JP2019078637A - OTDR device - Google Patents

OTDR device Download PDF

Info

Publication number
JP2019078637A
JP2019078637A JP2017205738A JP2017205738A JP2019078637A JP 2019078637 A JP2019078637 A JP 2019078637A JP 2017205738 A JP2017205738 A JP 2017205738A JP 2017205738 A JP2017205738 A JP 2017205738A JP 2019078637 A JP2019078637 A JP 2019078637A
Authority
JP
Japan
Prior art keywords
probe
obs
vector
optical fiber
otdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017205738A
Other languages
Japanese (ja)
Other versions
JP6824861B2 (en
Inventor
山本 貴司
Takashi Yamamoto
貴司 山本
泰志 坂本
Yasushi Sakamoto
泰志 坂本
雅樹 和田
Masaki Wada
雅樹 和田
梓 漆原
Azusa Urushibara
梓 漆原
中島 和秀
Kazuhide Nakajima
和秀 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017205738A priority Critical patent/JP6824861B2/en
Publication of JP2019078637A publication Critical patent/JP2019078637A/en
Application granted granted Critical
Publication of JP6824861B2 publication Critical patent/JP6824861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

To expand a dynamic range in one session of measurement trace and shorten a measurement time for the whole in measuring the loss distribution of an optical fiber by OTDR.SOLUTION: An OTDR device 301 pertaining to the present invention applies a test light pulse to an optical fiber 50 under test, coherently receives back-scattered light generated in the optical fiber 50 under test and measures the loss distribution of the optical fiber 50 under test. The OTDR device comprises: an optical modulator 13 for IQ-modulating each test light pulse with an inputted IQ modulating signal sequence; and signal processing means 18 for performing computation to derive the loss distribution of the optical fiber 50 under test relative to the distance from a received signal that is coherently received using the IQ modulating signal sequence.SELECTED DRAWING: Figure 1

Description

本開示は、光通信システム分野において光信号の伝送媒体である光ファイバの損失分布評価や破断点の位置を試験するOTDR装置に関する。   The present disclosure relates to an OTDR apparatus that evaluates the loss distribution of an optical fiber that is a transmission medium of an optical signal in the optical communication system field and tests the position of a break point.

光ファイバ通信システムにおいて、光ファイバケーブルの敷設時の損失試験、故障箇所の調査、システム容量のアップグレード時の再評価には、光時間領域反射率測定器(Optical Time Domain Reflectometer、OTDR)(例えば、非特許文献1を参照。)を用いた損失分布測定が不可欠である。   In optical fiber communication systems, optical time domain reflectometers (OTDRs) (eg, for loss testing during installation of optical fiber cables, investigation of failure points, and reevaluation during upgrade of system capacity) Loss distribution measurement using Non-Patent Document 1 is indispensable.

OTDRのダイナミックレンジは、被測定光ファイバ(Fiber Under Test、FUT)の測定可能な長さと測定の信頼性を決定する重要なパラメータであり、ダイナミックレンジを拡大するための多くの技術が提案されている。最も単純な方法として、試験光のパルス幅を広げることによってダイナミックレンジを増加させることができるが、これは空間分解能の低下をもたらす。コヒーレントOTDR(Coherent ODTR、C−OTDR)は、コヒーレント検出による受信感度を改善し、直接検波OTDRと比較してダイナミックレンジを増加させる(例えば、非特許文献2、3、4を参照。)。   The OTDR's dynamic range is an important parameter that determines the measurable length and measurement reliability of the measured optical fiber (Fiber Under Test, FUT), and many techniques for extending the dynamic range have been proposed. There is. As the simplest method, the dynamic range can be increased by broadening the pulse width of the test light, but this leads to a decrease in spatial resolution. Coherent OTDR (Coherent ODTR, C-OTDR) improves the reception sensitivity by coherent detection and increases the dynamic range as compared with direct detection OTDR (see, for example, Non-Patent Documents 2, 3 and 4).

一方、200個の周波数チャネルの試験光パルスを用いた周波数分割多重OTDR(FDM−OTDR)による13dBのダイナミックレンジ改善が報告されている(例えば、非特許文献5を参照。)。また、Golay符号(例えば、非特許文献6、7を参照。)やSimplex符号(例えば、非特許文献8を参照。)などの特定の符号で符号化された試験光パルスを使用することにより、符号化利得とダイナミックレンジを増加させることができる。   On the other hand, 13 dB of dynamic range improvement by frequency division multiplexing OTDR (FDM-OTDR) using test light pulses of 200 frequency channels has been reported (see, for example, Non-Patent Document 5). Also, by using a test light pulse encoded by a specific code such as Golay code (see, for example, Non-patent documents 6 and 7) or Simplex code (see, for example, Non-patent document 8) The coding gain and dynamic range can be increased.

最も一般的に用いられているダイナミックレンジ拡大方法は、OTDR測定を繰返し行い、得られたデータを平均化することである。この場合、測定回数をNmeasとするとダイナミックレンジは(Nmeas)^(1/2)だけ改善される。   The most commonly used dynamic range extension method is to repeat OTDR measurements and average the data obtained. In this case, if the number of measurements is Nmeas, the dynamic range is improved by (Nmeas) ^ (1/2).

M. K. Barnoski and S. M. Jensen, “Fiber waveguides: A novel technique for investigating attenuation characteristics”, Appl. Opt. 15(9), 2112−2115 (1976).M. K. Barnoski and S. M. Jensen, “Fiber waveguides: A novel technique for investigating attenuation characteristics”, Appl. Opt. 15 (9), 2112-2115 (1976). P. Healey and D. J. Malyon, “OTDR in single−mode fibre at 1.5 μm using heterodyne detection”, Electron. Lett. 18(20), 862−863 (1982).P. Healey and D. J. Malyon, “OTDR in single-mode fiber at 1.5 μm using heterodyne detection”, Electron. Lett. 18 (20), 862-863 (1982). Y. Koyamada, and H. Nakamoto, “High performance single mode OTDR using coherent detection and fibre amplifiers”, Electron. Lett. 26(9), 573−575 (1990).Y. Koyamada, and H. Nakamoto, "High performance single mode OTDR using coherent detection and fiber amplifiers", Electron. Lett. 26 (9), 573-575 (1990). H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena”, J. Lightw Technol. 12(7), 1230−1238 (1994).H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena”, J. Lightw Technol. 12 (7), 1230-1238 (1994). H. Iida, K. Toge, and F. Ito, “200−subchannel ultra−high−density frequency division multiplexed coherent OTDR with nonlinear effect suppression”, in Proc. Optical Fiber Communication Conference 2013, paper OW1K.5.H. Iida, K. Toge, and F. Ito, "200-subchannel ultra-high-density frequency division multiplexed coherent OTDR with nonlinear effect suppression", in Proc. Optical Fiber Communication Conference 2013, paper OW1K. 5. M. Nazarathy, S. A. Newton,R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, S. Foster, “Real−time long range complementary correlation optical time domain reflectometer”, J. Lightw. Technol. 7(1), 24−38 (1989).M. Nazarathy, S. A. Newton, R.S. P. Giffard, D .; S. Moberly, F. Sischka, W. R. Trutna, S. Foster, "Real-time long range complementary correlation optical time domain reflectometer", J. Org. Lightw. Technol. 7 (1), 24-38 (1989). H. Nakamoto, N. Ohta, and Y. Koyamada, “Use of signal processing techniques to improve the dynamic range of coherent OTDRs”. Electronics and Communications in Japan (Part I: Communications) 75(10), 42−54 (1992).H. Nakamoto, N. Ohta, and Y. Koyamada, “Use of signal processing techniques to improve the dynamic range of coherent OTDRs”. Electronics and Communications in Japan (Part I: Communications) 75 (10), 42-54 (1992). M. D. Jones, “Using simplex codes to improve OTDR sensitivity”, IEEE Photon. Technol. Letters. 5(7), 822−824 (1993).M. D. Jones, “Using simplex codes to improve OTDR sensitivity”, IEEE Photon. Technol. Letters. 5 (7), 822-824 (1993).

FDM−OTDRにおいては、試験光の周波数チャネル数を増やすことによってダイナミックレンジが拡大される。しかしながら、周波数チャネル数を増やすと各チャネル間の周波数間隔が狭窄化し、試験光周波数間でのクロストークが発生し、OTDR測定の精度が劣化するという課題がある。また、補間相関Golay符号をC−OTDR測定において使用するとき、測定可能なFUTの長さが試験光光源の位相雑音によって制限されると(例えば、非特許文献8を参照。)という課題もある。Simplex符号はGolay符号よりも大きな符号化利得を提供するが、多数の測定トレースが必要という課題がある。ダイナミックレンジ拡大のために測定回数を増大させることは海底ケーブルのOTDR測定に深刻な影響を与え得る。例えば、FUTの長さが12000kmで、Nmeas=2^16の場合、測定時間の合計は2時間を超えてしまう。   In FDM-OTDR, the dynamic range is expanded by increasing the number of frequency channels of test light. However, when the number of frequency channels is increased, the frequency interval between the channels is narrowed, crosstalk between test light frequencies occurs, and the accuracy of OTDR measurement is degraded. Another problem is that when using interpolated correlation Golay codes in C-OTDR measurement, the measurable FUT length is limited by the phase noise of the test light source (see, for example, Non-Patent Document 8). . Although the Simplex code provides greater coding gain than the Golay code, it suffers from the need for multiple measurement traces. Increasing the number of measurements for dynamic range expansion can seriously affect the OTDR measurement of submarine cables. For example, if the length of the FUT is 12000 km and Nmeas = 2 ^ 16, the total measurement time exceeds 2 hours.

本発明は、このような課題に鑑みてなされたもので、1回の測定トレースでのダイナミックレンジを向上し、且つ測定時間の短縮を可能とするOTDR装置を提供することを目的とする。   The present invention has been made in view of such problems, and it is an object of the present invention to provide an OTDR device capable of improving the dynamic range in one measurement trace and shortening the measurement time.

上記目的を達成するために、本発明に係るOTDR装置は、試験光として単一パルスではなくデータ変調された信号パルス列を用い、当該信号パルス列で発生した戻り光を演算することでOTDR波形を得ることとした。   In order to achieve the above object, the OTDR apparatus according to the present invention obtains an OTDR waveform by calculating the return light generated by the signal pulse train using a data pulse modulated signal pulse train instead of a single pulse as test light. I decided.

具体的には、本発明に係るOTDR装置は、被測定光ファイバに試験光パルスを入射し、前記被測定光ファイバ中で発生する後方散乱光をコヒーレント受信し、前記被測定光ファイバの損失分布測定を行なうOTDR(Optical Time Domain Reflectometer)装置であって、
入力されたIQ変調信号列で前記試験光パルス毎にIQ変調を行う光変調器と、
前記IQ変調信号列を用いてコヒーレント受信した受信信号から前記被測定光ファイバの距離に対する損失分布を導出する演算を行う信号処理手段と、
を備える。
Specifically, the OTDR apparatus according to the present invention injects a test light pulse into the measured optical fiber, coherently receives the backscattered light generated in the measured optical fiber, and the loss distribution of the measured optical fiber An OTDR (Optical Time Domain Reflectometer) device that measures
An optical modulator that performs IQ modulation for each of the test light pulses with the input IQ modulation signal sequence;
Signal processing means for performing an operation for deriving a loss distribution with respect to the distance of the optical fiber to be measured from a reception signal coherently received using the IQ modulation signal sequence;
Equipped with

本OTDR装置は、試験光として単一パルスではなくデータ変調された信号パルス列を用いることによって、FUT内で発生する後方散乱光のパワーを増大させ、受信部での信号雑音比(signal to noise ratio、SNR)を改善する。その結果、受信後の信号処理によって導出されるOTDR波形のダイナミックレンジは、単一パルスを試験光として用いた場合よりも大きいものとなる。従って、本発明は、1回の測定トレースでのダイナミックレンジを向上し、測定時間の短縮を可能とするOTDR装置を提供することができる。   The OTDR apparatus increases the power of the backscattered light generated in the FUT by using a data pulse modulated signal pulse train instead of a single pulse as the test light, and the signal to noise ratio at the receiver (signal to noise ratio) , SNR). As a result, the dynamic range of the OTDR waveform derived by signal processing after reception is larger than when a single pulse is used as the test light. Therefore, the present invention can provide an OTDR device that improves the dynamic range in one measurement trace and enables shortening of measurement time.

本発明に係るOTDR装置は、時間領域で戻り光の信号処理を行う場合、次のように演算する。
前記信号処理手段が行う前記演算は、
前記IQ変調信号列をベクトルxprobe=[xprobe(1), xprobe(2),・・・,xprobe(Nprobe)]、及び
前記受信信号をベクトルxobs=[xobs(1), xobs(2),・・・,xobs(Nobs)]としたとき、
信号列ベクトルxprobeに基づくテプリッツ行列xprobe,tplと、テプリッツ行列xprobe,tplのムーアペンローズ逆行列xprobe,tpl とを導出し、
ムーアペンローズ逆行列xprobe,tpl と受信信号ベクトルxobsとを乗算して得られた列ベクトルを前記被測定光ファイバの距離依存性に換算する演算である。
The OTDR apparatus according to the present invention performs the following calculation when signal processing of return light is performed in the time domain.
The operation performed by the signal processing means is
The IQ modulation signal sequence is vector x probe = [x probe (1), x probe (2), ..., x probe (N probe )], and the received signal is vector x obs = [x obs (1) , X obs (2), ..., x obs (N obs )],
Deriving the Toeplitz matrix x probe, tpl based on the signal column vector x probe and the Moore-Penrose inverse matrix x probe, tpl + of the Toeplitz matrix x probe, tpl ,
This is an operation for converting a column vector obtained by multiplying the Moore-Penrose inverse matrix x probe, tpl + by the received signal vector x obs into the distance dependency of the optical fiber to be measured.

信号パルス列をFUTに入射した場合、戻り光は各パルスによる後方散乱光が重畳した光となる。本OTDR装置は、上記演算により戻り光を受光した受信信号から各パルス毎に後方散乱光の情報を分離して加算し、FUTの距離に対する損失分布に変換することでOTDR波形を得ている。   When the signal pulse train is incident on the FUT, the return light is light in which the backscattered light of each pulse is superimposed. The present OTDR apparatus obtains the OTDR waveform by separating and adding backscattered light information for each pulse from the received signal in which return light is received by the above calculation, and converting it into a loss distribution with respect to the distance of the FUT.

本発明に係るOTDR装置は、前記被測定光ファイバの長さの範囲をNlength個に分類し、前記被測定光ファイバの損失分布測定における空間分解能の設定値をNsr個に限定し、NlengthとNsrの組み合わせ数に対応する(Nlength×Nsr)個のムーアペンローズ逆行列xprobe,tpl を予め保持する記憶素子をさらに備え、
前記信号処理手段は、所望の前記被測定光ファイバの長さの範囲と所望の前記空間分解能の設定値に応じたムーアペンローズ逆行列xprobe,tpl を前記記憶素子から取り出し、前記演算を行うことが好ましい。
OTDR apparatus according to the present invention, the length range of the optical fiber to be measured are classified into N length pieces, limit the setting value of the spatial resolution in the loss distribution measurement of the optical fiber to be measured in N sr number, N The memory device is further provided with a storage element that holds in advance (N length × N sr ) Moore-Penrose inverse matrix x probe, tpl + corresponding to the number of combinations of length and N sr ,
The signal processing means takes out the Moore-Penrose inverse matrix x probe, tpl + corresponding to the desired range of the length of the measured optical fiber and the desired setting value of the spatial resolution from the storage element, and performs the calculation. Is preferred.

FUTが長いほど、また、試験光パルス幅が小さいほど、テプリッツ行列やムーアペンローズ逆行列のサイズは大きくなり、信号処理部での計算負荷の増大につながる。このため、FUTの長さ範囲とOTDR波形の空間分解能を複数種類に限定し、それぞれの組み合わせに応じて、テプリッツ行列やムーアペンローズ逆行列をあらかじめ計算し、その結果を信号処理部内の高速読み込み可能なメモリーに保存しておくことで、演算を短縮化できる。   The longer the FUT and the smaller the test light pulse width, the larger the size of the Toeplitz matrix and the Moore-Penrose inverse matrix, leading to an increase in computational load in the signal processing unit. For this reason, the FUT length range and the spatial resolution of the OTDR waveform are limited to a plurality of types, and the Toeplitz matrix and Moore-Penrose inverse matrix are calculated in advance according to each combination, and the result can be read at high speed in the signal processing unit The calculation can be shortened by storing it in an appropriate memory.

本発明に係るOTDR装置の前記信号処理手段は、前記IQ変調信号列と前記受信信号をフーリエ変換し、前記演算を周波数領域で行なうこととしてもよい。   The signal processing means of the OTDR apparatus according to the present invention may perform Fourier transform on the IQ modulated signal sequence and the received signal, and perform the calculation in a frequency domain.

この場合、次のように演算する。
前記信号処理手段が行う前記演算は、
前記IQ変調信号列をベクトルxprobe=[xprobe(1), xprobe(2),・・・,xprobe(Nprobe)]、及び
前記受信信号をベクトルxobs=[xobs(1), xobs(2),・・・,xobs(Nobs)]としたとき、
ベクトルxprobeの要素数とベクトルxobsの要素数が一致するようにベクトルxprobeにゼロの要素を付加したベクトルxprobe’=(xprobe(1),xprobe(2),・・・,xprobe(Nprobe),0,0,・・・,0)をフーリエ変換してベクトルXprobe=(Xprobe(1),Xprobe(2),・・・,Xprobe(Nobs))を導出し、
ベクトルxobsをフーリエ変換してベクトルXobs=(Xobs(1),Xobs(2),・・・,Xobs(Nobs))を導出し、
ベクトルXobsの各々の要素をベクトルXprobeの各々の要素で除算したベクトルHを逆フーリエ変換して得られた列ベクトルを前記被測定光ファイバの距離依存性に換算する演算である。
In this case, the following calculation is performed.
The operation performed by the signal processing means is
The IQ modulation signal sequence is vector x probe = [x probe (1), x probe (2), ..., x probe (N probe )], and the received signal is vector x obs = [x obs (1) , X obs (2), ..., x obs (N obs )],
Vector x probe element number and vector x the vector number of elements obtained by adding a zero elements in the vector x probe to match the obs x probe '= (x probe (1), x probe (2), ···, Fourier transform x probe (N probe ), 0, 0, ..., 0) and vector X probe = (X probe (1), X probe (2), ..., X probe (N obs )) Derive the
Fourier transform vector x obs to derive vector X obs = (X obs (1), X obs (2), ..., X obs (N obs )),
This is an operation of converting a column vector obtained by inverse Fourier transform of a vector H obtained by dividing each element of the vector X obs by each element of the vector X probe into distance dependency of the optical fiber to be measured.

本発明は、1回の測定トレースでのダイナミックレンジを向上し、測定時間の短縮を可能とするOTDR装置を提供することができる。   The present invention can provide an OTDR device that improves the dynamic range in one measurement trace and enables shortening of measurement time.

本発明に係るOTDR装置の第1実施形態の構成を示すブロック図である。It is a block diagram showing composition of a 1st embodiment of an OTDR device concerning the present invention. 本発明に係るOTDR装置における受信パワーの時間変化を3種類の試験光(単一パルス、BPSK信号、QPSK信号)、4種類の試験光パルス幅(10000ns、1000ns、100ns、10ns)について比較する図である。The figure which compares the time change of the receiving power in the OTDR device concerning the present invention about three kinds of test lights (single pulse, BPSK signal, QPSK signal), four kinds of test light pulse widths (10000 ns, 1000 ns, 100 ns, 10 ns) It is. 本発明に係るOTDR装置における平均受信パワーの試験光パルス幅依存性を3種類の試験光(単一パルス、BPSK信号、QPSK信号)について比較する図である。It is a figure which compares the test light pulse width dependence of the average received power in the OTDR apparatus based on this invention about three types of test lights (a single pulse, a BPSK signal, a QPSK signal). 試験光が単一パルスである場合のOTDR波形を4種類の試験光パルス幅(10000ns、1000ns、100ns、10ns)について比較する図である。It is a figure which compares the OTDR waveform in case test light is a single pulse about four types of test light pulse widths (10000 ns, 1000 ns, 100 ns, 10 ns). 試験光がBPSK信号である場合の本発明に係るOTDR装置におけるOTDR波形を4種類の試験光パルス幅(10000ns、1000ns、100ns、10ns)について比較する図である。It is a figure which compares the OTDR waveform in OTDR apparatus based on this invention in case test light is a BPSK signal about four types of test light pulse widths (10000 ns, 1000 ns, 100 ns, 10 ns). 試験光がQPSK信号である場合の本発明に係るOTDR装置におけるOTDR波形を4種類の試験光パルス幅(10000ns、1000ns、100ns、10ns)について比較する図である。It is a figure which compares the OTDR waveform in OTDR apparatus based on this invention when test light is a QPSK signal about four types of test light pulse widths (10000 ns, 1000 ns, 100 ns, 10 ns). 本発明に係るOTDR装置におけるダイナミックレンジの試験光パルス幅依存性を3種類の試験光(単一パルス、BPSK信号、QPSK信号)について比較する図である。It is a figure which compares the test light pulse width dependence of the dynamic range in the OTDR apparatus based on this invention about three types of test lights (a single pulse, a BPSK signal, a QPSK signal).

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. These implementation examples are merely illustrative, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art.

(実施形態1)
図1は、本実施形態のOTDR装置301を説明するブロック図である。OTDR装置301は、被測定光ファイバ50に試験光パルスを入射し、被測定光ファイバ50中で発生する後方散乱光をコヒーレント受信し、被測定光ファイバ50の損失分布測定を行なうOTDR装置であって、
入力されたIQ変調信号列で前記試験光パルス毎にIQ変調を行う光変調器13と、
前記IQ変調信号列を用いてコヒーレント受信した受信信号から被測定光ファイバ50の距離に対する損失分布を導出する演算を行う信号処理手段18と、
を備えることを特徴とする。
(Embodiment 1)
FIG. 1 is a block diagram for explaining an OTDR device 301 according to this embodiment. The OTDR apparatus 301 is an OTDR apparatus that injects a test light pulse into the measured optical fiber 50, coherently receives the backscattered light generated in the measured optical fiber 50, and measures the loss distribution of the measured optical fiber 50. ,
An optical modulator 13 that performs IQ modulation for each of the test light pulses with the input IQ modulation signal sequence;
Signal processing means 18 for performing an operation for deriving a loss distribution with respect to the distance of the measured optical fiber 50 from the reception signal coherently received using the IQ modulation signal sequence;
And the like.

以下に本OTDR装置301の動作原理を示す。レーザ光源11から出力されたCW光は、光カプラ12によって2つに分割され、出力の1つは、コヒーレント受信器16のローカル光として使用され、他方は試験光パルスを生成する光変調器13に結合される。試験光パルスは、光サーキュレータ14を介して被測定光ファイバ(FUT)50に結合される。試験光パルスの一部は、被測定光ファイバ50中のレイリー散乱や、接続点・故障点でのフレネル反射によって後方反射される。反射された試験光パルスは、光サーキュレータ14を介してコヒーレント受信器16に結合され、受信された試験光の振幅および位相が測定される。   The operation principle of the present OTDR apparatus 301 will be described below. The CW light output from the laser light source 11 is split into two by the optical coupler 12, and one of the outputs is used as local light of the coherent receiver 16 and the other is an optical modulator 13 that generates a test light pulse. Combined with The test light pulse is coupled to the measured optical fiber (FUT) 50 through the optical circulator 14. A portion of the test light pulse is back-reflected by Rayleigh scattering in the measured optical fiber 50, or Fresnel reflection at a connection point or a failure point. The reflected test light pulse is coupled to the coherent receiver 16 via the optical circulator 14 and the amplitude and phase of the received test light are measured.

従来のOTDR装置においては、光変調器を駆動する電気信号として単一パルス(インパルス)信号が用いられるのに対し、OTDR装置301は、IQ変調信号列発生手段15から出力されるQPSK信号等のIQ変調信号列によって光変調器13が駆動され、その結果、光変調器13からIQ変調信号光が出力される。ここでIQ変調信号列の信号情報(信号パターン)は固定パターンであり、OTDR装置301の使用者はその信号情報を把握しているものとする。なお、IQ変調信号列発生手段15はパルス・パターン・ジェネレータやファンクション・ジェネレータ等の装置、若しくはこれらの装置の機能を本発明に適した形で限定的に実現した装置によって構成される。   In the conventional OTDR apparatus, a single pulse (impulse) signal is used as an electric signal for driving the optical modulator, whereas the OTDR apparatus 301 is configured to output a QPSK signal or the like output from the IQ modulated signal sequence generating means 15. The optical modulator 13 is driven by the IQ modulated signal sequence, and as a result, the optical modulator 13 outputs an IQ modulated signal light. Here, it is assumed that the signal information (signal pattern) of the IQ modulation signal sequence is a fixed pattern, and the user of the OTDR apparatus 301 grasps the signal information. The IQ modulation signal train generation means 15 is constituted by an apparatus such as a pulse pattern generator or a function generator, or an apparatus limitedly realizing the function of these apparatuses in a form suitable for the present invention.

ここで試験光をパルス列と考え、次式のようにNprobe個の要素からなる列ベクトルxprobeで表わす。

Figure 2019078637
本実施形態では、試験光として、単一パルス、BPSK信号、QPSK信号の3通りを考える。それぞれを次式で表わす。
Figure 2019078637
Figure 2019078637
Figure 2019078637
Here, the test light is considered as a pulse train, and is represented by a column vector x probe consisting of N probe elements as in the following equation.
Figure 2019078637
In this embodiment, three types of test light, single pulse, BPSK signal, and QPSK signal are considered. Each is expressed by the following equation.
Figure 2019078637
Figure 2019078637
Figure 2019078637

OTDRの空間分解能ΔLsrは次式で与えられる。

Figure 2019078637
ここで、cは真空中の光速度、Tは試験光のパルス幅、nは被測定光ファイバの群屈折率である。 The spatial resolution ΔL sr of OTDR is given by the following equation.
Figure 2019078637
Here, c is the speed of light in vacuum, T 0 is the pulse width of the test light, and n g is the group refractive index of the optical fiber to be measured.

被測定光ファイバの後方散乱インパルス応答を次式のようにN個の要素からなる列ベクトルhとする。

Figure 2019078637
は次式で与えられる。
Figure 2019078637
ここで、LFUTは被測定光ファイバの長さ、LextraはLFUTを超えた領域での雑音のパワーを考慮するために付与される長さである。 The backscattered impulse response of the optical fiber to be measured is a column vector h consisting of N h elements as in the following equation.
Figure 2019078637
N h is given by the following equation.
Figure 2019078637
Here, L FUT is the length of the optical fiber to be measured, and L extra is the length given to take into account the power of noise in the region beyond L FUT .

hは時間依存性を表わすベクトルであるが、これをファイバ長さ依存性に換算したものがOTDR波形である。また、hは複素ベクトルであり、その各要素の絶対値は、被測定光ファイバの損失、レイリー後方散乱係数、空間分解能ΔLsrによって決まる。本計算においては、hの各要素の位相はランダムな固定値であるとする。 h is a vector representing time dependency, and it is the OTDR waveform that is converted to fiber length dependency. Also, h is a complex vector, and the absolute value of each element is determined by the loss of the optical fiber to be measured, the Rayleigh backscattering coefficient, and the spatial resolution ΔL sr . In this calculation, it is assumed that the phase of each element of h is a random fixed value.

コヒーレント受信器16で受信される信号をxrecとすると、xrecはxprobeとhの畳込みで表される。

Figure 2019078637
recの要素数は次式で与えられる。
Figure 2019078637
数8の畳込みは、xprobeをテプリッツ行列化したxprobe、tplとベクトルhの乗算で表すことができる。
Figure 2019078637
ここで行列xprobe、tplは次式で与えられる。
Figure 2019078637
probe、tplの行数はNrec、列数はNである。 Assuming that the signal received by the coherent receiver 16 is x rec , x rec is expressed as a convolution of x probe and h.
Figure 2019078637
The number of elements of x rec is given by the following equation.
Figure 2019078637
The convolution of Eq. 8 can be expressed by multiplication of x probe, t pl and vector h , which is x- probe in the Toeplitz matrix.
Figure 2019078637
Here, the matrix x probe and tpl are given by the following equations.
Figure 2019078637
The number of rows in x probe and tpl is N rec , and the number of columns is N h .

コヒーレント受信器で付与される雑音は白色ガウス雑音として表現されるショット雑音である。このショット雑音を次式のような要素数NrecのベクトルxWGNとして考える。

Figure 2019078637
コヒーレント受信器で観測される信号xobsはxrecとxWGNの和であることから、次式が得られる。
Figure 2019078637
probe、tplは縦長の行列であるから(Nrec>N)、xprobe、tplのムーアペンローズ逆行列を数13の両辺の左側から乗算することによって次式が得られる。
Figure 2019078637
ここで、xprobe、tpl はxprobe、tplのムーアペンローズ逆行列であり、次の関係式が用いられた。
Figure 2019078637
但し、INhは行数、列数がともにNである単位行列である。 The noise imparted by the coherent receiver is shot noise represented as white Gaussian noise. This shot noise is considered as a vector x WGN of the element number N rec as expressed by the following equation.
Figure 2019078637
Since the signal x obs observed by the coherent receiver is the sum of x rec and x WGN , the following equation is obtained.
Figure 2019078637
Since x probe and tpl are vertically elongated matrices (N rec > N h ), the following equation is obtained by multiplying the Moore-Penrose inverse matrix of x probe and tpl from the left side of both sides of Eq.
Figure 2019078637
Here, x probe and tpl + are the Moore-Penrose inverse matrix of x probe and tpl , and the following relation is used.
Figure 2019078637
However, I Nh is an identity matrix in which the number of rows and the number of columns are both N h .

実際の測定においては雑音xWGNの情報を得ることはできないので、信号処理手段内での次式を用いた演算により、xobsのみからhを推定する必要がある。推定するhをhetmと記載する。

Figure 2019078637
受信器で付与される雑音によって、hとhetmとの間の差が生じる。 Since information of noise x WGN can not be obtained in actual measurement, it is necessary to estimate h only from x obs by calculation using the following equation in the signal processing means. The estimated h is described as hetm .
Figure 2019078637
The noise imparted at the receiver causes a difference between h and hetm .

試験光ベクトルの要素数Nprobeが増えるほどコヒーレント受信器に入射される後方散乱光のパワーが増大し、コヒーレント受信器での信号対雑音比が改善され、その結果、OTDR装置の1回の測定トレースでのダイナミックレンジが改善される。しかしながら、試験光ベクトルの要素数Nprobeの最大値はレーザ光源の位相雑音(即ち線幅Δν)によって制限される。即ち、試験光パルス列を発生している途中でレーザ光源の位相が変化すると、hを正しく推定することができなくなる。ここで、レーザ光源のコヒーレンス時間τの間においては出力光の位相が一定であるとする。この場合、Nprobeの最大値は次式で与えられる。

Figure 2019078637
数17より、試験光パルス幅Tとレーザ光源の線幅Δνの積が小さいほどOTDRのダイナミックレンジの拡大量が大きいことが分かる。 The power of the backscattered light incident on the coherent receiver increases as the number of elements N probe of the test light vector increases, and the signal-to-noise ratio in the coherent receiver is improved. As a result, one measurement of the OTDR device Dynamic range in the trace is improved. However, the maximum value of the number of elements N probe of the test light vector is limited by the phase noise (ie, line width Δν) of the laser light source. That is, when the phase of the laser light source changes during generation of the test light pulse train, h can not be estimated correctly. Here, it is assumed that the phase of the output light is constant during the coherence time τ c of the laser light source. In this case, the maximum value of N probe is given by the following equation.
Figure 2019078637
From Equation 17, it is understood that the smaller the product of the test light pulse width T 0 and the line width ΔΔ of the laser light source, the larger the amount of expansion of the OTDR dynamic range.

被測定光ファイバが長いほど、また、試験光パルス幅が小さいほど、数11で与えられる行列のサイズは大きくなり、これは信号処理部での計算負荷の増大につながる。しかしながら、被測定光ファイバの長さの範囲をNlength個に分類・設定し、OTDR波形の空間分解能をNsr種類に限定し、それぞれの組み合わせに応じて、Nlength×Nsr個のxprobe、tplをあらかじめ計算し、その結果を信号処理部内の高速読み込み可能なメモリーに保存しておくことで、数16の計算を短時間で実現することが可能となる。 The longer the optical fiber to be measured and the smaller the test light pulse width, the larger the size of the matrix given by Equation 11, which leads to an increase in computational load in the signal processing unit. However, the length range of the optical fiber to be measured is classified and set to N length , and the spatial resolution of the OTDR waveform is limited to N sr types, and N length × N sr x probes according to each combination. , Tpl are calculated in advance, and the result is stored in a high-speed readable memory in the signal processing unit, whereby the calculation of Equation 16 can be realized in a short time.

続いて、ここまで述べた動作原理に基づくOTDR装置について、シミュレーションを行った結果を示す。レーザ光源の線幅はΔν=1kHzとした。これはコヒーレンス時間τ=797.9μsに相当する。単一パルス、BPSK信号、QPSK信号のパルス幅はT=10000、1000、100、10nsのいずれかに設定した。これらのパルス幅はそれぞれ、変調信号における要素数の上限Nprobe=80、798、7979、79789個に相当する。BPSK信号、QPSK信号の信号パターンはランダムな固定値とした。被測定光ファイバに入射する試験光のピークパワーは10mWとした。被測定光ファイバは長さLFUT=100km、損失α=0.2dB/km、群屈折率n=1.46、レイリー後方散乱係数Rrbs=4.7E−8m−1とした。また、被測定光ファイバの終端でのフレネル反射のパワー比を−14dBとした。 Subsequently, simulation results of the OTDR apparatus based on the operation principle described above will be shown. The line width of the laser light source was Δν = 1 kHz. This corresponds to a coherence time τ c = 797.9 μs. The pulse widths of the single pulse, BPSK signal, and QPSK signal were set to any of T 0 = 10,000, 1000, 100, and 10 ns. These pulse widths correspond to the upper limit N probe = 80, 798, 7979, 79789 of the number of elements in the modulation signal, respectively. The signal patterns of the BPSK signal and the QPSK signal are random fixed values. The peak power of the test light incident on the measured optical fiber was 10 mW. The measured optical fiber had a length L FUT = 100 km, a loss α = 0.2 dB / km, a group refractive index ng = 1.46, and a Rayleigh backscattering coefficient Rrbs = 4.7E-8 m −1 . Further, the power ratio of Fresnel reflection at the end of the optical fiber to be measured was set to -14 dB.

図2は、試験光が単一パルス、BPSK信号、およびQPSK信号の場合の単一トレースにおける受信パワーの比較を示す図である。図2(a)はT=10000nsの場合、図2(b)はT=1000nsの場合、図2(c)はT=100nsの場合、図2(d)はT=10nsの場合である。図2の横軸は、Trtを被測定光ファイバ内の単一パルス試験光の往復時間とした場合のTrtによって正規化された時間を表わす。単一パルス試験光の場合、時間とともに受信電力が減少し、また、パルス幅を短くするほどSNRが低下することが示されている。BPSKまたはQPSK信号列を被測定光ファイバに入射した場合、信号パターンに依存して受信パワーは時間とともに変動するが、多くの試験光パルスが次々に被測定光ファイバに入射されるため、受信パワーは単一パルス試験光の場合よりもはるかに大きくなっている。 FIG. 2 is a diagram showing a comparison of received power in a single trace when the test light is a single pulse, a BPSK signal, and a QPSK signal. 2 (a) is for T 0 = 10,000 ns, FIG. 2 (b) is for T 0 = 1000 ns, FIG. 2 (c) is for T 0 = 100 ns, and FIG. 2 (d) is for T 0 = 10 ns. That's the case. 2, the horizontal axis represents the time normalized by T rt established if the T rt and round-trip time of a single pulse test light in the optical fiber to be measured. In the case of single pulse test light, it is shown that the received power decreases with time, and the SNR decreases as the pulse width decreases. When a BPSK or QPSK signal sequence is input to the optical fiber to be measured, the received power fluctuates with time depending on the signal pattern, but many test light pulses are sequentially input to the optical fiber to be measured. Is much larger than in the case of single pulse test light.

図3は、平均受信パワー(受信パワーの時間平均)と試験光パルス幅の関係を示す図である。単一パルス試験光の平均受信パワーは、試験光パルス幅を短くするにつれて減少していることが分かる。一方、BPSK信号およびQPSK信号の平均受信パワーは、パルス幅によらずほぼ一定であり、また、QPSK信号の方がBPSK信号よりも約3dB平均受信パワーが大きい。図3には、受信器におけるショット雑音パワーの試験光パルス幅依存も示されている。コヒーレント受信器の帯域幅が試験光パルス幅の逆数に比例するため、試験光のパルス幅を短くするとショット雑音パワーは増加する。これは、試験光パルス幅を減少させるにつれてダイナミックレンジを劣化させることにつながる。   FIG. 3 is a diagram showing the relationship between the average received power (time average of received power) and the test light pulse width. It can be seen that the average received power of single pulse test light decreases as the test light pulse width is shortened. On the other hand, the average received power of the BPSK signal and the QPSK signal is substantially constant regardless of the pulse width, and the QPSK signal has an average received power larger by about 3 dB than the BPSK signal. FIG. 3 also shows the test light pulse width dependency of the shot noise power at the receiver. Since the bandwidth of the coherent receiver is proportional to the reciprocal of the test light pulse width, the shot noise power increases when the test light pulse width is shortened. This leads to the degradation of the dynamic range as the test light pulse width is reduced.

図4、図5、図6は、試験光がそれぞれ単一パルス、BPSK信号、QPSK信号である場合について、数16を用いて計算されたOTDR波形をプロットしたものである。それぞれの図で(a)はT=10000nsの場合、(b)はT=1000nsの場合、(c)はT=100nsの場合、(d)はT=10nsの場合である。いずれの試験光においても、パルス幅が小さくなると被測定光ファイバの遠端におけるSNRが低下することが分かる。SNRの劣化は試験光が単一パルスであるときに顕著であり、試験光パルス幅が10nsの場合、OTDR波形のほぼ全体が雑音に埋もれた状態になっている。一方、BPSK、及びQPSK信号においては、単一パルスの場合よりも全体的にSNRの高いOTDR波形が得られている。パルス幅が10nsと小さい場合でも、被測定光ファイバの遠端点の位置がはっきりと識別可能である。 FIGS. 4, 5 and 6 are plots of OTDR waveforms calculated using Equation 16 for the case where the test light is a single pulse, a BPSK signal, and a QPSK signal, respectively. In each figure, (a) is for T 0 = 10,000 ns, (b) for T 0 = 1000 ns, (c) for T 0 = 100 ns, and (d) for T 0 = 10 ns. In any test light, it is understood that the SNR at the far end of the optical fiber to be measured decreases as the pulse width decreases. The deterioration of the SNR is significant when the test light is a single pulse, and when the test light pulse width is 10 ns, almost the entire OTDR waveform is buried in noise. On the other hand, in BPSK and QPSK signals, an OTDR waveform with a higher SNR as a whole than in the case of a single pulse is obtained. Even when the pulse width is as small as 10 ns, the position of the far end point of the measured optical fiber can be clearly identified.

図7は、ダイナミックレンジと試験光パルス幅の関係を示す図である。試験光のパルス幅を短くするにつれて、OTDRのダイナミックレンジは減少するが、その減少率はBPSK、及びQPSK信号の方が、単一パルス試験光よりも小さい。したがって、試験光のパルス幅を短くするにつれてBPSK、及びQPSK信号の方がより大きいダイナミックレンジを実現できる。また、QPSK信号は、BPSK信号よりも1.6〜1.8dB高いダイナミックレンジを実現している。T=10nsで単一パルスの代わりにQPSK信号を使用することにより、20dBを超えるダイナミックレンジの改善が実現されることが分かる。 FIG. 7 is a diagram showing the relationship between the dynamic range and the test light pulse width. As the pulse width of the test light is shortened, the dynamic range of the OTDR decreases, but the reduction rate is smaller for BPSK and QPSK signals than for single pulse test light. Therefore, as the pulse width of the test light is shortened, the BPSK and QPSK signals can realize a larger dynamic range. Also, the QPSK signal achieves a dynamic range 1.6 to 1.8 dB higher than that of the BPSK signal. It can be seen that by using a QPSK signal instead of a single pulse at T 0 = 10 ns, an improvement of the dynamic range of over 20 dB is realized.

(実施形態2)
実施形態1では信号処理部18が時間領域で演算を行った。本実施形態では、信号処理部18が演算を周波数領域で行なう。周波数領域で演算を行うことによって、任意の被測定光ファイバ長、及び任意の空間分解能(即ち、試験光パルス幅)における演算を短い時間で完了することが可能となる。以下に、この周波数領域での演算によるOTDR波形の導出手順を示す。
Second Embodiment
In the first embodiment, the signal processing unit 18 performs the calculation in the time domain. In the present embodiment, the signal processing unit 18 performs the calculation in the frequency domain. By performing the operation in the frequency domain, it is possible to complete the operation at any measured optical fiber length and at any spatial resolution (i.e., test light pulse width) in a short time. Below, the procedure for deriving the OTDR waveform by calculation in this frequency domain is shown.

まずIQ変調信号列xprobeの要素数Nprobeが受信器で観測される信号光xobsの要素数Nobsと一致するように、ベクトルxprobeの後段に適当な要素数のゼロを付加したxprobe’を考える。

Figure 2019078637
数18をフーリエ変換することで試験光ベクトルを周波数領域での表現に変換する。
Figure 2019078637
First, x of which the number of appropriate elements is added after the vector x probe so that the number of elements N probe of the IQ modulated signal sequence x probe matches the number of elements N obs of the signal light x obs observed at the receiver Think of ' probe '.
Figure 2019078637
The test light vector is converted to a frequency domain representation by Fourier transforming Eq.
Figure 2019078637

コヒーレント受信器16で観測される信号xobsについてもフーリエ変換を行なう。

Figure 2019078637
ベクトルXobsの各々の要素をベクトルXprobeの各々の要素で除算することにより、要素数NobsのベクトルHが得られる。
Figure 2019078637
このHの逆フーリエ変換を計算することによってOTDR波形hが得られる。
Figure 2019078637
The Fourier transform is also performed on the signal x obs observed by the coherent receiver 16.
Figure 2019078637
By dividing each element of the vector X obs by each element of the vector X probe , a vector H of the element number N obs is obtained.
Figure 2019078637
The OTDR waveform h is obtained by calculating the inverse Fourier transform of H.
Figure 2019078637

本実施形態においてはフーリエ変換や逆フーリエ変換の計算が必要であるが、実施形態1の数14におけるムーアペンローズ逆行列の導出と比較すると、特にNobsが大きい場合に、その計算量は少なくて済む。 In this embodiment, calculation of Fourier transform or inverse Fourier transform is necessary, but compared with the derivation of the Moore-Penrose inverse matrix in Eq. 14 of the embodiment 1, particularly when N obs is large, the amount of calculation is small. It's over.

本発明は、光通信システムにおける伝送媒体である光ファイバの損失分布測定を短時間、且つ、高精度に実現するものであり、現存の光通信システムの信頼性の維持や、新規光通信システムの構築を目的として利用することが可能である。   The present invention realizes loss distribution measurement of an optical fiber, which is a transmission medium in an optical communication system, in a short time with high accuracy, and maintains the reliability of the existing optical communication system and a new optical communication system. It can be used for the purpose of construction.

11:光源
12:光カプラ
13:光変調器
14:光サーキュレータ
15:IQ変調信号列発生手段
16:コヒーレント受信器
17:A/D変換器
18:信号処理手段
19:記憶素子
50:被測定光ファイバ
301:OTDR装置

11: light source 12: optical coupler 13: optical modulator 14: optical circulator 15: IQ modulation signal sequence generation means 16: coherent receiver 17: A / D converter 18: signal processing means 19: storage element 50: light to be measured Fiber 301: OTDR device

Claims (5)

被測定光ファイバに試験光パルスを入射し、前記被測定光ファイバ中で発生する後方散乱光をコヒーレント受信し、前記被測定光ファイバの損失分布測定を行なうOTDR(Optical Time Domain Reflectometer)装置であって、
入力されたIQ変調信号列で前記試験光パルス毎にIQ変調を行う光変調器と、
前記IQ変調信号列を用いてコヒーレント受信した受信信号から前記被測定光ファイバの距離に対する損失分布を導出する演算を行う信号処理手段と、
を備えることを特徴とするOTDR装置。
This is an OTDR (Optical Time Domain Reflectometer) apparatus that injects a test light pulse into a measured optical fiber, coherently receives the backscattered light generated in the measured optical fiber, and measures the loss distribution of the measured optical fiber. ,
An optical modulator that performs IQ modulation for each of the test light pulses with the input IQ modulation signal sequence;
Signal processing means for performing an operation for deriving a loss distribution with respect to the distance of the optical fiber to be measured from a reception signal coherently received using the IQ modulation signal sequence;
An OTDR apparatus comprising:
前記信号処理手段が行う前記演算は、
前記IQ変調信号列をベクトルxprobe=[xprobe(1), xprobe(2),・・・,xprobe(Nprobe)]、及び
前記受信信号をベクトルxobs=[xobs(1), xobs(2),・・・,xobs(Nobs)]としたとき、
信号列ベクトルxprobeに基づくテプリッツ行列xprobe,tplと、テプリッツ行列xprobe,tplのムーアペンローズ逆行列xprobe,tpl とを導出し、
ムーアペンローズ逆行列xprobe,tpl と受信信号ベクトルxobsとを乗算して得られた列ベクトルを前記被測定光ファイバの距離依存性に換算する演算である
ことを特徴とする請求項1に記載のOTDR装置。
The operation performed by the signal processing means is
The IQ modulation signal sequence is vector x probe = [x probe (1), x probe (2), ..., x probe (N probe )], and the received signal is vector x obs = [x obs (1) , X obs (2), ..., x obs (N obs )],
Deriving the Toeplitz matrix x probe, tpl based on the signal column vector x probe and the Moore-Penrose inverse matrix x probe, tpl + of the Toeplitz matrix x probe, tpl ,
The method according to claim 1, characterized in that the column vector obtained by multiplying the Moore-Penrose inverse matrix x probe, tpl + and the received signal vector x obs is converted into the distance dependency of the optical fiber to be measured. OTDR device as described.
前記被測定光ファイバの長さの範囲をNlength個に分類し、前記被測定光ファイバの損失分布測定における空間分解能の設定値をNsr個に限定し、NlengthとNsrの組み合わせ数に対応する(Nlength×Nsr)個のムーアペンローズ逆行列xprobe,tpl を予め保持する記憶素子をさらに備え、
前記信号処理手段は、所望の前記被測定光ファイバの長さの範囲と所望の前記空間分解能の設定値に応じたムーアペンローズ逆行列xprobe,tpl を前記記憶素子から取り出し、前記演算を行う
ことを特徴とする請求項2に記載のOTDR装置。
Classifying length range of the optical fiber to be measured in N length pieces, the set value of the spatial resolution in the loss distribution measurements of said measured optical fiber is limited to N sr number, the number of combinations of N length and N sr The memory device further includes a storage element that holds in advance the corresponding (N length × N sr ) Moore penrose inverse matrix x probe, tpl + ,
The signal processing means takes out the Moore-Penrose inverse matrix x probe, tpl + corresponding to the desired range of the length of the measured optical fiber and the desired setting value of the spatial resolution from the storage element, and performs the calculation. The OTDR device according to claim 2, characterized in that:
前記信号処理手段は、前記IQ変調信号列と前記受信信号をフーリエ変換し、前記演算を周波数領域で行なうことを特徴とする請求項1に記載のOTDR装置。   The OTDR apparatus according to claim 1, wherein the signal processing means performs Fourier transform on the IQ modulated signal sequence and the received signal, and performs the calculation in a frequency domain. 前記信号処理手段が行う前記演算は、
前記IQ変調信号列をベクトルxprobe=[xprobe(1), xprobe(2),・・・,xprobe(Nprobe)]、及び
前記受信信号をベクトルxobs=[xobs(1), xobs(2),・・・,xobs(Nobs)]としたとき、
ベクトルxprobeの要素数とベクトルxobsの要素数が一致するようにベクトルxprobeにゼロの要素を付加したベクトルxprobe’=(xprobe(1),xprobe(2),・・・,xprobe(Nprobe),0,0,・・・,0)をフーリエ変換してベクトルXprobe=(Xprobe(1),Xprobe(2),・・・,Xprobe(Nobs))を導出し、
ベクトルxobsをフーリエ変換してベクトルXobs=(Xobs(1),Xobs(2),・・・,Xobs(Nobs))を導出し、
ベクトルXobsの各々の要素をベクトルXprobeの各々の要素で除算したベクトルHを逆フーリエ変換して得られた列ベクトルを前記被測定光ファイバの距離依存性に換算する演算である
ことを特徴とする請求項4に記載のOTDR装置。
The operation performed by the signal processing means is
The IQ modulation signal sequence is vector x probe = [x probe (1), x probe (2), ..., x probe (N probe )], and the received signal is vector x obs = [x obs (1) , X obs (2), ..., x obs (N obs )],
Vector x probe element number and vector x the vector number of elements obtained by adding a zero elements in the vector x probe to match the obs x probe '= (x probe (1), x probe (2), ···, Fourier transform x probe (N probe ), 0, 0, ..., 0) and vector X probe = (X probe (1), X probe (2), ..., X probe (N obs )) Derive the
Fourier transform vector x obs to derive vector X obs = (X obs (1), X obs (2), ..., X obs (N obs )),
It is characterized in that it is an operation to convert a column vector obtained by inverse Fourier transform of a vector H obtained by dividing each element of the vector X obs by each element of the vector X probe into distance dependency of the optical fiber to be measured. The OTDR apparatus according to claim 4, wherein
JP2017205738A 2017-10-25 2017-10-25 OTDR device Active JP6824861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205738A JP6824861B2 (en) 2017-10-25 2017-10-25 OTDR device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205738A JP6824861B2 (en) 2017-10-25 2017-10-25 OTDR device

Publications (2)

Publication Number Publication Date
JP2019078637A true JP2019078637A (en) 2019-05-23
JP6824861B2 JP6824861B2 (en) 2021-02-03

Family

ID=66628379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205738A Active JP6824861B2 (en) 2017-10-25 2017-10-25 OTDR device

Country Status (1)

Country Link
JP (1) JP6824861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412936A (en) * 2020-03-10 2020-07-14 天津大学 Full-digital orthogonal phase shift pulse COTDR sensing device and method
WO2022180834A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Coherent light measuring device, and optical line test system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229820A (en) * 1996-02-28 1997-09-05 Nippon Telegr & Teleph Corp <Ntt> Optical pulse tester
US20090214201A1 (en) * 2008-02-22 2009-08-27 Fujitsu Limited Monitor circuit for monitoring property of optical fiber transmission line and quality of optical signal
JP2009300212A (en) * 2008-06-12 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Nonlinear effect measuring device and nonlinear effect measuring method
JP2010514279A (en) * 2006-12-22 2010-04-30 イセラ・カナダ・ユーエルシー Digital linear transmitter architecture
WO2010134321A1 (en) * 2009-05-18 2010-11-25 日本電信電話株式会社 Signal generation circuit, optical signal transmitter, signal reception circuit, optical signal synchronization establishment method, and optical signal synchronization system
US20100322622A1 (en) * 2009-06-19 2010-12-23 Fujitsu Limited Osnr monitor device and osnr measurement device
WO2011083798A1 (en) * 2010-01-05 2011-07-14 日本電気株式会社 Method and apparatus for detecting wavelength dispersion, and method and apparatus for compensating wavelength dispersion
JP2012154678A (en) * 2011-01-24 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Correlation processing system of optical code modulation pulse
JP2016146567A (en) * 2015-02-09 2016-08-12 国立研究開発法人産業技術総合研究所 Dispersion compensation method and optical signal transmitter, optical communication system
JP2016533113A (en) * 2013-08-23 2016-10-20 アルカテル−ルーセント Multi-carrier signal receiver and receiver method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229820A (en) * 1996-02-28 1997-09-05 Nippon Telegr & Teleph Corp <Ntt> Optical pulse tester
JP2010514279A (en) * 2006-12-22 2010-04-30 イセラ・カナダ・ユーエルシー Digital linear transmitter architecture
US20090214201A1 (en) * 2008-02-22 2009-08-27 Fujitsu Limited Monitor circuit for monitoring property of optical fiber transmission line and quality of optical signal
JP2009198364A (en) * 2008-02-22 2009-09-03 Fujitsu Ltd Monitor circuit for monitoring property of optical fiber transmission line and quality of optical signal
JP2009300212A (en) * 2008-06-12 2009-12-24 Nippon Telegr & Teleph Corp <Ntt> Nonlinear effect measuring device and nonlinear effect measuring method
WO2010134321A1 (en) * 2009-05-18 2010-11-25 日本電信電話株式会社 Signal generation circuit, optical signal transmitter, signal reception circuit, optical signal synchronization establishment method, and optical signal synchronization system
US20100322622A1 (en) * 2009-06-19 2010-12-23 Fujitsu Limited Osnr monitor device and osnr measurement device
JP2011024189A (en) * 2009-06-19 2011-02-03 Fujitsu Ltd Osnr monitor device, and osnr measurement device
WO2011083798A1 (en) * 2010-01-05 2011-07-14 日本電気株式会社 Method and apparatus for detecting wavelength dispersion, and method and apparatus for compensating wavelength dispersion
JP2012154678A (en) * 2011-01-24 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Correlation processing system of optical code modulation pulse
JP2016533113A (en) * 2013-08-23 2016-10-20 アルカテル−ルーセント Multi-carrier signal receiver and receiver method
JP2016146567A (en) * 2015-02-09 2016-08-12 国立研究開発法人産業技術総合研究所 Dispersion compensation method and optical signal transmitter, optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111412936A (en) * 2020-03-10 2020-07-14 天津大学 Full-digital orthogonal phase shift pulse COTDR sensing device and method
WO2022180834A1 (en) * 2021-02-26 2022-09-01 日本電信電話株式会社 Coherent light measuring device, and optical line test system and method

Also Published As

Publication number Publication date
JP6824861B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
US10193620B2 (en) Nonlinear spatially resolved interferometer for characterizing optical properties of deployed telecommunication cables
Wang et al. Chaotic correlation optical time domain reflectometer utilizing laser diode
US8509613B2 (en) Monitoring of optical transmission systems based on cross-correlation operation
EP3593468B1 (en) High resolution correlation optical time domain reflectometer
EP3414542B1 (en) Optical time domain reflectometry
Izumita et al. Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping
JP6824861B2 (en) OTDR device
JP5849056B2 (en) Optical pulse test apparatus and optical pulse test method
Lee et al. Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR
JP5753834B2 (en) Optical pulse test apparatus and optical pulse test method
US11193801B2 (en) Amplifier dynamics compensation for brillouin optical time-domain reflectometry
JP2023526842A (en) Distributed Acoustic Sensing Using Multiband Time-Gated Digital Orthogonal Frequency-Domain Reflectometry
Iida et al. Pulse waveform manipulation in FDM-OTDR for suppressing inter-channel crosstalk
EP4386371A2 (en) Optical fiber distribution measurement system and signal processing method for optical fiber distribution measurement
Kito et al. Fast acquirable long-range measurement with frequency-swept probe BOTDA
Liu et al. A novel optical fiber reflectometry technique with high spatial resolution and long distance
EP3190723A1 (en) Optical time domain reflectometer and method thereof for detecting optical fiber
Iida et al. 200-subchannel ultra-high-density frequency division multiplexed coherent OTDR with nonlinear effect suppression
Kito et al. Simplified and fast acquirable BOTDA with frequency-swept probe pulse
WO2023248437A1 (en) Brillouin gain analysis device, and brillouin gain analysis method
CN102281104A (en) On-line testing device and method for fiber
Sakamoto et al. Extension of measurement range in OCDR based on double-modulation scheme
US20230146473A1 (en) Frequency-drift compensation in chirped-pulse-based distributed acoustic sensing
Iida et al. Inverse Filter in FDM-OTDR to Compensate for Phase Noise Induced Inter-Channel Crosstalk
JP2009293950A (en) Light reflection measurement apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6824861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150