JP2019080364A - Supply and demand adjusting system, supply and demand adjusting method and supply and demand adjusting program - Google Patents

Supply and demand adjusting system, supply and demand adjusting method and supply and demand adjusting program Download PDF

Info

Publication number
JP2019080364A
JP2019080364A JP2017202918A JP2017202918A JP2019080364A JP 2019080364 A JP2019080364 A JP 2019080364A JP 2017202918 A JP2017202918 A JP 2017202918A JP 2017202918 A JP2017202918 A JP 2017202918A JP 2019080364 A JP2019080364 A JP 2019080364A
Authority
JP
Japan
Prior art keywords
supply
demand
accident
unit
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017202918A
Other languages
Japanese (ja)
Other versions
JP6847808B2 (en
Inventor
高廣 下尾
Takahiro Shimoo
高廣 下尾
操 木村
Misao Kimura
操 木村
耕太郎 高崎
Kotaro Takasaki
耕太郎 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017202918A priority Critical patent/JP6847808B2/en
Publication of JP2019080364A publication Critical patent/JP2019080364A/en
Application granted granted Critical
Publication of JP6847808B2 publication Critical patent/JP6847808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

To provide a supply and demand adjusting system which can maintain the voltage stability of the power-system for voltage recovery while avoiding a stop of a power generator and realizing cost reduction by performing output control of the power generator when emergently adjusting supply and demand after a system fault.SOLUTION: A supply and demand adjusting system 10 comprises a supply and demand information acquisition part acquiring supply and demand information of a power system 5, an accident type detection part 2 detecting an accident type of a system accident, a formulation part 1 which formulates an output control plan of a supply and demand adjusting generator connected with the power system depending on the supply and demand information and the accident type, and a supply and demand control part 3 which outputs a supply and demand control instruction to the supply and demand adjusting generator according to an output control plan.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、系統事故後の緊急的な需給調整に際して、需給調整発電機の出力制御によって需給調整を行うシステム、方法及びプログラムに関する。   The embodiment of the present invention relates to a system, method, and program for performing supply and demand adjustment by output control of a supply and demand adjustment generator at the time of emergency supply and demand adjustment after a system accident.

電力系統においてルート断などの系統事故が発生した場合、事故の発生した送電線すなわちブランチの潮流が迂回し、他ブランチに重畳するなど潮流変化が起きる。したがって、無効電力ロスが大量に生じて、系統の電圧安定性が脆弱となり電圧が落ち易くなる。一般に、電圧が落ちる電圧安定性低下の現象は、分オーダーで起きる。   When a grid accident such as a route break occurs in the power system, the power flow of the transmission line or branch where the accident occurred is diverted and a power flow change occurs such as being superimposed on other branches. Therefore, a large amount of reactive power loss occurs, and the voltage stability of the system becomes weak and the voltage tends to drop. In general, the phenomenon of voltage stability drop occurs when the voltage drops on the order of minutes.

事故が除去されたとしても、ブランチが復旧するよりも前のタイミングで、つまり通常よりもブランチが少なく迂回潮流が生じた状態のままで、需要が大きく変動したり、再生可能エネルギーの急峻な出力変動が発生したりすると、潮流の変化がさらに増大する。その結果、電力系統の電圧安定性は、より脆弱な状況に陥ることになる。   Even if the accident is eliminated, the demand fluctuates sharply and the steep output of renewable energy occurs before the branch recovers, that is, with less branches and less detour power than normal. If fluctuations occur, the change in tidal current will further increase. As a result, the voltage stability of the power system falls into a more fragile situation.

このように、系統事故後は系統の電圧安定性が脆弱化するため、電圧回復を図ることが必須である。そこで従来から、迂回した潮流自体を減らすべく、緊急的に電制、つまり発電機を停止させて、電圧安定性を維持する制御手法が知られている。さらなる電圧回復対策としては、電圧無効電力制御(VQC)のローカル制御や、オンラインで計測した潮流や電圧等の系統情報に基づく電制量補正を行うことなども提案されている。   As described above, since the voltage stability of the system is weakened after the system accident, it is essential to recover the voltage. Therefore, conventionally, in order to reduce the diverted power flow itself, there is known a control method for maintaining the voltage stability by stopping the power control urgently, that is, the generator. As further voltage recovery measures, local control of voltage reactive power control (VQC) and correction of a controlled quantity based on system information such as power flow and voltage measured online are also proposed.

特許第5424774号公報Patent No. 5424774 gazette 特許第1867793号公報Patent No. 1867793

系統事故後に、電制つまり発電機を停止させるとなると、復旧後に発電機を再稼働させることが不可欠になるが、発電機の再稼働には、時間的にも作業的にも多くのコストを要するという不具合がある。また、停止させた発電機が周波数調整対象の発電機である場合、そのような発電機を停止させることで、周波数調整源が減少してしまうといったデメリットがある。さらに、基幹系統の主要幹線ルート断などの過酷な条件では、電制だけでは調相投入量が不足して、電圧回復が不十分となるおそれがある。   If it is necessary to shut down the power control, that is, to stop the generator after a system accident, it will be essential to restart the generator after recovery, but restarting the generator will cost a lot of time and work. There is a problem that it requires. In addition, when the stopped generator is a generator for frequency adjustment, there is a disadvantage that the frequency adjustment source is reduced by stopping such a generator. Furthermore, under severe conditions such as main trunk route interruptions of the backbone system, there is a risk that the voltage adjustment will not be sufficient with the electric control alone, and the voltage recovery will be insufficient.

本発明の実施形態は、以上の状況を鑑みて提案されたものであって、系統事故後、緊急的に需給調整を行う場合に、発電機の出力制御を行うことにより、発電機の停止を回避してコスト軽減化を実現しつつ、系統の電圧安定性を維持して電圧回復を図ることができる需給調整システム、需給調整方法及び需給調整プログラムを提供することを課題とする。   The embodiment of the present invention is proposed in view of the above situation, and when the supply and demand adjustment is performed urgently after a system accident, the output of the generator is controlled to stop the generator. It is an object of the present invention to provide a supply and demand adjustment system, a supply and demand adjustment method, and a supply and demand adjustment program capable of maintaining voltage stability of a system and achieving voltage recovery while avoiding cost reduction.

上記の課題を解決するために、本実施形態は、以下の構成要素(a)〜(d)を備える。
(a)電力系統の給電情報を取得する給電情報取得部。
(b)系統事故の事故種別を検出する事故種別検出部。
(c)前記給電情報及び前記事故種別に応じて前記電力系統に接続される需給調整発電機の出力制御プランを策定する策定部。
(d)前記出力制御プランに従って前記需給調整発電機に需給制御指令を出力する需給制御部。
本発明の実施形態は、上記需給調整システムにおける各部の処理をコンピュータが実行する需給調整方法の発明、上記需給調整システムにおける各部の処理をコンピュータに実行させる需給調整プログラムの発明としても、捉えることができる。
In order to solve the above problems, the present embodiment includes the following components (a) to (d).
(a) A feed information acquisition unit that acquires feed information of the power system.
(b) An accident type detection unit that detects an accident type of a system accident.
(c) A formulation unit that formulates an output control plan of a demand-supply adjusting generator connected to the power system according to the power supply information and the type of accident.
(d) A supply and demand control unit that outputs a supply and demand control command to the supply and demand adjustment generator according to the output control plan.
The embodiment of the present invention can be understood as an invention of a demand-supply adjustment method in which the computer executes the processing of each part in the demand-supply adjustment system, and an invention of a supply-demand adjustment program that causes a computer to execute the processing of each part in the demand-supply adjustment system. it can.

第1の実施形態のブロック図Block diagram of the first embodiment 第1の実施形態において需給調整発電機を含むブロック図Block diagram including supply and demand adjustment generator in the first embodiment 第1の実施形態の要部ブロック図Principal part block diagram of the first embodiment 系統事故後による迂回潮流を示す図Diagram showing the diversion flow after a system accident 系統事故後の電圧安定性が過酷となる潮流変化を示す図Diagram showing tidal current change where voltage stability becomes severe after system accident 需給調整発電機による電圧感度の差異を示す図Diagram showing the difference in voltage sensitivity due to the supply and demand adjustment generator 第1の実施形態における順位テーブルを示す図A figure showing a rank table in a 1st embodiment 第2の実施形態のブロック図Block diagram of the second embodiment 第2の実施形態における順位テーブル(需給制御対象フラグ・事故毎)を示す図A diagram showing a ranking table (supply and demand control target flag and each accident) in the second embodiment EDCのブロック図EDC block diagram LFCのブロック図LFC block diagram 第3の実施形態のブロック図Block diagram of the third embodiment 再エネ出力変動及び需要変動の確率分布を示すグラフGraph showing probability distribution of renewable energy output fluctuation and demand fluctuation

(第1の実施形態)
(構成)
以下、第1の実施形態について図1〜図7を参照して詳しく説明する。図1及び図2のブロック図は、第1の実施形態に係る需給制御システム10を構成する、主要装置の設置例を示している。電力系統5には需給調整発電機7(以下、単に発電機7と称する。図2に図示。)が複数接続されている。需給制御システム10は、系統事故の発生時に、発電機7を停止させる電制を行うのではなく、発電機7の出力制御によって、つまり発電機7を焚き増すことで、需給調整を行うシステムであり、コンピュータと、それを制御するプログラム及び周辺機器からなる。
First Embodiment
(Constitution)
Hereinafter, the first embodiment will be described in detail with reference to FIGS. 1 to 7. The block diagram of FIG. 1 and FIG. 2 has shown the example of installation of the main apparatuses which comprise the supply-and-demand control system 10 which concerns on 1st Embodiment. A plurality of supply and demand adjustment generators 7 (hereinafter simply referred to as generators 7 and illustrated in FIG. 2) are connected to the power system 5. The supply and demand control system 10 is a system that performs supply and demand adjustment not by stopping the generator 7 at the occurrence of a system accident but by controlling the output of the generator 7, that is, by increasing the generator 7 more. Yes, it consists of a computer, a program that controls it, and peripherals.

需給制御システム10には、電力系統5の給電情報を取得するための給電情報網Nと、系統事故の事故種別を検出する事故種別検出部2と、給電情報及び事故種別に応じて各発電機7の出力制御プランを策定する策定部1と、策定した出力制御プランに従って各発電機7に需給制御指令を出力する需給制御部3とが設けられている。策定部1、事故種別検出部2及び需給制御部3は、電力系統5又は給電情報網Nに対して信号線などの通信設備9によって接続されている。   The supply and demand control system 10 includes a power supply information network N for acquiring power supply information of the power system 5, an accident type detection unit 2 for detecting an accident type of a system accident, and each generator according to the power supply information and the accident type. A formulation unit 1 formulates an output control plan 7 and a demand / supply control unit 3 outputs a demand / supply control command to each generator 7 according to the formulated output control plan. The formulation unit 1, the accident type detection unit 2 and the supply and demand control unit 3 are connected to the power system 5 or the power supply information network N by a communication facility 9 such as a signal line.

需給制御システム10では、電力系統5の接続状態や電力の需給状態などの給電情報が給電情報網N経由で収集される。給電情報網Nは、電力系統5の給電情報を策定部1に出力するネットワークである。事故種別検出部2は変電所などに設置され、需給制御部3は発電所などに設置されている。事故種別検出部2は、事故種別を含む事故情報を策定部1に出力する事故検出端末装置である。   In the supply and demand control system 10, feed information such as the connection state of the electric power system 5 and the supply and demand state of electric power is collected via the feed information network N. The feed information network N is a network that outputs feed information of the power system 5 to the formulation unit 1. The accident type detection unit 2 is installed in a substation or the like, and the supply and demand control unit 3 is installed in a power plant or the like. The accident type detection unit 2 is an accident detection terminal device that outputs accident information including the accident type to the formulation unit 1.

策定部1は、給電情報網Nと接続可能な箇所、例えば中央給電指令所や基幹系統給電所等に設置される。策定部1は、策定した各発電機7の出力制御プランを需給制御部3に出力する。需給制御部3は、制御端末装置からなり、策定部1から得た出力制御プランに従って需給制御指令を生成して、当該需給制御指令を各発電機7に送信する。発電機7は需給制御指令に従って出力制御がなされる。   The formulation unit 1 is installed at a location connectable to the power feeding information network N, such as a central power feeding command station or a mains power feeding station. The formulation unit 1 outputs the formulated output control plan of each generator 7 to the demand-supply control unit 3. The demand-supply control unit 3 includes a control terminal device, generates a demand-supply control command according to the output control plan obtained from the formulation unit 1, and transmits the demand-supply control command to each generator 7. The generator 7 is subjected to output control in accordance with the supply and demand control command.

図3は、策定部1に含まれる構成要素を示したブロック図である。策定部1には、系統情報取得部11、事故条件設定部12、事後状態推定部13、事後モデル生成部15及び電圧感度分析部16、順位決定部17及び順位出力部18が設けられている。このうち、系統情報取得部11は、給電情報網Nを介して給電情報を取得する。事故条件設定部12は、事故種別検出部2から事故種別を含む事故情報を入力して事故条件を設定する。   FIG. 3 is a block diagram showing components included in the formulation unit 1. The formulation unit 1 is provided with a system information acquisition unit 11, an accident condition setting unit 12, a post condition estimation unit 13, a post model generation unit 15, a voltage sensitivity analysis unit 16, a rank determination unit 17, and a rank output unit 18. . Among these, the system information acquisition unit 11 acquires feed information via the feed information network N. The accident condition setting unit 12 inputs accident information including the accident type from the accident type detection unit 2 and sets an accident condition.

事後状態推定部13は、給電情報を入力して潮流計算を行う潮流計算部131と、事故情報を入力して安定度計算を行う安定度計算部132を備えている。事後モデル生成部15は、給電情報及び事故情報に基づいて系統事故発生後の解析用系統モデルを生成する。電圧感度分析部16は、系統事故が発生した際、前記解析用系統モデルを用いて各発電機7の電圧感度Siを求める。   The posterior state estimation unit 13 includes a power flow calculation unit 131 that inputs power supply information and performs power flow calculation, and a stability calculation unit 132 that inputs accident information and that performs stability calculation. The subsequent model generation unit 15 generates a system model for analysis after a system accident occurrence based on the power supply information and the accident information. The voltage sensitivity analysis unit 16 obtains the voltage sensitivity Si of each generator 7 using the analysis system model when a system failure occurs.

各発電機7の電圧感度Siとは、電力系統5上の発電機7が需給調整を行ったと仮定した時の、需給調整量に対する系統電圧の変化割合である。需給調整に対して電圧感度Siが高い状態とは、系統の電圧が上がり易い(下がり難い)という状態であり、需給調整に対して電圧感度Siが低い状態とは、需給調整に対して系統の電圧が上がり難い(下がり易い)という状態である。順位決定部17は、電圧感度分析部16が求めた各発電機7の電圧感度Siに基づいて、需給調整を行う発電機7の出力制御の順番を、降順に従って、電圧感度Siが大きい方の発電機7から順番に出力制御を優先的に行うように、順位決定する。   The voltage sensitivity Si of each generator 7 is a change ratio of the system voltage to the supply and demand adjustment amount, assuming that the generator 7 on the electric power system 5 has performed the supply and demand adjustment. A state in which the voltage sensitivity Si is high with respect to supply and demand adjustment is a state in which the voltage of the system tends to rise (it is difficult to decrease), and a state in which the voltage sensitivity Si is low with respect to supply and demand adjustment is a state with respect to the supply and demand adjustment. It is a state that the voltage is hard to rise (it is easy to fall). The order determination unit 17 determines the order of output control of the generator 7 that performs supply and demand adjustment based on the voltage sensitivity Si of each generator 7 determined by the voltage sensitivity analysis unit 16 according to the descending order of the voltage sensitivity Si. The order is determined so that the output control is preferentially performed in order from the generator 7.

順位出力部18は、順位決定部17で決定した発電機7の順位に従って順次、発電機7の需給制御を行うための順位テーブルを作成して、これを需給制御部3に出力する。順位出力部18は、順位決定部17で決定した発電機7の順位のデータを、例えば図7に示すような順位テーブルを作成して、これを需給制御部3に出力する。   The rank output unit 18 sequentially creates a rank table for performing supply and demand control of the generator 7 in accordance with the rank of the generator 7 determined by the rank determination unit 17, and outputs this to the demand and supply control unit 3. The rank output unit 18 creates a rank table as shown in FIG. 7, for example, in the rank data of the generator 7 determined by the rank determination unit 17, and outputs this to the demand-supply control unit 3.

図7は、各発電機7の系統事故後出力、定格出力(出力上限)、電圧感度Siを、需給調整順位の昇順(1位〜4位の順)で並べた順位テーブルを示している。需給調整順位は、電圧感度Siの降順、つまり電圧感度Siが大きい方の発電機7から順番に、1位(Si=+0.32)、2位(Si=+0.10)、3位(Si=−0.03)、4位(Si=−0.41)となっている。このような順位テーブルが実質的に、策定部1が策定した発電機7の出力制御プランとなる。つまり、策定部1が策定する発電機7の出力制御プランの内容は、順位決定部17によって決められた発電機7の順位によって規定される。   FIG. 7 shows a rank table in which outputs after power supply faults of each generator 7, rated output (upper limit of output) and voltage sensitivities Si are arranged in ascending order of supply and demand adjustment rank (first to fourth ranks). The supply and demand adjustment order is the descending order of the voltage sensitivity Si, that is, the first place (Si = + 0.32), the second place (Si = + 0.10), and the third place (Si) = -0.03), 4th position (Si =-0.41). Such a ranking table is substantially the output control plan of the generator 7 formulated by the formulation unit 1. That is, the content of the output control plan of the generator 7 formulated by the formulation unit 1 is defined by the rank of the generator 7 determined by the rank determination unit 17.

需給制御部3は、順位テーブルに従って需給制御指令を生成し、当該需給制御指令を各発電機7に送信する。発電機7は需給制御指令に従って出力制御がなされる。すなわち、発電機7は、順位決定部17が決めた順位に従って順次、出力制御を行う(焚き増す)ので、発電機7自体が停止する電制を行うことはない。   The demand-supply control unit 3 generates a demand-supply control command according to the order table, and transmits the demand-supply control command to each generator 7. The generator 7 is subjected to output control in accordance with the supply and demand control command. That is, since the generator 7 sequentially performs output control (increases) in accordance with the order determined by the order determining unit 17, the power control to stop the generator 7 itself is not performed.

(作用)
以上の構成を有する需給制御システム10において、系統事故が発生すると、系統情報取得部11は、給電情報網Nを介して給電情報を取得して、事後状態推定部13の潮流計算部131に出力する(給電情報取得処理)。また、系統事故の発生に際して、事故種別検出部2は、系統事故の事故種別を検出、判別して、事故情報を事故条件設定部12に出力する(事故種別検出処理)。
(Action)
In the supply-demand control system 10 having the above configuration, when a system fault occurs, the system information acquisition unit 11 acquires feed information via the feed information network N and outputs it to the power flow calculation unit 131 of the post-state estimation unit 13 Do (power supply information acquisition processing). Further, upon occurrence of a system accident, the accident type detection unit 2 detects and discriminates the accident type of the system accident, and outputs the accident information to the accident condition setting unit 12 (accident type detection process).

続いて、策定部1が各発電機7の出力制御プランの策定処理を実施する。まず、事故条件設定部12は、事故種別検出部2から入力された事故情報の事故条件を設定して、事後状態推定部13の安定度計算部132に出力する。事故条件には、事故点や事故様相などの情報が含まれる。事故点は、例えばA送電線における事故といった情報であり、事故様相は、例えば1LCといった情報である。   Subsequently, the formulation unit 1 carries out a formulation process of an output control plan of each generator 7. First, the accident condition setting unit 12 sets the accident condition of the accident information input from the accident type detection unit 2 and outputs the accident condition to the stability calculation unit 132 of the posterior state estimation unit 13. The accident conditions include information such as an accident point and an accident appearance. The accident point is, for example, information such as an accident in the A transmission line, and the accident mode is, for example, information such as 1 LC.

事後状態推定部13では、潮流計算部131に入力された系統情報と、安定度計算部132に入力された事故情報に基づいて、系統事故後の電力系統5の状態を推定する。すなわち、潮流計算部131では、ノードブランチデータを基に、ノードの指定されたPとQ及びPとVを制約条件として、ニュートンラフソン法・ガウスザイデル法などの数値解析手法または直流法等を用いて、潮流状態を計算する。   The post-state estimation unit 13 estimates the state of the power system 5 after the power system failure based on the system information input to the tidal current calculation unit 131 and the accident information input to the stability calculation unit 132. That is, in the tidal current calculation unit 131, based on the node branch data, using P and Q designated by the node and P and V as the constraint conditions, using a numerical analysis method such as the Newton Ruffson method or Gauss Seidel method or the DC method Calculate the tidal current state.

潮流計算では、全ノードに対して、PQ指定ノードに関してはPとQを、PV指定ノードに関してはPとVの値を、それぞれ指定する必要がある。そのため、全ノードに関して、PとQの情報が取得できない場合、及びPとVの情報が取得できない場合は、状態推定手法等を用いて、取得できなかった情報を、補完するものとする。   In the power flow calculation, it is necessary to designate P and Q for the PQ designation node and the values of P and V for the PV designation node for all nodes. Therefore, when information of P and Q can not be acquired for all nodes and when information of P and V can not be acquired, information that can not be acquired is complemented using a state estimation method or the like.

安定度計算部132は、潮流計算部131で算出した潮流計算結果を初期値として、事故条件設定部12で設定された事故条件に基づいて、過渡安定度計算を実施する。過渡安定度計算では、事故(外乱)発生時に発電機やその励磁制御系等の応動を考慮する必要がある。そこで、これらの動特性をモデル化した非線形微分方程式について、ルンゲクッタ法などの数値解析手法を用いて解析的に解き、発電機7の有効電力や内部位相角・ブランチ潮流などの時間的推移を評価する。   The stability calculation unit 132 performs the transient stability calculation based on the accident condition set by the accident condition setting unit 12 with the power flow calculation result calculated by the flow calculation unit 131 as an initial value. In transient stability calculation, it is necessary to take into consideration the response of the generator and its excitation control system when an accident (disturbance) occurs. Therefore, nonlinear differential equations that model these dynamic characteristics are analytically solved using a Runge-Kutta method or other numerical analysis method, and temporal transitions of the active power of the generator 7, internal phase angle, branch flow, etc. are evaluated. Do.

第1の実施形態では、事後状態推定部13が、潮流計算部131及び安定度計算部132を備えたことで、潮流計算と過渡安定度計算を実施して系統事故後の系統状態を推定する。ただし、事故後の系統状態を計測でき、且つ電圧感度分析部16で必要な電圧感度Siの算出に必要な系統データを、潮流計算及び過渡安定度計算無しで作成できる場合には、潮流計算及び過渡安定度計算は必ずしも実行する必要は無いものとする。   In the first embodiment, the posterior state estimation unit 13 includes the tidal current calculation unit 131 and the stability calculation unit 132, and performs tidal current calculation and transient stability calculation to estimate the system state after the system accident. . However, if the system condition after the accident can be measured and the system data necessary for calculating the voltage sensitivity Si required by the voltage sensitivity analysis unit 16 can be created without the power flow calculation and the transient stability calculation, the power flow calculation and It is assumed that the transient stability calculation does not necessarily have to be performed.

事後モデル生成部15は、事後状態推定部13が推定した事故後の系統状態を反映して、電圧感度算出用の新たな解析用系統モデル(ノードブランチデータ)を生成する。事後モデル生成部15では、解析用系統モデルの生成に際して、事故点を挟む両端の変電所の遮断器が開放された状態の系統構成も反映する。つまり、事後モデル生成部15では、系統事故後という、電圧安定性がより過酷なケースを想定した解析用系統モデルを生成する。   The posterior model generation unit 15 generates a new analysis system model (node branch data) for voltage sensitivity calculation, reflecting the system state after the accident estimated by the posterior state estimation unit 13. When generating the analysis system model, the post-process model generation unit 15 also reflects the system configuration in a state where the circuit breakers of the substations at both ends sandwiching the accident point are opened. That is, the post-process model generation unit 15 generates an analysis system model assuming a case where the voltage stability is more severe, that is, after a system accident.

ここで、事故発生後から両端の変電所の遮断器が開放されるまでの、電圧安定性が脆弱な状態となる系統の状況について、図4を用いて説明する。図4では、重潮流ブランチで2回線地絡(6LG−O)が発生した場合を想定している。Phase1は事故発生前の状態を示す。Phase2は、重潮流ブランチで6LG−Oが発生した瞬間を示している。Phase3は6LG−Oの発生後に、事故点の両側の変電所にて遮断器を解放した後の状態を示す。系統事故による過渡的な動揺が収束した後は、事故前には図の上側に流れていたブランチの潮流が図の下側のブランチへと迂回して、下側のブランチに重潮流が重畳する。   Here, the condition of the system in which the voltage stability becomes fragile after the occurrence of the accident until the circuit breakers of the substations at both ends are opened will be described with reference to FIG. In FIG. 4, it is assumed that a two-line ground fault (6LG-O) occurs in a heavy current flow branch. Phase 1 shows the state before the accident occurred. Phase 2 shows the moment when 6LG-O occurs in the heavy current flow branch. Phase 3 shows the state after releasing the circuit breaker at substations on both sides of the accident point after the occurrence of 6LG-O. After transient oscillation due to a system accident converges, the tidal current of the branch that had flowed to the upper side of the figure before the accident is diverted to the lower branch of the figure, and the heavy tidal current is superimposed on the lower branch. .

すなわち、事故前(Phase1)と比較して、系統事故後には、下側のブランチだけに重潮流が重畳する。そのため、無効電力ロスがより多く発生して、電圧安定性が脆弱となる。以上のような事故後の系統の状況を鑑みて、本実施形態では、事後モデル生成部15が解析用系統モデルを生成して、電圧安定性が脆弱な状態を反映した解析を行うことができる。   That is, compared to before the accident (Phase 1), after the system accident, the heavy current is superimposed only on the lower branch. As a result, more reactive power loss occurs and the voltage stability becomes weak. In view of the situation of the system after the accident as described above, in the present embodiment, the posterior model generation unit 15 can generate an analysis system model and perform an analysis reflecting a weak voltage stability. .

電圧感度分析部16は、事後モデル生成部15が生成した解析用系統モデルを用いて、電圧安定性がより厳しくなるような潮流変化に対する各発電機7の電圧感度Siを求める。事後状態推定部13の潮流計算部131及び安定度計算部132にて潮流計算及び過渡安定度計算を実施してから、電圧感度分析部16が各発電機7の電圧感度Siを求めるまでの所要時間は、例えば10秒程度である。   The voltage sensitivity analysis unit 16 obtains the voltage sensitivity Si of each generator 7 with respect to a change in power flow such that the voltage stability becomes more severe, using the analysis system model generated by the posterior model generation unit 15. Required for the voltage sensitivity analysis unit 16 to calculate the voltage sensitivity Si of each generator 7 after the power flow calculation and the transient stability calculation are performed by the power flow calculation unit 131 and the stability calculation unit 132 of the post-state estimation unit 13 The time is, for example, about 10 seconds.

図5にて、電圧安定性が過酷となる潮流変化の一例について説明する。図4のPhase3に示した事故後の系統状態においては、図5のように、迂回潮流が重畳した下側ブランチの潮流がより増加する。この場合、無効電力ロスがより多く発生するので、電圧安定性に関して過酷な潮流変化が起きたと言える。下側ブランチ潮流が増加する要因としては、図5に示すように、事故ブランチを介して右側の系統の総需要が増加する場合が考えられる。そのため、系統事故後の系統状態では、図5の右側の系統の総需要がΔP増加したと想定する。   An example of the tidal current change in which the voltage stability becomes severe will be described with reference to FIG. In the system state after the accident shown in Phase 3 of FIG. 4, as shown in FIG. 5, the power flow of the lower branch on which the bypass power flow is further increased. In this case, since more reactive power loss occurs, it can be said that severe power flow changes have occurred with respect to voltage stability. As shown in FIG. 5, as a factor of the increase in lower branch flow, there may be a case where the total demand of the system on the right side increases via the accident branch. Therefore, in the system state after the system accident, it is assumed that the total demand of the system on the right side of FIG. 5 has increased by ΔP.

ただし、図5に示したパターンは電圧安定性が悪化する潮流増加が明確であるが、通常は系統構成が複雑であることが多い。そのため、電圧安定性が悪化する潮流増加のパターンが、図5の例ほど明確ではなく、電圧安定性が悪化する潮流増加が解り難いことがある。このような場合は、図5の右側の系統の総需要ではなく、系統全体の総需要をΔP増加させた場合を想定するようにしてもよい。   However, although the pattern shown in FIG. 5 clearly shows an increase in tidal current in which the voltage stability deteriorates, usually the system configuration is often complicated. Therefore, the pattern of the tidal current increase in which the voltage stability deteriorates is not as clear as in the example of FIG. 5, and it may be difficult to understand the tidal current increase in which the voltage stability deteriorates. In such a case, it may be assumed that the total demand of the entire system is increased by ΔP instead of the total demand of the system on the right side of FIG.

また、オフラインの解析によって、事故パターン(解放されたブランチ)に対して、電圧安定性が厳しくなる潮流変化と、その潮流変化を生じる需要(または再生可能エネルギー)の変動を、事前に求めておいても良い。また、中央給電指令所等で潮流変化や需要変動が予測できる場合は、その予測を活用して、各発電機7の電圧感度Siを求めるようにしても良い。   In addition, with the off-line analysis, for the accident pattern (released branch), the tidal current change in which the voltage stability becomes severe and the change in demand (or renewable energy) causing the tidal current change are obtained in advance. It may be In addition, when the power flow change and the demand fluctuation can be predicted at the central power supply command center or the like, the prediction may be used to obtain the voltage sensitivity Si of each generator 7.

電圧感度分析部16は、下記の式(1)に基づいて、需要増分ΔPに対して、各発電機7が需給調整を行った時の電圧感度Siを求める。
Si=ΔV/ΔPi…(1)
Si:需給調整発電機iの需給調整に対する電圧感度
ΔPi:需給調整発電機iの需給調整量
ΔV:総需要がΔP増加して、需給調整発電機iの需給調整を実施した場合の系統電圧変化(総需要変化後の電圧―総需要変化前の電圧)
The voltage sensitivity analysis unit 16 obtains the voltage sensitivity Si when each generator 7 adjusts supply and demand with respect to the demand increase ΔP based on the following equation (1).
Si = ΔV / ΔPi (1)
Si: Voltage sensitivity ΔPi to supply and demand adjustment of supply and demand adjusting generator i: Supply and demand adjustment amount of supply and demand adjusting generator i ΔV: System voltage change when total demand increases by ΔP and supply and demand adjustment of supply and demand adjusting generator i is performed (Voltage after total demand change-Voltage before total demand change)

ΔVは、系統の総需要がΔP増加して、需給調整発電機iの需給調整した場合の系統電圧変化であり、前述した潮流計算部131によって算出することができる。系統電圧の指標としては、系統全体の電圧の平均値、系統全体の電圧の最低値、もしくは電圧安定性を監視すべきノードの電圧等が考えられる。電圧感度分析部16は、上記の式(1)から導かれる電圧感度を需給調整用の発電機7全台に対して求める。   ΔV is a system voltage change when the total demand of the system increases by ΔP and the supply and demand adjustment of the supply and demand adjustment generator i is adjusted, and can be calculated by the above-described tidal current calculation unit 131. As an index of the grid voltage, an average value of voltages of the entire grid, a minimum value of voltages of the entire grid, a voltage of a node whose voltage stability is to be monitored, and the like can be considered. The voltage sensitivity analysis unit 16 obtains the voltage sensitivity derived from the above equation (1) for all the generators 7 for supply and demand adjustment.

順位決定部17は、電圧感度分析部16が求めた各発電機7の電圧感度Siの降順に従って、各発電機7の制御の順番を決める。電圧感度Siの降順とは、需給調整に対する電圧上昇量が大きい順(つまり電圧を上げ易い順)、もしくは需給調整に対する電圧下降量が小さい順(つまり電圧を落とし難い順)とすることである。すなわち、順位決定部17によって決定される順位に従えば、需給調整によって電圧上昇(電圧回復)が大きい発電機7から優先的に、もしくは需給調整によって電圧下降が小さい発電機7から優先的に、需給調整を行うということになる。   The order determination unit 17 determines the order of control of each generator 7 according to the descending order of the voltage sensitivity Si of each generator 7 determined by the voltage sensitivity analysis unit 16. The descending order of the voltage sensitivity Si is to make the voltage increase amount with respect to the supply and demand adjustment larger in order (that is, the order in which the voltage is easier to increase) or the order in which the voltage decrease amount with respect to the supply and supply adjustment becomes smaller in order (that is, the order in which the voltage is difficult to drop). That is, according to the order determined by the order determining unit 17, the generator 7 with a large voltage rise (voltage recovery) by supply and demand adjustment is given priority, or the generator 7 with a small voltage drop is given priority by supply and demand adjustment. It means that the demand and supply will be adjusted.

発電機7の順位の決め方に関して、図6を用いて、出力の変化に対する発電機7の電圧感度Siが、高い(大きい)例と低い(小さい)例を挙げて説明する。図6では、図5に示した系統の需要増加に対して、事故点より右側の発電機7で需給調整を行った場合(1)…図6の上側と、事故点より左側の発電機7で需給調整を行った場合(2)…図6の下側を示す。   How to determine the order of the generators 7 will be described with reference to FIG. 6 by taking high (large) and low (small) examples of the voltage sensitivity Si of the generator 7 with respect to the change in output. In FIG. 6, when demand and supply are adjusted with the generator 7 on the right side of the accident point with respect to the increase in demand of the system shown in FIG. 5 (1) ... generator on the upper side of FIG. When the demand and supply are adjusted in (2) ... Figure 6 shows the lower side.

(1)では、系統の需要が増加した地域の右側の発電機7の出力を増加させることで、出力増加は需要を相殺させるような働きとなり、重潮流ブランチの潮流増加を抑制することができる。その結果、発電機7の電圧感度Siは大きくなり、系統の電圧が上がり易い状態になり、電圧回復を図ることができる。一方、(2)では、事故点より左側の発電機7の出力を増加させたので、出力増加が重潮流ブランチの潮流増加に拍車をかけることになる。そのため、発電機7の電圧感度Siは小さくなって、系統の電圧が上がり難い状態となって電圧回復は困難となる。   In (1), by increasing the output of the generator 7 on the right side of the area where demand for the system has increased, the increase in output serves to offset the demand, and it is possible to suppress the increase in the power flow of the heavy flow branch. . As a result, the voltage sensitivity Si of the generator 7 becomes large, the system voltage easily rises, and voltage recovery can be achieved. On the other hand, in (2), since the output of the generator 7 on the left side of the accident point is increased, the increase in output spurs the increase in tidal flow of the heavy flow branch. Therefore, the voltage sensitivity Si of the generator 7 becomes small, and the system voltage hardly rises, and the voltage recovery becomes difficult.

本実施形態では、順位決定部17が決めた順位に従って順次、発電機7の出力制御を行うので、順位の異なる発電機7が複数台同時に出力制御を行うことが無い。そのため、例えば順位が上位であるG1(図7の順位テーブルで1位)の発電機7で需給調整を行い、G1の発電機7が定格出力(出力上限)に達したら、次に、G1よりも下位のG2(図7の順位テーブルで2位)の発電機7で、需給調整を行う。   In this embodiment, since the output control of the generator 7 is sequentially performed in accordance with the order determined by the order determining unit 17, there is no case where a plurality of generators 7 having different orders perform output control simultaneously. Therefore, for example, the demand and supply adjustment is performed with the generator 7 of G1 (1st place in the order table in FIG. 7) whose rank is high, and when the generator 7 of G1 reaches the rated output (output upper limit) Supply and demand adjustment is performed with the generator 7 of the lower G2 (the second place in the ranking table in FIG. 7).

そして、G2の発電機7が定格出力(出力上限)に達したら、次の順位であるG3(図7の順位テーブルで3位)の発電機7で需給調整を行う。なお、この例では、需給調整中の発電機7が定格出力(出力上限)に達した時点で、次の順位の発電機7に移行するようにしたが、これに限らず、出力速度変化制約などの発電機7の運転制約がある場合は、それらの制約を考慮して、順位出力部18が順位テーブルを作成する。   Then, when the generator 7 of G2 reaches the rated output (output upper limit), the supply and demand adjustment is performed by the generator 7 of G3 (third place in the order table of FIG. 7) which is the next order. In this example, when the generator 7 during supply and demand adjustment reaches the rated output (output upper limit), the generator 7 shifts to the next-ranked generator 7. However, the present invention is not limited to this. When there are operating restrictions of the generator 7 such as, the order output unit 18 creates an order table in consideration of those restrictions.

需給制御部3は、策定部1の策定した各発電機7の出力制御プラン、つまり順位出力部18が作成した順位テーブル(図7参照)に従って、需給制御指令を生成し、生成した需給制御指令を、系統事故後の需要増加時に、電力系統5上の各発電機7に対して送信する(需給制御処理)。各発電機7は需給制御指令に基づいて、需給調整を行う。   The demand-supply control unit 3 generates a demand-supply control command according to the output control plan of each generator 7 formulated by the formulation unit 1, that is, the demand-supply control command according to the order table (see FIG. 7) prepared by the order output unit 18 Is transmitted to each generator 7 on the power system 5 (demand and supply control process) when the demand increases after the system accident. Each generator 7 performs supply and demand adjustment based on the supply and demand control command.

本実施形態では、系統事故後の電圧安定性が過酷な状況(重潮流ブランチの潮流増)を想定して電圧感度Siを算出し、これに基づいて発電機7を制御する順位を決定するが、事故後に重潮流ブランチの潮流が逆に減る等電圧安定性が過酷とならないケースもある。このようなケースでは、通常の需給調整のルールを適用すればよいものとする。   In the present embodiment, the voltage sensitivity Si is calculated on the assumption that the voltage stability after a system accident is severe (increase in power flow of heavy flow branches), and the order of controlling the generator 7 is determined based on this. In some cases, the equal voltage stability may not be severe, as the flow of the heavy flow branch decreases in reverse after the accident. In such a case, it is sufficient to apply the usual supply and demand adjustment rules.

(効果)
第1の実施形態に係る需給制御システム10では、事故種別検出部2が系統事故を検出して事故情報を出力すると、電圧感度分析部16が事故情報を取り込み、発電機7が需給調整を行ったと仮定した時の需給調整量に対する各発電機7の電圧感度Siを算出する。順位決定部17は、電圧感度分析部16が算出した電圧感度Siに基づいて、需給調整に用いる発電機7の順位を決定する。
(effect)
In the supply and demand control system 10 according to the first embodiment, when the accident type detection unit 2 detects a system accident and outputs the accident information, the voltage sensitivity analysis unit 16 takes in the accident information and the generator 7 adjusts the supply and demand. The voltage sensitivity Si of each generator 7 with respect to the supply and demand adjustment amount when it is assumed is calculated. The order determination unit 17 determines the order of the generators 7 used for supply and demand adjustment based on the voltage sensitivity Si calculated by the voltage sensitivity analysis unit 16.

したがって、事故発生から復旧までの電圧安定性が過酷な状況下において、電圧感度Siに応じた需給調整用の発電機7の制御の順番を決めることができる。そして、需給制御部3が出力制御プランつまり順位テーブルに従って発電機7に需給制御指令を出力し、需給制御指令を受けた発電機7は、順位テーブルに従って出力制御を行うので停止することはない。   Therefore, in a situation where voltage stability from occurrence of an accident to restoration is severe, it is possible to determine the order of control of the generator 7 for supply and demand adjustment according to the voltage sensitivity Si. Then, the demand-supply control unit 3 outputs the demand-supply control command to the generator 7 according to the output control plan, ie, the order table, and the generator 7 receiving the demand-supply control command performs output control according to the order table.

このような第1の実施形態では、系統の需要増分ΔPに対する各発電機7の電圧感度Siを求め、電圧感度Siの降順に従って需給調整を行う発電機7の順位を決定して、順位に基づき、電圧感度Siが大きい方の発電機7から順次出力制御は行うことができる。これにより、系統事故時の電圧安定性維持に有効な需給調整を実施することが可能となり、系統の電圧回復を図ることができる。   In the first embodiment, the voltage sensitivity Si of each generator 7 with respect to the demand increase ΔP of the system is determined, and the order of the generators 7 that perform supply and demand adjustment is determined according to the descending order of the voltage sensitivity Si. The output control can be performed sequentially from the generator 7 with the larger voltage sensitivity Si. As a result, it becomes possible to carry out supply and demand adjustment that is effective for maintaining voltage stability at the time of a system accident, and it is possible to achieve system voltage recovery.

第1の実施形態では、算出した電圧感度Siに従って発電機7の順位を決定するだけなので、仮に複雑な系統で、系統事故時に発電機7による需給調整が系統電圧に与える影響が把握しづらかったとしても、系統事故時の電圧安定性維持に有効となる需給調整を、的確に実施可能である。すなわち、第1の実施形態では、電圧感度分析部16が需要増分ΔPに対して電圧感度Siを解析的に求めて、順位決定部17が、電圧感度Siの降順で、需給調整の順位を決定している。このため、系統構成が複雑で発電機7の需給調整が系統電圧に与える影響が把握しづらくとも、系統構成の複雑さに惑わされることなく、系統事故時の電圧安定性の維持に有効となる需給調整を、容易に実施することができる。   In the first embodiment, since the order of the generator 7 is only determined according to the calculated voltage sensitivity Si, the influence of the supply-demand adjustment by the generator 7 on the system voltage at the time of a system accident in a complicated system is difficult to grasp As a result, it is possible to accurately carry out supply and demand adjustments that are effective in maintaining voltage stability in the event of a system fault. That is, in the first embodiment, the voltage sensitivity analysis unit 16 analytically determines the voltage sensitivity Si with respect to the demand increment ΔP, and the order determination unit 17 determines the order of supply and demand adjustment in descending order of the voltage sensitivity Si. doing. For this reason, even if the system configuration is complicated and it is difficult to understand the influence of the supply-demand adjustment of the generator 7 on the system voltage, it is effective for maintaining the voltage stability at the time of a system accident without being confused by the complexity of the system configuration. Supply and demand adjustments can be easily implemented.

また、系統事故後の電圧安定性低下の現象は、分オーダーで起きるのに対して、事後状態推定部13における潮流計算及び過渡安定度計算から、電圧感度分析部16における電圧感度Si算出までに要する時間は10秒程度で済む。したがって、発電機7の出力制御による需給調整を迅速且つ確実に実施することができる。   In addition, the phenomenon of voltage stability decline after a system accident occurs on the order of minutes, but from power flow calculation and transient stability calculation in post-state estimation unit 13 to voltage sensitivity Si calculation in voltage sensitivity analysis unit 16 The time required is about 10 seconds. Therefore, the supply and demand adjustment by the output control of the generator 7 can be performed promptly and reliably.

このような第1の実施形態によれば、系統事故後の緊急的な需給調整において、電制つまり発電機の停止を回避して、発電機7の需給調整による系統事故後の電圧安定性を維持することが可能となる。また、電制を実施する必要が無いため、復旧に際して発電機7を再稼働することが不要となり、時間的にも作業的にもコストを軽減することができる。さらに、発電機7の停止を回避したことで、周波数調整源が減る心配も無くなり、基幹系統の主要幹線ルート断などの過酷な条件下での調相投入量不足といったリスクも無くなる。   According to such a first embodiment, in the emergency supply and demand adjustment after the system accident, the stop of the power control, that is, the generator, is avoided, and the voltage stability after the system accident by the supply and demand adjustment of the generator 7 is obtained. It becomes possible to maintain. Further, since there is no need to implement power control, it is not necessary to reactivate the generator 7 at the time of restoration, and the cost can be reduced both in time and in work. Furthermore, by avoiding the stop of the generator 7, there is no concern that the frequency adjustment source will be reduced, and the risk of lack of phase change input under severe conditions such as main trunk route disconnection of the backbone system is also eliminated.

以上述べたように、策定部1によって発電機7の出力制御プランを策定する本実施形態は、電制の代替手段となって電圧安定性を維持するだけではなく、投入量に限りのある調相設備の使用の回避や、人的コストの軽減化、再稼働までの時間短縮化といった複数のメリットを発揮することができる。   As described above, the present embodiment in which the output control plan of the generator 7 is formulated by the formulation unit 1 is not only maintaining the voltage stability as an alternative means of the electric control, but also adjusting the limited amount of input. Multiple benefits such as avoiding the use of phase equipment, reducing human costs, and shortening the time to restart can be realized.

さらに、順位出力部18では、順位決定部17が決めた順位に従って順次、発電機7の需給制御を行うための順位テーブルを作成するので、順位の異なる発電機7が複数台、同時に需給制御を行うことが無い。そのため、発電機7を定格出力(出力上限)まで動作させることで、需給制御を効率良く実施することができる。しかも、電圧感度分析部16では、電圧安定性がより厳しくなるような潮流変化に対する電圧感度Siを求めるので、事故後に想定しうる過酷な潮流条件に対して、発電機7による需給調整で電圧安定性を維持することが可能である。   Furthermore, since the order output unit 18 sequentially creates an order table for performing supply and demand control of the generator 7 according to the order determined by the order determination unit 17, a plurality of generators 7 having different orders are simultaneously supplied and received. There is nothing to do. Therefore, by operating the generator 7 to the rated output (output upper limit), supply and demand control can be efficiently performed. Moreover, since the voltage sensitivity analysis unit 16 determines the voltage sensitivity Si to the tidal current change that makes the voltage stability more severe, the voltage stability can be achieved by adjusting the supply and demand by the generator 7 under severe tidal conditions that can be assumed after the accident. It is possible to maintain sex.

(第2の実施形態)
(構成)
第2の実施形態の基本的な構成は、第1の実施形態のそれと同様である。そのため、以下では、第1の実施形態の構成との差異に絞り、図8〜図11を用いて第2の実施形態の構成を説明する。第2の実施形態は、定常時の需給調整、例えばLFC(負荷周波数制御)やEDC(最適経済負荷配分制御)等に対して、上記の電圧感度Siに基づいた発電機7による需給調整を反映するようにしたものである。
Second Embodiment
(Constitution)
The basic configuration of the second embodiment is similar to that of the first embodiment. Therefore, hereinafter, the configuration of the second embodiment will be described with a focus on differences from the configuration of the first embodiment, using FIGS. 8 to 11. The second embodiment reflects the supply and demand adjustment by the generator 7 based on the voltage sensitivity Si described above for steady state supply and demand adjustment, for example, LFC (load frequency control) and EDC (optimal economic load distribution control). It is intended to

図8に示すように、第2の実施形態に係る需給制御システム10の策定部20には、電圧感度Siの閾値を設定する閾値設定部21と、電圧感度Siの閾値に基づいて発電機7ごとに需給調整対象フラグを決定するフラグ決定部22と、が設けられている。上記第1の実施形態の策定部1では順位決定部17が順位を決定することで発電機7の出力制御プランを策定したが、第2の実施形態の策定部20では、発電機7ごとに需給調整対象フラグ23を決定することにより発電機7の出力制御プランを策定している。   As shown in FIG. 8, the formulation unit 20 of the supply and demand control system 10 according to the second embodiment includes a threshold setting unit 21 that sets a threshold of voltage sensitivity Si and a generator 7 based on the threshold of voltage sensitivity Si. A flag determination unit 22 is provided which determines a supply and demand adjustment target flag for each unit. In the formulation unit 1 of the first embodiment, the output power control plan of the generator 7 is formulated by the rank determination unit 17 deciding the order. However, in the formulation section 20 of the second embodiment, each generator 7 is selected. The output control plan of the generator 7 is formulated by determining the supply and demand adjustment target flag 23.

図9のテーブルに示すように、閾値設定部21にて電圧感度Siの閾値を0以上とし、フラグ決定部22では、電圧感度Siが0未満であれば需給制御対象フラグ=0(OFF)とし、電圧感度Siが0以上であれば需給制御対象フラグ=1(ON)と決めている。図9のテーブルでは、G1、G2の発電機7が需給制御対象フラグ=1(ON)となり、G3、G4の発電機7が需給制御対象フラグ=0(OFF)となっている。   As shown in the table in FIG. 9, the threshold setting unit 21 sets the threshold of the voltage sensitivity Si to 0 or more, and the flag determination unit 22 sets the supply and demand control target flag = 0 (OFF) if the voltage sensitivity Si is less than 0. If the voltage sensitivity Si is 0 or more, it is determined that the supply and demand control target flag = 1 (ON). In the table of FIG. 9, the generators 7 of G1 and G2 have the demand / supply control target flag = 1 (ON), and the generators 7 of G3 and G4 have the demand / supply control target flag = 0 (OFF).

需給制御対象フラグは、例えばEDC(最適経済負荷配分制御)では、図10のように反映される。EDCとは、数分先(例えば5分)に想定される総需要変動に合わせて、EDCの対象機の燃料費が低い出力配分を計算する制御である。図10では、策定部20にて策定した需給制御対象フラグ23を除いて、一般的なEDCの簡易的な制御ルーチンを示している。需給制御対象フラグ23は、EDCの対象・非対象を示すEDCのON-OFFフラグ24に乗じられる。これにより、電圧感度Siが小さくて電圧安定性を悪化させる発電機7に関しては、これをEDCの対象外とさせている。   The supply and demand control target flag is reflected as shown in FIG. 10, for example, in EDC (optimized economic load distribution control). The EDC is a control that calculates the power distribution at which the fuel cost of the EDC target aircraft is low, in accordance with the total demand fluctuation assumed several minutes ahead (for example, 5 minutes). FIG. 10 shows a simple control routine of a general EDC except for the supply and demand control target flag 23 formulated by the formulation unit 20. The supply and demand control target flag 23 is multiplied by the EDC ON-OFF flag 24 indicating the target and non-target of the EDC. As a result, the generator 7 which makes the voltage sensitivity Si small and deteriorates the voltage stability is out of the target of EDC.

また、需給制御対象フラグは、LFC(負荷周波数制御)に対して図11のように反映するようにしてもよい。図11は、需給制御対象フラグ23を除いて、一般的なLFC(負荷周波数制御)の制御ルーチンを示している。LFCの場合、図11のように分担比率に、策定部11で策定した需給制御対象フラグ23が乗じられる。これにより、電圧感度Siが小さくて電圧安定性を悪化させる発電機7については、LFCの対象外とさせている。第2の実施形態では、需給制御対象フラグ23を0または1としているが、0〜1の連続値として分担比率を連続的に変更させても良い。   Further, the supply and demand control target flag may be reflected on LFC (load frequency control) as shown in FIG. FIG. 11 shows a general LFC (load frequency control) control routine excluding the supply and demand control target flag 23. In the case of LFC, as shown in FIG. 11, the demand / supply control target flag 23 formulated by the formulation unit 11 is multiplied by the sharing ratio. As a result, the generator 7 which has a small voltage sensitivity Si and deteriorates the voltage stability is excluded from the target of LFC. In the second embodiment, the supply and demand control target flag 23 is set to 0 or 1, but the sharing ratio may be continuously changed as a continuous value of 0 to 1.

(作用と効果)
第2の実施形態に係る需給制御システム10では、策定部20において、閾値設定部21が電圧感度Siの閾値を設定し、フラグ決定部22が需給制御対象フラグ23を決定して、前記閾値に達しない電圧感度Siを持つ発電機7を、需給調整用の発電機7から除外している。したがって、系統事故後から復旧までの電圧安定性が過酷な状況下でLFCやEDC等の定常時の需給調整を行っていることを前提として、以下の(a)、(b)に該当する発電機7の出力制御を避けることができる。
(Action and effect)
In the supply and demand control system 10 according to the second embodiment, the threshold setting unit 21 sets the threshold of the voltage sensitivity Si in the formulation unit 20, the flag determination unit 22 determines the supply and demand control target flag 23, and The generator 7 having the voltage sensitivity Si which does not reach is excluded from the generator 7 for supply and demand adjustment. Therefore, on the premise that supply and demand adjustment at steady times such as LFC and EDC is performed under severe conditions of voltage stability from a system accident to restoration, the power generation corresponding to the following (a) and (b) Output control of machine 7 can be avoided.

(a)需給調整にて電圧上昇(電圧回復)への寄与が小さい発電機7
(b)需給調整にて電圧下降への寄与が大きい発電機7
このような第2の実施形態によれば、LFCやEDC等の定常時の需給調整を行いつつ、系統事故後の緊急時に、電圧回復に寄与する発電機7だけに絞って、効率良く出力制御を行うことができ、系統事故後の電圧安定性が、さらに向上する。
(a) Generator 7 that contributes little to voltage rise (voltage recovery) by adjusting supply and demand
(b) Generator 7 that greatly contributes to voltage drop by adjusting supply and demand
According to such a second embodiment, while performing supply and demand adjustment at steady state such as LFC and EDC, in the emergency after a system accident, only the generator 7 contributing to voltage recovery is focused, and output control is efficiently performed. Voltage stability after a system fault can be further improved.

(第3の実施形態)
(構成)
第3の実施形態の基本的な構成は、第1の実施形態のそれと同様である。そのため、以下では、第1の実施形態の構成との差異に絞り、図12及び図13を用いて第3の実施形態の構成を説明する。
Third Embodiment
(Constitution)
The basic configuration of the third embodiment is similar to that of the first embodiment. Therefore, in the following, the configuration of the third embodiment will be described focusing on differences from the configuration of the first embodiment, using FIGS. 12 and 13.

図12に示すように、第3の実施形態に係る需給制御システム10では、策定部30において、再生可能エネルギー(以下、単に再エネと称する)の出力変化を推定する再エネ変化推定部32及び系統需要の変化を推定する需要変化推定部33が設けられている。再エネ変化推定部32及び需要変化推定部33は、電圧感度分析部16に接続されている。   As shown in FIG. 12, in the supply and demand control system 10 according to the third embodiment, the re-energy change estimation unit 32 that estimates the output change of the renewable energy (hereinafter simply referred to as re-energy) in the formulation unit 30 and A demand change estimation unit 33 is provided to estimate a change in grid demand. The re-energy change estimation unit 32 and the demand change estimation unit 33 are connected to the voltage sensitivity analysis unit 16.

再エネ変化推定部32及び需要変化推定部33は、過去の実績データ(変動データ)に基づいた確率分布に基づいて変化を推定する。再エネ変化推定部32及び需要変化推定部33における、過去の実績データに基づいた再エネ及び需要の確率分布のイメージを図13に示す。図13の左図が再エネの確率分布、右図が需要の確率分布を示す。   The re-energy change estimation unit 32 and the demand change estimation unit 33 estimate a change based on a probability distribution based on past actual data (variation data). The image of the probability distribution of the re-energy and the demand based on the past performance data in the re-energy change estimation part 32 and the demand change estimation part 33 is shown in FIG. The left figure of FIG. 13 shows the probability distribution of re-energy, and the right figure shows the probability distribution of demand.

横軸の変動は、ある一定期間の変動実績を示し、ここで言う「一定期間」は、例えば発電機7の需給制御によって系統事故後の電圧安定性を維持する時間領域(数分や事故復旧までの時間)が考えられる。なお、再エネや需要の確率分布については、過去の実績データから事前に解析しておき、全時間の実績データを反映させた分布として見るようによいし、時刻ごとや季節ごとの実績データを反映させた分布として見るようにしてもよい。   The fluctuation on the horizontal axis indicates the fluctuation results for a certain period, and the “certain period” mentioned here is, for example, a time domain (several minutes or accident recovery to maintain voltage stability after a system accident by supply and demand control of the generator 7 Time) can be considered. In addition, about the probability distribution of re-energy and demand, it is good to analyze in advance from past actual data and to see it as a distribution that reflects actual data of all time, and actual data for every time and every season It may be viewed as a reflected distribution.

再エネ変化推定部32では、再エネにおける+側変動及び−側変動の想定幅σ1、σ2を決定し、需要変化推定部33では、系統需要における+側変動及び−側変動の想定幅σ3、σ4を決定する。再エネの想定幅σ1、σ2は、代表1ヶ所の変動でも良いし、再エネ全体の合計値でも良い。再エネ全体の合計値の場合は、想定幅σ1、σ2を各機器の定格等で按分する方法等が考えられる。   The re-energy change estimation unit 32 determines the assumed widths σ1 and σ2 of the + side fluctuation and the − side fluctuation in the re-energy, and the demand change estimation unit 33 sets the assumed width σ 3 of the + side fluctuation and the − side fluctuation in the system demand Determine σ 4 The expected widths σ1 and σ2 of the re-energy may be fluctuations at one representative position, or may be the total value of the entire re-energy. In the case of the total value of the entire re-energy, it is conceivable to divide the assumed widths σ1 and σ2 by the rating of each device or the like.

需要の想定幅σ3、σ4も同様に、代表1ヶ所の変動でも良いし、総需要値でも良い。総需要値の場合は、想定幅σ3、σ4を需要家の契約電力で按分する方法等が考えられる。なお、変動を考慮したい再エネあるいは需要家が、複数個所ある場合には、複数個所分の+側変動及び−側変動を考慮すればよい。   Similarly, the assumed widths σ3 and σ4 of the demand may be fluctuations at one representative site, or may be a total demand value. In the case of the total demand value, a method of dividing the assumed widths σ3 and σ4 by the contract power of the customer may be considered. In the case where there are multiple renewable energy or customers who want to consider the fluctuation, the + side fluctuation and the − side fluctuation for a plurality of places may be considered.

変化推定部32、33における想定幅σ1〜σ4の決定方法は、下記(1)〜(3)のような場合が考えられる。
(1)変動の発生確率と電圧変動から決定される期待値から決定される場合
(2)より過酷なケースを想定するために広めに変動幅を想定する場合
(3)固定の標準偏差(例えば1σ、2σなど)とする場合
The following methods (1) to (3) can be considered as the method of determining the assumed widths σ1 to σ4 in the change estimation units 32 and 33.
(1) When determined from the expected value determined from the occurrence probability of fluctuation and voltage fluctuation
(2) When assuming a wider fluctuation range to assume a more severe case
(3) In the case of a fixed standard deviation (for example, 1σ, 2σ, etc.)

変化推定部32、33による想定幅σ1〜σ4の決定後、想定される想定変動パターンの組み合わせは、次の4通り、(σ1,σ3),(σ1,σ4),(σ2,σ3),(σ2,σ4)である。これらの4通りの組み合わせを、事後モデル生成部15で生成した事故後の解析用系統モデルに反映し、電圧感度分析部16は潮流計算を行って各発電機7の電圧感度Siを求めるようにする。   The combinations of assumed fluctuation patterns assumed after the assumed widths σ1 to σ4 are determined by the change estimation units 32 and 33 are (σ1, σ3), (σ1, σ4), (σ2, σ3), (4) It is σ2, σ4). The voltage sensitivity analysis unit 16 calculates the voltage sensitivity Si of each generator 7 by reflecting the above four combinations in the analysis system model after analysis generated by the aft model generation unit 15 and performing the power flow calculation. Do.

電圧感度分析部16は、4通りの想定変動パターンの組み合わせから最も電圧安定性が厳しいパターンを対象として、対象パターンの潮流変動を各発電機7が吸収した場合の電圧変動を電圧感度Siとして分析する。順位決定部17が、電圧感度Siに応じて発電機7の需給調整の順位を決定する手順等は、上記第1の実施形態と同等である。   The voltage sensitivity analysis unit 16 analyzes the voltage fluctuation when each generator 7 absorbs the power flow fluctuation of the target pattern as the voltage sensitivity Si, targeting the pattern with the most severe voltage stability from the combination of the four assumed fluctuation patterns. Do. The order determining unit 17 determines the order of supply and demand adjustment of the generator 7 in accordance with the voltage sensitivity Si, and the like, which are the same as those in the first embodiment.

(作用と効果)
第3の実施形態では、電圧感度分析部16に、再エネ変化推定部32及び需要変化推定部33を設けることで、再エネ及び需要の変動の確率分布から電圧安定性を悪化させる変動パターンを想定して、発電機7の需給調整の順位を確実に決定することができる。そのため、事故後想定しうる、電圧安定性がより過酷となる潮流条件に対しても、発電機7による需給調整で電圧安定性を維持することが可能となる。
(Action and effect)
In the third embodiment, by providing the voltage sensitivity analysis unit 16 with the reenergy change estimation unit 32 and the demand change estimation unit 33, a fluctuation pattern that degrades the voltage stability from the probability distribution of the reenergy and the fluctuation of demand is obtained. Assuming that the order of supply and demand adjustment of the generator 7 can be determined with certainty. Therefore, it is possible to maintain the voltage stability by adjusting the supply and demand by the generator 7 even under tidal conditions in which the voltage stability becomes more severe, which can be assumed after the accident.

特に、再エネは、短期間で著しく変動する可能性があり、再エネの導入量が増加するにつれて、電圧安定性に悪影響を及ぼすと考えられる。そこで、本実施形態では、再エネの変動範囲を厳しめに考慮した需給制御を実施することができ、系統事故後、更に再エネの変動が電圧安定性に対して厳しい潮流変動を引き起こした場合でも、電圧安定性が維持できる可能性を、より高めることができる。   In particular, re-energy may fluctuate significantly in a short period of time and is considered to adversely affect voltage stability as the amount of re-energy introduction increases. Therefore, in the present embodiment, supply and demand control can be implemented with strict consideration to the range of fluctuation of the renewable energy, and after the system accident, the fluctuation of the regenerative energy causes severe fluctuation of the power flow with respect to the voltage stability. However, the possibility that voltage stability can be maintained can be further enhanced.

(他の実施形態)
上記の実施形態は、一例であって、発明の範囲を限定するものではなく、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
The above embodiment is an example and does not limit the scope of the invention, and can be implemented in other various forms, and various omissions and replacements can be made without departing from the scope of the invention. , Can make changes. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.

上記の各部の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、実施形態の一態様である。また、ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。さらに、上記の各部のいずれかを、それぞれの処理を実現する回路として構成することも可能である。   A method for executing the processing of each of the above-described units, a program, and a recording medium recording the program are also an aspect of the embodiment. Further, the range of processing by hardware and the range of processing by software including a program are not limited to a specific mode. Furthermore, any of the above-described units can be configured as a circuit that implements each process.

例えば、上記第1の実施形態では電圧感度Siに応じて発電機7を制御する順位を決定したが、策定部に発電機7の出力持ち替え部を設けるようにしても良い。例えば、事故後の潮流変化が系統の電圧安定性を悪化させる場合、例えば電圧感度Siがマイナスの(電圧安定性を悪化させる)発電機7であれば、発電機7の出力持ち替え部は、当該発電機7の出力を下げ方向とする。   For example, although the order in which the generator 7 is controlled is determined according to the voltage sensitivity Si in the first embodiment, the output holding unit of the generator 7 may be provided in the formulation unit. For example, when the tidal current change after the accident deteriorates the voltage stability of the system, for example, in the case of the generator 7 where the voltage sensitivity Si is negative (the voltage stability is deteriorated), the output holding unit of the generator 7 The output of the generator 7 is set in the downward direction.

反対に、事故後の潮流変化が系統の電圧安定性を改善させる場合、例えば電圧感度Siがプラスの(電圧安定性を改善させる)発電機7であれば、発電機7の出力持ち替え部は、当該発電機7の出力は上げ方向にして発電機7の出力の持ち替えを行う。このような出力持ち替え部を有する実施形態によれば、系統事故時に、より柔軟に電圧安定性の維持を図ることが可能である。   On the contrary, when the power flow change after the accident improves the voltage stability of the system, for example, if the voltage sensitivity Si is positive (i.e., the voltage stability is improved), the output change unit of the generator 7 The output of the generator 7 is in the upward direction, and the output of the generator 7 is switched. According to the embodiment having such an output switching unit, it is possible to more flexibly maintain the voltage stability at the time of a system accident.

策定部によって策定される出力制御プランは、リアルタイムの系統情報に基づいて策定するものに限らず、予め設定してデータベースなどに記憶されたものを用いるようにしてもよい。また、事故が復旧するまでの復旧時間や事故点の数などに応じて、策定部が出力制御プランの見直しを行うようにしてもよい。第3の実施形態では、第1の実施形態の構成要素に再エネ変化推定部32及び需要変化推定部33を加えたが、第2の実施形態の構成要素に再エネ変化推定部32及び需要変化推定部33を加えるようにしてもよい。   The output control plan formulated by the formulation unit is not limited to one formulated based on real-time system information, but may be preset and stored in a database or the like. In addition, the formulation unit may review the output control plan according to the recovery time until the accident is recovered, the number of accident points, and the like. In the third embodiment, the re-energy change estimation unit 32 and the demand change estimation unit 33 are added to the components of the first embodiment, but the re-energy change estimation unit 32 and the demand are added to the components of the second embodiment. The change estimation unit 33 may be added.

1、20、30…策定部
2…事故種別検出部
3…需給制御部
5…電力系統
N…給電情報網
7…発電機
9…通信設備
10…需給制御システム
11…系統情報取得部
12…事故条件設定部
13…事後状態推定部
131…潮流計算部
132…安定度計算部
15…事後モデル生成部
16…電圧感度分析部
17…順位決定部
18…順位出力部
21…閾値設定部
22…フラグ決定部
23…需給制御対象フラグ
24…ON-OFFフラグ
32…再エネ変化推定部
33…需要変化推定部
1, 20, 30 ... Development unit 2 ... Accident type detection unit 3 ... Supply and demand control unit 5 ... Power system N ... Power supply information network 7 ... Generator 9 ... Communication equipment 10 ... Supply and demand control system 11 ... System information acquisition unit 12 ... Accident Condition setting unit 13 ... Post-state estimation unit 131 ... Power flow calculation unit 132 ... Stability calculation unit 15 ... Post-model generation unit 16 ... Voltage sensitivity analysis unit 17 ... Rank determination unit 18 ... Rank output unit 21 ... Threshold setting unit 22 ... Flag Determination unit 23 ... supply and demand control target flag 24 ... ON-OFF flag 32 ... re-energy change estimation unit 33 ... demand change estimation unit

Claims (12)

電力系統の給電情報を取得する給電情報取得部と、
系統事故の事故種別を検出する事故種別検出部と、
前記給電情報及び前記事故種別に応じて前記電力系統に接続される需給調整発電機の出力制御プランを策定する策定部と、
前記出力制御プランに従って前記需給調整発電機に需給制御指令を出力する需給制御部と、
を備えた需給調整システム。
A feed information acquisition unit that acquires feed information of a power system;
An accident type detection unit that detects an accident type of a system accident;
A formulating unit for formulating an output control plan of a demand-supply adjusting generator connected to the electric power system according to the feeding information and the type of accident;
A supply and demand control unit that outputs a supply and demand control command to the supply and demand adjustment generator according to the output control plan;
Supply and demand adjustment system with.
前記策定部は、
前記給電情報及び前記事故種別に基づいて系統事故発生後の解析用系統モデルを生成する事後モデル生成部と、
系統事故の発生に際して前記電力系統に接続される需給調整発電機が需給調整を実施したと仮定した際の前記各需給調整発電機の電圧感度を、前記解析用系統モデルに基づいて分析する電圧感度分析部と、を有し、
前記電圧感度に基づいて前記需給調整発電機の出力制御プランを策定する請求項1に記載の需給調整システム。
The above-mentioned development department
A posterior model generation unit that generates a system model for analysis after a system accident occurrence based on the feeding information and the accident type;
Voltage sensitivity that analyzes the voltage sensitivity of each of the supply and demand adjustment generators when it is assumed that the supply and demand adjustment generator connected to the electric power system has performed supply and demand adjustment at the occurrence of a system accident based on the analysis system model And an analysis unit,
The supply and demand adjustment system according to claim 1, wherein an output control plan of the supply and demand adjustment generator is formulated based on the voltage sensitivity.
前記策定部は、前記電圧感度に応じて前記需給調整発電機が需給調整を実施する際の順位を決定する順位決定部を有する請求項2に記載の需給調整システム。   The supply and demand adjustment system according to claim 2, wherein the formulation unit has a rank determination unit that determines a rank when the supply and demand adjustment generator performs supply and demand adjustment according to the voltage sensitivity. 前記順位決定部は、前記順位に基づいて順位テーブルを作成する請求項3に記載の需給調整システム。   The demand adjustment system according to claim 3, wherein the order determination unit creates an order table based on the order. 前記電圧感度分析部は、
前記事故種別に基づいて事故条件を設定する事故条件設定部と、
前記事故条件に基づいて電力系統の安定度を計算して当該安定度を前記事後モデル生成部に出力する安定度計算部と、を有する請求項2〜4のいずれかに記載の需給調整システム。
The voltage sensitivity analysis unit
An accident condition setting unit that sets an accident condition based on the accident type;
The supply and demand adjustment system according to any one of claims 2 to 4, further comprising: a stability calculation unit that calculates the stability of the power system based on the accident condition and outputs the stability to the posterior model generation unit. .
前記電圧感度分析部は、
電力系統の系統情報を取得する系統情報取得部と、
前記系統情報に基づいて系統の潮流値を計算して当該潮流値を前記安定度計算部に出力する潮流計算部と、を有する請求項5に記載の需給調整システム。
The voltage sensitivity analysis unit
A grid information acquisition unit that acquires grid information of a power grid;
The power supply adjustment system according to claim 5, further comprising: a power flow calculation unit that calculates a power flow value of a power system based on the power system information and outputs the power flow value to the stability calculation unit.
前記電圧感度分析部は、系統の電圧安定性を悪化させる事故後の潮流変化に対して前記需給調整発電機が需給調整を行った際の系統の電圧感度を分析する請求項2〜6のいずれかに記載の需給調整システム。   7. The voltage sensitivity analysis unit according to any one of claims 2 to 6, wherein the voltage sensitivity analysis unit analyzes the voltage sensitivity of the system when the supply and demand adjustment generator performs supply and demand adjustment with respect to the tidal current change after the accident that deteriorates the voltage stability of the system. Supply and demand adjustment system described in. 前記策定部は、前記需給調整発電機ごとに需給調整対象フラグを決定するフラグ決定部を有する請求項1〜7のいずれかに記載の需給調整システム。   The supply and demand adjustment system according to any one of claims 1 to 7, wherein the formulation unit has a flag determination unit that determines a supply and demand adjustment target flag for each of the supply and demand adjustment generators. 前記策定部は、前記需給調整発電機の出力持ち替え部を有し、
前記出力持ち替え部は、事故後の潮流変化が系統の電圧安定性を悪化させる場合であれば前記需給調整発電機の出力を下げ方向にするように、事故後の潮流変化が系統の電圧安定性を改善させる場合であれば前記需給調整発電機の出力を上げ方向にするように、当該需給調整発電機の出力の持ち替えを行う請求項1〜8のいずれかに記載の需給調整システム。
The formulation unit has an output transfer unit of the supply and demand adjustment generator,
The output change-over unit changes the voltage stability of the system after the accident so that the output of the demand-supply adjusting generator is lowered when the change in power flow after the accident deteriorates the voltage stability of the system. The supply and demand adjustment system according to any one of claims 1 to 8, wherein the output of the supply and demand adjustment generator is switched so as to increase the output of the supply and demand adjustment generator if the output of the supply and demand adjustment generator is increased.
再生可能エネルギーの出力変化を推定する再エネ出力変化推定部、及び系統需要の変化を推定する需要変化推定部のうち、少なくとも一方を有する請求項1〜9のいずれかに記載の需給調整システム。   The supply-demand adjustment system according to any one of claims 1 to 9, further comprising at least one of a re-energy output change estimation unit that estimates an output change of renewable energy and a demand change estimation unit that estimates a change in grid demand. 電力系統の給電情報を取得する給電情報取得処理と、
系統事故の事故種別を検出する事故種別検出処理と、
前記給電情報及び前記事故種別に応じて前記電力系統に接続される需給調整発電機の出力制御プランを策定する策定処理と、
前記出力制御プランに従って前記需給調整発電機に需給制御指令を出力する需給制御処理を、
コンピュータが実行する需給調整方法。
Power supply information acquisition processing for acquiring power supply information of a power system;
Accident type detection processing for detecting an accident type of a system accident;
A formulation process for formulating an output control plan of a supply / demand adjustment generator connected to the power system according to the feeding information and the type of accident;
Supply and demand control processing for outputting a supply and demand control command to the supply and demand adjustment generator according to the output control plan;
Supply and demand adjustment methods performed by the computer.
電力系統の給電情報を取得する給電情報取得処理と、
系統事故の事故種別を検出する事故種別検出処理と、
前記給電情報及び前記事故種別に応じて前記電力系統に接続される需給調整発電機の出力制御プランを策定する策定処理と、
前記出力制御プランに従って前記需給調整発電機に需給制御指令を出力する需給制御処理を、
コンピュータに実行させる需給調整プログラム。
Power supply information acquisition processing for acquiring power supply information of a power system;
Accident type detection processing for detecting an accident type of a system accident;
A formulation process for formulating an output control plan of a supply / demand adjustment generator connected to the power system according to the feeding information and the type of accident;
Supply and demand control processing for outputting a supply and demand control command to the supply and demand adjustment generator according to the output control plan;
Supply and demand adjustment program to be run on a computer.
JP2017202918A 2017-10-19 2017-10-19 Supply and demand adjustment system, supply and demand adjustment method and supply and demand adjustment program Active JP6847808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202918A JP6847808B2 (en) 2017-10-19 2017-10-19 Supply and demand adjustment system, supply and demand adjustment method and supply and demand adjustment program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202918A JP6847808B2 (en) 2017-10-19 2017-10-19 Supply and demand adjustment system, supply and demand adjustment method and supply and demand adjustment program

Publications (2)

Publication Number Publication Date
JP2019080364A true JP2019080364A (en) 2019-05-23
JP6847808B2 JP6847808B2 (en) 2021-03-24

Family

ID=66628942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202918A Active JP6847808B2 (en) 2017-10-19 2017-10-19 Supply and demand adjustment system, supply and demand adjustment method and supply and demand adjustment program

Country Status (1)

Country Link
JP (1) JP6847808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660743B1 (en) 2022-05-24 2024-04-24 성균관대학교산학협력단 method and apparatus for optimizing voltage control

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146072A (en) * 1991-11-19 1993-06-11 Hitachi Ltd Operation simulator and controller for generator
JPH0775391A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Application method of variable speed generator
JP2006203959A (en) * 2005-01-18 2006-08-03 Chugoku Electric Power Co Inc:The Power demand and supply adjusting system
JP2008011630A (en) * 2006-06-28 2008-01-17 Central Res Inst Of Electric Power Ind Apparatus and method for determining amount of voltage increase control and system and method for controlling generator
JP2013247842A (en) * 2012-05-29 2013-12-09 Toshiba Corp System stabilization apparatus and control method for the same
JP2015154643A (en) * 2014-02-17 2015-08-24 株式会社東芝 Power system monitoring control apparatus
US20150378384A1 (en) * 2014-06-29 2015-12-31 International Business Machines Corporation Reducing corrective actions in security-constrained optimal power flow via sparsity regularization
JP2017112780A (en) * 2015-12-18 2017-06-22 株式会社東芝 Power management device, power management program and power management method
CN107069836A (en) * 2017-04-01 2017-08-18 广州供电局有限公司 Power generation needs solid measure method and system during Automatic Generation Control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146072A (en) * 1991-11-19 1993-06-11 Hitachi Ltd Operation simulator and controller for generator
JPH0775391A (en) * 1993-09-03 1995-03-17 Hitachi Ltd Application method of variable speed generator
JP2006203959A (en) * 2005-01-18 2006-08-03 Chugoku Electric Power Co Inc:The Power demand and supply adjusting system
JP2008011630A (en) * 2006-06-28 2008-01-17 Central Res Inst Of Electric Power Ind Apparatus and method for determining amount of voltage increase control and system and method for controlling generator
JP2013247842A (en) * 2012-05-29 2013-12-09 Toshiba Corp System stabilization apparatus and control method for the same
JP2015154643A (en) * 2014-02-17 2015-08-24 株式会社東芝 Power system monitoring control apparatus
US20150378384A1 (en) * 2014-06-29 2015-12-31 International Business Machines Corporation Reducing corrective actions in security-constrained optimal power flow via sparsity regularization
JP2017112780A (en) * 2015-12-18 2017-06-22 株式会社東芝 Power management device, power management program and power management method
CN107069836A (en) * 2017-04-01 2017-08-18 广州供电局有限公司 Power generation needs solid measure method and system during Automatic Generation Control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660743B1 (en) 2022-05-24 2024-04-24 성균관대학교산학협력단 method and apparatus for optimizing voltage control

Also Published As

Publication number Publication date
JP6847808B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
Marzband et al. Adaptive load shedding scheme for frequency stability enhancement in microgrids
CN103378603B (en) Open-circuit fault detection device, inverter controller, energy conversion system and method
US11205892B2 (en) Method for locating phase faults in a microgrid
JP5986428B2 (en) Distribution protection system and method
US11209474B2 (en) Method for locating phase faults in a microgrid
Atighechi et al. An effective load shedding remedial action scheme considering wind farms generation
Kezunovic et al. Reliable implementation of robust adaptive topology control
SE1350462A1 (en) Analysis of interruption propagation for electrical distribution systems
Benasla et al. Power system security enhancement by HVDC links using a closed-loop emergency control
JP7131971B2 (en) Power system stabilization system and power system stabilization method
Altaf et al. Renewable energy integration challenge on power system protection and its mitigation for reliable operation
US11721975B2 (en) System and method for use with microgrids having inverter-based distributed generators
US20190245347A1 (en) Coordinated frequency load shedding protection method using distributed electrical protection devices
JP2019080364A (en) Supply and demand adjusting system, supply and demand adjusting method and supply and demand adjusting program
Ballal et al. Improvements in Existing System Integrity Protection Schemes Under Stressed Conditions by Synchrophasor Technology—Case Studies
US7732943B2 (en) Method and a device for selecting and dimensioning measures in a case of instability in an electrical power system
Patil et al. A novel protection scheme for DC microgrid with hierarchical control
JP4832600B1 (en) Interrupt control device, interrupt control program, and interrupt control method
Dahiwale et al. Review on fault management in hybrid microgrid
CA3086377C (en) System and method for use with microgrids having inverter-based distributed generators
Mukherjee Applying the distribution system in grid restoration/NERC CIP-014 risk assessment
Maki et al. Methods for assessing the protection impacts of distributed generation in network planning activities
Donapati et al. An approach for optimal placement of upfc to enhance voltage stability margin under contingencies
Nakas et al. Investigation of the impact of load tap changers and automatic generation control on cascading events
Silva et al. Control architectures to perform voltage regulation on low voltage networks using DG

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6847808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150