JP2019077916A - Steel material for carburization and carburization member - Google Patents

Steel material for carburization and carburization member Download PDF

Info

Publication number
JP2019077916A
JP2019077916A JP2017205090A JP2017205090A JP2019077916A JP 2019077916 A JP2019077916 A JP 2019077916A JP 2017205090 A JP2017205090 A JP 2017205090A JP 2017205090 A JP2017205090 A JP 2017205090A JP 2019077916 A JP2019077916 A JP 2019077916A
Authority
JP
Japan
Prior art keywords
cycle fatigue
present
fatigue strength
less
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017205090A
Other languages
Japanese (ja)
Inventor
健史 根本
Takeshi Nemoto
健史 根本
優樹 田中
Yuki Tanaka
優樹 田中
亮平 石倉
Ryohei Ishikura
亮平 石倉
健太 辻井
Kenta Tsujii
健太 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017205090A priority Critical patent/JP2019077916A/en
Publication of JP2019077916A publication Critical patent/JP2019077916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

To provide a carburization member excellent both in low cycle fatigue property and high cycle fatigue property.SOLUTION: There is provided a carburization member having a composition of, by mass%, C:0.13 to 0.38%, Si:1.5% or less, Cu:0.5% or less, Ni:0.15% or less, Cr:0.3 to 1.5%, Mo:0.3 to 0.8%, Mn:2.0 to 5.0%, s-Al:0.01 to 0.050%, and the balance:Fe with inevitable impurities, [C] of 0.40 to 0.75 mass%, where [C] is surface C concentration, and γdefined by γ=1.8×exp{-0.11×(795-823[C]-30.4Mn+283)} of 23 to 48.SELECTED DRAWING: None

Description

本発明は浸炭用鋼材および浸炭部材に関する。   The present invention relates to a carburized steel material and a carburized member.

浸炭材の低サイクル疲労特性を改善する手法として、表層C濃度を低減し、有効硬化層深さを浅くする方法が提案されている(例えば非特許文献1参照)。
一方で高サイクル疲労特性は、おおよそ表面硬さと圧縮残留応力で決まるため、表層は硬さが最も高くなる0.8%程度の浸炭が有利である。
つまり、表層C濃度および有効硬化層深さを調整することで低サイクル疲労および高サイクル疲労を両立することは、従来、不可能であった。
As a method of improving the low cycle fatigue characteristics of a carburized material, a method of reducing the surface layer C concentration and making the effective hardened layer depth shallow has been proposed (see, for example, Non-Patent Document 1).
On the other hand, since high cycle fatigue properties are roughly determined by surface hardness and compressive residual stress, carburization of about 0.8% at which the surface layer has the highest hardness is advantageous.
That is, conventionally, it was impossible to make low cycle fatigue and high cycle fatigue compatible by adjusting the surface C concentration and the effective hardened layer depth.

表層C濃度が高いまま低サイクル疲労特性を向上する方法として、Mo、V、Niの添加(特許文献1参照)が有効である。しかし、この場合、鋼材コストが上昇する。   The addition of Mo, V, and Ni (see Patent Document 1) is effective as a method of improving the low cycle fatigue characteristics while the surface C concentration is high. However, in this case, the cost of steel increases.

表面C濃度を低くしたうえで高サイクル疲労特性を改善するには、圧縮残留応力を付与する方法がある。例えばショットピーニングは、大きな圧縮残留応力を与えることが可能である。しかし、コストが高い。さらに、圧延・冷却条件を調整し残留応力を付与する方法(TRIP鋼)は、変形性の低い温度でのオースフォームが必要であるか(非特許文献2参照)、薄板のような熱応答性の高い形状の場合にしか適応できない(特許文献2参照)。   In order to improve the high cycle fatigue characteristics while lowering the surface C concentration, there is a method of applying compressive residual stress. For example, shot peening can provide a large compressive residual stress. However, the cost is high. Furthermore, in the method of adjusting rolling and cooling conditions and applying residual stress (TRIP steel), is it necessary for ausformed at a temperature with low deformability (see Non-Patent Document 2), or thermal responsiveness such as thin plate It can be applied only in the case of a high shape of (see Patent Document 2).

特開平1−247561号公報Unexamined-Japanese-Patent No. 1-247561 特開平4−059941号公報JP-A-4-059941

宮崎ら、浸炭材の低サイクル衝撃疲労特性に及ぼす硬さプロファイルの影響、電気鋼、Vol.77(2006)、p19Miyazaki et al., Effect of hardness profile on low cycle impact fatigue properties of carburized material, Electric steel, Vol. 77 (2006), p 19 藤田ら、常温TRIP鋼の機械的諸性質、鉄と鋼、vol.58(1972)、p1693Fujita et al., Mechanical properties of cold TRIP steel, iron and steel, vol. 58 (1972), p 1693

本発明は上記のような課題を解決することを目的とする。
すなわち、本発明の目的は、低サイクル疲労特性と高サイクル疲労特性とが共に優れる浸炭部材および浸炭処理を施すことでそれを得ることができる浸炭用鋼材を提供することである。
The present invention aims to solve the above-mentioned problems.
That is, an object of the present invention is to provide a carburized member which is excellent in both low cycle fatigue characteristics and high cycle fatigue characteristics and a carburizing steel material which can be obtained by performing carburizing treatment.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は、
質量%表示で、
C:0.13〜0.38%、
Si:1.5%以下、
Cu:0.5%以下、
Ni:0.15%以下、
Cr:0.3〜1.5%、
Mo:0.3〜0.8%、
Mn:2.0〜5.0%、
s−Al:0.01〜0.050%、
残部:Feおよび不可避的不純物
の組成からなり、
浸炭ガスとしてアセチレンを用い、浸炭温度を950℃とし、限界硬さを513Hvとしたときの有効硬化層深さが0.7mmとなる浸炭ガス流量および浸炭時間とする浸炭処理を施し、その後、80℃の油に浸漬する焼入れをし、さらに、180℃で120分間保持した後、空冷する焼戻しを行うと、
表面C濃度を[C]と表した場合に、[C]は0.40〜0.75質量%であり、加えて、
γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}
で定義されるγcalcが23〜48を満たす浸炭部材が得られる、浸炭用鋼材である。
このような浸炭用鋼材を以下では「本発明の鋼材」ともいう。
MEANS TO SOLVE THE PROBLEM This inventor earnestly examined in order to solve the said subject, and completed this invention.
The present invention
In mass% indication,
C: 0.13 to 0.38%,
Si: 1.5% or less,
Cu: 0.5% or less,
Ni: 0.15% or less,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 0.8%,
Mn: 2.0 to 5.0%,
s-Al: 0.01 to 0.050%,
Remainder: Composed of Fe and inevitable impurities
Acetylene is used as carburizing gas, the carburizing temperature is 950 ° C, and the carburizing gas flow rate and carburizing time is 0.7mm when the effective hardened layer depth when the critical hardness is 513 Hv is given, and then 80 When hardening is performed by immersion in oil of ° C. and then holding at 180 ° C. for 120 minutes, tempering is performed by air cooling,
When the surface C concentration is represented as [C], [C] is 0.40 to 0.75 mass%, and
γ calc = 1.8 × exp {−0.11 × (795-823 [C] −30.4 Mn + 283)}
It is a steel material for carburization from which the carburized member which satisfy | fills 23 to 48 with (gamma) calc defined by these is obtained.
Such a carburized steel material is hereinafter also referred to as "the steel material of the present invention".

また、本発明は、
質量%表示で、
C:0.13〜0.38%、
Si:1.5%以下、
Cu:0.5%以下、
Ni:0.15%以下、
Cr:0.3〜1.5%、
Mo:0.3〜0.8%、
Mn:2.0〜5.0%、
s−Al:0.01〜0.050%、
残部:Feおよび不可避的不純物
の組成からなり、
表面C濃度を[C]と表した場合に、[C]は0.40〜0.75質量%であり、加えて、
γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}
で定義されるγcalcが23〜48を満たす、浸炭部材である。
このような浸炭部材を以下では「本発明の部材」ともいう。
Also, the present invention is
In mass% indication,
C: 0.13 to 0.38%,
Si: 1.5% or less,
Cu: 0.5% or less,
Ni: 0.15% or less,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 0.8%,
Mn: 2.0 to 5.0%,
s-Al: 0.01 to 0.050%,
Remainder: Composed of Fe and inevitable impurities
When the surface C concentration is represented as [C], [C] is 0.40 to 0.75 mass%, and
γ calc = 1.8 × exp {−0.11 × (795-823 [C] −30.4 Mn + 283)}
It is a carburized member which satisfy | fills 23-48 with (gamma) calc defined by these.
Such a carburized member is hereinafter also referred to as "member of the present invention".

上記の本発明の鋼材を浸炭処理することで、上記の本発明の部材を得ることができる。   By carburizing the above-mentioned steel material of the present invention, the above-mentioned member of the present invention can be obtained.

以下において、単に「本発明」と記した場合、本発明の鋼材および本発明の部材の両方を意味するものとする。   In the following, when only "the present invention" is written, it means both the steel material of the present invention and the member of the present invention.

本発明によれば、低サイクル疲労特性と高サイクル疲労特性とが共に優れる浸炭部材および浸炭処理を施すことでそれを得ることができる浸炭用鋼材を提供することができる。   According to the present invention, it is possible to provide a carburized steel material which can be obtained by subjecting a carburized member excellent in both low cycle fatigue characteristics and high cycle fatigue characteristics and carburizing treatment.

実施例において用いた試験片の概略図である。It is the schematic of the test piece used in the Example. 実施例における4点曲げ試験を説明する概略図である。It is the schematic explaining the 4 point | piece bending test in an Example.

以下に本発明の部材の組成を説明する。
また、本発明の鋼材を浸炭処理したものが本発明の部材であるので、本発明の部材における浸炭された表層部分以外の部分は、本発明の鋼材と同一の組成を有する。さらに、本発明の部材における当該表層部分の質量は全体に占める比率が大きくないため、本発明の部材の全体組成(全体の平均値)は、ほぼ本発明の鋼材の組成と同じである。したがって、以下に説明する本発明の部材の組成は、本発明の鋼材の組成と考えることもできる。
The composition of the member of the present invention will be described below.
In addition, since the carburized steel material of the present invention is the member of the present invention, the portion of the member of the present invention other than the carburized surface layer portion has the same composition as the steel material of the present invention. Furthermore, since the mass of the surface layer portion in the member of the present invention is not large in proportion to the whole, the entire composition (average value of the whole) of the member of the present invention is substantially the same as the composition of the steel material of the present invention. Therefore, the composition of the member of the present invention described below can be considered as the composition of the steel material of the present invention.

以下において単に「%」と記した場合、「質量%」を意味するものとする。   When only "%" is described in the following, "mass%" shall be meant.

<C:0.13〜0.38%>
本発明の部材におけるC含有率は0.13〜0.38%である。
C含有率が低すぎると芯部硬さの確保し難くなる。
C含有率が高すぎると冷間鍛造性、芯部の靭性、加工性の低下を招く可能性がある。
<C: 0.13 to 0.38%>
The C content in the member of the present invention is 0.13 to 0.38%.
If the C content is too low, it will be difficult to secure the core hardness.
If the C content is too high, the cold forgeability, the toughness of the core, and the workability may be reduced.

<Si:1.5%以下>
本発明の部材におけるSi含有率は1.5%以下である。
Si含有率が高すぎると靭性、被削性が低下する可能性がある。
<Si: 1.5% or less>
The Si content in the member of the present invention is 1.5% or less.
If the Si content is too high, toughness and machinability may be reduced.

<Cu:0.5%以下>
本発明の部材におけるCu含有率は0.5%以下である。
Cu含有率が高すぎると熱間鍛造性が低下する可能性がある。
<Cu: 0.5% or less>
The Cu content in the member of the present invention is 0.5% or less.
If the Cu content is too high, hot forgeability may be reduced.

<Ni:0.15%以下>
本発明の部材におけるNi含有率は0.15%以下である。
Ni含有率が高すぎると残留γが高くなり過ぎる傾向があり、加えてコストが増加する。
<Ni: 0.15% or less>
The Ni content in the member of the present invention is 0.15% or less.
If the Ni content is too high, the residual γ tends to be too high, and the cost increases.

<Cr:0.3〜1.5%>
本発明の部材におけるCr含有率は0.3〜1.5%である。
Cr含有率が低すぎると焼入性が悪化する傾向がある。
Cr含有率が高すぎると加工性、切削性、焼入歪が悪化する傾向があり、加えてコストが増加し、さらに残留γが高くなり過ぎる傾向がある。
<Cr: 0.3 to 1.5%>
The Cr content in the member of the present invention is 0.3 to 1.5%.
If the Cr content is too low, hardenability tends to deteriorate.
If the Cr content is too high, the formability, the machinability and the quenching strain tend to be deteriorated, in addition, the cost increases and the residual γ tends to be too high.

<Mo:0.3〜0.8%>
本発明の部材におけるMo含有率は0.3〜0.8%である。
Mo含有率が低すぎると焼入性が悪化する傾向がある。
Mo含有率が高すぎると加工性、切削性が悪化する傾向があり、加えてコストが増加する。
<Mo: 0.3 to 0.8%>
The Mo content in the member of the present invention is 0.3 to 0.8%.
If the Mo content is too low, hardenability tends to deteriorate.
If the Mo content is too high, the workability and the machinability tend to deteriorate, and the cost increases.

<Mn:2.0〜5.0%>
本発明の部材におけるMn含有率は2.0〜5.0%である。
Mn含有率が低すぎると表面C濃度が0.40〜0.75%のときにγcalcが小さくなりすぎ、低サイクル疲労特性と高サイクル疲労特性とが共に優れる部材を得難い。
Mn含有率が高すぎると表面C濃度が0.40〜0.75%のときにγcalcが大きくなりすぎ、低サイクル疲労特性と高サイクル疲労特性とが共に優れる部材を得難い。
<Mn: 2.0 to 5.0%>
The Mn content in the member of the present invention is 2.0 to 5.0%.
If the Mn content is too low, γ calc becomes too small when the surface C concentration is 0.40 to 0.75%, and it is difficult to obtain a member excellent in both low cycle fatigue characteristics and high cycle fatigue characteristics.
If the Mn content is too high, γ calc becomes too large when the surface C concentration is 0.40 to 0.75%, and it is difficult to obtain a member excellent in both low cycle fatigue characteristics and high cycle fatigue characteristics.

<s−Al:0.01〜0.050%>
本発明の部材におけるs−Al含有率は0.01〜0.050%である。
ここでs−Alは、酸に可溶なAlを意味する。
s−AlはNと結合してAlNを形成し、曲げ強度を高める。一方、含有率が高すぎると介在物が増えることになるため、0.050%を上限とする。
<S-Al: 0.01 to 0.050%>
The s-Al content in the member of the present invention is 0.01 to 0.050%.
Here, s-Al means Al soluble in an acid.
s-Al combines with N to form AlN and enhances bending strength. On the other hand, if the content rate is too high, inclusions increase, so 0.050% is made the upper limit.

<残部:Feおよび不可避的不純物>
本発明の部材は、上記のように、特定範囲内でC、Si、Cu、Ni、Cr、Mo、Mn、Alを含み、残部はFeおよび不可避的不純物である。
ここで不可避的不純物とは、意図的に添加しなくても原料や製造工程等から混入する可能性がある成分を意味する。不可避的不純物として、具体的にはP、S、N、Oが挙げられる。
<Remainder: Fe and unavoidable impurities>
As described above, the member of the present invention contains C, Si, Cu, Ni, Cr, Mo, Mn, and Al within the specific range, and the balance is Fe and unavoidable impurities.
Here, the unavoidable impurities mean components which may be mixed from the raw material or the manufacturing process without intentionally adding. Specific examples of unavoidable impurities include P, S, N and O.

<表層C濃度>
本発明の部材における表層C濃度([C]と記す場合もある)が0.40〜0.75質量%であり、0.41〜0.72であることが好ましい。
表層C濃度が上記範囲内であると、本発明の部材の低サイクル疲労特性と高サイクル疲労特性とが共に優れる。
<Surface C concentration>
The surface layer C concentration (sometimes referred to as [C]) in the member of the present invention is 0.40 to 0.75 mass%, and preferably 0.41 to 0.72.
When the surface layer C concentration is in the above range, both the low cycle fatigue characteristics and the high cycle fatigue characteristics of the member of the present invention are excellent.

<γcalc
本発明の部材は上記のような組成を備え、さらに上記の範囲の表層C濃度を備える。そして、γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}と定義した場合に、γcalcが23〜48を満たす。
ここで式中のMnはMn含有率(質量%)を意味する。
γcalcが上記範囲内であると、本発明の部材の低サイクル疲労特性と高サイクル疲労特性とが共に優れる。
calc >
The member of the present invention has the above composition, and further has the surface C concentration in the above range. And when it defines as (gamma) calc = 1.8 * exp {-0.11 * (795-823 [C] -30.4Mn + 283)}, (gamma) calc satisfy | fills 23-48.
Here, Mn in the formula means the Mn content (% by mass).
When the γ calc is in the above range, both the low cycle fatigue characteristics and the high cycle fatigue characteristics of the member of the present invention are excellent.

本発明の部材は、表面のビッカース硬さが550Hv以上であることがより好ましい。理由は550Hv未満の場合、低サイクル疲労特性が低下するからである。   The member of the present invention more preferably has a surface Vickers hardness of 550 Hv or more. The reason is that if it is less than 550 Hv, the low cycle fatigue characteristics are degraded.

本発明の鋼材は、上記のような本発明の部材の組成と同様の組成を備え、浸炭ガスとしてアセチレンを用い、浸炭温度を950℃とし、限界硬さを513Hvとしたときの有効硬化層深さが0.7mmとなる浸炭ガス流量および浸炭時間とする浸炭処理を施し、その後、80℃の油に浸漬する焼入れをし、さらに、180℃で120分間保持した後、空冷する焼戻しを行うと、表面C濃度を[C]と表した場合に、[C]は0.4〜0.7質量%であり、加えて、γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}で定義されるγcalcが23〜48を満たす浸炭部材(本発明の部材)を得ることができる。 The steel material of the present invention has the same composition as the composition of the member of the present invention as described above, uses acetylene as the carburizing gas, the carburizing temperature is 950 ° C., and the critical hardness is 513 Hv. Carburizing gas flow and carburizing time to reach 0.7 mm, then carry out hardening by immersion in oil at 80 ° C, and then hold at 180 ° C for 120 minutes, and then carry out tempering by air cooling When the surface C concentration is expressed as [C], [C] is 0.4 to 0.7 mass%, and additionally, γ calc = 1.8 × exp {−0.11 × (795- It is possible to obtain a carburized member (member of the present invention) in which γ calc defined by 823 [C] −30.4 Mn + 283)} satisfies 23 to 48.

以下、本発明の実施例について説明する。
第1表に示す実施例1〜19および比較例1〜7の各々について、第1表に示す組成(残部はFe及び不可避不純物)となるように50kgの原料を混合し、高周波誘導炉(50kg)を用いて溶製し、鋳造して鋼塊を得た。
Hereinafter, examples of the present invention will be described.
For each of Examples 1 to 19 and Comparative Examples 1 to 7 shown in Table 1, 50 kg of raw materials are mixed so as to obtain the composition shown in Table 1 (the balance is Fe and unavoidable impurities), and a high frequency induction furnace (50 kg) ) Was used for casting and casting to obtain a steel ingot.

<疲労強度の測定>
上記の鋼塊を熱間鍛造し、断面直径が25mmの丸棒を得た後、この丸棒から、長さ:105mm分を切り出した。そして、得られた円柱部材における側面(2つの円形の断面以外の面)を削り、図1に示すような断面直径が19mmの鋼片を得た。図1(a)は鋼片1の長手方向に平行な方向での断面を表し、図1(b)は鋼片1の長手方向に垂直な方向での端面を表し、図1(c)は鋼片1の長手方向の中心部に形成されている試験部2の拡大図である。
<Measurement of fatigue strength>
After hot forging the above-described steel ingot to obtain a round bar having a cross-sectional diameter of 25 mm, a length of 105 mm was cut out from the round bar. Then, the side surface (surface other than the two circular cross sections) in the obtained cylindrical member was cut to obtain a steel piece having a cross-sectional diameter of 19 mm as shown in FIG. Fig.1 (a) represents the cross section in the direction parallel to the longitudinal direction of the steel piece 1, FIG.1 (b) represents the end surface in the direction perpendicular to the longitudinal direction of the steel piece 1, and FIG.1 (c) represents It is an enlarged view of test part 2 currently formed in the central part of the longitudinal direction of steel piece 1.

次に、鋼片に浸炭処理Xを施して、試験片を得た。
浸炭処理Xについて説明する。以下において浸炭処理Xとは、次のような処理を意味するものとする。
初めに、鋼片を浸炭炉内へ載置し、炉内を真空とした後、炉内温度を950℃に調整し、浸炭ガス(アセチレン)を導入した。そして、限界硬さを513Hvとしたときに有効硬化層深さが0.7mmとなるように浸炭ガス流量および時間を調整して浸炭した。
次に、炉内温度を850℃に調整して30min保持した後、浸炭した鋼片を80℃の油へ浸漬して油焼入れを行い、その後、室内に放置して室温まで冷却した。
次に、180℃で120分間保持した後、空冷して焼戻し処理を行った。
このような一連の浸炭、焼入れ、焼戻しの処理を、浸炭処理Xとする。
Next, carburizing treatment X was applied to the billet to obtain a test piece.
The carburizing treatment X will be described. In the following, carburizing treatment X means the following treatment.
First, a steel piece was placed in a carburizing furnace, the inside of the furnace was evacuated, the temperature in the furnace was adjusted to 950 ° C., and a carburizing gas (acetylene) was introduced. And carburizing gas flow rate and time were adjusted and carburized so that an effective hardened layer depth might be set to 0.7 mm, when critical hardness is set to 513 Hv.
Next, the furnace temperature was adjusted to 850 ° C. and held for 30 minutes, and then the carburized steel piece was immersed in oil at 80 ° C. for oil quenching, and then left indoors to cool to room temperature.
Next, after holding at 180 ° C. for 120 minutes, air cooling was performed to perform tempering treatment.
Such a series of carburizing, quenching, and tempering treatments is referred to as carburizing treatment X.

このような浸炭処理Xを鋼片に施して得た試験片を用いて、4点曲げ試験を行った。
4点曲げ試験について、図2を用いて説明する。
試験片10を2個所の支持部14において下側から支持した状態で、2個所の入力部16において試験片10に対し下向きに荷重を加えて試験片10を曲げ変形させ、その後荷重を試験荷重の0.1倍まで取り除いて形状を元に戻した後、再び荷重を負荷することを、20Hzで繰り返す。すなわち、最小/最大応力比を0.1の4点曲げ試験疲労試験である。また、試験応力を2629〜1260MPa、応力集中係数を1.87とした。
そして、最大応力を2629MPaとして繰り返し負荷をかけ、破断するまでの繰り返し回数を寿命とし、この寿命によって低サイクル疲労特性を評価した。
また、繰り返し、1×107回の負荷をかけても破断しない応力の最大値を求め、この値を高サイクル疲労強度とした。
結果を第1表に示す。
The four-point bending test was performed using the test piece obtained by giving such a carburizing process X to a steel piece.
The 4-point bending test will be described with reference to FIG.
In a state where the test piece 10 is supported from the lower side at the two support portions 14, a load is applied downward to the test piece 10 at the two input portions 16 to bend and deform the test piece 10, and then the load is used as a test load After removing up to 0.1 times of and restoring the shape, repeating loading again is repeated at 20 Hz. That is, it is a four-point bending test fatigue test with a minimum / maximum stress ratio of 0.1. The test stress was 2629 to 1260 MPa, and the stress concentration factor was 1.87.
Then, the maximum stress was set to 2629 MPa, load was repeatedly applied, and the number of repetitions until breakage was regarded as the life, and the low cycle fatigue characteristics were evaluated by this life.
In addition, the maximum value of the stress that does not break even if applied repeatedly 1 × 10 7 times is determined, and this value is taken as the high cycle fatigue strength.
The results are shown in Table 1.

<表面C濃度>
前述の鋼片に浸炭処理Xを施して得た試験片を試験部において長手方向に垂直な方向にて切断し、得られた円形の断面が露出するように樹脂内に埋め込み、その断面を研磨した。次に、円形の断面における最外周から中心方向へ4μmまでのリング状部分(つまり、試験片の側面から深さ4μmまでの部分)における9点のC濃度をEPMAを用いて分析した。そして、それらの単純平均値を求め、表層C濃度とした。
結果を第1表に示す。
<Surface C concentration>
A test piece obtained by subjecting the above-described steel piece to carburizing treatment X is cut in a direction perpendicular to the longitudinal direction in the test section, embedded in a resin so that the obtained circular cross section is exposed, and the cross section is polished did. Next, the C concentration at nine points in the ring-like portion (that is, the portion from the side of the test piece to the depth 4 μm) from the outermost to the center in the circular cross section was analyzed using EPMA. And the simple average value of those was calculated | required and it was set as surface-layer C density | concentration.
The results are shown in Table 1.

<表層硬さ>
前述の鋼片に浸炭処理Xを施して得た試験片を試験部において長手方向に垂直な方向にて切断した。そして、得られた円形の断面における最外周から中心方向へ0.05mmの位置で荷重300gのビッカース硬さを3回測定し、それらを単純平均して、その試験片のビッカース硬さとした。
結果を第1表に示す。
<Surface hardness>
A test piece obtained by subjecting the above-described steel piece to carburizing treatment X was cut in a direction perpendicular to the longitudinal direction in the test section. Then, a Vickers hardness of 300 g load was measured three times at a position of 0.05 mm from the outermost periphery to the center of the obtained circular cross section, and they were simply averaged to determine the Vickers hardness of the test piece.
The results are shown in Table 1.

<残留オーステナイト体積率の測定>
前述の鋼片に浸炭処理Xを施して得た試験片の試験部表面をJIS−H0400 3004に規定される電解研磨法によって深さ0.05mmまで研磨した。そして、その研磨面についてX線回折測定を行った。X線の測定により得られたフェライトの(200)(211)のピーク強度とオーステナイトの(200)(220)(311)のピーク強度を求め、そのピーク強度比から残留オーステナイト体積率(vol%)を算出した。
結果を第1表に示す。
<Measurement of volume fraction of retained austenite>
The test piece surface of a test piece obtained by subjecting the above-described steel piece to carburizing treatment X was polished to a depth of 0.05 mm by the electrolytic polishing method defined in JIS-H0400 3004. Then, X-ray diffraction measurement was performed on the polished surface. The peak strength of ferrite (200) (211) and that of austenite (200) (220) (311) are determined by X-ray measurement, and the volume ratio of retained austenite (vol%) is determined from the peak intensity ratio. Was calculated.
The results are shown in Table 1.

Figure 2019077916
Figure 2019077916

試験片1は、γcalcが23〜48を満たしていないため、本発明の範囲外である。この場合、低サイクル疲労強度および高サイクル疲労強度が共に低くなった。 Test piece 1 is out of the scope of the present invention because γ calc does not satisfy 23 to 48. In this case, both low cycle fatigue strength and high cycle fatigue strength were low.

試験片2は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   Test piece 2 is within the scope of the present invention, and both low cycle fatigue strength and high cycle fatigue strength are high.

試験片3は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 3 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

試験片4は、表層C濃度が0.75質量%を超しているため、本発明の範囲外である。この場合、低サイクル疲労強度が低くなった。   The test piece 4 is out of the scope of the present invention because the surface C concentration exceeds 0.75 mass%. In this case, the low cycle fatigue strength decreased.

試験片5は、表層C濃度が0.75質量%を超しており、加えてγcalcが23〜48を満たしていないため、本発明の範囲外である。この場合、低サイクル疲労強度が低くなった。 The test piece 5 is out of the scope of the present invention because the surface C concentration exceeds 0.75 mass%, and additionally, γ calc does not satisfy 23 to 48. In this case, the low cycle fatigue strength decreased.

試験片6は、表層C濃度が0.40質量%未満であり、加えてγcalcが23〜48を満たしていないため、本発明の範囲外である。この場合、高サイクル疲労強度が低くなった。 The test piece 6 is out of the scope of the present invention because the surface C concentration is less than 0.40% by mass, and additionally, γ calc does not satisfy 23 to 48. In this case, the high cycle fatigue strength decreased.

試験片7は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 7 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片8は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 8 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片9は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 9 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片10は、γcalcが25〜45を満たしていないため、本発明の範囲外である。この場合、高サイクル疲労強度が共に低くなった。 Test piece 10 is out of the scope of the present invention because γ calc does not satisfy 25-45. In this case, both high cycle fatigue strength decreased.

試験片11は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 11 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

試験片12は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   Test piece 12 is within the scope of the present invention, and both low cycle fatigue strength and high cycle fatigue strength are enhanced.

試験片13は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 13 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

試験片14は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 14 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片15は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 15 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片16は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 16 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

試験片17は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 17 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片18は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 18 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片19は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 19 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片20は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 20 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

試験片21は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 21 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片22は、Cr濃度が1.5質量%を超しており、本発明の範囲外である。この場合、高サイクル疲労強度および低サイクル疲労強度が低くなった。   The test piece 22 has a Cr concentration of more than 1.5% by mass, which is outside the scope of the present invention. In this case, high cycle fatigue strength and low cycle fatigue strength decreased.

試験片23は、Mo濃度が0.3質量%未満でありため、本発明の範囲外である。この場合、焼入性が低下し、高サイクル疲労強度および低サイクル疲労強度が低くなった。   The test piece 23 is out of the scope of the present invention because the Mo concentration is less than 0.3% by mass. In this case, the hardenability decreased, and the high cycle fatigue strength and the low cycle fatigue strength decreased.

試験片24は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 24 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片25は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 25 is within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength are high.

試験片26は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   Test pieces 26 were within the scope of the present invention, and both low cycle fatigue strength and high cycle fatigue strength were high.

試験片27は、本発明の範囲内であり、低サイクル疲労強度および高サイクル疲労強度が共に高くなった。   The test piece 27 was within the scope of the present invention, and both the low cycle fatigue strength and the high cycle fatigue strength were high.

本発明の部材として最終減速機(ファイルドライブギア、特にドライブピニオンギア)が挙げられる。   The final reduction gear (file drive gear, in particular, drive pinion gear) can be mentioned as a member of the present invention.

1 鋼片
2 試験部
10 試験片
12 試験部
14 支持部
16 入力部
1 Steel billet 2 Test section 10 Test piece 12 Test section 14 Support section 16 Input section

Claims (2)

質量%表示で、
C:0.13〜0.38%、
Si:1.5%以下、
Cu:0.5%以下、
Ni:0.15%以下、
Cr:0.3〜1.5%、
Mo:0.3〜0.8%、
Mn:2.0〜5.0%、
s−Al:0.01〜0.050%、
残部:Feおよび不可避的不純物
の組成からなり、
浸炭ガスとしてアセチレンを用い、浸炭温度を950℃とし、限界硬さを513Hvとしたときの有効硬化層深さが0.7mmとなる浸炭ガス流量および浸炭時間とする浸炭処理を施し、その後、80℃の油に浸漬する焼入れをし、さらに、180℃で120分間保持した後、空冷する焼戻しを行うと、
表面C濃度を[C]と表した場合に、[C]は0.40〜0.75質量%であり、加えて、
γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}
で定義されるγcalcが23〜48を満たす浸炭部材が得られる、浸炭用鋼材。
In mass% indication,
C: 0.13 to 0.38%,
Si: 1.5% or less,
Cu: 0.5% or less,
Ni: 0.15% or less,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 0.8%,
Mn: 2.0 to 5.0%,
s-Al: 0.01 to 0.050%,
Remainder: Composed of Fe and inevitable impurities
Acetylene is used as carburizing gas, the carburizing temperature is 950 ° C, and the carburizing gas flow rate and carburizing time is 0.7mm when the effective hardened layer depth when the critical hardness is 513 Hv is given, and then 80 When hardening is performed by immersion in oil of ° C. and then holding at 180 ° C. for 120 minutes, tempering is performed by air cooling,
When the surface C concentration is represented as [C], [C] is 0.40 to 0.75 mass%, and
γ calc = 1.8 × exp {−0.11 × (795-823 [C] −30.4 Mn + 283)}
A steel material for carburizing, wherein a carburized member satisfying γ calc defined in 23 satisfying 23 to 48 is obtained.
質量%表示で、
C:0.13〜0.38%、
Si:1.5%以下、
Cu:0.5%以下、
Ni:0.15%以下、
Cr:0.3〜1.5%、
Mo:0.3〜0.8%、
Mn:2.0〜5.0%、
s−Al:0.01〜0.050%、
残部:Feおよび不可避的不純物
の組成からなり、
表面C濃度を[C]と表した場合に、[C]は0.40〜0.75質量%であり、加えて、
γcalc=1.8×exp{−0.11×(795−823[C]−30.4Mn+283)}
で定義されるγcalcが23〜48を満たす、浸炭部材。
In mass% indication,
C: 0.13 to 0.38%,
Si: 1.5% or less,
Cu: 0.5% or less,
Ni: 0.15% or less,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 0.8%,
Mn: 2.0 to 5.0%,
s-Al: 0.01 to 0.050%,
Remainder: Composed of Fe and inevitable impurities
When the surface C concentration is represented as [C], [C] is 0.40 to 0.75 mass%, and
γ calc = 1.8 × exp {−0.11 × (795-823 [C] −30.4 Mn + 283)}
A carburized member, wherein γ calc satisfies 23 to 48 as defined in.
JP2017205090A 2017-10-24 2017-10-24 Steel material for carburization and carburization member Pending JP2019077916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205090A JP2019077916A (en) 2017-10-24 2017-10-24 Steel material for carburization and carburization member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205090A JP2019077916A (en) 2017-10-24 2017-10-24 Steel material for carburization and carburization member

Publications (1)

Publication Number Publication Date
JP2019077916A true JP2019077916A (en) 2019-05-23

Family

ID=66627378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205090A Pending JP2019077916A (en) 2017-10-24 2017-10-24 Steel material for carburization and carburization member

Country Status (1)

Country Link
JP (1) JP2019077916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862433A (en) * 2021-09-26 2021-12-31 汉德车桥(株洲)齿轮有限公司 Spiral bevel gear grain refining control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862433A (en) * 2021-09-26 2021-12-31 汉德车桥(株洲)齿轮有限公司 Spiral bevel gear grain refining control method

Similar Documents

Publication Publication Date Title
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
KR101482473B1 (en) Steel for carburizing, carburized steel component, and method for producing same
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
US20170058376A1 (en) Rolled material for high strength spring, and wire for high strength spring
WO2012108461A1 (en) Steel for carburizing, carburized steel component, and method for producing same
JPWO2011111872A1 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JPWO2010137607A1 (en) Carburized parts and manufacturing method thereof
KR20150126699A (en) Case-hardening steel material and case-hardening steel member
JP2011256456A (en) Method for manufacturing steel for cold forging
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP2004315968A (en) Steel wire for high strength spring having excellent workability, and high strength spring
RU2647960C2 (en) Alloy, article and related methods of manufacture
JP2019183215A (en) Carburization machine component and manufacturing method therefor
JP2012052218A (en) Spring steel wire, method for producing the same, and spring
JP2019077916A (en) Steel material for carburization and carburization member
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP7013833B2 (en) Carburized parts
JP6208611B2 (en) High strength steel with excellent fatigue properties
JP2017020065A (en) Gear component and manufacturing method of gear component
JP7063070B2 (en) Carburized parts
JP5594521B2 (en) Steel for element of belt type CVT and element using the same
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP6282571B2 (en) Manufacturing method of high strength hollow spring steel
JP7063071B2 (en) Carburized parts