection The zero point current point output by the circuit and the zero current state output by the zero current detection circuit are acquired respectively, and the lowest current level of the current input signal is increased to the zero point current based on the zero point current point and the zero current state The current integration waveform is generated and the output current is generated after integration, and the LLC transformer obtains the output current for controlling the output state of the secondary side directly from the primary side.

上記構造によれば、前記ゼロ電流検知回路が前記LLC変圧器に予め設けられたゼロ電位ノードに電気的に接続されている。   According to the above structure, the zero current detection circuit is electrically connected to a zero potential node provided in advance in the LLC transformer.

上記構造によれば、前記電流積分回路が予め設けられたLED駆動回路に電気的に接続されている。   According to the above structure, the current integrating circuit is electrically connected to the LED driving circuit provided in advance.

本発明の上記目的、効果及び特徴がより具体的に理解されるために、各々の図に基づいて以下の通り説明する。   The above objects, effects, and features of the present invention will be described as follows based on the respective drawings so as to be more specifically understood.

本発明の実施例の回路ブロック図である。It is a circuit block diagram of the example of the present invention. 図1における一部回路ブロックの概略図である。It is the schematic of the partial circuit block in FIG. 本発明の連続接続モードでの動作波形図である。It is an operation | movement wave form diagram in continuous connection mode of this invention. 図3における波形分解概略図である。FIG. 5 is a schematic diagram of waveform decomposition in FIG. 3; 本発明の不連続接続モードでの動作波形図である。It is an operation | movement wave form diagram in discontinuous connection mode of this invention. 本発明の臨界モードでの動作波形図である。It is an operation | movement wave form diagram in the critical mode of this invention.

図1、図2を参照されたい。本発明の構造は主に以下を備えることが分かる。   Please refer to FIG. 1 and FIG. It can be seen that the structure of the invention mainly comprises:

予め設けられたLLC変圧器1の一次側に電気的に接続されて、電圧信号中の負電圧を正電圧に変換するとともに正電圧信号を出力する電圧極性変換回路2と、
前記電圧極性変換回路2に電気的に接続されており、正電圧信号を受取って電流入力信号を取得する電流信号サンプリング回路3と、
前記電圧極性変換回路2に電気的に接続されており、正電圧信号を受取るとともにゼロ点電流点を算出する電流クロスオーバー検知回路4と、
前記LLC変圧器1の一次側に電気的に接続されており、ゼロ電流状態を検知する、つまり前記LLC変圧器に予め設けられたゼロ電位ノードZCDに電気的に接続されているゼロ電流検知回路5と、
前記電流信号サンプリング回路3、電流クロスオーバー検知回路4及びゼロ電流検知回路5にそれぞれ電気的に接続されており、電流入力信号、ゼロ点電流点及びゼロ電流状態を受取って、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流点にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成し、出力電流を予め設けられたLED駆動回路7に伝送する電流積分回路6と、を備えており、
これにより、電圧極性変換回路2が前記LLC変圧器1の一次側から電圧信号を取得するとともに正電圧信号を出力した後、電流積分回路6が、電流信号サンプリング回路3が出力した電流入力信号、電流クロスオーバー検知回路4が出力したゼロ点電流点、ゼロ電流検知回路5が出力したゼロ電流状態をそれぞれ取得し、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成し、LLC変圧器1が、二次側の出力状態を制御するための出力電流を直接一次側から取得して、LED駆動回路7を制御する。
A voltage polarity conversion circuit 2 electrically connected to a primary side of an LLC transformer 1 provided in advance and converting a negative voltage in a voltage signal into a positive voltage and outputting a positive voltage signal;
A current signal sampling circuit 3 electrically connected to the voltage polarity conversion circuit 2 and receiving a positive voltage signal to acquire a current input signal;
A current crossover detection circuit 4 electrically connected to the voltage polarity conversion circuit 2 and receiving a positive voltage signal and calculating a zero point current point;
A zero current detection circuit electrically connected to the primary side of the LLC transformer 1 to detect a zero current state, that is, electrically connected to a zero potential node ZCD previously provided to the LLC transformer. 5 and
The current signal sampling circuit 3, the current crossover detection circuit 4 and the zero current detection circuit 5 are electrically connected to each other, receive the current input signal, the zero point current point and the zero current state, Based on the zero current state, the lowest current level of the current input signal is raised to the zero point current point to generate a current integration waveform and generate an output current after integration, and an output current is provided in advance for the LED drive circuit And a current integration circuit 6 for transmitting to 7,
Thus, after the voltage polarity conversion circuit 2 acquires a voltage signal from the primary side of the LLC transformer 1 and outputs a positive voltage signal, the current integration circuit 6 outputs the current input signal output from the current signal sampling circuit 3; The zero current point output from the current crossover detection circuit 4 and the zero current state output from the zero current detection circuit 5 are obtained, and the minimum current level of the current input signal is obtained based on the zero current point and the zero current state. The current integration waveform is generated and the output current is generated after integration, and the LLC transformer 1 obtains the output current for controlling the output state of the secondary side directly from the primary side. Control the LED drive circuit 7;

図3ないし図6を同時に参照されたい。制御信号Aの制御波形は、正・負の半周の周期に基づいて、正の周期S1と負の周期S2とに分けられ、サンプリング電流ISHは制御信号Aに対応しており、実際の電流波形irは例えばオシロスコープで示すような電流波形図を示す;励磁電流iMは、LLC変圧器1動作時に生成したものに由来し、しかも出力電流IOUTを算出し取得するためのものである;安定励磁電流iMは、LLC変圧器1が制御信号Aを変換するとき、一つの安定出力状態にて一時的にカットオフする。そして、ID1、ID2は、最後の演算にて取得した結果であり、本発明が動作開始時において、
時点t0〜t1:サンプリング電流ISHは負電圧であるので、電圧極性変換回路2は負電圧を正電圧に変換する;
時点t1〜t2:正電圧に変換したサンプリング電流ISHを取得する;
時点t2〜t4:ゼロ電流検知回路5のゼロ電流検知点ZCDでゼロ電流出力を検知し、サンプリング電流ISHはゼロ電流発生時の電流値に固定される;
時点t3〜t4:電流クロスオーバー検知回路4が制御信号Aの周期変換を検知して、低電位から高電位に変換するが、このとき、出力電流IOUTは正電圧状態である; 時点t4〜t5:同時に、出力電流が正の周期S1から負の周期S2に移行し、電圧極性変換回路2が負電圧のサンプリング電流を正電圧に変換する;
時点t6〜t0:このとき、電流積分回路6が時点t0-t6の電流積分波形を積分した後、出力電流IOUTを生成するが、つまり電流積分回路6は正の半周S1の共振電流ID1、負の半周S2の共振電流ID2を積分して、LLC変圧器1が、二次側の出力状態を制御するための出力電流を直接一次側から取得する;一つの完全な制御信号Aの周期が終了すると、後続動作では前記時点t0〜t6を繰り返す。
Please refer to FIG. 3 to FIG. 6 simultaneously. The control waveform of control signal A is divided into positive period S1 and negative period S2 based on positive and negative half cycles, and sampling current ISH corresponds to control signal A, and the actual current waveform ir represents, for example, a current waveform diagram as shown by an oscilloscope; the excitation current iM is derived from that generated during operation of the LLC transformer 1 and is for calculating and acquiring the output current IOUT; stable excitation current The iM is temporarily cut off in one stable output state when the LLC transformer 1 converts the control signal A. And ID1 and ID2 are the result acquired by the last operation, and when the present invention starts operation,
Time point t0 to t1: Since the sampling current ISH is a negative voltage, the voltage polarity conversion circuit 2 converts the negative voltage to a positive voltage;
Time t1 to t2: obtaining a sampling current ISH converted to a positive voltage;
Time point t2 to t4: Zero current output is detected at the zero current detection point ZCD of the zero current detection circuit 5, and the sampling current ISH is fixed to the current value at the time of zero current generation;
Time t3 to t4: The current crossover detection circuit 4 detects periodic conversion of the control signal A and converts it from low potential to high potential, but at this time, the output current IOUT is in a positive voltage state; : Simultaneously, the output current shifts from the positive period S1 to the negative period S2, and the voltage polarity conversion circuit 2 converts the sampling current of the negative voltage into a positive voltage;
Time t6 to t0: At this time, after the current integration circuit 6 integrates the current integration waveform at time t0 to t6, the output current IOUT is generated, that is, the current integration circuit 6 has a positive half cycle S1 resonant current ID1, negative Integrate the resonance current ID2 of the half cycle S2 and the LLC transformer 1 obtains the output current for controlling the output state of the secondary side directly from the primary side; one complete control signal A period ends Then, in the subsequent operation, the times t0 to t6 are repeated.

上記動作を、図5、図6を照らし合わせたとき、波形の分解者は同じであるが、相違点は動作するモードになる。   When comparing the above operation with FIG. 5 and FIG. 6, the waveform decomposer is the same but the difference is the operating mode.

上記をまとめるに、本発明のLLC構造でのPSR電流制御システムは間違いなく新規性及び進歩性を備えることから、ここに法に基づき発明特許を出願する。ただし上記説明した内容は、単に本発明の好ましい実施例の説明に過ぎず、本発明の技術手段及び範囲から延長する変化、付加、変更又は等価置換のいずれも本発明の特許請求の範囲内に収まる。   To summarize the above, the invention patent is filed here under the law, as the PSR current control system in the LLC structure of the present invention is undoubtedly novel and inventive. However, the contents described above are merely descriptions of preferred embodiments of the present invention, and any changes, additions, modifications or equivalent substitutions extending from the technical means and scope of the present invention fall within the claims of the present invention. Fit.

1 LLC変圧器
2 電圧極性変換回路
3 電流信号サンプリング回路
4 電流クロスオーバー検知回路
5 ゼロ電流検知回路
6 電流積分回路
7 LED駆動回路
S1 正の周期
S2 負の周期
t0、t1、t2、t3、t4、t5、t6 時点
ir 実際の電流波形
iM 励磁電流
ID1、ID2 共振電流
IM 安定励磁電流
ISH サンプリング電流
IOUT 出力電流
ZCD ゼロ電流検知点
A 制御信号
DESCRIPTION OF SYMBOLS 1 LLC transformer 2 Voltage polarity conversion circuit 3 Current signal sampling circuit 4 Current crossover detection circuit 5 Zero current detection circuit 6 Current integration circuit 7 LED drive circuit S1 Positive period S2 Negative period t0, t1, t2, t3, t4 , T5, t6 time point ir Actual current waveform iM Excitation current ID1, ID2 Resonant current IM Stable excitation current ISH Sampling current IOUT Output current ZCD Zero current detection point A Control signal

本発明はLLC構造でのPSR電流制御システムに関し、特に、LLC変圧器一次側の電流信号と、インダクタ電流の方向と断続状態を基にして、LLC変圧器二次側の出力電流を計算することで、安定的に制御するLLC構造でのPSR電流制御システムを達成するものである。
The present invention relates to a PSR current control system in an LLC structure, and in particular to calculate the output current of the LLC transformer secondary based on the current signal of the LLC transformer primary and the direction and interruption of the inductor current. in, it is to achieve a PSR current control system in the LLC structure stably controlled.

本発明の主な目的は、LLC変圧器一次側の電流信号と、インダクタ電流の方向と断続状態を基にして、LLC変圧器二次側の出力電流を計算することで、安定的に制御するLLC構造でのPSR電流制御システムを達成するところにある。

The main object of the present invention is to stably control the output current on the secondary side of the LLC transformer based on the current signal on the primary side of the LLC transformer and the direction and the intermittent state of the inductor current. The goal is to achieve PSR current control system with LLC structure.

上記目的及び効果を達成するために、本発明が採用する技術手段は、
予め設けられたLLC変圧器の一次側に電気的に接続されて、電圧信号中の負電圧を正電圧に変換するとともに正電圧信号を出力する電圧極性変換回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取って電流入力信号を取得する電流信号サンプリング回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取るとともにゼロ点電流点を算出する電流方向クロスオーバー検知回路と、
前記LLC変圧器の一次側に電気的に接続されており、ゼロ電流状態を検知するゼロ電流検知回路と、
前記電流信号サンプリング回路、電流方向クロスオーバー検知回路及びゼロ電流検知回路にそれぞれ電気的に接続されており、電流入力信号、ゼロ点電流点及びゼロ電流状態を受取って、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流点にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成する電流積分回路と、を備えており、
これにより、電圧極性変換回路が前記LLC変圧器の一次側から電流が電気抵抗を
経由することで生じる電圧信号を取得し、電流が正と負の異なる位相を含むので、ゼロ電流検知回路はゼロ点電流点の検知を通じて電流の正と負の方向を判断することができ、ゼロ電流検知回路はこの正と負が変換する時間点を取得し、電圧極性変換回路はこの時間点で取得した電圧入力信号を電圧ゼロ点以上に上昇させ、即ちこの電圧の絶対値を取り、並びにその出力は正電圧信号であり、電流信号サンプリング回路を通じて、LLC変圧器の二次側から一次側に反映されるインダクタ電流の断続状態を検知し、そして、電流積分回路が、電流信号サンプリング回路が出力した電流入力信号、電流方向クロスオーバー検知回路が出力したゼロ点電流点、ゼロ電流検知回路が出力したゼロ電流状態をそれぞれ取得し、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流にまで上昇させて、電流積分波形を生成するとともに、LLC変圧器の二次側のインダクタ電流が存在する時間内で電流積分回路が電流積分波形に対して積分を行い、積分後に出力電流を生成し、LLC変圧器が、二次側の出力状態を制御するための出力電流を直接一次側から取得し、一次と二次コイルの比の換算を通じてLED駆動回路を制御する。
The technical means adopted by the present invention in order to achieve the above objects and effects is
A voltage polarity conversion circuit electrically connected to a primary side of an LLC transformer provided in advance and converting a negative voltage in a voltage signal into a positive voltage and outputting a positive voltage signal;
A current signal sampling circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal to acquire a current input signal;
A current direction crossover detection circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal and calculating a zero point current point;
A zero current sensing circuit electrically connected to the primary side of the LLC transformer for sensing a zero current condition;
The current signal sampling circuit, the current direction crossover detection circuit and the zero current detection circuit are electrically connected to each other, receive the current input signal, the zero point current point and the zero current state, and the zero point current point and the zero current A current integration circuit that raises the lowest current level of the current input signal to the zero point current point based on the state to generate a current integration waveform and generates an output current after integration;
Thus, the voltage polarity conversion circuit causes the current to flow from the primary side of the LLC transformer.
The zero current detection circuit can determine the positive and negative directions of the current through the detection of the zero point current point, since the current contains different phases of positive and negative, and the current can include the voltage signal generated by passing through. The current sensing circuit acquires the time point at which this positive and negative convert, and the voltage polarity conversion circuit raises the voltage input signal acquired at this time above the voltage zero point, ie taking the absolute value of this voltage, and The output is a positive voltage signal, and the current signal sampling circuit detects an intermittent state of the inductor current reflected from the secondary side to the primary side of the LLC transformer, and the current integration circuit generates a current signal sampling circuit. outputted by the current input signal, current direction crossover detection circuit zero current point output, respectively obtains zero current state in which the output is zero current detection circuit, zero current point and zero conductivity Based on the state, by increasing the minimum current level of the current input signal to the zero point current, to generate a current integral waveform, the current integrator circuit within the time the inductor current of the secondary side of the LLC transformer exists The integration is performed on the current integration waveform, and after integration, the output current is generated, and the LLC transformer obtains the output current for controlling the output state of the secondary side directly from the primary side, and the primary and secondary coils are Control the LED drive circuit through ratio conversion.

予め設けられたLLC変圧器1の一次側に電気的に接続されて、電圧信号中の負電圧を正電圧に変換するとともに正電圧信号を出力する電圧極性変換回路2と、
前記電圧極性変換回路2に電気的に接続されており、正電圧信号を受取って電流入力信号を取得する電流信号サンプリング回路3と、
前記電圧極性変換回路2に電気的に接続されており、正電圧信号を受取るとともにゼロ点電流点を算出する電流交流クロスオーバー検知回路4と、
前記LLC変圧器1の一次側に電気的に接続されており、ゼロ電流状態を検知する、つまり前記LLC変圧器に予め設けられたゼロ電位ノードZCDに電気的に接続されているゼロ電流検知回路5と、
前記電流信号サンプリング回路3、電流方向クロスオーバー検知回路4及びゼロ電流検知回路5にそれぞれ電気的に接続されており、電流入力信号、ゼロ点電流点及びゼロ電流状態を受取って、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流点にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成し、出力電流を予め設けられたLED駆動回路7に伝送する電流積分回路6と、を備えており、
これにより、電圧極性変換回路2が前記LLC変圧器1の一次側から電流が電気抵抗を経由することで生じる電圧信号を取得し、電流が正と負の異なる位相を含むので、ゼロ電流検知回路5はゼロ点電流点の検知を通じて電流の正と負の方向を判断することができ、ゼロ電流検知回路5はこの正と負が変換する時間点を取得し、電圧極性変換回路2はこの時間点で取得した電圧入力信号を電圧ゼロ点以上に上昇させ、即ちこの電圧の絶対値を取り、並びにその出力は正電圧信号であり、電流信号サンプリング回路3を通じて、LLC変圧器1の二次側から一次側に反映されるインダクタ電流の断続状態を検知し、そして、電流積分回路6が、電流信号サンプリング回路3が出力した電流入力信号、電流方向クロスオーバー検知回路4が出力したゼロ点電流点、ゼロ電流検知回路5が出力したゼロ電流状態をそれぞれ取得し、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流にまで上昇させて、電流積分波形を生成するとともに、LLC変圧器の二次側のインダクタ電流が存在する時間内で電流積分回路6が電流積分波形に対して積分を行い、積分後に出力電流を生成し、LLC変圧器1が、二次側の出力状態を制御するための出力電流を直接一次側から取得して、一次と二次コイルの比の換算を通じてLED駆動回路7を制御する。
A voltage polarity conversion circuit 2 electrically connected to a primary side of an LLC transformer 1 provided in advance and converting a negative voltage in a voltage signal into a positive voltage and outputting a positive voltage signal;
A current signal sampling circuit 3 electrically connected to the voltage polarity conversion circuit 2 and receiving a positive voltage signal to acquire a current input signal;
A current alternating current crossover detection circuit 4 electrically connected to the voltage polarity conversion circuit 2 and receiving a positive voltage signal and calculating a zero point current point;
A zero current detection circuit electrically connected to the primary side of the LLC transformer 1 to detect a zero current state, that is, electrically connected to a zero potential node ZCD previously provided to the LLC transformer. 5 and
The current signal sampling circuit 3, the current direction crossover detection circuit 4, and the zero current detection circuit 5 are electrically connected to each other, receive the current input signal, the zero point current point, and the zero current state, The lowest current level of the current input signal is raised to the zero point current point based on the zero and current states to generate a current integration waveform and generate an output current after integration, and output current is pre-provided LED drive And a current integration circuit 6 for transmission to the circuit 7;
As a result, the voltage polarity conversion circuit 2 acquires a voltage signal generated from the primary side of the LLC transformer 1 when the current passes through the electrical resistance, and the current includes different positive and negative phases, so the zero current detection circuit 5 can determine the positive and negative directions of the current through detection of the zero point current point, and the zero current detection circuit 5 obtains a time point at which this positive and negative are converted, and the voltage polarity conversion circuit 2 The voltage input signal obtained at the point is raised above the voltage zero point, ie taking the absolute value of this voltage, and its output is a positive voltage signal, through the current signal sampling circuit 3 the secondary side of the LLC transformer 1 detecting the engaged state of the inductor current to be reflected to the primary side from a current integrating circuit 6, the current input signal is a current signal sampling circuit 3 and the output, the current direction crossover detection circuit 4 outputs Acquire the zero current state output from the zero point current point and the zero current detection circuit 5, respectively, and raise the lowest current level of the current input signal to the zero point current based on the zero point current point and the zero current state, While generating the current integration waveform , the current integration circuit 6 integrates the current integration waveform in the time when the inductor current on the secondary side of the LLC transformer is present, and generates an output current after integration , the LLC transformer 1 obtains an output current for controlling an output state on the secondary side directly from the primary side, and controls the LED drive circuit 7 through conversion of the ratio between the primary and secondary coils.

図3ないし図6を同時に参照されたい。制御信号Aの制御波形は、正・負の半周の周期に基づいて、正の周期S1と負の周期S2とに分けられ、サンプリング電流ISHは制御信号Aに対応しており、実際の電流波形irは例えばオシロスコープで示すような電流波形図を示す;励磁電流iMは、LLC変圧器1動作時に生成したものに由来し、しかも出力電流IOUTを算出し取得するためのものである;安定励磁電流iMは、LLC変圧器1が制御信号Aを変換するとき、一つの安定出力状態にて一時的にカットオフする。そして、ID1、ID2は、最後に演算によって取得した結果であり、本発明が動作開始時において、
時点t0〜t1:サンプリング電流ISHは負電圧であるので、電圧極性変換回路2は負電圧を正電圧に変換する;
時点t1〜t2:正電圧に変換したサンプリング電流ISHを取得する;
時点t2〜t4:ゼロ電流検知回路5のゼロ電流検知点ZCDでゼロ電流出力を検知し、サンプリング電流ISHはゼロ電流発生時の電流値に固定される;
時点t3〜t4:電流方向クロスオーバー検知回路4が制御信号Aの周期変換を検知して、低電位から高電位に変換するが、このとき、出力電流IOUTは正電圧状態である; 時点t4〜t5:同時に、出力電流が正の周期S1から負の周期S2に移行し、電圧極性変換回路2が負電圧のサンプリング電流を正電圧に変換する;
時点t6〜t0:このとき、電流積分回路6が時点t0-t6の電流積分波形を積分した後、出力電流IOUTを生成するが、つまり電流積分回路6は正の半周S1の共振電流ID1、負の半周S2の共振電流ID2を積分して、LLC変圧器1が、二次側の出力状態を制御するための出力電流を直接一次側から取得する;一つの完全な制御信号Aの周期が終了すると、後続動作では前記時点t0〜t6を繰り返す。
Please refer to FIG. 3 to FIG. 6 simultaneously. The control waveform of control signal A is divided into positive period S1 and negative period S2 based on positive and negative half cycles, and sampling current ISH corresponds to control signal A, and the actual current waveform ir represents, for example, a current waveform diagram as shown by an oscilloscope; the excitation current iM is derived from that generated during operation of the LLC transformer 1 and is for calculating and acquiring the output current IOUT; stable excitation current The iM is temporarily cut off in one stable output state when the LLC transformer 1 converts the control signal A. And ID1 and ID2 are the result acquired by calculation at the end , and when the present invention starts operation,
Time point t0 to t1: Since the sampling current ISH is a negative voltage, the voltage polarity conversion circuit 2 converts the negative voltage to a positive voltage;
Time t1 to t2: obtaining a sampling current ISH converted to a positive voltage;
Time point t2 to t4: Zero current output is detected at the zero current detection point ZCD of the zero current detection circuit 5, and the sampling current ISH is fixed to the current value at the time of zero current generation;
Time t3 to t4: The current direction crossover detection circuit 4 detects periodic conversion of the control signal A and converts it from low potential to high potential, but at this time, the output current IOUT is in a positive voltage state; t5: Simultaneously, the output current shifts from the positive period S1 to the negative period S2, and the voltage polarity conversion circuit 2 converts the sampling current of the negative voltage into a positive voltage;
Time t6 to t0: At this time, after the current integration circuit 6 integrates the current integration waveform at time t0 to t6, the output current IOUT is generated, that is, the current integration circuit 6 has a positive half cycle S1 resonant current ID1, negative Integrate the resonance current ID2 of the half cycle S2 and the LLC transformer 1 obtains the output current for controlling the output state of the secondary side directly from the primary side; one complete control signal A period ends Then, in the subsequent operation, the times t0 to t6 are repeated.

1 LLC変圧器
2 電圧極性変換回路
3 電流信号サンプリング回路
電流方向クロスオーバー検知回路
5 ゼロ電流検知回路
6 電流積分回路
7 LED駆動回路
S1 正の周期
S2 負の周期
t0、t1、t2、t3、t4、t5、t6 時点
ir 実際の電流波形
iM 励磁電流
ID1、ID2 共振電流
IM 安定励磁電流
ISH サンプリング電流
IOUT 出力電流
ZCD ゼロ電流検知点
A 制御信号
1 LLC Transformer 2 Voltage Polarity Conversion Circuit 3 Current Signal Sampling Circuit 4 Current Direction Crossover Detection Circuit 5 Zero Current Detection Circuit 6 Current Integration Circuit 7 LED Drive Circuit S1 Positive Period S2 Negative Period t0, t1, t2, t3, t4, t5, t6 time point ir Actual current waveform iM Excitation current ID1, ID2 Resonant current IM Stable excitation current ISH Sampling current IOUT Output current ZCD Zero current detection point A Control signal

Claims (3)

LLC構造でのPSR電流制御システムであって、
予め設けられたLLC変圧器の一次側に電気的に接続されて、電圧信号中の負電圧を正電圧に変換するとともに正電圧信号を出力する電圧極性変換回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取って電流入力信号を取得する電流信号サンプリング回路と、
前記電圧極性変換回路に電気的に接続されており、正電圧信号を受取るとともにゼロ点電流点を算出する電流クロスオーバー検知回路と、
前記LLC変圧器の一次側に電気的に接続されており、ゼロ電流状態を検知するゼロ電流検知回路と、
前記電流信号サンプリング回路、電流クロスオーバー検知回路及びゼロ電流検知回路にそれぞれ電気的に接続されており、電流入力信号、ゼロ点電流点及びゼロ電流状態を受取って、ゼロ点電流点及びゼロ電流状態に基づいて、電流入力信号の最低電流レベルをゼロ点電流点にまで上昇させて、電流積分波形を生成するとともに積分後に出力電流を生成し、LLC変圧器が、二次側の出力状態を制御するための出力電流を直接一次側で取得する電流積分回路と、を少なくとも備える、ことを特徴とするLLC構造でのPSR電流制御システム。
PSR current control system in LLC structure,
A voltage polarity conversion circuit electrically connected to a primary side of an LLC transformer provided in advance and converting a negative voltage in a voltage signal into a positive voltage and outputting a positive voltage signal;
A current signal sampling circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal to acquire a current input signal;
A current crossover detection circuit electrically connected to the voltage polarity conversion circuit and receiving a positive voltage signal and calculating a zero point current point;
A zero current sensing circuit electrically connected to the primary side of the LLC transformer for sensing a zero current condition;
The current signal sampling circuit, the current crossover detection circuit and the zero current detection circuit are respectively electrically connected to receive the current input signal, the zero point current point and the zero current state, and the zero point current point and the zero current state Based on the lowest current level of the current input signal up to the zero point current point to generate a current integration waveform and generate an output current after integration, the LLC transformer controls the output state of the secondary side And at least a current integration circuit for acquiring an output current directly on the primary side to make the PSR current control system with an LLC structure.
前記ゼロ電流検知回路が前記LLC変圧器に予め設けられたゼロ電位ノードに電気的に接続されている、ことを特徴とする請求項1に記載のLLC構造でのPSR電流制御システム。   The PSR current control system in an LLC structure according to claim 1, wherein the zero current detection circuit is electrically connected to a zero potential node provided in advance in the LLC transformer. 前記電流積分回路が予め設けられたLED駆動回路に電気的に接続されている、ことを特徴とする請求項1に記載のLLC構造でのPSR電流制御システム。   The PSR current control system with LLC structure according to claim 1, wherein the current integration circuit is electrically connected to a previously provided LED drive circuit.
JP2017204847A 2017-10-24 2017-10-24 Psr current control system with llc structure Pending JP2019080415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204847A JP2019080415A (en) 2017-10-24 2017-10-24 Psr current control system with llc structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204847A JP2019080415A (en) 2017-10-24 2017-10-24 Psr current control system with llc structure

Publications (1)

Publication Number Publication Date
JP2019080415A true JP2019080415A (en) 2019-05-23

Family

ID=66628232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204847A Pending JP2019080415A (en) 2017-10-24 2017-10-24 Psr current control system with llc structure

Country Status (1)

Country Link
JP (1) JP2019080415A (en)

Similar Documents

Publication Publication Date Title
TWI425749B (en) Primary side current controller and related power supply
US9510417B2 (en) LED drive method and LED drive device
CN103219901A (en) Alternating current/direct current (AC/DC) converter control circuit and AC/DC converter using same
US9825517B2 (en) Controlling module, switch-mode power supply apparatus, and peak current mode controlling method of a switch-mode power supply apparatus
TWI543516B (en) Relative efficiency measurement in a pulse width modulation system
JP2016502830A (en) Driving apparatus and driving method for driving load
JP2011166941A (en) Switching power supply device
CN104380844A (en) Driver device and driving method for driving a load, in particular an led unit
US20160079874A1 (en) Constant on-time (cot) control in isolated converter
CN104283430A (en) Soft start switching power supply conversion device
US9652009B2 (en) Current regulation circuit, power over Ethernet system, and method
JP6895502B2 (en) Dimming circuit and dimming control method
US9548667B2 (en) Constant on-time (COT) control in isolated converter
US20180100881A1 (en) Apparatus and Method for Measuring Primary Voltage from the Secondary Side of an Isolated Power Supply
JP6570623B2 (en) Constant on-time (COT) control in isolated converters
US10008946B1 (en) Primary-side regulated current control system under LLC topology
EP3278439B1 (en) Constant on-time (cot) control in isolated converter
JP2018129953A (en) Power conversion device
JP2019080415A (en) Psr current control system with llc structure
JP2018061315A (en) Circuit unit device for constant power output power source and constant power variable dc power supply system
JP5830966B2 (en) Electronic device power consumption detection circuit and power consumption detection method
EP3460977A1 (en) Primary-side regulated current control system under llc topology
KR101047338B1 (en) Power device
JP6530486B2 (en) Constant On Time (COT) Control in Isolated Converters
CN109560706B (en) PSR current control system under LLC framework

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190612

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200512

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200707

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201117

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201222

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201222