JP2019078320A - Inertia mass damper - Google Patents

Inertia mass damper Download PDF

Info

Publication number
JP2019078320A
JP2019078320A JP2017205336A JP2017205336A JP2019078320A JP 2019078320 A JP2019078320 A JP 2019078320A JP 2017205336 A JP2017205336 A JP 2017205336A JP 2017205336 A JP2017205336 A JP 2017205336A JP 2019078320 A JP2019078320 A JP 2019078320A
Authority
JP
Japan
Prior art keywords
wedge
shaped member
additional weight
torque
rotating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017205336A
Other languages
Japanese (ja)
Inventor
憲昭 近本
Kensho Chikamoto
憲昭 近本
義仁 渡邉
Yoshihito Watanabe
義仁 渡邉
量司 友野
Ryoji Tomono
量司 友野
秀行 明賀
Hideyuki Myoga
秀行 明賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2017205336A priority Critical patent/JP2019078320A/en
Publication of JP2019078320A publication Critical patent/JP2019078320A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an inertia mass damper which inhibits heat generation therein and can stabilize torque transmitted when a skid starts sliding.SOLUTION: A skid 13 of a torque limit mechanism 10 is placed in contact with a cylindrical inner surface 6a of an additional weight 6. The torque limit mechanism 10 includes a first wedge member 11, a second wedge member 12 and a spring 14. The skid 13 is pressed to the inner surface 6a of the additional weight 6 so as to transmit torque from a rotary part 24 to the additional weight 6. Further, the skid 13 is configured to slide on the inner surface 6a of the additional weight 6 when the torque transmitted from the rotary part 24 to the additional weight 6 exceeds a predetermined value.SELECTED DRAWING: Figure 2

Description

本発明は、錘の回転慣性を利用して構造物間の振動を低減させる慣性質量ダンパに関する。   The present invention relates to an inertial mass damper that utilizes the rotational inertia of a weight to reduce vibration between structures.

地震に対する建築構造物の安全性を確保するために、超高層建物から戸建住宅まで多くの建築構造物に免震構造又は制振構造が適用されている。近年、これらの免震構造又は制振構造に、錘の回転慣性を利用して構造物間の振動を低減させる慣性質量ダンパが組み込まれつつある(特許文献1参照)。   In order to ensure the safety of building structures against earthquakes, seismic isolation or damping structures are applied to many building structures from high-rise buildings to detached houses. In recent years, an inertial mass damper that reduces the vibration between structures using the rotational inertia of a weight is being incorporated into these seismic isolation structures or damping structures (see Patent Document 1).

慣性質量ダンパは、構造物間の相対振動(すなわちねじ軸の直線運動)をナットの回転運動に変換するボールねじと、ナットに連結される筒状の付加錘と、を備える。ナットと付加錘の回転慣性力は、ボールねじにより増幅され、軸方向の慣性力(以下、軸力という)として構造物間に作用する。この軸力が構造物間の振動を低減させる。ボールねじのリードや付加錘の形状にもよるが、軸方向の慣性質量はナットと付加錘の質量の数百倍〜数千倍になる。このため、慣性質量ダンパには、ナットと付加錘の質量よりも桁違いに大きな質量効果を得ることができるという特徴がある。   The inertial mass damper includes a ball screw that converts relative vibration between structures (i.e., linear motion of a screw shaft) into rotational motion of a nut, and a cylindrical additional weight coupled to the nut. The rotational inertia force of the nut and the additional weight is amplified by the ball screw and acts between the structures as an axial inertia force (hereinafter referred to as an axial force). This axial force reduces the vibration between the structures. Depending on the shape of the ball screw lead and the additional weight, the axial inertial mass is several hundred times to several thousand times the mass of the nut and the additional weight. For this reason, the inertial mass damper is characterized in that it is possible to obtain a mass effect that is orders of magnitude greater than the mass of the nut and the additional weight.

しかし、その反面、慣性質量ダンパには、構造物間の相対加速度が過大になると、軸力も過大になり、構造物や慣性質量ダンパを破損するおそれがあるという課題がある。この課題を解決し、最大軸力を制限するために、ナットと付加錘との間には、トルク制限機構が設けられる。   However, on the other hand, there is a problem in the inertial mass damper that the axial force becomes excessive when the relative acceleration between the structures is excessive, which may damage the structure or the inertial mass damper. A torque limiting mechanism is provided between the nut and the additional weight to solve this problem and limit the maximum axial force.

トルク制限機構は、筒状の付加錘の軸方向の端面に接する滑り材を備える。そして、ナットから付加錘にトルクを伝達できるように滑り材をばねによって付加錘に押し付けると共に、ナットから付加錘に伝達されるトルクが所定値を越えたときに滑り材が付加錘を滑るようにする。これにより、最大軸力を制限する。   The torque limiting mechanism includes a sliding member in contact with the axial end face of the cylindrical additional weight. Then, the sliding material is pressed against the additional weight by the spring so that torque can be transmitted from the nut to the additional weight, and the sliding material slides on the additional weight when the torque transmitted from the nut to the additional weight exceeds a predetermined value. Do. This limits the maximum axial force.

特開2011−144831号公報JP, 2011-144831, A

しかし、従来の慣性質量ダンパにあっては、滑り材が筒状の付加錘の端面のみに接触するので、滑り材が付加錘を滑るときに発生する熱が付加錘の内部にこもり易いという課題がある。熱が原因で慣性質量ダンパの各部の寸法が変化し、この各部の寸法の変化やそれにより発生する荷重がトルクの所定値をばらつかせるおそれがある。   However, in the conventional inertial mass damper, the sliding material contacts only the end face of the cylindrical additional weight, so the heat generated when the sliding material slides on the additional weight tends to stagnate inside the additional weight. There is. Due to heat, the dimensions of each part of the inertial mass damper change, and there is a possibility that the change in the dimensions of each part and the load generated thereby may cause the torque to vary in a predetermined value.

そこで、本発明の第1の課題は、慣性質量ダンパの内部の発熱を抑え、滑り材が滑り始めるときのトルクを安定させることができる慣性質量ダンパを提供することにある。   Therefore, a first object of the present invention is to provide an inertial mass damper capable of suppressing heat generation inside the inertial mass damper and stabilizing torque when the sliding member starts to slide.

また、従来の慣性質量ダンパにあっては、滑り材と付加錘との面圧を確保するために、滑り材を押すばねにばね定数の大きなものを選定する必要があった。滑り材に加える大きな荷重によってトルク管理(滑り材が滑り始めるときのトルクの管理)するので、トルク管理が容易ではないという課題がある。   Further, in the conventional inertial mass damper, in order to secure the surface pressure between the sliding member and the additional weight, it has been necessary to select a spring for pressing the sliding member with a large spring constant. There is a problem that torque management is not easy because torque management (management of torque when the sliding material starts to slide) is performed by a large load applied to the sliding material.

そこで、本発明の第2の課題は、トルク管理を容易にすることができる慣性質量ダンパを提供することにある。   Therefore, a second object of the present invention is to provide an inertial mass damper capable of facilitating torque management.

上記第1の課題を解決するために、本発明の第1の態様は、構造物間の相対振動を回転部の回転運動に変換する運動変換機構と、筒状の内面を有する付加錘と、前記付加錘の前記内面に接する少なくとも一つの滑り材を有し、前記回転部から前記付加錘にトルクを伝達できるように前記滑り材を前記付加錘の前記内面に押し付けると共に、前記回転部から前記付加錘に伝達されるトルクが所定値を越えたときに前記滑り材が前記付加錘の前記内面を滑るようにするトルク制限機構と、を備える慣性質量ダンパである。   In order to solve the first problem described above, according to a first aspect of the present invention, there is provided a motion converting mechanism for converting relative vibration between structures into rotational motion of a rotating portion, an additional weight having a cylindrical inner surface, The at least one sliding member in contact with the inner surface of the additional weight, pressing the sliding member against the inner surface of the additional weight so as to transmit torque from the rotating portion to the additional weight, and from the rotating portion And a torque limiting mechanism that causes the sliding member to slide on the inner surface of the additional weight when the torque transmitted to the additional weight exceeds a predetermined value.

上記第2の課題を解決するために、本発明の第2の態様は、構造物間の相対振動を回転部の回転運動に変換する運動変換機構と、付加錘と、前記回転部及び前記付加錘のいずれか一方に接する少なくとも一つの滑り材を有し、前記回転部から前記付加錘にトルクを伝達できるように前記滑り材を前記一方に押し付けると共に、前記回転部から前記付加錘に伝達されるトルクが所定値を越えたときに前記滑り材が前記一方を滑るようにするトルク制限機構と、を備え、前記トルク制限機構は、第1傾斜面を有する第1楔形部材と、前記第1傾斜面に接する第2傾斜面を有する第2楔形部材と、前記第1楔形部材を付勢するばねと、を有する慣性質量ダンパである。   In order to solve the second problem described above, according to a second aspect of the present invention, there is provided a motion converting mechanism for converting relative vibration between structures into rotational motion of a rotating portion, an additional weight, the rotating portion, and the additional portion. The sliding member is pressed against the one side so that torque can be transmitted from the rotating part to the additional weight, and transmitted to the additional weight from the rotating part. A torque limiting mechanism for causing the sliding member to slide the one side when the torque exceeds a predetermined value, the torque limiting mechanism comprising: a first wedge-shaped member having a first inclined surface; The inertial mass damper includes a second wedge-shaped member having a second inclined surface in contact with the inclined surface and a spring for biasing the first wedge-shaped member.

本発明の第1の態様によれば、滑り材と付加錘の内面との接触部で発生する熱が付加錘を伝わって外部に放熱される。このため、慣性質量ダンパの内部の発熱が抑えられ、トルクの所定値(すなわち滑り材が滑り始めるときのトルク)が安定する。また、滑り材を付加錘の内面に接触させるので、滑り材と付加錘との接触面積を大きくすることができる。このため、トルクの所定値がより安定し、滑り材の耐久性も向上する。   According to the first aspect of the present invention, the heat generated at the contact portion between the sliding member and the inner surface of the additional weight is dissipated to the outside through the additional weight. For this reason, the heat generation inside the inertial mass damper is suppressed, and the predetermined value of the torque (that is, the torque when the sliding member starts to slide) is stabilized. Further, since the sliding material is brought into contact with the inner surface of the additional weight, the contact area between the sliding material and the additional weight can be increased. Therefore, the predetermined value of the torque is more stable, and the durability of the sliding member is also improved.

本発明の第2の態様によれば、第1楔形部材及び第2楔形部材が、ばねの力を増力して滑り材に伝達することができる。ばね定数の小さいばねを選定し、ばねの小さい荷重でトルク管理することができるので、トルク管理が容易になる。また、滑り材の摩耗やばね定数の小さいばねが選定でき、各部の寸法の変化により増減する荷重の割合が小さくなるので、安定した荷重を滑り材に伝達することができる。   According to the second aspect of the present invention, the first wedge-shaped member and the second wedge-shaped member can transmit the force of the spring to the sliding member. Since a spring with a small spring constant can be selected and torque can be managed with a small load of the spring, torque management becomes easy. In addition, since a spring with a small amount of wear on the sliding member and a small spring constant can be selected, and the ratio of the load to be increased or decreased due to the change in dimensions of each part, a stable load can be transmitted to the sliding member.

本発明の第1の実施形態の慣性質量ダンパの斜視図(一部断面を含む)である。It is a perspective view (a partial cross section is included) of the inertial mass damper of the 1st Embodiment of this invention. 本実施形態の慣性質量ダンパの慣性力発生部の軸線に沿った断面図である。It is sectional drawing along the axis line of the inertial force generation part of the inertial mass damper of this embodiment. 本実施形態の慣性質量ダンパの減衰力発生部の軸線に沿った断面図(一部側面図を含む)である。It is sectional drawing (a partial side view is included) along the axis line of the damping force production | generation part of the inertial mass damper of this embodiment. 本実施形態の慣性質量ダンパの第1楔形部材の斜視図である。It is a perspective view of the 1st wedge-shaped member of the inertial mass damper of this embodiment. 本実施形態の慣性質量ダンパの第2楔形部材の斜視図である。It is a perspective view of the 2nd wedge-shaped member of the inertial mass damper of this embodiment. 本発明の第2の実施形態の慣性質量ダンパの慣性力発生部の軸線に沿った断面図である。It is sectional drawing in alignment with the axis line of the inertial force production | generation part of the inertial mass damper of the 2nd Embodiment of this invention. 第2の実施形態の慣性質量ダンパの慣性力発生部の斜視図である。It is a perspective view of the inertial force generation part of the inertial mass damper of 2nd Embodiment.

以下、添付図面に基づいて、本発明の実施形態の慣性質量ダンパを説明する。ただし、本発明の慣性質量ダンパは種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。
(第1の実施形態)
Hereinafter, an inertial mass damper according to an embodiment of the present invention will be described based on the attached drawings. However, the inertial mass damper of the present invention can be embodied in various forms and is not limited to the embodiments described herein. This embodiment is provided with the intention to enable a person skilled in the art to fully understand the scope of the invention by making the disclosure of the specification sufficient.
First Embodiment

図1は、本発明の第1の実施形態の慣性質量ダンパの斜視図(一部断面図を含む)である。本実施形態の慣性質量ダンパは、慣性力発生部1と、減衰力発生部2と、を備える。図2は慣性力発生部1の断面図を示し、図3は減衰力発生部2の断面図を示す。   FIG. 1 is a perspective view (including a partial sectional view) of an inertial mass damper according to a first embodiment of the present invention. The inertial mass damper of the present embodiment includes an inertial force generator 1 and a damping force generator 2. FIG. 2 shows a cross-sectional view of the inertial force generator 1, and FIG. 3 shows a cross-sectional view of the damping force generator 2.

図2に示すように、慣性力発生部1は、運動変換機構としてのボールねじ3を備え、ねじ軸4の直線運動をナット5の回転運動に変換する。ナット5には、トルク制限機構10を介して付加錘である外筒6が連結される。ナット5と外筒6の回転慣性力は、ボールねじ3により軸方向の慣性力(以下、軸力という)に増幅変換され、構造物間に作用する。トルク制限機構10は、回転慣性力と粘性減衰力の合力を頭打ちするために最大軸力を制限する。   As shown in FIG. 2, the inertial force generation unit 1 includes a ball screw 3 as a motion conversion mechanism, and converts linear motion of the screw shaft 4 into rotational motion of the nut 5. An outer cylinder 6 which is an additional weight is connected to the nut 5 via a torque limiting mechanism 10. The rotational inertia force of the nut 5 and the outer cylinder 6 is amplified and converted into an inertial force in the axial direction (hereinafter referred to as an axial force) by the ball screw 3 and acts between the structures. The torque limiting mechanism 10 limits the maximum axial force in order to strike the resultant of the rotational inertia force and the viscous damping force.

図3に示すように、減衰力発生部2は、固定筒7と減衰筒8との間にシリコーンコイル等の粘性体9を充填したものである。減衰筒8は外筒6に連結される。外筒6が回転すると、減衰力発生部2が外筒6の回転に抵抗する粘性減衰力を発生させる。   As shown in FIG. 3, the damping force generating unit 2 is one in which a viscous body 9 such as a silicone coil is filled between the fixed cylinder 7 and the damping cylinder 8. The damping cylinder 8 is connected to the outer cylinder 6. When the outer cylinder 6 rotates, the damping force generator 2 generates a viscous damping force that resists the rotation of the outer cylinder 6.

以下に、慣性質量ダンパの各部の構成を詳細に説明する。図1の21は第1構造物に固定される第1連結部、22は第2構造物に固定される第2連結部である。第1連結部21には、ボールジョイントを介してねじ軸4が回転不可能にかつ軸方向に移動不可能に連結される。第2連結部22には、ボールジョイントを介して固定筒7が回転不可能にかつ軸方向に移動不可能に連結される。固定筒7の先端部(図1の右端部)には、ボールねじ3のナット5が回転可能に連結される。固定筒7の先端部には、筒状のハウジング23(図2も参照)が図示しないベアリングを介して回転可能に連結される。ナット5はこのハウジング23に固定される。   The configuration of each part of the inertial mass damper will be described in detail below. Reference numeral 21 in FIG. 1 denotes a first connection part fixed to the first structure, and reference numeral 22 denotes a second connection part fixed to the second structure. The screw shaft 4 is non-rotatably and axially movably coupled to the first coupling portion 21 via a ball joint. The fixed barrel 7 is non-rotatably and axially non-movably coupled to the second coupling portion 22 via a ball joint. The nut 5 of the ball screw 3 is rotatably connected to the tip end portion (right end portion in FIG. 1) of the fixed barrel 7. A cylindrical housing 23 (see also FIG. 2) is rotatably connected to the tip of the fixed barrel 7 via a bearing (not shown). The nut 5 is fixed to the housing 23.

図2に示すように、ボールねじ3は、ねじ軸4と、ナット5と、ねじ軸4のボール転走溝とナット5のボール転走溝との間に転がり運動可能に介在する多数のボール(図示せず)と、を備える。ナット5には、ボールを循環させるリターンパイプ等の循環部品25が設けられる。ナット5にはハウジング23が固定されているので、ナット5とハウジング23とが回転部24である。第1連結部21と第2連結部22とが相対振動すると、ねじ軸4が軸方向に直線運動し、回転部24が回転する。   As shown in FIG. 2, the ball screw 3 includes a large number of balls movably interposed between the screw shaft 4, the nut 5, the ball rolling groove of the screw shaft 4 and the ball rolling groove of the nut 5. And (not shown). The nut 5 is provided with a circulation part 25 such as a return pipe for circulating the ball. Since the housing 23 is fixed to the nut 5, the nut 5 and the housing 23 are the rotating portion 24. When the first connecting portion 21 and the second connecting portion 22 vibrate relative to each other, the screw shaft 4 linearly moves in the axial direction, and the rotating portion 24 rotates.

図2に示すように、筒状の外筒6は回転部24を囲む。外筒6の外側にはハウジングが設けられておらず、外筒6が大気に接する。外筒6は筒状の内面6aを有する。外筒6とナット5との間には、トルク制限機構10が介在する。トルク制限機構10は、第1楔形部材11、第2楔形部材12、滑り材13、ばね14、位置調節部としてのロックナット15を備える。   As shown in FIG. 2, the cylindrical outer cylinder 6 surrounds the rotating portion 24. The housing is not provided on the outer side of the outer cylinder 6, and the outer cylinder 6 is in contact with the atmosphere. The outer cylinder 6 has a cylindrical inner surface 6a. A torque limiting mechanism 10 intervenes between the outer cylinder 6 and the nut 5. The torque limiting mechanism 10 includes a first wedge-shaped member 11, a second wedge-shaped member 12, a sliding member 13, a spring 14, and a lock nut 15 as a position adjusting unit.

図4は第1楔形部材11を示す。第1楔形部材11はリング状である。第1楔形部材11の外周面には、円錐状のテーパ面(第1傾斜面11a)が形成される。第1楔形部材11の内周面11cは円筒状であり、この内周面11cには、軸方向に延びる第1キー溝11dが形成される。第1楔形部材11の第1傾斜面11aには、円周方向に均等間隔を開けて第1傾斜面11aに沿って軸方向に延びる複数の第2キー溝11bが形成される。   FIG. 4 shows the first wedge-shaped member 11. The first wedge-shaped member 11 is ring-shaped. A conical tapered surface (first inclined surface 11 a) is formed on the outer peripheral surface of the first wedge-shaped member 11. The inner circumferential surface 11c of the first wedge-shaped member 11 is cylindrical, and a first key groove 11d extending in the axial direction is formed on the inner circumferential surface 11c. On the first inclined surfaces 11 a of the first wedge-shaped member 11, a plurality of second key grooves 11 b axially formed along the first inclined surfaces 11 a are formed at equal intervals in the circumferential direction.

図2に示すように、ナット5には循環部品25の押さえを兼用した第1キー26が固定される。この第1キー26が第1楔形部材11の第1キー溝11dに嵌る。このため、第1楔形部材11はナット5に対して回転不可能であり(すなわち回り止めされ)、ナット5に対して軸方向に移動可能である。   As shown in FIG. 2, a first key 26 which also serves as a press of the circulating component 25 is fixed to the nut 5. The first key 26 is fitted into the first key groove 11 d of the first wedge-shaped member 11. For this reason, the first wedge-shaped member 11 is non-rotatable (that is, prevented from rotating) with respect to the nut 5 and is axially movable with respect to the nut 5.

図5は第2楔形部材12を示す。第2楔形部材12は円弧状である。複数の第2楔形部材12は、円周方向に均等間隔のピッチで並べられる。複数の第2楔形部材12は略リング状に並べられるが、隣り合う第2楔形部材12の間には隙間gが開けられる。複数の第2楔形部材12の内周面には、円錐状のテーパ面(第2傾斜面12a)が形成される。各第2楔形部材12の第2傾斜面12aには、凹部12bが形成される。凹部12bには、第2キー27(図2参照)が嵌められる。複数の第2楔形部材12の外面12cは、円筒状に形成される。   FIG. 5 shows the second wedge-shaped member 12. The second wedge-shaped member 12 is arc-shaped. The plurality of second wedge-shaped members 12 are arranged at equal intervals in the circumferential direction. The plurality of second wedge-shaped members 12 are arranged in a substantially ring shape, but a gap g is opened between the adjacent second wedge-shaped members 12. A conical tapered surface (second inclined surface 12 a) is formed on the inner peripheral surface of the plurality of second wedge-shaped members 12. The second inclined surface 12 a of each second wedge-shaped member 12 is formed with a recess 12 b. The second key 27 (see FIG. 2) is fitted in the recess 12b. The outer surfaces 12c of the plurality of second wedge-shaped members 12 are formed in a cylindrical shape.

図2に示すように、第2楔形部材12の第2傾斜面12aと第1楔形部材11の第1傾斜面11aとが接触する。第2楔形部材12の凹部12b(図5参照)に嵌められた第2キー27は、第1楔形部材11の第2キー溝11b(図4参照)にも長さ方向に移動可能に嵌まる。このため、第2楔形部材12は第1楔形部材11に対して回転不可能であり(すなわち回り止めされる)、第1楔形部材11に対して第1傾斜面11aに沿って移動可能である。   As shown in FIG. 2, the second inclined surface 12 a of the second wedge-shaped member 12 and the first inclined surface 11 a of the first wedge-shaped member 11 are in contact with each other. The second key 27 fitted in the recess 12b (see FIG. 5) of the second wedge-shaped member 12 is also fitted in the second key groove 11b (see FIG. 4) of the first wedge-shaped member 11 movably in the longitudinal direction. . For this reason, the second wedge-shaped member 12 is non-rotatable (that is, prevented from rotating) with respect to the first wedge-shaped member 11, and is movable along the first inclined surface 11a with respect to the first wedge-shaped member 11. .

図5に示すように、各第2楔形部材12の外面には、滑り材13が取り付けられる。滑り材13は、薄板を円弧状に曲げてなる。滑り材13は、例えばPTFE(ポリテトラフルオロエチレン)等の樹脂製であり、外筒6の筒状の内面6a(図2参照)に接触する。滑り材13は、第2楔形部材12の外面12cの凹部に移動不可能に嵌められる。滑り材13の円周方向の両端部は、細長板状の押え板13aによって第2楔形部材12に固定される。   As shown in FIG. 5, a sliding member 13 is attached to the outer surface of each second wedge-shaped member 12. The sliding member 13 is formed by bending a thin plate into an arc shape. The sliding member 13 is made of resin such as PTFE (polytetrafluoroethylene), for example, and contacts the cylindrical inner surface 6 a (see FIG. 2) of the outer cylinder 6. The sliding member 13 is immovably fitted in the recess of the outer surface 12 c of the second wedge-shaped member 12. Both end portions in the circumferential direction of the sliding member 13 are fixed to the second wedge-shaped member 12 by an elongated plate-like pressing plate 13a.

図2に示すように、ばね14は、大口径の皿ばねからなり、第1楔形部材11を軸方向に付勢する。ばね14の力を調整するために、位置調節部としてロックナット15が設けられる。ロックナット15は、ナット5に固定されたベース28に螺合する。ロックナット15を回転させると、ロックナット15の軸方向の位置が調節され、ばね14の力が調節される。   As shown in FIG. 2, the spring 14 is a large diameter disc spring, and biases the first wedge-shaped member 11 in the axial direction. In order to adjust the force of the spring 14, a lock nut 15 is provided as a position adjustment part. The lock nut 15 is screwed into the base 28 fixed to the nut 5. When the lock nut 15 is rotated, the axial position of the lock nut 15 is adjusted, and the force of the spring 14 is adjusted.

ハウジング23には、第2楔形部材12に接触する円筒状のスペーサ29が固定される。スペーサ29の端面は、第2楔形部材12が軸方向に移動するのを制限する壁面として機能し、かつ第2楔形部材12が半径方向に移動するのを案内する案内面として機能する。なお、この実施形態では、ハウジング23とスペーサ29が別体であるが、ハウジング23とスペーサ29を一体にすることもできる。   A cylindrical spacer 29 in contact with the second wedge-shaped member 12 is fixed to the housing 23. The end face of the spacer 29 functions as a wall surface that restricts the second wedge member 12 from moving in the axial direction, and also functions as a guide surface that guides the second wedge member 12 from moving in the radial direction. In addition, although the housing 23 and the spacer 29 are separate bodies in this embodiment, the housing 23 and the spacer 29 can also be integrated.

トルク制限機構10の作用を説明する。ロックナット15を締め、ばね14を縮めると、ばね14が第1楔形部材11を軸方向に付勢する。ばね14の軸方向の力Pは、楔の作用によって半径方向に向きを変え、滑り材13が外筒6の内面6aを半径方向に押し付ける力Pになる。また、ばね14の力Pは、楔の作用によって増力されて滑り材13に伝わる。このため、回転部24のトルクが滑り材13を介して外筒6に伝達される。 The operation of the torque limiting mechanism 10 will be described. When the lock nut 15 is tightened and the spring 14 is compressed, the spring 14 axially biases the first wedge-shaped member 11. Axial force P 1 of the spring 14 changes direction in the radial direction by the action of the wedge, the force P 2 which skids 13 presses the inner surface 6a of the outer tube 6 in the radial direction. Also, the force P 1 of the spring 14 is increased by the action of the wedge and is transmitted to the sliding member 13. Therefore, the torque of the rotating portion 24 is transmitted to the outer cylinder 6 via the sliding member 13.

一方、回転部24から外筒6に伝達されるトルクが所定値を超えたとき、滑り材13が外筒6の内面6aを滑り始める。このため、外筒6に所定値以上のトルクが伝達されるのが防止される。   On the other hand, when the torque transmitted from the rotating portion 24 to the outer cylinder 6 exceeds the predetermined value, the sliding member 13 starts to slide on the inner surface 6 a of the outer cylinder 6. For this reason, it is prevented that the torque more than predetermined value is transmitted to the outer cylinder 6. As shown in FIG.

ねじ軸4の中心線を含む断面において、第1及び第2傾斜面11a,12aとねじ軸4の軸線Lとのなす角度αは、20°以上45°以下に設定される。摩擦係数にもよるが、角度αが20°未満であると、第1楔形部材11がロックし易い。第1楔形部材11がロックすると、滑り材13に加える荷重を調節できなくなる。角度αが45°より大きいと、増力の効果を得にくくなる。 In a cross section containing the center line of the screw shaft 4, the first and second inclined surfaces 11a, the angle α of the axis L 1 of the 12a and the screw shaft 4 is set to 20 ° to 45 °. Although it depends on the coefficient of friction, the first wedge-shaped member 11 is easily locked if the angle α is less than 20 °. When the first wedge-shaped member 11 locks, the load applied to the sliding member 13 can not be adjusted. If the angle α is larger than 45 °, it is difficult to obtain the effect of boosting.

本実施形態の慣性質量ダンパによれば、以下の効果を奏する。   According to the inertial mass damper of the present embodiment, the following effects can be obtained.

滑り材13が外筒6の内面6aを滑るので、滑り材13と外筒6の内面6aとの接触部で発生する熱が外筒6を伝わって外部に放熱される。このため、慣性質量ダンパの内部の発熱が抑えられ、トルクの所定値(滑り材が滑り始めるときのトルク)が安定する。また、滑り材13を外筒6の内面6aに接触させるので、滑り材13と外筒6との接触面積を大きくすることができる。このため、トルクの所定値がより安定し、滑り材13の耐久性も向上する。   Since the sliding member 13 slides on the inner surface 6 a of the outer cylinder 6, the heat generated at the contact portion between the sliding member 13 and the inner surface 6 a of the outer cylinder 6 is transmitted to the outer cylinder 6 and dissipated to the outside. For this reason, heat generation inside the inertial mass damper is suppressed, and a predetermined value of torque (torque when the sliding member starts to slide) is stabilized. Further, since the sliding member 13 is in contact with the inner surface 6 a of the outer cylinder 6, the contact area between the sliding member 13 and the outer cylinder 6 can be increased. Therefore, the predetermined value of the torque is more stable, and the durability of the sliding member 13 is also improved.

トルク制限機構10が第1楔形部材11、第2楔形部材12、ばね14を備えるので、楔の作用によりばね14の力を増力して滑り材13に伝達することができる。したがって、ばね定数の小さいばね14を選定し、ばね14の小さい荷重でトルク管理することができる。また、滑り材13が摩耗しても、第1楔形部材11及び第2楔形部材12が追従するので、荷重の低減は小さい。逆に発熱等の膨張で滑り材13への負荷が増しても、第1楔形部材11及び第2楔形部材12が逃げるので、適正荷重を保つことができる。さらに、楔の作用によりばね14の軸方向の力の向きを半径方向に変えられるので、回転部24の外面と外筒6の内面6aとの間の狭いスペースにトルク制限機構10を配置することができる。   Since the torque limiting mechanism 10 includes the first wedge-shaped member 11, the second wedge-shaped member 12, and the spring 14, the force of the spring 14 can be increased and transmitted to the sliding member 13 by the action of the wedge. Therefore, the spring 14 having a small spring constant can be selected, and torque can be managed with a small load of the spring 14. Further, even if the sliding member 13 wears, the reduction in load is small because the first wedge-shaped member 11 and the second wedge-shaped member 12 follow. Conversely, even if the load on the sliding member 13 is increased due to expansion such as heat generation, the first wedge-shaped member 11 and the second wedge-shaped member 12 escape, so that the appropriate load can be maintained. Furthermore, since the direction of the axial force of the spring 14 can be changed in the radial direction by the action of the wedge, disposing the torque limiting mechanism 10 in a narrow space between the outer surface of the rotating portion 24 and the inner surface 6a of the outer cylinder 6 Can.

第1楔形部材11がリング状であり、複数の第2楔形部材12が第1楔形部材11の円周方向に配置されるので、複数の滑り材13が外筒6の内面6aの全周を均等に押すことができ、トルクの所定値がより安定する。隣り合う第2楔形部材12との間に隙間gを開けるので、第2楔形部材12も放熱し易い。   Since the first wedge-shaped member 11 is ring-shaped and the plurality of second wedge-shaped members 12 are arranged in the circumferential direction of the first wedge-shaped member 11, the plurality of sliding members 13 are all around the inner surface 6 a of the outer cylinder 6 It is possible to push evenly, and the predetermined value of torque becomes more stable. Since the gap g is formed between the adjacent second wedge-shaped members 12, the second wedge-shaped member 12 also easily dissipates heat.

第1楔形部材11が回転部24に回り止めされ、第2楔形部材12が第1楔形部材11に回り止めされるので、第1楔形部材11と第2楔形部材12が回転部24に連れ回って回転する。
(第2の実施形態)
The first wedge-shaped member 11 and the second wedge-shaped member 12 are prevented from rotating around the rotating portion 24 because the first wedge-shaped member 11 is locked to the rotating portion 24 and the second wedge-shaped member 12 is locked to the first wedge-shaped member 11. To rotate.
Second Embodiment

図6及び図7は、本発明の第2の実施形態の慣性質量ダンパを示す。図6に示すように、第2の実施形態では、トルク制限機構10のばね31、位置調節部としての止めねじ32の構成が第1の実施形態と異なる。トルク制限機構10の第1楔形部材11、第2楔形部材12、滑り材13、外筒6、ねじ軸4、ナット5、ハウジング23、スペーサ29の構成は、第1の実施形態と同一なので、同一の符号を附してその説明を省略する。   6 and 7 show an inertial mass damper according to a second embodiment of the present invention. As shown in FIG. 6, in the second embodiment, the configuration of the spring 31 of the torque limiting mechanism 10 and the set screw 32 as a position adjustment unit is different from that of the first embodiment. The configurations of the first wedge-shaped member 11, the second wedge-shaped member 12, the sliding member 13, the outer cylinder 6, the screw shaft 4, the nut 5, the housing 23 and the spacer 29 of the torque limiting mechanism 10 are the same as in the first embodiment. The same reference numerals are given and the description thereof is omitted.

第2の実施形態では、トルク制限機構10のばね31として、小口径の複数の積層皿ばねを使用している。ばね31は、円周方向に均等間隔を開けて複数配置される。ナット5には、リング状のばねベース33(図7も参照)が固定される。ばねベース33には、円周方向に均等間隔を開けて複数のばね収容穴33aが開けられる。ばね収容穴33aにはばね31が収容される。止めねじ32は、ばね収容穴33aの雌ねじに螺合する。止めねじ32の締め量を調整すれば、ばね31の力を調節できる。   In the second embodiment, a plurality of small diameter laminated disc springs are used as the spring 31 of the torque limiting mechanism 10. A plurality of springs 31 are arranged at equal intervals in the circumferential direction. A ring-shaped spring base 33 (see also FIG. 7) is fixed to the nut 5. In the spring base 33, a plurality of spring receiving holes 33a are opened at equal intervals in the circumferential direction. The spring 31 is accommodated in the spring accommodation hole 33a. The set screw 32 is screwed into the female screw of the spring receiving hole 33a. By adjusting the tightening amount of the set screw 32, the force of the spring 31 can be adjusted.

なお、本発明は、上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に具現化可能である。   The present invention is not limited to being embodied in the above-described embodiment, and can be embodied in various embodiments without departing from the scope of the present invention.

上記実施形態では、ボールねじのナットを回転させ、ナットを回転部としているが、ねじ軸を回転させ、ねじ軸を回転部とすることもできる。   In the above embodiment, the nut of the ball screw is rotated and the nut is used as the rotating portion. However, the screw shaft may be rotated and the screw shaft may be used as the rotating portion.

上記実施形態では、慣性質量ダンパに慣性力発生部と減衰力発生部を設けているが、減衰力発生部を省略し、慣性力発生部のみにすることもできる。   In the above embodiment, although the inertial force damper is provided with the inertial force generator and the damping force generator, the damping force generator can be omitted and only the inertial force generator can be used.

上記実施形態では、付加錘が筒状であるが、付加錘を円盤状にすることもできる。   Although the additional weight is cylindrical in the above embodiment, the additional weight may be disk-like.

上記実施形態では、滑り材と第2楔形部材とを別体にし、滑り材を第2楔形部材に設けているが、滑り材と第2楔形部材とを一体にすることもできる。   In the above embodiment, the sliding member and the second wedge-shaped member are separated, and the sliding member is provided on the second wedge-shaped member. However, the sliding member and the second wedge-shaped member can be integrated.

上記実施形態では、第2楔形部材が複数に分割されているが、第2楔形部材をリング状にし、外側に広がるようにスリットを設けることもできる。   In the above embodiment, the second wedge-shaped member is divided into a plurality of pieces, but the second wedge-shaped member may be ring-shaped and a slit may be provided so as to extend outward.

1…慣性力発生部、2…減衰力発生部、3…ボールねじ(運動変換機構)、4…ねじ軸、5…ナット、6…外筒(付加錘)、6a…内面、10…トルク制限機構、11…第1楔形部材、11a…第1傾斜面、12…第2楔形部材、12a…第2傾斜面、13…滑り材、24…回転部、26…第1キー、27…第2キー DESCRIPTION OF SYMBOLS 1 ... inertia force generation part, 2 ... damping force generation part, 3 ... ball screw (motion conversion mechanism), 4 ... screw axis, 5 ... nut, 6 ... outer cylinder (additional weight), 6a ... inner surface, 10 ... torque limitation Mechanism 11 11 first wedge-shaped member 11a 1st inclined surface 12 12 second wedge-shaped member 12a 2nd inclined surface 13 slipper 24 rotation part 26 1st key 27 27 second Key

Claims (6)

構造物間の相対振動を回転部の回転運動に変換する運動変換機構と、
筒状の内面を有する付加錘と、
前記付加錘の前記内面に接する少なくとも一つの滑り材を有し、前記回転部から前記付加錘にトルクを伝達できるように前記滑り材を前記付加錘の前記内面に押し付けると共に、前記回転部から前記付加錘に伝達されるトルクが所定値を越えたときに前記滑り材が前記付加錘の前記内面を滑るようにするトルク制限機構と、を備える慣性質量ダンパ。
A motion conversion mechanism that converts relative vibration between structures into rotational motion of the rotating part;
An additional weight having a cylindrical inner surface,
The at least one sliding member in contact with the inner surface of the additional weight, pressing the sliding member against the inner surface of the additional weight so as to transmit torque from the rotating portion to the additional weight, and from the rotating portion And a torque limiting mechanism for causing the sliding member to slide on the inner surface of the additional weight when the torque transmitted to the additional weight exceeds a predetermined value.
前記トルク制限機構は、
第1傾斜面を有する第1楔形部材と、
前記第1傾斜面に接する第2傾斜面を有する第2楔形部材と、
前記第1楔形部材を前記回転部の軸方向に付勢するばねと、を有することを特徴とする請求項1に記載の慣性質量ダンパ。
The torque limiting mechanism
A first wedge-shaped member having a first inclined surface;
A second wedge-shaped member having a second inclined surface in contact with the first inclined surface;
The inertia mass damper according to claim 1, further comprising: a spring biasing the first wedge-shaped member in the axial direction of the rotating portion.
前記第1楔形部材がリング状であり、
複数の前記第2楔形部材が前記第1楔形部材の円周方向に配置されることを特徴とする請求項2に記載の慣性質量ダンパ。
The first wedge-shaped member is ring-shaped,
The inertial mass damper according to claim 2, wherein the plurality of second wedge-shaped members are arranged in the circumferential direction of the first wedge-shaped member.
前記第1楔形部材が前記回転部に回り止めされ、
前記第2楔形部材が前記第1楔形部材に回り止めされることを特徴とする請求項2又は3に記載の慣性質量ダンパ。
The first wedge-shaped member is locked to the rotating portion;
The inertial mass damper according to claim 2 or 3, wherein the second wedge-shaped member is fixed to the first wedge-shaped member.
構造物間の相対振動を回転部の回転運動に変換する運動変換機構と、
付加錘と、
前記回転部及び前記付加錘のいずれか一方に接する少なくとも一つの滑り材を有し、前記回転部から前記付加錘にトルクを伝達できるように前記滑り材を前記一方に押し付けると共に、前記回転部から前記付加錘に伝達されるトルクが所定値を越えたときに前記滑り材が前記一方を滑るようにするトルク制限機構と、を備え、
前記トルク制限機構は、
第1傾斜面を有する第1楔形部材と、
前記第1傾斜面に接する第2傾斜面を有する第2楔形部材と、
前記第1楔形部材を付勢するばねと、を有する慣性質量ダンパ。
A motion conversion mechanism that converts relative vibration between structures into rotational motion of the rotating part;
An additional weight,
It has at least one sliding member in contact with any one of the rotating portion and the additional weight, presses the sliding member against the one side so that torque can be transmitted from the rotating portion to the additional weight, and from the rotating portion And a torque limiting mechanism that causes the sliding member to slide the one side when the torque transmitted to the additional weight exceeds a predetermined value.
The torque limiting mechanism
A first wedge-shaped member having a first inclined surface;
A second wedge-shaped member having a second inclined surface in contact with the first inclined surface;
And a spring for biasing the first wedge-shaped member.
前記滑り材は、前記回転部の筒状の外面及び前記付加錘の筒状の内面のいずれか一方に接し、
前記第1楔形部材及び前記第2楔形部材は、前記ばねの力の向きを前記回転部の軸方向から前記回転部の半径方向に変えることを特徴とする請求項5に記載の慣性質量ダンパ。
The sliding member is in contact with any one of the cylindrical outer surface of the rotating portion and the cylindrical inner surface of the additional weight,
The inertial mass damper according to claim 5, wherein the first wedge-shaped member and the second wedge-shaped member change the direction of the force of the spring from an axial direction of the rotating portion to a radial direction of the rotating portion.
JP2017205336A 2017-10-24 2017-10-24 Inertia mass damper Pending JP2019078320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205336A JP2019078320A (en) 2017-10-24 2017-10-24 Inertia mass damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205336A JP2019078320A (en) 2017-10-24 2017-10-24 Inertia mass damper

Publications (1)

Publication Number Publication Date
JP2019078320A true JP2019078320A (en) 2019-05-23

Family

ID=66627677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205336A Pending JP2019078320A (en) 2017-10-24 2017-10-24 Inertia mass damper

Country Status (1)

Country Link
JP (1) JP2019078320A (en)

Similar Documents

Publication Publication Date Title
JP6580457B2 (en) Rotating inertia mass damper
US10883582B2 (en) Ball screw apparatus
US6763918B1 (en) Actuator having compact gear reduction
WO2012086303A1 (en) Screw motion mechanism and damping apparatus using same
WO2013057797A1 (en) Damping device
EP1712332A2 (en) Impact tool
WO2014097915A1 (en) Ball-ramp mechanism, linear motion actuator, and electric disc brake device
JP5915995B2 (en) Rotating inertia mass damper
JP2005325944A (en) Lead screw type moving device and its moving body
JP2017078432A (en) Spring mechanism and vibration suppression device having spring mechanism
JP2019078320A (en) Inertia mass damper
JP2011144831A (en) Axial resistance type inertial mass damper
JP6297454B2 (en) Seismic isolation damper
JP2012072785A (en) Friction damper
JPH0660645B2 (en) Hydraulic rotary actuator
JP2015083865A (en) Rotational inertia mass damper
US6499573B1 (en) Damping device
JPH0874843A (en) Rotational frictional device
KR102121914B1 (en) Generator Dampering Apparatus
CN113124041A (en) Adjustable damping mechanism and mechanical joint with damping adjusting function
KR101047987B1 (en) Independent device for ball screw and ball screw jack having same
TWI558932B (en) Attenuating device
KR102535174B1 (en) Modular, zero-backlash setting to lock the brake/lock
JP6745032B2 (en) Ball screw device
JP6182709B2 (en) Axial force-induced torque transmission device