JP2019077720A - Hydroxyapatite derivative aggregate - Google Patents
Hydroxyapatite derivative aggregate Download PDFInfo
- Publication number
- JP2019077720A JP2019077720A JP2019014457A JP2019014457A JP2019077720A JP 2019077720 A JP2019077720 A JP 2019077720A JP 2019014457 A JP2019014457 A JP 2019014457A JP 2019014457 A JP2019014457 A JP 2019014457A JP 2019077720 A JP2019077720 A JP 2019077720A
- Authority
- JP
- Japan
- Prior art keywords
- hap
- particles
- antibacterial
- hydroxyapatite
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical class [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 title claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 202
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 114
- -1 silver ions Chemical group 0.000 claims abstract description 80
- 229910052709 silver Inorganic materials 0.000 claims abstract description 34
- 239000004332 silver Substances 0.000 claims abstract description 31
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 11
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims description 62
- 230000000845 anti-microbial effect Effects 0.000 claims description 26
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 17
- 241000588724 Escherichia coli Species 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 11
- 230000001954 sterilising effect Effects 0.000 claims description 10
- 244000005700 microbiome Species 0.000 claims description 8
- 238000004659 sterilization and disinfection Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 15
- 230000002411 adverse Effects 0.000 abstract description 8
- 230000006870 function Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000011164 primary particle Substances 0.000 description 113
- 239000000243 solution Substances 0.000 description 96
- 238000000034 method Methods 0.000 description 87
- 239000003795 chemical substances by application Substances 0.000 description 66
- 230000003141 anti-fusion Effects 0.000 description 57
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 44
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 42
- 238000010304 firing Methods 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 239000000203 mixture Substances 0.000 description 36
- 239000011575 calcium Substances 0.000 description 31
- 238000002156 mixing Methods 0.000 description 31
- 150000001875 compounds Chemical class 0.000 description 30
- 239000002904 solvent Substances 0.000 description 30
- 230000008569 process Effects 0.000 description 29
- 241000894006 Bacteria Species 0.000 description 27
- 238000011156 evaluation Methods 0.000 description 25
- 229920000642 polymer Polymers 0.000 description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 150000002500 ions Chemical class 0.000 description 24
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000011780 sodium chloride Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 20
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000002253 acid Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 229910052698 phosphorus Inorganic materials 0.000 description 14
- 239000011574 phosphorus Substances 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 13
- 239000000945 filler Substances 0.000 description 13
- 230000004927 fusion Effects 0.000 description 13
- 229910052783 alkali metal Inorganic materials 0.000 description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 12
- 229910052723 transition metal Inorganic materials 0.000 description 12
- 238000002835 absorbance Methods 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000011775 sodium fluoride Substances 0.000 description 11
- 235000013024 sodium fluoride Nutrition 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 239000003125 aqueous solvent Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 9
- 239000012567 medical material Substances 0.000 description 9
- 239000011259 mixed solution Substances 0.000 description 9
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 9
- 239000011163 secondary particle Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229920002125 Sokalan® Polymers 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000004323 axial length Effects 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 8
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 8
- 239000004584 polyacrylic acid Substances 0.000 description 8
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 230000003385 bacteriostatic effect Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 150000003624 transition metals Chemical class 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 150000001342 alkaline earth metals Chemical class 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 229940043430 calcium compound Drugs 0.000 description 6
- 150000001674 calcium compounds Chemical class 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 150000007942 carboxylates Chemical class 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 6
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 6
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 5
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 5
- 239000000920 calcium hydroxide Substances 0.000 description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 5
- 235000011116 calcium hydroxide Nutrition 0.000 description 5
- 239000001506 calcium phosphate Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 235000019837 monoammonium phosphate Nutrition 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 125000000542 sulfonic acid group Chemical group 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000191967 Staphylococcus aureus Species 0.000 description 4
- 241000193996 Streptococcus pyogenes Species 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002296 dynamic light scattering Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 239000005548 dental material Substances 0.000 description 3
- 239000002781 deodorant agent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 229940125777 fusion inhibitor Drugs 0.000 description 3
- BQZGVMWPHXIKEQ-UHFFFAOYSA-L iron(ii) iodide Chemical compound [Fe+2].[I-].[I-] BQZGVMWPHXIKEQ-UHFFFAOYSA-L 0.000 description 3
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 3
- 229910001641 magnesium iodide Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 235000011118 potassium hydroxide Nutrition 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229940100890 silver compound Drugs 0.000 description 3
- 150000003379 silver compounds Chemical class 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 241001529453 unidentified herpesvirus Species 0.000 description 3
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 2
- 241000193755 Bacillus cereus Species 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 2
- 241000606161 Chlamydia Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 241000588769 Proteus <enterobacteria> Species 0.000 description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 241000191963 Staphylococcus epidermidis Species 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229910001640 calcium iodide Inorganic materials 0.000 description 2
- 229940046413 calcium iodide Drugs 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- OIWCPLBCWJUCMR-UHFFFAOYSA-N 3-amino-4-chlorobenzenesulfonamide Chemical compound NC1=CC(S(N)(=O)=O)=CC=C1Cl OIWCPLBCWJUCMR-UHFFFAOYSA-N 0.000 description 1
- PMYDPQQPEAYXKD-UHFFFAOYSA-N 3-hydroxy-n-naphthalen-2-ylnaphthalene-2-carboxamide Chemical compound C1=CC=CC2=CC(NC(=O)C3=CC4=CC=CC=C4C=C3O)=CC=C21 PMYDPQQPEAYXKD-UHFFFAOYSA-N 0.000 description 1
- RBWNDBNSJFCLBZ-UHFFFAOYSA-N 7-methyl-5,6,7,8-tetrahydro-3h-[1]benzothiolo[2,3-d]pyrimidine-4-thione Chemical compound N1=CNC(=S)C2=C1SC1=C2CCC(C)C1 RBWNDBNSJFCLBZ-UHFFFAOYSA-N 0.000 description 1
- 241000588625 Acinetobacter sp. Species 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000606124 Bacteroides fragilis Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 1
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- 239000004343 Calcium peroxide Substances 0.000 description 1
- 241000589877 Campylobacter coli Species 0.000 description 1
- 241000589875 Campylobacter jejuni Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241001660259 Cereus <cactus> Species 0.000 description 1
- 201000005019 Chlamydia pneumonia Diseases 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000588919 Citrobacter freundii Species 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241000193449 Clostridium tetani Species 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 241000186427 Cutibacterium acnes Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- 241000606790 Haemophilus Species 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 241000700586 Herpesviridae Species 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- SPAGIJMPHSUYSE-UHFFFAOYSA-N Magnesium peroxide Chemical compound [Mg+2].[O-][O-] SPAGIJMPHSUYSE-UHFFFAOYSA-N 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 241000187681 Nocardia sp. Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910003873 O—P—O Inorganic materials 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- ZSILVJLXKHGNPL-UHFFFAOYSA-L S(=S)(=O)([O-])[O-].[Ag+2] Chemical compound S(=S)(=O)([O-])[O-].[Ag+2] ZSILVJLXKHGNPL-UHFFFAOYSA-L 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241001354013 Salmonella enterica subsp. enterica serovar Enteritidis Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 208000019802 Sexually transmitted disease Diseases 0.000 description 1
- 241000607764 Shigella dysenteriae Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000193985 Streptococcus agalactiae Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193990 Streptococcus sp. 'group B' Species 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- 241001135235 Tannerella forsythia Species 0.000 description 1
- 241000589892 Treponema denticola Species 0.000 description 1
- 241001045770 Trichophyton mentagrophytes Species 0.000 description 1
- 241000223229 Trichophyton rubrum Species 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 241000607272 Vibrio parahaemolyticus Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- NCHUFZYUFAWBQI-UHFFFAOYSA-L [Se](=O)(=O)([O-])[O-].[Fe+2] Chemical compound [Se](=O)(=O)([O-])[O-].[Fe+2] NCHUFZYUFAWBQI-UHFFFAOYSA-L 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- PRORZGWHZXZQMV-UHFFFAOYSA-N azane;nitric acid Chemical compound N.O[N+]([O-])=O PRORZGWHZXZQMV-UHFFFAOYSA-N 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 230000008952 bacterial invasion Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 229940059251 calcium bromide Drugs 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229940087373 calcium oxide Drugs 0.000 description 1
- LHJQIRIGXXHNLA-UHFFFAOYSA-N calcium peroxide Chemical compound [Ca+2].[O-][O-] LHJQIRIGXXHNLA-UHFFFAOYSA-N 0.000 description 1
- 235000019402 calcium peroxide Nutrition 0.000 description 1
- QXIKMJLSPJFYOI-UHFFFAOYSA-L calcium;dichlorite Chemical compound [Ca+2].[O-]Cl=O.[O-]Cl=O QXIKMJLSPJFYOI-UHFFFAOYSA-L 0.000 description 1
- FAYYUXPSKDFLEC-UHFFFAOYSA-L calcium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [Ca+2].[O-]S([O-])(=O)=S FAYYUXPSKDFLEC-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- XALJLKNTPLIEGK-UHFFFAOYSA-L dioxido-oxo-sulfanylidene-$l^{6}-sulfane;iron(2+) Chemical compound [Fe+2].[O-]S([O-])(=O)=S XALJLKNTPLIEGK-UHFFFAOYSA-L 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- VSBZFKZETWQIAT-UHFFFAOYSA-L iron(2+) dichlorite Chemical compound [Fe+2].[O-]Cl=O.[O-]Cl=O VSBZFKZETWQIAT-UHFFFAOYSA-L 0.000 description 1
- XPAKUPYDARYMKI-UHFFFAOYSA-N iron(2+) dihypochlorite Chemical compound Cl[O-].[Fe+2].Cl[O-] XPAKUPYDARYMKI-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- VPBPOXIFRZBJEU-UHFFFAOYSA-L iron(2+);dinitrite Chemical compound [Fe+2].[O-]N=O.[O-]N=O VPBPOXIFRZBJEU-UHFFFAOYSA-L 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229960004995 magnesium peroxide Drugs 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- NWAPVVCSZCCZCU-UHFFFAOYSA-L magnesium;dichlorite Chemical compound [Mg+2].[O-]Cl=O.[O-]Cl=O NWAPVVCSZCCZCU-UHFFFAOYSA-L 0.000 description 1
- YZQBYALVHAANGI-UHFFFAOYSA-N magnesium;dihypochlorite Chemical compound [Mg+2].Cl[O-].Cl[O-] YZQBYALVHAANGI-UHFFFAOYSA-N 0.000 description 1
- AAJBNRZDTJPMTJ-UHFFFAOYSA-L magnesium;dinitrite Chemical compound [Mg+2].[O-]N=O.[O-]N=O AAJBNRZDTJPMTJ-UHFFFAOYSA-L 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VWCLCSQRZVBEJD-UHFFFAOYSA-L magnesium;selenate Chemical compound [Mg+2].[O-][Se]([O-])(=O)=O VWCLCSQRZVBEJD-UHFFFAOYSA-L 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007415 particle size distribution analysis Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical class [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical compound ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 208000030773 pneumonia caused by chlamydia Diseases 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- YAZJAPBTUDGMKO-UHFFFAOYSA-L potassium selenate Chemical compound [K+].[K+].[O-][Se]([O-])(=O)=O YAZJAPBTUDGMKO-UHFFFAOYSA-L 0.000 description 1
- VISKNDGJUCDNMS-UHFFFAOYSA-M potassium;chlorite Chemical compound [K+].[O-]Cl=O VISKNDGJUCDNMS-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229940055019 propionibacterium acne Drugs 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229940007046 shigella dysenteriae Drugs 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000011655 sodium selenate Substances 0.000 description 1
- 235000018716 sodium selenate Nutrition 0.000 description 1
- 229960001881 sodium selenate Drugs 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 229940105296 zinc peroxide Drugs 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- QPQOIFMSSWHRJQ-UHFFFAOYSA-L zinc;dichlorite Chemical compound [Zn+2].[O-]Cl=O.[O-]Cl=O QPQOIFMSSWHRJQ-UHFFFAOYSA-L 0.000 description 1
- OXCRJCXSFXJLFS-UHFFFAOYSA-N zinc;dihypochlorite Chemical compound [Zn+2].Cl[O-].Cl[O-] OXCRJCXSFXJLFS-UHFFFAOYSA-N 0.000 description 1
- HHIMNFJHTNVXBJ-UHFFFAOYSA-L zinc;dinitrite Chemical compound [Zn+2].[O-]N=O.[O-]N=O HHIMNFJHTNVXBJ-UHFFFAOYSA-L 0.000 description 1
- VIFYIFQGOLPNHA-UHFFFAOYSA-L zinc;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [Zn+2].[O-]S([O-])(=O)=S VIFYIFQGOLPNHA-UHFFFAOYSA-L 0.000 description 1
- GQLBMRKEAODAKR-UHFFFAOYSA-L zinc;selenate Chemical compound [Zn+2].[O-][Se]([O-])(=O)=O GQLBMRKEAODAKR-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Dental Preparations (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本発明は、ハイドロキシアパタイトの結晶構造の一部が他のイオンで置換された抗菌性ハイドロキシアパタイト誘導体粒子からなるハイドロキシアパタイト誘導体粒子群に関する。 The present invention relates to a hydroxyapatite derivative particle group consisting of antibacterial hydroxyapatite derivative particles in which a part of the crystal structure of hydroxyapatite is substituted by another ion.
従来から、溶媒中で単結晶一次粒子として存在し、分散性の高いセラミック粒子、特に生体適合性、生体組織に対する密着性あるいは接着性を有し、生体分解吸収性の低い、医療用材料に有用である単結晶ハイドロキシアパタイト(Ca10(PO4)6(OH)2、以下、「HAp」と称する。)を始めとするリン酸カルシウム焼成体粒子群(セラミック粒子群)が知られていた(例えば、特許文献1を参照)。このような単結晶HApの用途としては、骨充填剤、歯科用充填剤、薬物徐放剤等の歯科用材料や、医療用材料や、菌体、酵母等の固定化担体、カラムクロマトグラフィー用充填剤、消臭剤等の吸着剤等や、ナノメートルサイズのドラッグデリバリーシステム(ナノDDS)等の各種用途が知られていた。 Conventionally, it is useful as a medical material which exists as single crystal primary particles in a solvent and has high dispersibility, in particular, biocompatibility, adhesiveness to a living tissue, or adhesiveness, and low bioabsorbability. Calcium phosphate calcined particles (ceramic particles) including single crystal hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , hereinafter referred to as “HAp”) that is See Patent Document 1). As applications of such single crystal HAp, dental materials such as bone fillers, dental fillers, drug sustained release agents, medical materials, immobilized carriers such as bacteria, yeast, etc., for column chromatography Various applications such as fillers, adsorbents such as deodorants, etc., and nanometer-sized drug delivery systems (nano DDS) have been known.
ここで、HAp等のリン酸カルシウム焼成体粒子群を、骨充填剤、歯科用充填剤、薬物徐放剤等の歯科用材料や、医療用材料や、タンパク質、アミノ酸、多糖類、生理活性物質等の固定化担体、カラムクロマトグラフィー用充填剤、消臭剤等の吸着剤等や、ナノメートルサイズのドラッグデリバリーシステム(ナノDDS)等の用途に利用する場合、抗菌作用が要求されるケースが多い。このようなケースでは、これまでは、例えば、Ag等の抗菌性金属や当該金属のイオンやその他の抗菌成分をHAp等と混合する等して、単純に組み合わせて用いることが一般的であった。 Here, calcium phosphate calcined particles such as HAp are used as dental fillers such as bone fillers, dental fillers, drug sustained release agents, medical materials, proteins, amino acids, polysaccharides, physiologically active substances, etc. When used for applications such as immobilized carriers, packing agents for column chromatography, adsorbents such as deodorants, and nanometer-sized drug delivery systems (nano DDS), in many cases, an antibacterial action is required. In such a case, until now, it has been common to use an antibacterial metal such as Ag, an ion of the metal and other antibacterial components simply by combining it with HAp or the like. .
しかしながら、上記のように、単にAg等の抗菌性金属やその他の抗菌成分をHApと単純に組み合わせて用いた場合、抗菌性が強すぎるため、菌等に感染した組織のみならず、健全な組織にも悪影響を与える、という問題があった。 However, as described above, when an antimicrobial metal such as Ag or other antimicrobial component is simply used in combination with HAp, since the antimicrobial activity is too strong, not only tissues infected with bacteria etc., but also healthy tissues Also had an adverse effect.
そこで、本発明は、上記事情に鑑みてなされたものであり、優れた生体適合性、生体組織に対する密着性あるいは接着性、低い生体分解吸収性等のHApの機能を維持したまま、健全な組織に悪影響を殆ど与えることのないマイルドな抗菌性を有するハイドロキシアパタイト誘導体粒子からなるハイドロキシアパタイト誘導体粒子群を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and it is a sound tissue while maintaining the functions of HAp such as excellent biocompatibility, adhesiveness or adhesion to a living tissue, and low bioresorbability. It is an object of the present invention to provide a hydroxyapatite derivative particle group consisting of hydroxyapatite derivative particles having mild antibacterial properties which hardly adversely affect the
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、銀イオン(Ag+)またはフッ化物イオン(F−)をHApの結晶構造中に組み込むことにより、HApの結晶構造の一部を銀イオンまたはフッ化物イオンで置換したAg−HAp、F−HApといったHAp誘導体がマイルドな抗菌性を有することを見出した。また、本発明者らは、このようなマイルドな抗菌性を有するHAp誘導体の粒子からなるHAp誘導体粒子群を抗菌成分として用いることで、優れた生体適合性、生体組織に対する密着性あるいは接着性、低い生体分解吸収性等のHApの機能を維持したまま、健全な組織に悪影響を殆ど与えることのないマイルドな抗菌性を有する材料が得られることを見出した。以上のような知見に基づいて本発明が完成された。 As a result of intensive studies to solve the above problems, the present inventors have found that the crystal structure of HAp can be achieved by incorporating silver ion (Ag + ) or fluoride ion (F − ) into the crystal structure of HAp. It was found that HAp derivatives such as Ag-HAp and F-HAp in which a part was replaced with silver ion or fluoride ion had mild antibacterial activity. In addition, the inventors of the present invention have excellent biocompatibility, adhesiveness to living tissue, or adhesiveness by using HAp derivative particles consisting of particles of HAp derivatives having such mild antibacterial properties as an antibacterial component. It has been found that while maintaining the function of HAp such as low bioresorbability, it is possible to obtain a material having mild antibacterial properties that hardly adversely affect healthy tissue. The present invention has been completed based on the above findings.
すなわち、本発明は、ハイドロキシアパタイトの結晶構造中のカルシウムイオンの少なくとも一部が銀イオンに置換された抗菌性ハイドロキシアパタイト誘導体粒子からなることを特徴とする、ハイドロキシアパタイト誘導体粒子群(第1のハイドロキシアパタイト誘導体粒子群)である。
前記第1のハイドロキシアパタイト誘導体粒子群において、5.0×104個/μLの所定の微生物と、銀イオン換算で2.47mmol/L以上の濃度で前記抗菌性ハイドロキシアパタイト誘導体粒子と、を共存させた分散液を調製し、当該分散液を培地にスポットし、37℃で1日培養した後の殺菌率が90%以上であることが好ましい。
前記第1のハイドロキシアパタイト誘導体粒子群において、前記抗菌性ハイドロキシアパタイト誘導体粒子のXRDにより定量したハイドロキシアパタイト結晶相純度が90%以上であることが好ましい。
また、本発明は、ハイドロキシアパタイトの結晶構造中の水酸化物イオンの少なくとも一部がフッ化物イオンに置換された抗菌性ハイドロキシアパタイト誘導体粒子からなることを特徴とする、ハイドロキシアパタイト誘導体粒子群(第2のハイドロキシアパタイト誘導体粒子群)である。
前記第2のハイドロキシアパタイト誘導体粒子群において、5.0×104個/μLの所定の微生物と、フッ化物イオン換算で89.3mmol/L以上の濃度で前記抗菌性ハイドロキシアパタイト誘導体粒子と、を共存させた分散液を調製し、当該分散液を培地にスポットし、37℃で1日培養した後の殺菌率が50%以上であることが好ましい。
前記第2のハイドロキシアパタイト誘導体粒子群において、5.0×104個/μLの所定の微生物と、フッ化物イオン換算で178.6mmol/L以上の濃度で前記抗菌性ハイドロキシアパタイト誘導体粒子と、を共存させた分散液を調製し、当該分散液を培地にスポットし、37℃で1日培養した後の殺菌率が95%以上であることが好ましい。
前記第1及び第2のハイドロキシアパタイト誘導体粒子群において、前記抗菌性ハイドロキシアパタイト誘導体粒子が、焼成ハイドロキシアパタイト誘導体粒子であることが好ましい。
前記第1及び第2のハイドロキシアパタイト誘導体粒子群において、前記抗菌性ハイドロキシアパタイト誘導体粒子の粒子径が、10nm〜1,000nmの範囲内であることが好ましい。
That is, according to the present invention, hydroxyapatite derivative particles (the first hydroxyapatite derivative particle group) are characterized in that they consist of antibacterial hydroxyapatite derivative particles in which at least a part of calcium ions in the crystal structure of hydroxyapatite is substituted by silver ions. Apatite derivative particles).
In the first hydroxyapatite derivative particle group, a coexistence of a predetermined microorganism of 5.0 × 10 4 / μL and the antimicrobial hydroxyapatite derivative particles at a concentration of 2.47 mmol / L or more in terms of silver ion It is preferable that the dispersion after preparation is spotted, the dispersion is spotted on a culture medium, and the sterilization rate after culturing for 1 day at 37.degree. C. is 90% or more.
In the first hydroxyapatite derivative particle group, it is preferable that the hydroxyapatite crystal phase purity determined by the XRD of the antibacterial hydroxyapatite derivative particles is 90% or more.
Further, the present invention is characterized in that the hydroxyapatite derivative particles according to the present invention are composed of antibacterial hydroxyapatite derivative particles in which at least a part of hydroxide ions in the crystal structure of hydroxyapatite is substituted with fluoride ions. 2 hydroxyapatite derivative particles).
In the second hydroxyapatite derivative particle group, a predetermined microorganism of 5.0 × 10 4 / μL and the antimicrobial hydroxyapatite derivative particles at a concentration of 89.3 mmol / L or more in terms of fluoride ion, It is preferable that the dispersion which made the coexistence be prepared, the said dispersion is spotted on a culture medium, and the sterilization rate after culture | cultivating at 37 degreeC for 1 day is 50% or more.
In the second hydroxyapatite derivative particle group, a predetermined microorganism of 5.0 × 10 4 / μL and the antimicrobial hydroxyapatite derivative particles at a concentration of 178.6 mmol / L or more in terms of fluoride ion, It is preferable that the dispersion which made the coexistence be prepared, the said dispersion is spotted on a culture medium, and the sterilization rate after culture | cultivating at 37 degreeC for 1 day is 95% or more.
In the first and second hydroxyapatite derivative particle groups, the antibacterial hydroxyapatite derivative particles are preferably calcined hydroxyapatite derivative particles.
In the first and second hydroxyapatite derivative particle groups, the particle diameter of the antibacterial hydroxyapatite derivative particles is preferably in the range of 10 nm to 1,000 nm.
本発明によれば、HApの結晶構造の一部を銀イオンまたはフッ化物イオンで置換したAg−HAp、F−HApといったHAp誘導体の粒子からなるHAp誘導体粒子群を抗菌成分として用いることにより、HApの機能を維持したままマイルドな抗菌性を有する材料を得ることができる。また、このようなマイルドな抗菌性により、菌等に感染していない健全な組織には殆ど悪影響を与えることなく、殺菌作用や静菌作用を発揮することが可能となる。 According to the present invention, HAp derivative particles composed of HAp derivative particles such as Ag-HAp and F-HAp in which a part of the crystal structure of HAp is substituted with silver ions or fluoride ions are used as antibacterial components. It is possible to obtain a material having mild antibacterial properties while maintaining the function of In addition, such mild antibacterial properties make it possible to exert bactericidal action and bacteriostatic action with little adverse effect on healthy tissues not infected with bacteria and the like.
以下、図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本発明に係るHAp誘導体粒子群については、以下の順序で説明する。
1 HAp誘導体粒子群の構成
2 抗菌作用の原理
3 HAp誘導体粒子群の用途
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The HAp derivative particle group according to the present invention will be described in the following order.
1 Composition of HAp Derivative Particles 2 Principle of Antibacterial Action 3 Application of HAp Derivative Particles
≪HAp誘導体粒子群の構成≫
初めに、本発明に係るHAp誘導体粒子群の構成について説明する。本発明に係るHAp誘導体粒子群は、HApの結晶構造中に銀イオン又はフッ化物イオンを含むHAp誘導体粒子からなる。本発明者らが知見したところによれば、この銀イオン又はフッ化物イオンを含むHAp誘導体粒子群は、マイルドな抗菌性を有するものである。ここで、本明細書で言う「マイルドな抗菌性」とは、菌等に感染していない健全な組織には殆ど悪影響を与えることなく、菌等に対して殺菌作用や静菌作用を発揮することが可能な程度の抗菌性を意味する。言い換えると、「マイルドな抗菌性」とは、銀イオンを含むHAp誘導体に関しては、HAp誘導体粒子群が抗菌性を発揮するために必要な銀イオン量が、銀イオン単独で抗菌性を発揮するために必要な銀イオン量と比較して非常に多く、抗菌活性が抑制されている場合を意味する。また、フッ化物イオンを含むHAp誘導体に関しては、HAp誘導体粒子群が抗菌性を発揮するために必要なフッ化物イオン量が、広く抗菌性が認知されている銀イオンの濃度、及び、上記銀イオンを含むHAp誘導体中に含まれる銀イオン量と比較して非常に多く、抗菌活性が抑制されている場合を意味する。
«Configuration of HAp Derivative Particles»
First, the configuration of the HAp derivative particle group according to the present invention will be described. The HAp derivative particles according to the present invention consist of HAp derivative particles containing silver ions or fluoride ions in the crystal structure of HAp. According to the findings of the present inventors, the HAp derivative particles containing silver ions or fluoride ions have mild antibacterial properties. Here, "mild antibacterial activity" as referred to in the present specification exerts a bactericidal action or bacteriostatic action on bacteria and the like with almost no adverse effect on healthy tissues not infected with bacteria and the like. It means the degree of antibacterial that is possible. In other words, "mild antibacterial activity" means that, with regard to HAp derivatives containing silver ions, the amount of silver ions necessary for the HAp derivative particles to exhibit antibacterial activity exerts antibacterial activity by silver ions alone. This is very large compared to the amount of silver ion required, meaning that the antibacterial activity is suppressed. With respect to HAp derivatives containing fluoride ion, the amount of fluoride ion necessary for the HAp derivative particle group to exhibit the antibacterial property is a concentration of silver ion whose antibacterial property is widely recognized, and the above silver ion This means that the antibacterial activity is suppressed much more than the amount of silver ion contained in the HAp derivative containing
なお、本発明に係るHAp誘導体粒子群が抗菌性を発現可能な微生物(ここでは、狭義の「微生物」だけでなく、ウイルスや菌類をも含む概念である。)としては、例えば、大腸菌(Escherichia coli)、赤痢菌(Shigella dysenteriae)、肺炎桿菌(Klebsiella pneumoniae)、チフス菌(Salmonella typhimurium)、サルモネラ菌(Salmonella enteritidis)、ペスト菌(Yersinia. pestis )、腸炎エルシニア (Yersinia enterocolitica)、セラチア菌(Serratia marcescens)、プロテウス菌(Proteus, Providencia, Morganella)、シトロバクター菌(Citrobacter freundii)、コレラ菌 (Vibrio cholerae)、腸炎ビブリオ菌(Vibrio parahaemolyticus)、緑膿菌(Pseudomonas aeruginosa)、セパシア菌(Burkholderia (Pseudomonas) cepacia)、レジオネラ菌(Legionella pneumophila)、百日咳菌 (Bordetella pertussis)、淋菌 (Niserria gonorrhoeae)、髄膜炎菌 (Niserria meningitides)カタル球菌(Moraxella (Branhamella) catarrhalis)、インフルエンザ菌(Haemophilus influenzae)、バクテロイド属菌等の細菌(Bacteroides fragilis )、黄色ブドウ球菌(Staphylococcus aureus)、メチシリン耐性黄色ブドウ球菌(methicillin−resistant Staphylococcus aureus:MRSA)、古草菌(Bacillus subtilis)、セレウス菌(Bacillus cereus)、炭疽菌(Bacillus anthracis)、破傷風菌(Clostridium tetani)、ボツリヌス菌(Clostridium botulinum)、ウェルシュ菌(Clostridium perfringens )、リステリア菌(Listeria monocytogenes)、ジフテリア菌 (Corynebacterium diphthriae)、ノルカジア菌(Nocardia属菌 )、腸内細菌エンテロバクテリア(Enterobacter cloacae)、肺炎球菌(Streptococcus pneumoniae)、化膿レンサ球菌(Streptococcus pyogenes)、アシネトバクテリア菌(Acinetobacter calcoaceticus)、腸球菌(Enterococcus属菌)、バンコマイシン耐性腸球菌(vancomycin−resistant Enterococcus、VRE)、表皮ブドウ球菌(Staphylococcus epidermidis)、B群レンサ球菌(Streptococcus agalactiae)、結核菌(Mycobacterium tuberculosis)、アクネ菌(Propionibacterium acnes)、ピロリ菌(Helicobacter pylori)、カンピロバクター(Campylobacter jejuni, Campylobacter coli)、肺炎クラミジア(Chlamydia pneumonia)、性行為感染症クラミジア(Chlamydia trachomatis)、歯周病菌(Porphyromonas gingivalis, Treponema denticola, Tannerella forsythensis)などの細菌;白癬菌(Trichophyton rubrum, Trichophyton mentagrophytes)、アスペルギルス菌(Aspergillus fumigatus)、カンジダ菌(Candida albicans)、クリプトコッカス菌(Cryptococcus neoformans)等の真菌類;インフルエンザウイルス(influenzavirus) 、肝炎ウイルス(hepatitisvirus)、ヘルペスウイルス(Herpesviridae)、ヘルペスウイルス(herpesvirus)、アデノウイルス(adenovirus)、エイズウイルス(Human Immunodeficiency Virus:HIV)等のウイルス等が挙げられる。 In addition, as microorganisms (here, not only the “microorganisms” in a narrow sense but also a concept including viruses and fungi) in which the HAp derivative particles according to the present invention can exhibit antibacterial properties, for example, Escherichia coli (Escherichia) E. coli), Shigella dysenteriae, Klebsiella pneumoniae, Salmonella typhimurium, Salmonella enteritidis, Yersinia. ), Proteus (Proteus, Providencia, Morganel) a) Citrobacter (Citrobacter freundii), Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Burkholderia (Pseudomonas) cepacia, L. , Bordetella pertussis, Niserria gonorrhoeae, Niserria meningitides catarrhalis (Moraxella (Branhamella) catarrhalis), Haemophilus i bacteria (Bacteroides fragilis), Staphylococcus aureus (Staphylococcus aureus), methicillin-resistant Staphylococcus aureus (MRSA), Paleobacteria (Bacillus subtilis), Bacillus cereus (Bacereus cereus) ), Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Listeria monocytogenes, diphtheria bacteria (Corynebacterium diphthriae), Nocardia (Nocardia sp.), Enterobacteria enterobacteria (Enterobacter cloacae), Streptococcus pneumoniae, Streptococcus pyogenes, Acinetobacterium (Acinetobacter sp. Enterococcus), vancomycin-resistant Enterococci (VRE), Staphylococcus epidermidis (Staphylococcus epidermidis), Group B Streptococcus (Streptococcus agalactiae), Mycobacterium tuberculosis (My) Cacterium tuberculosis, Propionibacterium acnes, Helicobacter pylori, Campylobacter jejuni, Campylobacter coli, Pneumonia chlamydia (Chlamydia pneumonia), sexually transmitted disease Chlamydia traumatics Bacteria such as Treponema denticola, Tannerella forsythensis); Trichophyton rubrum, Trichophyton mentagrophytes, Aspergi Fungi such as Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, influenza virus (influenzavirus), hepatitis virus, herpes virus (Herpesviridae), herpes virus (herpesvirus), adenovirus Viruses (adenovirus), viruses such as AIDS virus (Human Immunodeficiency Virus (HIV)), etc. may be mentioned.
また、本発明に係るHAp誘導体粒子群を抗菌材料として用いる場合には、HAp誘導体粒子が水や有機溶媒等に溶解又は分散された液体状の抗菌材料であってもよく、HAp誘導体粒子を顆粒状、塊状、シート状などに加工した固体状の抗菌材料であってもよく、HAp誘導体粒子と他の材料とを混合したり、他の材料の表面にHAp誘導体粒子を偏在させたりした抗菌性を有する複合材料であってもよい。 When the HAp derivative particles according to the present invention are used as an antibacterial material, it may be a liquid antibacterial material in which the HAp derivative particles are dissolved or dispersed in water, an organic solvent or the like, and the HAp derivative particles are granulated. May be a solid antimicrobial material processed into a solid, a block, a sheet, etc. An antimicrobial property in which HAp derivative particles are mixed with another material, or HAp derivative particles are unevenly distributed on the surface of another material It may be a composite material having
本発明における抗菌性HAp誘導体としては、HApの結晶構造の一部が銀イオンに置換されたAg−HApと、HApの結晶構造の一部がフッ化物イオンに置換されたF−HApとがある。以下、Ag−HApとF−HApについて詳細に説明する。 The antimicrobial HAp derivatives in the present invention include Ag-HAp in which part of the crystal structure of HAp is substituted by silver ions, and F-HAp in which part of the crystal structure of HAp is substituted by fluoride ions. . Hereinafter, Ag-HAp and F-HAp will be described in detail.
ここで、本発明で用いるAg−HAp及びF−HApとしては、例えば、これらのHAp誘導体の粒子からなるHAp誘導体粒子群を医療用材料、高分子医療用材料に結合させる場合やクロマトグラフィー用の充填剤として利用する場合においては、生体内での安定性の向上や成形性を確保するため、HAp誘導体粒子群を焼成して得られる焼成HAp誘導体粒子群(焼成体)であることが好ましい。また、焼成HAp誘導体粒子群(焼成体)は結晶質であり、このような結晶質の焼成体を抗菌材料として用いることで、よりマイルドな抗菌性を発揮することができる。このように、焼成体の方が未焼成体よりも抗菌性がマイルドである理由は明らかではないが、本発明者らは、未焼成体は非晶質であるため、イオンの溶出速度が早くなるため、短期間に集中して抗菌作用が発現する、また、抗菌作用の発現に必要なイオン濃度が一時的に高まるため、生体組織への損傷リスクが高くなり、さらには、抗菌作用の発現に必要なイオン濃度を維持できる期間が短くなるためと推測している。なお、この焼成体はセラミックであり、ここでのセラミックとしては、狭義のセラミックのみならず、いわゆる「ニューセラミック」あるいは「ファインセラミック」を含む広義のセラミックをも意味する。なお、焼成方法の詳細については後述する。 Here, as Ag-HAp and F-HAp used in the present invention, for example, when HAp derivative particles consisting of particles of these HAp derivatives are bonded to medical materials, polymeric medical materials, or for chromatography In the case of using as a filler, in order to improve the stability in the living body and to ensure the formability, it is preferable to be a calcined HAp derivative particle group (sintered body) obtained by calcining the HAp derivative particle group. Further, the calcined HAp derivative particle group (sintered body) is crystalline, and by using such a crystalline sintered body as an antibacterial material, more mild antibacterial property can be exhibited. Thus, although it is not clear why the fired body is milder in antibacterial activity than the unfired body, the inventors of the present invention have a faster rate of ion elution because the unfired body is amorphous. As a result, the antibacterial action is concentrated in a short period of time, and the ion concentration necessary for the expression of the antibacterial action is temporarily increased, so that the risk of damage to the living tissue is increased, and the antibacterial action is further developed. It is estimated that the period of time to maintain the ion concentration required for In addition, this sintered body is a ceramic, and as the ceramic in this case, not only the ceramic in a narrow sense, but also a broad ceramic including so-called "new ceramic" or "fine ceramic" is meant. The details of the firing method will be described later.
また、焼成HAp誘導体の粒子の集合からなる焼成HAp誘導体粒子群は、後述する融着防止剤の作用によって一次粒子同士の融着が防止されているために、その過半数が一次粒子の状態を維持している。よって、当該焼成HAp誘導体粒子群を溶媒中に懸濁した際には、該焼成HAp誘導体粒子群の過半数が単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)で分散することができる。 In addition, since the fusion of primary particles is prevented by the action of the anti-fusion agent described later, the majority of the calcined HAp derivative particle group consisting of an assembly of particles of the calcined HAp derivative maintains the state of primary particles. doing. Therefore, when the calcined HAp derivative particle group is suspended in a solvent, primary particles in which a majority of the calcined HAp derivative particle group consists of single crystals, or primary particles consisting of the single crystals form an ionic interaction. It can be dispersed in aggregated particle mass (single crystal primary particles).
さらに、焼成HAp誘導体粒子群を医療用高分子基材に吸着させる場合は、分散性が高いことが重要である。また、クロマトグラフィー用充填剤として利用する場合は、表面積が高いことが重要である。本発明に係る焼成HAp誘導体粒子群は、その過半数が単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)であり、溶媒中で分散性が良く、二次粒子を形成していないためにその表面積も高い。したがって、本発明に係る焼成HAp誘導体粒子群は、特に上記用途に好適に利用することができる。 Furthermore, when the calcined HAp derivative particle group is adsorbed to a medical polymer base material, it is important that the dispersibility is high. In addition, when used as a chromatography filler, it is important that the surface area is high. The calcined HAp derivative particle group according to the present invention is a primary particle of which the majority is a single crystal, or a particle aggregate (single crystal primary particle) in which primary particles of the single crystal are aggregated by ionic interaction. It has good dispersibility in a solvent, and its surface area is high because secondary particles are not formed. Therefore, the calcined HAp derivative particle group according to the present invention can be suitably used particularly for the above application.
ここで、焼成HAp誘導体粒子が一次粒子で存在しているか否かを評価する方法としては、例えば、電子顕微鏡観察によって粒子径を測定した結果と、動的光散乱法により溶媒に懸濁した状態で粒子径を測定した場合の結果とを対比することにより、両者の結果がほぼ一致すれば、その焼成HAp誘導体粒子群のほとんどが一次粒子の状態であると判断することができる。一方、電子顕微鏡観察による粒子径の測定結果より、動的光散乱法による粒子径測定の結果が大きくなれば、一次粒子同士の融着が起こり二次粒子を形成しているものと判断することができる。 Here, as a method for evaluating whether or not the calcined HAp derivative particles are present as primary particles, for example, the result of measuring the particle diameter by electron microscope observation and the state of being suspended in the solvent by dynamic light scattering method By comparing the results when the particle diameter is measured, it is possible to judge that most of the calcined HAp derivative particle group is in the state of primary particles, if the both results are almost the same. On the other hand, if the result of the particle diameter measurement by the dynamic light scattering method is large from the measurement result of the particle diameter by electron microscope observation, it is judged that the fusion between the primary particles occurs and forms the secondary particles. Can.
なお、焼成HAp誘導体粒子群を分散させる溶媒としては、焼成HAp誘導体粒子を溶解しないものであれば特に限定されるものではない。例えば、水や、メタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、N,N−ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、トルエン、キシレン、ヘキサン、ドデカン、シクロヘキサン等の炭化水素類、クロロベンゼン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル、ジオキサン等のエーテル類等が挙げられ、これらの溶媒は、使用目的に応じて1種もしくは2種を選択して使用すればよい。 The solvent for dispersing the calcined HAp derivative particle group is not particularly limited as long as it does not dissolve the calcined HAp derivative particles. For example, water, alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, amides such as N, N-dimethylformamide, sulfoxides such as dimethyl sulfoxide, toluene, xylene and hexane And hydrocarbons such as dodecane and cyclohexane, halogenated hydrocarbons such as chlorobenzene and chloroform, ethers such as diethyl ether and dioxane, etc. These solvents may be used alone or in combination depending on the purpose of use. It should be selected and used.
動的光散乱法から求めた粒子径分布図をもとに、電子顕微鏡から求めた一次粒子の粒子径とほぼ一致する粒子径である粒子の割合を求めることで、単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊(単結晶一次粒子)の割合が算出可能である。 Based on the particle size distribution map determined by the dynamic light scattering method, the primary particle consisting of a single crystal is determined by determining the proportion of particles having a particle size substantially matching the particle size of the primary particle determined by the electron microscope. Alternatively, it is possible to calculate the proportion of a particle mass (single crystal primary particles) in which primary particles consisting of the single crystals are aggregated by ionic interaction.
焼成HAp誘導体の原料、融着防止剤の種類、焼成の条件等によって異なる場合があるが、後述する本発明に係る焼成HAp誘導体粒子群の製造方法によれば、少なくとも50%以上が単結晶一次粒子として存在し、より好適な場合には60%以上が単結晶一次粒子として存在し、最も好適な条件下においては70%以上が単結晶一次粒子として存在させることができる。 Depending on the raw material of the calcined HAp derivative, the type of the anti-fusion agent, the condition of the calcination, etc., at least 50% or more of the single-crystal primary according to the method for producing the calcined HAp derivative particles according to the present invention described later. It is present as particles, more preferably 60% or more as single crystal primary particles if more preferred, and 70% or more as single crystal primary particles under most preferred conditions.
また、焼成HAp誘導体粒子を医療用高分子基材に吸着させる場合や、クロマトグラフィー用充填剤、医療用材料等に用いる場合においては、その粒子が微細(ナノメートルサイズ)であることが好ましい。かかる微細な(ナノメートルサイズの)焼成HAp誘導体粒子群を製造するためには、後述する本発明に係る焼成HAp誘導体粒子群の製造方法の一次粒子生成工程において、微細(ナノメートルサイズ)の一次粒子を作製しておけばよい。例えば、一次粒子生成工程において、10nm〜1,000nm、より好ましくは15nm〜700nm、最も好ましくは20nm〜500nmの範囲内の粒子径を有する一次粒子を作製しておくことで、10nm〜1,000nm、より好ましくは20nm〜700nm、最も好ましくは25nm〜750nmの範囲内の一次粒子径を有する焼成HAp誘導体粒子群を製造することができる。 When the calcined HAp derivative particles are adsorbed to a medical polymer base material, or when used as a chromatography filler, a medical material or the like, the particles are preferably fine (nanometer size). In order to produce such a fine (nanometer-sized) calcined HAp derivative particle group, in the step of producing primary particles of the calcined HAp derivative particle group according to the present invention described later, the primary (fine) The particles may be prepared. For example, in the primary particle generation step, primary particles having a particle diameter within the range of 10 nm to 1,000 nm, more preferably 15 nm to 700 nm, and most preferably 20 nm to 500 nm are prepared to 10 nm to 1,000 nm. A calcined HAp derivative particle group having a primary particle diameter within the range of 20 nm to 700 nm, most preferably 25 nm to 750 nm can be produced, more preferably.
また、焼成HAp誘導体粒子群は、その粒子径が均一である(粒度分布が狭い)ことが好ましい。かかる粒子径が均一な(粒度分布が狭い)焼成HAp誘導体粒子群を製造するためには、上記一次粒子生成工程において、粒子径が均一な(粒度分布が狭い)一次粒子群を作製しておけばよい。かかる粒子径が均一な(粒度分布が狭い)焼成HAp誘導体粒子群は、例えば医療用高分子基材に吸着させる場合や、クロマトグラフィー用充填剤、医療用材料等に好適に利用可能である。 The calcined HAp derivative particles preferably have a uniform particle size (narrow particle size distribution). In order to produce such a fired HAp derivative particle group having a uniform particle size (narrow particle size distribution), it is possible to prepare a primary particle group having a uniform particle size (narrow particle size distribution) in the primary particle generation step. Just do it. Such a calcined HAp derivative particle group having a uniform particle diameter (narrow particle size distribution) can be suitably used, for example, when it is adsorbed on a medical polymer base, a filler for chromatography, a medical material and the like.
[Ag−HAp:構造]
Ag−HApは、銀イオンを結晶構造中に含んでおり、HApの結晶構造中のカルシウムイオン(Ca2+)部分(少なくとも一部)が銀イオン(Ag+)に置換されたものである。言い換えると、Ag−HApは、銀イオンをHApのカルシウムイオンの位置にドープしたHAp誘導体である。このAg−HApは、銀イオンを含まないHApとは異なり抗菌性を有するものであり、また、銀イオンとHApとの単なる混合物と比較して抗菌性はマイルドなものとなる。なお、Ag−HApにおいて、HAp結晶構造中のカルシウムイオンの少なくとも一部が銀イオンで置換されている場合、HAp結晶構造中の水酸化物イオンの少なくとも一部が、フッ化物イオン又はその他の陰イオンで置換されていてもよい。
[Ag-HAp: Structure]
Ag-HAp contains silver ions in the crystal structure, and calcium ions (Ca 2+ ) in the crystal structure of HAp (at least partially) are replaced with silver ions (Ag + ). In other words, Ag-HAp is an HAp derivative in which silver ion is doped at the position of calcium ion of HAp. The Ag-HAp, unlike the HAp not containing silver ions, has an antibacterial property, and the antibacterial property is mild compared to a mere mixture of silver ions and HAp. In the Ag-HAp, when at least a part of calcium ions in the HAp crystal structure is replaced with silver ions, at least a part of the hydroxide ions in the HAp crystal structure are fluoride ions or other negative ions. It may be substituted by ions.
[Ag−HAp:合成方法]
上述したような特徴を有するAg−HApは、湿式法、乾式法、加水分解法、水熱法等の既知の製造方法によって製造することができる。以下の説明では、湿式法の一つである共沈法を用いてAg−HApを合成する方法を例に挙げ、Ag−HApの合成方法を述べる。なお、湿式法を含む化学反応法を用いることで、低温合成が可能となることから、化学組成を容易に制御でき、また、医学的処置における応用にも好適である。
[Ag-HAp: Synthesis Method]
Ag-HAp having the characteristics as described above can be produced by known production methods such as a wet method, a dry method, a hydrolysis method, and a hydrothermal method. In the following description, a method of synthesizing Ag-HAp will be described as an example of a method of synthesizing Ag-HAp using a coprecipitation method which is one of wet methods. In addition, low temperature synthesis is possible by using a chemical reaction method including a wet method, so that the chemical composition can be easily controlled, and is suitable for application in medical treatment.
本発明に係るAg−HApの製造方法は、少なくとも「一次粒子生成工程」を含んでいればよいが、この他、「混合工程」、「焼成工程」、「除去工程」を含んでいてもよい。なお、以下の説明においては、上記4工程を全て含んだ製造方法について説明する。 The method for producing Ag-HAp according to the present invention may include at least the "primary particle generation step", but may additionally include a "mixing step", a "baking step" and a "removal step". . In the following description, a manufacturing method including all the above four steps will be described.
本発明に係るAg−HApの製造方法において、上記4工程は、例えば「1.一次粒子生成工程」→「2.混合工程」→「3.焼成工程」→「4.除去工程」の順で行われる。 In the method of producing Ag-HAp according to the present invention, the above four steps are carried out, for example, in the order of “1. primary particle generation process” → “2. Mixing process” → “3. Baking process” → “4. removal process” To be done.
(1.一次粒子生成工程)
ここで、「一次粒子」とは、HAp誘導体粒子の製造工程の焼成前に、HAp誘導体原料(フッ素、HAp等)によって形成された粒子のことを意味する。すなわち、HAp誘導体粒子の製造工程において、初めて形成された粒子のことを意味する。また、狭義には単結晶粒子のことを意味する。なお、本発明の説明において「一次粒子」とは、非晶質(アモルファス)の状態のもの、及びその後に焼成を行った焼成体の状態のものをも含む意味である。
(1. Primary particle generation process)
Here, “primary particles” mean particles formed of HAp derivative raw materials (fluorine, HAp, etc.) before firing in the production process of HAp derivative particles. That is, it means the particles formed for the first time in the production process of the HAp derivative particles. Also, in a narrow sense, it means single crystal particles. In the description of the present invention, the term "primary particles" is meant to include those in an amorphous (amorphous) state and those in a state of a fired body fired thereafter.
これに対して、「二次粒子」とは、複数の「一次粒子」同士が、融着等の物理的結合、イオン結合又は共有結合等の化学的結合によって、結合して形成された状態の粒子を意味する。特に、一次粒子同士の結合の個数、結合後の形状等は限定されるものではなく、2つ以上の一次粒子が結合したもの全てを意味する。 On the other hand, the “secondary particle” is a state in which a plurality of “primary particles” are formed by physical bonds such as fusion, etc., or chemical bonds such as ionic bonds or covalent bonds. Means particles. In particular, the number of bonds between primary particles, the shape after bonding, and the like are not limited, and all those in which two or more primary particles are bonded are meant.
特に、「単結晶一次粒子」とは、HAp誘導体原料の単結晶からなる一次粒子、もしくは前記単結晶からなる一次粒子がイオン的相互作用にて集合化した粒子塊を意味する。なお、「イオン的相互作用にて集合化した粒子塊」とは、水もしくは有機溶媒を含む媒体にて分散させた場合にイオン的相互作用で自己集合する粒子塊であって、焼成により粒子間が溶融して多結晶化した二次粒子を含まないものである。 In particular, “single-crystal primary particles” mean primary particles consisting of single crystals of HAp derivative raw material, or particle clusters in which primary particles consisting of the single crystals are aggregated by ionic interaction. The “particle aggregate aggregated by ionic interaction” is a particle aggregate that self-assembles by ionic interaction when dispersed in a medium containing water or an organic solvent, and it is an interparticle particle by firing. Is free of molten and polycrystallized secondary particles.
一次粒子生成工程は、上述した一次粒子を生成することができる工程であれば特に限定されるものではなく、製造するHAp誘導体の原料により適宜選択の上、採用すればよい。例えば、以下の方法によりAg−HApの一次粒子を生成することができる。まず、所定の溶媒に、銀(Ag)源(銀化合物)及びカルシウム(Ca)源(カルシウム化合物)を溶解させ、所定時間撹拌し、銀化合物溶液とカルシウム化合物溶液を調製する。同様に、所定の溶媒にリン(P)源(リン化合物)を溶解させ、所定時間撹拌し、リン化合物溶液を調製する。次に、銀化合物溶液とカルシウム化合物溶液を混合した後に、更に、リン化合物溶液を滴下、混合し、所定温度に加熱して撹拌する。その結果、Ag−HApの粒子が沈殿する。 The primary particle production step is not particularly limited as long as it is a step capable of producing the above-described primary particles, and may be appropriately selected depending on the raw material of the HAp derivative to be produced. For example, primary particles of Ag-HAp can be produced by the following method. First, a silver (Ag) source (silver compound) and a calcium (Ca) source (calcium compound) are dissolved in a predetermined solvent, and stirred for a predetermined time to prepare a silver compound solution and a calcium compound solution. Similarly, a phosphorus (P) source (phosphorus compound) is dissolved in a predetermined solvent, and the mixture is stirred for a predetermined time to prepare a phosphorus compound solution. Next, after mixing the silver compound solution and the calcium compound solution, the phosphorus compound solution is further dropped and mixed, and the mixture is heated to a predetermined temperature and stirred. As a result, particles of Ag-HAp precipitate.
Ag−HApの原料については、Ag源としては、硝酸銀、過塩素酸銀、銀アンミン錯体、銀チオ硫酸錯体、銀シアノ錯体等、Ca源としては、硝酸カルシウム(水和物も含む。)、水酸化カルシウム、硝酸カルシウム、塩化カルシウム等、P源としては、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム等を用いることができる。また、上記原料を溶解させる溶媒としては、上記原料が溶解するものであれば特に限定されるものではないが、例えば、水、エタノール、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、トルエン等が挙げられる。上記Ag源、Ca源、P源、溶媒としては、上述した化合物を単独で使用してもよく、複数種混合して使用してもよい。 Regarding Ag-HAp raw materials, silver nitrate, silver perchlorate, silver ammine complex, silver thiosulfate complex, silver cyano complex etc. as Ag source, calcium nitrate (including hydrate) as Ca source, Use calcium hydroxide, calcium nitrate, calcium chloride etc. P source such as phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate etc. Can. The solvent for dissolving the raw material is not particularly limited as long as the raw material can be dissolved, and examples thereof include water, ethanol, dimethylformamide, dimethyl sulfoxide, acetonitrile, toluene and the like. As said Ag source, Ca source, P source, and a solvent, the compound mentioned above may be used independently and may be used in mixture of multiple types.
本発明に係るHAp誘導体粒子の製造方法は、上記の一次粒子生成工程によって生成した一次粒子の集合からなる一次粒子群を、融着等を防止しながら焼成してHAp誘導体粒子の集合からなるHAp誘導体粒子群を製造するものである。よって、当該一次粒子生成工程によって生成された一次粒子の状態(粒子径、粒度分布)が、最終生産物であるHAp誘導体粒子の状態(粒子径、粒度分布)にそのまま反映される。 The method for producing HAp derivative particles according to the present invention comprises: HAp comprising a collection of HAp derivative particles by firing a primary particle group consisting of a collection of primary particles generated by the above primary particle generation step while preventing fusion or the like It is for producing a group of derivative particles. Therefore, the state (particle diameter and particle size distribution) of primary particles generated in the primary particle generation step is directly reflected on the state (particle diameter and particle size distribution) of HAp derivative particles as the final product.
また、本工程には生成した一次粒子を水等で洗浄する工程、遠心分離、ろ過等で一次粒子を回収する工程が含まれていてもよい。 In addition, this step may include a step of washing the generated primary particles with water or the like, and a step of collecting the primary particles by centrifugation, filtration or the like.
(2.混合工程)
本混合工程は、上記工程で生成された一次粒子と、焼成時における一次粒子同士の融着を防止する融着防止剤とを混合する工程である。上記一次粒子生成工程によって得られた一次粒子群の粒子間に、予め融着防止剤を介在させておくことで、その後の焼成工程における一次粒子同士の融着を防止することができる。なお、本混合工程によって得られた一次粒子と融着防止剤との混合物を「混合粒子」と呼ぶこととする。
(2. mixing process)
The present mixing step is a step of mixing the primary particles generated in the above step and the anti-fusion agent for preventing the fusion between the primary particles at the time of firing. By interposing an anti-fusion agent in advance between the particles of the primary particle group obtained in the above primary particle generation step, it is possible to prevent fusion between primary particles in the subsequent firing step. The mixture of the primary particles and the anti-fusion agent obtained by the mixing step is referred to as "mixed particles".
ここで、「融着防止剤」としては、一次粒子間の融着を防止できるものであれば特に限定されるものではないが、後の焼成工程の焼成温度において、不揮発性であることが好ましい。焼成温度条件下で不揮発性であるために、焼成工程中に一次粒子間から消失することは無く、一次粒子同士の融着を確実に防止することができるからである。ただし、焼成温度において100%の不揮発性を有する必要は無く、焼成工程終了後に一次粒子間に10%以上残存する程度の不揮発性であればよい。また、融着防止剤は、焼成工程終了後に熱により化学的に分解するものであってもよい。すなわち、焼成工程終了後に残存していれば、焼成工程の開始前後で、同一の物質(化合物)である必要は無い。 Here, the “fusion inhibitor” is not particularly limited as long as it can prevent fusion between primary particles, but is preferably non-volatile at the firing temperature of the subsequent firing step. . Because it is non-volatile under the firing temperature conditions, it does not disappear from between primary particles during the firing step, and fusion between primary particles can be reliably prevented. However, it is not necessary to have 100% nonvolatility at the firing temperature, as long as it is 10% or more remaining between primary particles after completion of the firing step. In addition, the anti-fusion agent may be chemically decomposed by heat after completion of the firing step. That is, if it remains after the completion of the firing step, it is not necessary to be the same substance (compound) before and after the start of the firing step.
また、融着防止剤が、溶媒、特に水系溶媒に溶解する物質であることが好ましい。このように、融着防止剤として、溶媒に溶解する融着防止剤を用いることにより、融着防止剤が混在するHAp誘導体粒子群を純水等の水系溶媒に懸濁するだけで、融着防止剤(例えば、硝酸カルシウム、炭酸カルシウム等)を除去することができる。特に、水系溶媒に溶解する融着防止剤であれば、融着防止剤を除去する際に有機溶媒を用いる必要が無いため、除去工程に有機溶媒の使用に対応する設備、有機溶媒廃液処理が不要となる。それゆえ、より簡便にHAp誘導体粒子群から融着防止剤を除去することができる。上記溶媒としては、特に限定されるものではないが、例えば、水系溶媒としては、水、エタノール、メタノール等が挙げられ、有機溶媒としては、アセトン、トルエン等が挙げられる。 The anti-fusion agent is preferably a substance that dissolves in a solvent, particularly an aqueous solvent. As described above, by using an anti-fusion agent that dissolves in a solvent as the anti-fusion agent, only by suspending the HAp derivative particles containing the anti-fusion agent in an aqueous solvent such as pure water, Inhibitors (eg, calcium nitrate, calcium carbonate, etc.) can be removed. In particular, if it is an anti-fusion agent that dissolves in an aqueous solvent, there is no need to use an organic solvent when removing the anti-fusion agent, so the equipment corresponding to the use of the organic solvent in the removal process, organic solvent waste treatment It becomes unnecessary. Therefore, the anti-fusion agent can be more easily removed from the HAp derivative particle group. The solvent is not particularly limited, but examples of the aqueous solvent include water, ethanol, methanol and the like, and examples of the organic solvent include acetone, toluene and the like.
また、上記水系溶媒は、融着防止剤の水への溶解性を上げるために、シュウ酸塩、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸塩などのキレート化合物を含んでいてもよい。さらに、上記水系溶媒は、融着防止剤の水への溶解性を上げるために、塩化ナトリウム、硝酸アンモニウム、炭酸カリウム等の電解質イオンを含んでいてもよい。 Further, the aqueous solvent may contain a chelate compound such as oxalate, ethylenediamine, bipyridine, ethylenediaminetetraacetate or the like in order to increase the solubility of the anti-fusion agent in water. Furthermore, the aqueous solvent may contain electrolyte ions such as sodium chloride, ammonium nitrate, potassium carbonate and the like in order to increase the solubility of the anti-fusion agent in water.
上記融着防止剤の具体例としては、塩化カルシウム、酸化カルシウム、硫酸カルシウム、硝酸カルシウム、炭酸カルシウム、水酸化カルシウム、酢酸カルシウム、クエン酸カルシウム等のカルシウム塩(または錯体)、塩化カリウム、酸化カリウム、硫酸カリウム、硝酸カリウム、炭酸カリウム、水酸化カリウム、リン酸カリウム等のカリウム塩、塩化ナトリウム、酸化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、水酸化ナトリウム、リン酸ナトリウム等のナトリウム塩等が挙げられる。 Specific examples of the anti-fusion agent include calcium chloride (or complex) such as calcium chloride, calcium oxide, calcium sulfate, calcium nitrate, calcium carbonate, calcium hydroxide, calcium hydroxide, calcium acetate and calcium citrate, potassium chloride, potassium oxide And potassium salts such as potassium sulfate, potassium nitrate, potassium carbonate, potassium hydroxide and potassium phosphate, sodium salts such as sodium chloride, sodium oxide, sodium sulfate, sodium nitrate, sodium carbonate, sodium hydroxide and sodium phosphate. Be
なお、本混合工程において一次粒子と融着防止剤とを混合させる方法については、特に限定されるものではなく、固体の一次粒子に固体の融着防止剤を混合後、ブレンダーを用いて混合する方法であってもよいし、融着防止剤の溶液中に一次粒子を分散させる方法であってもよい。ただし、固体と固体を均一に混合することは困難であるため、一次粒子間に均一かつ確実に融着防止剤を介在させるためには、後者が好ましい方法であるといえる。後者の方法を採用した場合は、一次粒子を分散させた融着防止剤溶液を乾燥させておくことが好ましい。一次粒子と融着防止剤が均一に混合された状態を長期にわたって持続することができるからである。 The method of mixing the primary particles and the anti-fusion agent in this mixing step is not particularly limited, and the solid primary particles are mixed with the solid anti-fusion agent and then mixed using a blender. It may be a method, or may be a method of dispersing primary particles in a solution of anti-fusion agent. However, since it is difficult to uniformly mix the solid and the solid, it can be said that the latter is the preferred method in order to interpose the anti-fusion agent uniformly and reliably between the primary particles. When the latter method is adopted, it is preferable to dry the anti-fusion agent solution in which the primary particles are dispersed. This is because the state in which the primary particles and the anti-fusion agent are uniformly mixed can be maintained for a long time.
また、本混合工程は、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基またはアミノ基のいずれかを有する高分子化合物を含む溶液と、上記一次粒子とを混合し、金属塩(アルカリ金属塩および/またはアルカリ土類金属塩および/または遷移金属塩)をさらに添加する工程であってもよい。この工程を採用することによって、高分子化合物がHAp誘導体表面に吸着することで融着防止剤混合過程におけるHAp誘導体同士の接触を確実に防ぐことができ、その後にカルシウム塩を添加することでHAp誘導体表面に確実に融着防止剤を析出させることが可能となる。なお、以下の説明において、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基またはアミノ基のいずれかを有する高分子化合物のことを、単に「高分子化合物」と称する。 In the mixing step, the primary particles are mixed with a solution containing a polymer compound having any of a carboxyl group, a sulfuric acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group or an amino group in a side chain. And the step of further adding a metal salt (alkali metal salt and / or alkaline earth metal salt and / or transition metal salt). By adopting this process, the polymer compound can be adsorbed to the surface of the HAp derivative, and the contact between the HAp derivatives in the process of mixing the anti-fusion agent can be reliably prevented, and thereafter the calcium salt is added to the HAp. It becomes possible to reliably deposit the anti-fusion agent on the surface of the derivative. In the following description, a polymer compound having any of a carboxyl group, a sulfuric acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group or an amino group in the side chain is simply referred to as a "polymer compound". .
上記高分子化合物は、側鎖にカルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基またはアミノ基のいずれかを有する化合物であれば特に限定されるものではない。例えば、側鎖にカルボキシル基を有する高分子化合物としては、ポリアクリル酸、ポリメタクリル酸、カルボキシメチルセルロース、スチレン−無水マレイン酸共重合体等が挙げられ、側鎖に硫酸基を有する高分子化合物としては、ポリアクリル酸アルキル硫酸エステル、ポリメタクリル酸アルキル硫酸エステル、ポリスチレン硫酸等が挙げられ、側鎖にスルホン酸基を有する高分子化合物としては、ポリアクリル酸アルキルスルホン酸エステル、ポリメタクリル酸アルキルスルホン酸エステル、ポリスチレンスルホン酸等が挙げられ、側鎖にリン酸基を有する高分子化合物としては、ポリアクリル酸アルキルリン酸エステル、ポリメタクリル酸アルキルリン酸エステル、ポリスチレンリン酸、ポリアクリロイルアミノメチルホスホン酸等が挙げられ、側鎖にホスホン酸基を有する高分子化合物としては、ポリアクリル酸アルキルホスホン酸エステル、ポリメタクリル酸アルキルホスホン酸エステル、ポリスチレンホスホン酸、ポリアクリロイルアミノメチルホスホン酸、ポリビニルアルキルホスホン酸等が挙げられ、側鎖にアミノ基を有する高分子化合物としては、ポリアクリルアミド、ポリビニルアミン、ポリメタクリル酸アミノアルキルエステル、ポリアミノスチレン、ポリペプチド、タンパク質等が挙げられる。なお当該混合工程においては、上記高分子化合物のいずれか1種類を用いればよいが、複数種類の高分子化合物を混合して用いてもよい。 The said high molecular compound will not be specifically limited if it is a compound which has any of a carboxyl group, a sulfuric acid group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, or an amino group in a side chain. For example, as a polymer compound having a carboxyl group in a side chain, polyacrylic acid, polymethacrylic acid, carboxymethylcellulose, styrene-maleic anhydride copolymer, etc. may be mentioned, and as a polymer compound having a sulfate group in a side chain Examples include polyacrylic acid alkyl sulfuric acid ester, polymethacrylic acid alkyl sulfuric acid ester, polystyrene sulfuric acid and the like, and as a polymer compound having a sulfonic acid group in the side chain, polyacrylic acid alkyl sulfonic acid ester, polymethacrylic acid alkyl sulfone Acid ester, polystyrene sulfonic acid, etc., and as the polymer compound having a phosphoric acid group in the side chain, polyacrylic acid alkyl phosphoric acid ester, polymethacrylic acid alkyl phosphoric acid ester, polystyrene phosphoric acid, polyacryloyl aminomethyl phosphonic acid Etc Examples of polymer compounds having a phosphonic acid group in the side chain include polyacrylic acid alkyl phosphonic acid ester, polymethacrylic acid alkyl phosphoric acid ester, polystyrene phosphonic acid, polyacryloyl aminomethyl phosphonic acid, polyvinyl alkyl phosphonic acid and the like. Examples of the polymer compound having an amino group in the side chain include polyacrylamide, polyvinylamine, polymethacrylic acid aminoalkyl ester, polyaminostyrene, polypeptide, protein and the like. In the mixing step, any one kind of the above-mentioned polymer compounds may be used, but a plurality of kinds of polymer compounds may be mixed and used.
なお、高分子化合物を含む溶液は、水溶液であることが好ましい。HAp誘導体の焼成体粒子は強い酸性条件下で溶解してしまうからである。このとき、高分子化合物が含まれる水溶液のpHは、5以上14以下でHAp誘導体粒子が不溶な条件あれば特に限定されるものではない。当該高分子化合物を含む水溶液は、高分子化合物を蒸留水、イオン交換水等に溶解し、アンモニア水溶液、水酸化ナトリウム、水酸化カリウム等の水溶液でpHを調整すればよい。 The solution containing the polymer compound is preferably an aqueous solution. This is because the calcined particles of the HAp derivative dissolve under strongly acidic conditions. At this time, the pH of the aqueous solution containing the polymer compound is not particularly limited as long as it is a condition of 5 or more and 14 or less and the HAp derivative particle is insoluble. The aqueous solution containing the polymer compound may be prepared by dissolving the polymer compound in distilled water, ion-exchanged water and the like, and adjusting the pH with an aqueous solution of ammonia aqueous solution, sodium hydroxide, potassium hydroxide and the like.
また、上記水溶液に含まれる高分子化合物の濃度は、0.001%w/v以上50%w/v以下が好ましく、0.005%w/v以上30%w/v以下がさらに好ましく、0.01%w/v以上10%w/v以下が最も好ましい。上記好ましい範囲未満であると一次粒子間に入り込む量が少なく、一次粒子同士の接触を阻止する割合が低くなる。また上記好ましい範囲を超えると、高分子化合物の溶解が困難となること、当該高分子化合物を含む溶液の粘度が高くなる等の操作性が悪くなるために好ましくない。 Further, the concentration of the polymer compound contained in the aqueous solution is preferably 0.001% w / v to 50% w / v, more preferably 0.005% w / v to 30% w / v, 0 .01% w / v or more and 10% w / v or less is most preferable. If the amount is less than the above-mentioned preferred range, the amount of penetration between primary particles is small, and the ratio of preventing contact between primary particles is low. Moreover, when it exceeds the said preferable range, since the melt | dissolution of a high molecular compound becomes difficult, and the operativity of the viscosity of the solution containing the said high molecular compound becoming high worsens, it is unpreferable.
本発明における混合工程では、上記高分子化合物を含む溶液と、一次粒子とを混合する。かかる混合は、例えば、当該溶液中に一次粒子を投入し、撹拌操作等によって、当該一次粒子を分散させればよい。かかる操作によって、上記本発明に係るHAp誘導体粒子群の製造方法では、一次粒子の表面に上記高分子化合物が吸着し、カルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基またはアミノ基のいずれかを当該一次粒子の表面に付加することができる。このとき当該カルボキシル基、硫酸基、スルホン酸基、リン酸基、ホスホン酸基またはアミノ基は、溶液中でイオンの状態で存在している。 In the mixing step in the present invention, the solution containing the above-described polymer compound is mixed with primary particles. For such mixing, for example, primary particles may be introduced into the solution, and the primary particles may be dispersed by stirring operation or the like. By the above operation, in the method for producing HAp derivative particles according to the present invention, the polymer compound is adsorbed on the surface of the primary particles, and a carboxyl group, a sulfate group, a sulfonate group, a phosphate group, a phosphate group, a phosphonate group or an amino Any of the groups can be attached to the surface of the primary particle. At this time, the carboxyl group, sulfuric acid group, sulfonic acid group, phosphoric acid group, phosphonic acid group or amino group is present in the form of ions in the solution.
次に、高分子化合物を含む溶液と一次粒子とを混合した溶液に、金属塩(アルカリ金属塩および/またはアルカリ土類金属塩および/または遷移金属塩)をさらに添加すれば、上記一次粒子の表面に存在するカルボン酸イオン、硫酸イオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、アミノイオンと、金属イオン(アルカリ金属イオンおよび/またはアルカリ土類金属イオンおよび/または遷移金属イオン)とが結合し、一次粒子の表面にカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が生じる。かかる金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が、上記融着防止剤として機能する。したがって、金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩がその表面に生じた一次粒子は、いわゆる「混合粒子」である。なお、かかる金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩は沈殿するため、当該沈殿物を回収後、乾燥させて後述する焼成工程に供すればよい。前記乾燥は、例えば減圧条件下で、加熱して行う方法が挙げられる。なお、上記乾燥においては、乾燥温度を下げることができることから減圧条件下が好ましいが、大気圧条件下で行ってもよい。 Next, if a metal salt (alkali metal salt and / or alkaline earth metal salt and / or transition metal salt) is further added to a solution in which a solution containing a polymer compound and primary particles are mixed, the primary particles Carboxylate ion, sulfate ion, sulfonate ion, phosphate ion, phosphonate ion, amino ion and metal ion (alkali metal ion and / or alkaline earth metal ion and / or transition metal ion) present on the surface It bonds to form carboxylate, sulfate, sulfonate, phosphate, phosphonate, amino acid salt on the surface of the primary particle. Such metal (alkali metal and / or alkaline earth metal and / or transition metal) carboxylates, sulfates, sulfonates, phosphates, phosphonates, amino acid salts function as the above anti-fusion agent . Therefore, primary particles having a carboxylate, sulfate, sulfonate, phosphate, phosphonate, amino acid salt of metal (alkali metal and / or alkaline earth metal and / or transition metal) formed on the surface thereof are , So-called "mixed particles". In addition, since such metal (alkali metal and / or alkaline earth metal and / or transition metal) carboxylate, sulfate, sulfonate, phosphate, phosphonate, amino acid salt precipitates, the precipitate After recovery, it may be dried and subjected to the firing step described later. The drying may be carried out, for example, by heating under reduced pressure. In addition, in the said drying, although drying temperature can be lowered, although pressure reduction conditions are preferable, you may carry out on atmospheric pressure conditions.
上記アルカリ金属塩としては、特に限定されるものではないが、例えば、塩化ナトリウム、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、ヨウ酸ナトリウム、酸化ナトリウム、過酸化ナトリウム、硫酸ナトリウム、チオ硫酸ナトリウム、セレン酸ナトリウム、亜硝酸ナトリウム、硝酸ナトリウム、リン化ナトリウム、炭酸ナトリウム、水酸化ナトリウム、塩化カリウム、次亜塩素酸カリウム、亜塩素酸カリウム、臭化カリウム、ヨウ化カリウム、ヨウ酸カリウム、酸化カリウム、過酸化カリウム、硫酸カリウム、チオ硫酸カリウム、セレン酸カリウム、亜硝酸カリウム、硝酸カリウム、リン化カリウム、炭酸カリウム、水酸化カリウム等が利用可能である。 The above-mentioned alkali metal salt is not particularly limited. For example, sodium chloride, sodium hypochlorite, sodium chlorite, sodium bromide, sodium bromide, sodium iodide, sodium iodide, sodium oxide, sodium peroxide , Sodium sulfate, sodium thiosulfate, sodium selenate, sodium nitrite, sodium nitrate, sodium nitrate, sodium phosphate, sodium carbonate, sodium hydroxide, potassium chloride, potassium hypochlorite, potassium chlorite, potassium bromide, iodide Potassium, potassium iodide, potassium oxide, potassium peroxide, potassium sulfate, potassium thiosulfate, potassium selenate, potassium nitrite, potassium nitrate, potassium phosphate, potassium carbonate, potassium hydroxide and the like can be used.
また、上記アルカリ土類金属塩としては、例えば、塩化マグネシウム、次亜塩素酸マグネシウム、亜塩素酸マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、ヨウ酸マグネシウム、酸化マグネシウム、過酸化マグネシウム、硫酸マグネシウム、チオ硫酸マグネシウム、セレン酸マグネシウム、亜硝酸マグネシウム、硝酸マグネシウム、リン化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、塩化カルシウム、次亜塩素酸カルシウム、亜塩素酸カルシウム、臭化カルシウム、ヨウ化カルシウム、ヨウ酸カルシウム、酸化カルシウム、過酸化カルシウム、硫酸カルシウム、チオ硫酸カルシウム、セレン酸カルシウム、亜硝酸カルシウム、硝酸カルシウム、リン化カルシウム、炭酸カルシウム、水酸化カルシウム等が利用可能である。 Moreover, as the alkaline earth metal salt, for example, magnesium chloride, magnesium hypochlorite, magnesium chlorite, magnesium bromide, magnesium iodide, magnesium iodide, magnesium iodide, magnesium oxide, magnesium peroxide, magnesium sulfate, thio Magnesium sulfate, magnesium selenate, magnesium nitrite, magnesium nitrate, magnesium phosphate, magnesium carbonate, magnesium hydroxide, calcium chloride, calcium hypochlorite, calcium chlorite, calcium bromide, calcium iodide, calcium iodide , Calcium oxide, calcium peroxide, calcium sulfate, calcium thiosulfate, calcium selenate, calcium nitrite, calcium nitrate, calcium phosphate, calcium phosphate, calcium carbonate, calcium hydroxide, etc.
また、上記遷移金属塩としては、例えば塩化亜鉛、次亜塩素酸亜鉛、亜塩素酸亜鉛、臭化亜鉛、ヨウ化亜鉛、ヨウ酸亜鉛、酸化亜鉛、過酸化亜鉛、硫酸亜鉛、チオ硫酸亜鉛、セレン酸亜鉛、亜硝酸亜鉛、硝酸亜鉛、リン化亜鉛、炭酸亜鉛、水酸化亜鉛、塩化鉄、次亜塩素酸鉄、亜塩素酸鉄、臭化鉄、ヨウ化鉄、ヨウ酸鉄、酸化鉄、過酸化鉄、硫酸鉄、チオ硫酸鉄、セレン酸鉄、亜硝酸鉄、硝酸鉄、リン化鉄、炭酸鉄、水酸化鉄等が利用可能である。また、ニッケル化合物であってもよい。 Moreover, as the transition metal salt, for example, zinc chloride, zinc hypochlorite, zinc chlorite, zinc bromide, zinc iodide, zinc iodide, zinc iodide, zinc oxide, zinc peroxide, zinc sulfate, zinc thiosulfate, Zinc selenate, zinc nitrite, zinc nitrate, zinc phosphate, zinc carbonate, zinc hydroxide, iron hydroxide, iron hypochlorite, iron chlorite, iron bromide, iron iodide, iron iodide, iron iodide, iron oxide Iron peroxide, iron sulfate, iron thiosulfate, iron selenate, iron nitrite, iron nitrate, iron phosphide, iron carbonate, iron hydroxide and the like can be used. Moreover, a nickel compound may be sufficient.
なお、高分子化合物を含む溶液と一次粒子とを混合した溶液に添加する金属塩(アルカリ金属塩、アルカリ土類金属塩、遷移金属塩)は、1種類であっても、2種類以上の混合物であってもよい。また、金属塩(アルカリ金属塩、アルカリ土類金属塩、遷移金属)は、固体の状態としてもよいが、均一に添加することができること、および添加する濃度を制御することが可能である等の理由から水溶液として添加することが好ましい。また、添加する金属塩(アルカリ金属塩および/またはアルカリ土類金属塩および/または遷移金属塩)の量(濃度)は、一次粒子表面に存在するカルボン酸イオン、硫酸イオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、アミノイオンと結合して、金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩が生じる条件であれば特に限定されるものではなく、適宜検討の上、決定すればよい。 The metal salt (alkali metal salt, alkaline earth metal salt, transition metal salt) to be added to the mixed solution of the solution containing the polymer compound and the primary particles is a mixture of two or more kinds even if it is one kind. It may be In addition, metal salts (alkali metal salts, alkaline earth metal salts, transition metals) may be in the solid state, but can be uniformly added, and the concentration to be added can be controlled, etc. It is preferable to add as an aqueous solution from the reason. Further, the amount (concentration) of the metal salt (alkali metal salt and / or alkaline earth metal salt and / or transition metal salt) to be added is the carboxylate ion, sulfate ion, sulfonate ion, phosphorus present on the primary particle surface Acid salt, phosphonate ion, amino ion in combination with metal (alkali metal and / or alkaline earth metal and / or transition metal) carboxylate, sulfate, sulfonate, phosphate, phosphonate The condition is not particularly limited as long as the amino acid salt is generated, and it may be determined after appropriate examination.
ここで、上記工程によって一次粒子の表面に生じた金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)のカルボン酸塩、硫酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩、アミノ酸塩は、後述する焼成工程において熱分解を受け、金属(アルカリ金属および/またはアルカリ土類金属および/または遷移金属)の酸化物になる。例えば、一次粒子の表面にポリアクリル酸カルシウムが生じている場合は、焼成工程によって酸化カルシウムとなる。なお、当該金属酸化物(アルカリ金属酸化物および/またはアルカリ土類金属酸化物(例えば酸化カルシウム)および/または遷移金属酸化物)は水溶性であるため、後述する除去工程によって簡単に除去することが可能である。 Here, carboxylates, sulfates, sulfonates, phosphates, phosphonates of metals (alkali metals and / or alkaline earth metals and / or transition metals) generated on the surface of primary particles by the above-mentioned steps The amino acid salt is thermally decomposed in the calcination step described later to form an oxide of a metal (an alkali metal and / or an alkaline earth metal and / or a transition metal). For example, when calcium polyacrylate is produced on the surface of the primary particles, it becomes calcium oxide in the firing step. In addition, since the metal oxide (alkali metal oxide and / or alkaline earth metal oxide (eg, calcium oxide) and / or transition metal oxide) is water soluble, it can be easily removed by the removal step described later. Is possible.
また、ポリアクリル酸ナトリウムは水に可溶なため、本混合工程において融着防止剤としてそのまま利用可能であるが、ポリアクリル酸カルシウムは水に不溶なため、一旦ポリアクリル酸のみを一次粒子表面に吸着させた後に、カルシウム塩等を添加することで、ポリアクリル酸カルシウムを一次粒子表面に析出させるようにすることが好ましい。 In addition, sodium polyacrylate is soluble in water, so it can be used as an antifusing agent in this mixing step as it is, but calcium polyacrylate is insoluble in water, so only polyacrylic acid is once primary particle surface. Preferably, calcium polyacrylate is precipitated on the surface of the primary particles by adding a calcium salt or the like after the adsorption.
(3.焼成工程)
本焼成工程は、上記混合工程によって得られた混合粒子を焼成温度に曝して、当該混合粒子に含まれる一次粒子をセラミックのHAp誘導体粒子(焼成体粒子)にする工程である。一次粒子の粒子間に融着防止剤が介在しているために、焼成工程における高温条件に曝された場合であっても一次粒子同士の融着を防止することができる。
(3. Baking process)
The firing step is a step of exposing the mixed particles obtained in the mixing step to a firing temperature to convert primary particles contained in the mixed particles into ceramic HAp derivative particles (fired particles). Since the antifusing agent is present between the particles of the primary particles, it is possible to prevent the fusion of the primary particles even when exposed to high temperature conditions in the firing step.
当該焼成工程における焼成温度は、HAp誘導体粒子の硬度が所望の硬度となるように適宜設定すればよく、例えば、100℃〜1800℃の範囲内がより好ましく、150℃〜1500℃がさらに好ましく、200℃〜1200℃が最も好ましい。さらに、マイルドな抗菌性を発現させるという観点からは、焼成温度を500℃以上とすることが好ましく、700℃以上とすることがより好ましい。また、焼成時間については所望するHAp誘導体粒子の硬度等を基準に適宜設定すればよい。例えば、後述する実施例においては、700℃で2時間焼成を行っている。 The firing temperature in the firing step may be appropriately set so that the hardness of the HAp derivative particles becomes a desired hardness, and for example, the range of 100 ° C. to 1800 ° C. is more preferable, and 150 ° C. to 1500 ° C. is more preferable. 200 ° C. to 1200 ° C. are most preferred. Furthermore, from the viewpoint of expressing mild antibacterial properties, the firing temperature is preferably 500 ° C. or higher, and more preferably 700 ° C. or higher. The firing time may be appropriately set based on the desired hardness of the HAp derivative particles and the like. For example, in the Example mentioned later, it bakes at 700 degreeC for 2 hours.
なお、本焼成工程に用いる装置等は特に限定されるものではなく、製造規模、製造条件等に応じて市販の焼成炉(電気炉等)を適宜選択の上、採用すればよい。 The apparatus and the like used in the main baking step are not particularly limited, and a commercially available baking furnace (electric furnace or the like) may be appropriately selected and adopted according to the manufacturing scale, manufacturing conditions, and the like.
(4.除去工程)
本除去工程は、上述した焼成工程によって得られたHAp誘導体粒子群の粒子間に混在する融着防止剤を取り除く工程である。
(4. Removal process)
The main removing step is a step of removing the anti-fusion agent mixed between the particles of the HAp derivative particle group obtained by the above-mentioned firing step.
除去の手段および手法については、上記混合工程において採用した融着防止剤に応じて適宜採用すればよい。例えば、溶媒溶解性を有する融着防止剤を用いた場合は、HAp誘導体粒子を溶解しない溶媒(非溶解性)でかつ融着防止剤を溶解する(溶解性)溶媒を用いることによって、融着防止剤のみを溶解して除去することができる。用いる溶媒としては、上記要件を満たす溶媒であれば特に限定されるものではなく、水系溶媒であっても、有機溶媒であってもよい。例えば、水系溶媒としては、水、エタノール、メタノール等が挙げられ、有機溶媒としては、アセトン、トルエン等が挙げられる。 The removal means and method may be appropriately adopted in accordance with the anti-fusion agent employed in the mixing step. For example, in the case of using a fusion inhibitor having solvent solubility, fusion is achieved by using a solvent which does not dissolve HAp derivative particles (non-dissolving) and a solvent which dissolves the fusion inhibitor (dissolving) Only the inhibitor can be dissolved and removed. It will not specifically limit, if it is a solvent which satisfy | fills the said requirements as a solvent to be used, It may be a water-based solvent, and an organic solvent may be sufficient. For example, water, ethanol, methanol and the like can be mentioned as the aqueous solvent, and acetone, toluene and the like can be mentioned as the organic solvent.
また、上記水系溶媒は、融着防止剤の水への溶解性を上げるために、シュウ酸塩、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸塩等のキレート化合物を含んでいてもよい。さらに、上記水系溶媒は、融着防止剤の水への溶解性を上げるために、塩化ナトリウム、硝酸アンモニウム、炭酸カリウム等の電解質イオンを含んでいてもよい。 Further, the aqueous solvent may contain a chelate compound such as oxalate, ethylenediamine, bipyridine, ethylenediaminetetraacetate or the like in order to increase the solubility of the anti-fusion agent in water. Furthermore, the aqueous solvent may contain electrolyte ions such as sodium chloride, ammonium nitrate, potassium carbonate and the like in order to increase the solubility of the anti-fusion agent in water.
ただし、当該除去工程において有機溶媒の使用に対応する設備が不要となること、有機溶媒廃液処理が不要となること、製造作業の安全性が高いこと、環境に対するリスクが低いこと等の理由から、使用する溶媒は水系溶媒が好ましい。 However, because there is no need for equipment corresponding to the use of the organic solvent in the removal step, no need for organic solvent waste liquid treatment, high safety of the manufacturing operation, and a low risk to the environment, etc. The solvent used is preferably an aqueous solvent.
ところで、溶媒を用いて融着防止剤を除去する場合は、焼成工程によって得られた融着防止剤を含むHAp誘導体(焼成体)粒子群を溶媒に懸濁させた後、ろ過または遠心分離によってHAp誘導体(焼成体)粒子のみを回収すればよい。本発明に係るHAp誘導体粒子群の製造方法において、上記操作は1回に限られるものではなく2回以上行ってもよい。上記操作を複数回行うことで、HAp誘導体粒子間の融着防止剤の除去率がさらに向上する。ただし、製造工程が複雑になること、製造コストが高くなること、HAp誘導体粒子の回収率が低下すること等の理由により、必要以上に多く上記操作を行うことは好ましくない。よって、上記操作の回数は、目標とする融着防止剤の除去率を基準に適宜決定することが好ましい。 By the way, in the case of removing the anti-fusion agent using a solvent, the HAp derivative (calcined body) particles containing the anti-fusion agent obtained by the baking step are suspended in a solvent and then filtered or centrifuged. Only the HAp derivative (sintered body) particles may be recovered. In the method for producing the HAp derivative particle group according to the present invention, the above operation is not limited to once but may be performed twice or more. By performing the above operation a plurality of times, the removal rate of the anti-fusion agent between the HAp derivative particles is further improved. However, it is not preferable to carry out the above-described operation more than necessary because the production process becomes complicated, the production cost becomes high, and the recovery rate of the HAp derivative particles decreases. Therefore, it is preferable to appropriately determine the number of times of the above operation based on the target removal rate of the anti-fusion agent.
なお、本工程には、さらに粒子径を均一にするために分級する工程が含まれていてもよい。 The process may further include a classification step to make the particle diameter uniform.
上記溶媒を用いて融着防止剤を除去する方法の他、融着防止剤に磁性体を用いることによって、マグネットを用いて融着防止剤を除去することができる。より具体的には、焼成工程によって得られた融着防止剤を含むHAp誘導体粒子(粗HAp誘導体粒子)群を適当な溶媒(水等)に懸濁して分散させた後、当該懸濁液に磁力をかけ、融着防止剤のみをマグネットに吸着させ、吸着しなかったHAp誘導体粒子のみを回収する。また、特に溶媒に懸濁することなく、粗HAp誘導体粒子をすりつぶして粉体にした後、マグネットによって融着防止剤を分離する方法であってもよい。ただし、懸濁液にした方がHAp誘導体粒子と融着防止剤が剥離しやすく、融着防止剤の除去率は高い。なお、この手法を適用することができるHAp誘導体粒子は、非磁性体または、弱磁性体であることが好ましい。 In addition to the method of removing the anti-fusion agent using the solvent, the anti-fusion agent can be removed using a magnet by using a magnetic substance as the anti-fusion agent. More specifically, after suspending and dispersing the HAp derivative particles (crude HAp derivative particles) group containing the anti-fusion agent obtained by the baking step in a suitable solvent (such as water), A magnetic force is applied, and only the anti-fusion agent is adsorbed to the magnet, and only the non-adsorbed HAp derivative particles are recovered. Alternatively, the crude HAp derivative particles may be ground into powder without being suspended in a solvent, and then the anti-sticking agent may be separated by a magnet. However, when the suspension is used, the HAp derivative particles and the anti-fusion agent are easily peeled off, and the removal rate of the anti-fusion agent is high. The HAp derivative particle to which this method can be applied is preferably a nonmagnetic material or a weak magnetic material.
[Ag−HAp:同定方法]
上述したようにして合成されたAg−HApは、例えば、各種構造解析手法により同定することができる。例えば、X線回折装置(X−Ray Diffractometer:XRD)を用いて測定した回折パターンと、既知のAg−HApの回折パターンとを比較し、これらの回折パターンがほぼ一致していれば、Ag−HApが得られていると同定することができる。なお、上記回折パターンにおけるピーク値から結晶格子の軸長を調べることができ、この軸長からカルシウムイオンが銀イオンに置換されていることを確認することもできる。
[Ag-HAp: Identification method]
Ag-HAp synthesized as described above can be identified, for example, by various structural analysis methods. For example, if the diffraction pattern measured using an X-ray Diffractometer (XRD) and the diffraction pattern of a known Ag-HAp are compared, and if these diffraction patterns substantially match, Ag- It can be identified that HAp has been obtained. The axial length of the crystal lattice can be examined from the peak value in the above diffraction pattern, and it can be confirmed from this axial length that calcium ions are substituted by silver ions.
また、フーリエ変換型赤外分光分析(FTIR)によれば、得られたAg−HApに含まれる官能基を同定することができる。 Moreover, according to Fourier transform infrared spectroscopy (FTIR), it is possible to identify functional groups contained in the obtained Ag-HAp.
また、合成したAg−HApを走査型電子顕微鏡(SEM)により観察することで、Ag−HAp粒子の表面形状や粒径を測定することができる。 Moreover, the surface shape and particle diameter of Ag-HAp particle | grains can be measured by observing synthetic | combination Ag-HAp with a scanning electron microscope (SEM).
また、合成したAg−HApを誘導結合プラズマ−原子発光分析法(ICP−AES)により分析することで、Ag−HApナノ結晶中の元素の組成比及び銀の量を求めることができる。 Moreover, the composition ratio of elements in the Ag-HAp nanocrystals and the amount of silver can be determined by analyzing the synthesized Ag-HAp by inductively coupled plasma-atomic emission spectrometry (ICP-AES).
なお、Ag−HApの結晶構造中に、あまりに多くの銀イオンが含まれていると、金属銀がHApの結晶構造から析出し、Ag−HApの結晶構造を維持することができないおそれがある。すると、HAp自体の特性(例えば、生体中での安定性、生体適合性、生体組織に対する密着性あるいは接着性等)が発揮されなくなる可能性もあるとともに、生体毒が生じる恐れがある。また、銀イオンが多すぎると、金属銀の析出に伴い、Ag−HApの結晶構造を構成するイオン種の比率が崩れ、リン酸三カルシウム(β−TCP)等の他の結晶層が生成し、Ag−HAp粒子の水溶性、生体中での代謝速度が高まりすぎるため、HAp代替材料として使用する場合には不適である。さらに、結晶構造を維持することができないため、銀イオンの放出速度が高まり、マイルドな抗菌性を発揮できなくなってしまう。このような観点から、Ag−HApの結晶構造中のAgの置換割合(=Ag/(Ca+Ag)×100[mol%])が、0.75mol%未満であることが好適である。このようなAgの置換割合である場合には、Ag−HAp粒子のXRDにより定量した(XRDの回折パターンから求めた)ハイドロキシアパタイト結晶相純度が90%以上となる。ここで、XRDによる定量分析方法としては、一般に、リートベルト法、検量線法、回折積分強度比を用いた方法等が知られているが、本発明では、これらのいずれかの方法を用いて結晶相純度を求めることができる。 If too much silver ions are contained in the crystal structure of Ag-HAp, metallic silver may precipitate from the crystal structure of HAp, and the crystal structure of Ag-HAp may not be maintained. Then, the properties of HAp itself (for example, stability in a living body, biocompatibility, adhesion to a living tissue, adhesiveness, etc.) may not be exhibited, and there is a possibility that a biotoxin may occur. When the amount of silver ions is too large, the ratio of ion species constituting the crystal structure of Ag-HAp collapses with precipitation of metallic silver, and another crystalline layer such as tricalcium phosphate (β-TCP) is formed. Since the water solubility of Ag-HAp particles and the metabolic rate in the living body are too high, it is unsuitable when used as a HAp substitute material. Furthermore, since the crystal structure can not be maintained, the release rate of silver ions is increased, and the mild antibacterial property can not be exhibited. From such a viewpoint, it is preferable that the substitution ratio of Ag in the crystal structure of Ag-HAp (= Ag / (Ca + Ag) × 100 [mol%]) is less than 0.75 mol%. When it is such a substitution ratio of Ag, the hydroxyapatite crystal phase purity (determined from the diffraction pattern of XRD) determined by XRD of Ag-HAp particles is 90% or more. Here, as a method of quantitative analysis by XRD, a Rietveld method, a calibration curve method, a method using a diffraction integral intensity ratio, etc. are generally known, but in the present invention, any one of these methods is used. The crystal phase purity can be determined.
さらに、合成したAg−HApを誘導結合プラズマ発光分光分析装置(ICP−AES)により分析することで、元素の組成比を求めることができる。 Furthermore, the composition ratio of the elements can be determined by analyzing the synthesized Ag-HAp using an inductively coupled plasma emission spectrometer (ICP-AES).
[Ag−HAp:抗菌力]
上述したようにして得られるAg−HApの抗菌力は、例えば、以下に述べる条件を満たすことが好ましい。すなわち、マイクロプレートリーダーで測定した吸光度の値が0.1(105個/μL)に濃度調整した所定の細胞を含む菌液と、該菌液と同体積のNaCl溶液にAg−HAp粒子を銀イオン換算で2.47mmol/L以上の濃度で分散させた溶液と、を混合した混合液を培地にスポットし、37℃で1日培養した後の殺菌率が90%以上であることが好ましい。これにより、本発明のHAp誘導体粒子群が、健全な組織に対しては悪影響を与えずに細菌等を静菌又は殺菌することが可能な、マイルドな抗菌性をより確実に発揮することができる。なお、ここでの「銀イオン換算の濃度」とは、抗菌力の評価に使用したAg−HApの組成(Ca10−x・Agx(PO4)6(OH)2)からその式量を求め、この式量と、上記NaCl溶液中のAg−HApのモル濃度(mol/L)とから算出された、上記NaCl溶液中に含まれる銀イオンのモル濃度(mol/L)を意味する。
[Ag-HAp: antibacterial activity]
The antimicrobial activity of Ag-HAp obtained as described above preferably satisfies, for example, the conditions described below. That is, a cell suspension containing predetermined cells adjusted to a concentration of 0.1 (10 5 cells / μL) in absorbance value measured by a microplate reader, and Ag-HAp particles in the same volume of NaCl solution as the cell suspension It is preferable that a mixed solution obtained by mixing a solution in which a solution dispersed at a concentration of 2.47 mmol / L or more in terms of silver ion is mixed is spotted on a culture medium and cultured at 37 ° C. for 1 day is 90% or more . Thereby, the HAp derivative particle group of the present invention can more reliably exhibit mild antibacterial property capable of bacteriostatic or sterilizing bacteria etc. without adversely affecting healthy tissue. . Here, “the concentration in terms of silver ion” means the formula weight from the composition (Ca 10-x Ag x (PO 4 ) 6 (OH) 2 ) of Ag-HAp used for the evaluation of the antimicrobial activity. The molar concentration (mol / L) of the silver ion contained in the NaCl solution is calculated from the formula weight and the molar concentration (mol / L) of Ag-HAp in the NaCl solution.
[F−HAp:構造]
F−HApは、フッ化物イオンを結晶構造中に含んでおり、HApの結晶構造中の水酸化物イオン(OH−)部分(少なくとも一部)がフッ化物イオン(F−)に置換されたものである。言い換えると、F−HApは、フッ化物イオンをHApの水酸化物イオンの位置にドープしたHAp誘導体である。このF−HApは、フッ化物イオンを含まないHApとは異なり抗菌性を有するものであり、また、フッ化物イオンとHApの単なる混合物と比較して抗菌性はマイルドなものとなる。さらに、F−HApは、高い耐酸性も有する。なお、F−HApにおいて、HAp結晶構造中の水酸化物イオンの少なくとも一部がフッ化物イオンで置換されている場合、HAp結晶構造中のカルシウムイオンの少なくとも一部が、銀イオン又はその他の陽イオンで置換されていてもよい。
[F-HAp: structure]
F-HAp includes a fluoride ion in the crystal structure, the hydroxide ions in the crystal structure of HAp (OH -) - those substituted in the portion (at least part) of the fluoride ion (F) It is. In other words, F-HAp is an HAp derivative in which fluoride ion is doped at the position of hydroxide ion of HAp. Unlike F-HAp which does not contain fluoride ion, this F-HAp has anti-bacterial activity, and the anti-bacterial activity is mild as compared with a mere mixture of fluoride ion and HAp. Furthermore, F-HAp also has high acid resistance. In F-HAp, when at least a part of hydroxide ion in HAp crystal structure is substituted with fluoride ion, at least a part of calcium ion in HAp crystal structure is a silver ion or other positive ions. It may be substituted by ions.
ここで、例えば、カテーテル等の医療機器は、体外と体内を繋いで、血液の輸血や排液といった医療行為に用いられるが、カテーテル等の材料として、一般に、シリコーン等の弾力性が優れた高分子材料が使用されているが、実際に長期間このデバイスを装着する場合、カテーテルと生体との接着部に隙間が生じ、細菌感染を引き起こすことが懸念されていた。そこで、近年、細菌感染を防止するのに有用な、高い分散性と結晶性を有するHApナノ単結晶を作製し、高分子基材にコーティングしたカテーテルの開発が行われている。これにより、生体とデバイスが密着し、刺入部からの細菌侵入を従来のカテーテルに比較して有意に抑制することが可能となる。しかしながら、経皮デバイスの周囲に極度の炎症が生じると、好中球やマクロファージなどの食細胞がこれを貪食し、食べた異物を溶かすために活性酸素やライソゾーム酵素を放出する。過酸化水素などの活性酸素は、プロトンを放出し炎症をおこした周囲が弱酸性となるため、酸に弱いHApが溶解することが危惧されている。 Here, for example, a medical device such as a catheter is used for medical activities such as blood transfusion and drainage by connecting the inside and outside of the body with a body, but as a material such as a catheter, it is generally high in elasticity such as silicone. Although molecular materials are used, there is a concern that when the device is actually worn for a long period of time, a gap is formed in the adhesion part between the catheter and the living body to cause bacterial infection. Therefore, in recent years, a catheter having high dispersibility and crystallinity, which is useful for preventing bacterial infection, prepared and coated on a polymer base has been developed. As a result, the living body and the device are in close contact with each other, and bacterial invasion from the insertion site can be significantly suppressed as compared with the conventional catheter. However, when extreme inflammation occurs around the percutaneous device, phagocytes such as neutrophils and macrophages phagocytose them and release active oxygen and lysosomal enzymes to dissolve foreign substances eaten. Since the active oxygen such as hydrogen peroxide releases protons and becomes weakly acidic around the inflammation, it is feared that weak HAp dissolves in the acid.
このような場合に、高分子基材の表面に、高い耐酸性を有するF−HApをコーティングすることで、活性酸素等により溶解することを抑制することができる。また、F−HApは、通常のHApに比べ耐酸性が向上し、かつマイルドな抗菌性を発現するため、本発明のF−HApを歯科用材料として使用することで、う蝕を予防することができる。 In such a case, by coating F-HAp having high acid resistance on the surface of the polymer substrate, dissolution by active oxygen or the like can be suppressed. In addition, since F-HAp is improved in acid resistance as compared to normal HAp, and exhibits mild antibacterial activity, using the F-HAp of the present invention as a dental material prevents caries. Can.
[F−HAp:合成方法]
上述したような特徴を有するF−HApは、湿式法、乾式法、加水分解法、水熱法等の既知の製造方法によって製造することができる。以下の説明では、湿式法の一つである共沈法を用いてF−HApを合成する方法を例に挙げ、F−HApの合成方法を述べる。
[F-HAp: synthesis method]
F-HAp having the characteristics as described above can be produced by known production methods such as a wet method, a dry method, a hydrolysis method, and a hydrothermal method. In the following description, a method of synthesizing F-HAp will be described as an example of a method of synthesizing F-HAp using a coprecipitation method which is one of wet methods.
本発明に係るF−HApの製造方法は、少なくとも「一次粒子生成工程」を含んでいればよいが、この他、「混合工程」、「焼成工程」、「除去工程」を含んでいてもよい。なお、以下の説明においては、上記4工程を全て含んだ製造方法について説明する。 The method for producing F-HAp according to the present invention may include at least the "primary particle generation step", but may additionally include "mixing step", "baking step" and "removal step". . In the following description, a manufacturing method including all the above four steps will be described.
本発明に係るF−HApの製造方法において、上記4工程は、例えば「1.一次粒子生成工程」→「2.混合工程」→「3.焼成工程」→「4.除去工程」の順で行われる。 In the method for producing F-HAp according to the present invention, the above four steps are carried out, for example, in the order of “1. primary particle generation process” → “2. Mixing process” → “3. Baking process” → “4. removal process” To be done.
(1.一次粒子生成工程)
ここで、「一次粒子」、「二次粒子」、「単結晶一次粒子」の定義については、Ag−HApと同様である。
(1. Primary particle generation process)
Here, the definitions of “primary particle”, “secondary particle”, and “single crystal primary particle” are the same as Ag-HAp.
一次粒子生成工程は、上述した一次粒子を生成することができる工程であれば特に限定されるものではなく、製造するHAp誘導体の原料により適宜選択の上、採用すればよい。例えば、以下の方法によりF−HApの一次粒子を生成することができる。まず、所定の溶媒に、フッ素(F)源(フッ素化合物)及びカルシウム(Ca)源(カルシウム化合物)を溶解させ、所定時間撹拌し、フッ素化合物溶液とカルシウム化合物溶液を調製する。同様に、所定の溶媒にリン(P)源(リン化合物)を溶解させ、所定時間撹拌し、リン化合物溶液を調製する。次に、フッ素化合物溶液とカルシウム化合物溶液を混合した後に、更に、リン化合物溶液を混合し、所定温度に加熱して撹拌する。その後、常温で更に所定時間撹拌する。その結果、F−HApの粒子が沈殿する。 The primary particle production step is not particularly limited as long as it is a step capable of producing the above-described primary particles, and may be appropriately selected depending on the raw material of the HAp derivative to be produced. For example, primary particles of F-HAp can be produced by the following method. First, a fluorine (F) source (a fluorine compound) and a calcium (Ca) source (a calcium compound) are dissolved in a predetermined solvent and stirred for a predetermined time to prepare a fluorine compound solution and a calcium compound solution. Similarly, a phosphorus (P) source (phosphorus compound) is dissolved in a predetermined solvent, and the mixture is stirred for a predetermined time to prepare a phosphorus compound solution. Next, after mixing the fluorine compound solution and the calcium compound solution, the phosphorus compound solution is further mixed, heated to a predetermined temperature, and stirred. Thereafter, the mixture is further stirred at normal temperature for a predetermined time. As a result, particles of F-HAp precipitate.
F−HApの原料については、F源としては、フッ化ナトリウム、フッ化カリウム等、Ca源としては、硝酸カルシウム(水和物も含む。)、水酸化カルシウム、硝酸カルシウム、塩化カルシウム等、P源としては、リン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム等を用いることができる。また、上記原料を溶解させる溶媒としては、上記原料が溶解するものであれば特に限定されるものではないが、例えば、水、エタノール、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、トルエン等が挙げられる。上記Ag源、Ca源、P源、溶媒としては、上述した化合物を単独で使用してもよく、複数種混合して使用してもよい。 As for F-HAp raw materials, sodium fluoride, potassium fluoride and the like as the F source, calcium nitrate (including hydrate) as the Ca source, calcium hydroxide, calcium nitrate, calcium chloride and the like, P As a source, phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate and the like can be used. The solvent for dissolving the raw material is not particularly limited as long as the raw material can be dissolved, and examples thereof include water, ethanol, dimethylformamide, dimethyl sulfoxide, acetonitrile, toluene and the like. As said Ag source, Ca source, P source, and a solvent, the compound mentioned above may be used independently and may be used in mixture of multiple types.
本発明に係るHAp誘導体粒子の製造方法は、上記の一次粒子生成工程によって生成した一次粒子の集合からなる一次粒子群を、融着等を防止しながら焼成してHAp誘導体粒子の集合からなるHAp誘導体粒子群を製造するものである。よって、当該一次粒子生成工程によって生成された一次粒子の状態(粒子径、粒度分布)が、最終生産物であるHAp誘導体粒子の状態(粒子径、粒度分布)にそのまま反映される。 The method for producing HAp derivative particles according to the present invention comprises: HAp comprising a collection of HAp derivative particles by firing a primary particle group consisting of a collection of primary particles generated by the above primary particle generation step while preventing fusion or the like It is for producing a group of derivative particles. Therefore, the state (particle diameter and particle size distribution) of primary particles generated in the primary particle generation step is directly reflected on the state (particle diameter and particle size distribution) of HAp derivative particles as the final product.
また、本工程には生成した一次粒子を水等で洗浄する工程、遠心分離、ろ過等で一次粒子を回収する工程が含まれていてもよい。 In addition, this step may include a step of washing the generated primary particles with water or the like, and a step of collecting the primary particles by centrifugation, filtration or the like.
(2.混合工程)
本混合工程は、上記工程で生成された一次粒子と、焼成時における一次粒子同士の融着を防止する融着防止剤とを混合する工程である。本混合工程については、上述したAg−HApの場合と同様であるので、詳細な説明を省略する。
(2. mixing process)
The present mixing step is a step of mixing the primary particles generated in the above step and the anti-fusion agent for preventing the fusion between the primary particles at the time of firing. About this mixing process, since it is the same as that of the case of Ag-HAp mentioned above, detailed explanation is omitted.
(3.焼成工程)
本焼成工程は、上記混合工程によって得られた混合粒子を焼成温度に曝して、当該混合粒子に含まれる一次粒子をセラミックのHAp誘導体粒子(焼成体粒子)にする工程である。本焼成工程についても、上述したAg−HApの場合と同様であるので、詳細な説明を省略する。ただし、後述する実施例における焼成条件は、Ag−HApの場合と異なり、800℃で1時間焼成を行っている。
(3. Baking process)
The firing step is a step of exposing the mixed particles obtained in the mixing step to a firing temperature to convert primary particles contained in the mixed particles into ceramic HAp derivative particles (fired particles). The main firing step is also the same as in the case of Ag-HAp described above, and thus detailed description will be omitted. However, unlike the case of Ag-HAp, the firing conditions in the examples described later are firing at 800 ° C. for 1 hour.
(4.除去工程)
本除去工程は、上述した焼成工程によって得られたHAp誘導体粒子群の粒子間に混在する融着防止剤を取り除く工程である。本除去工程についても、上述したAg−HApの場合と同様であるので、詳細な説明を省略する。
(4. Removal process)
The main removing step is a step of removing the anti-fusion agent mixed between the particles of the HAp derivative particle group obtained by the above-mentioned firing step. The main removing step is also the same as in the case of Ag-HAp described above, and thus detailed description will be omitted.
[F−HAp:同定方法]
上述したようにして合成されたF−HApは、例えば、各種構造解析手法により同定することができる。例えば、X線回折装置(X−Ray Diffractometer:XRD)を用いて測定した回折パターンと、既知のF−HApの回折パターンとを比較し、これらの回折パターンがほぼ一致していれば、F−HApが得られていると同定することができる。なお、上記回折パターンにおけるピーク値から結晶格子の軸長を調べることができ、この軸長から水酸化物イオンがフッ化物イオンに置換されていることを確認することもできる。
[F-HAp: Identification method]
F-HAp synthesized as described above can be identified, for example, by various structural analysis methods. For example, if the diffraction pattern measured using an X-ray Diffractometer (XRD) is compared with the diffraction pattern of known F-HAp, and if these diffraction patterns substantially match, F- It can be identified that HAp has been obtained. The axial length of the crystal lattice can be examined from the peak value in the above-mentioned diffraction pattern, and it can be confirmed from this axial length that the hydroxide ion is substituted by the fluoride ion.
また、フーリエ変換型赤外分光分析(FTIR)によれば、得られたF−HApに含まれる官能基を同定することができ、さらに、合成したF−HApと市販されているF−HApのFTIRのスペクトルを比較し、各官能基に帰属する吸収ピークがほぼ一致していれば、合成したものがF−HApであると推測することができる。 Also, according to Fourier transform infrared spectroscopy (FTIR), it is possible to identify the functional group contained in the obtained F-HAp, and further, for the synthesized F-HAp and commercially available F-HAp, The spectra of FTIRs are compared, and if the absorption peaks attributable to the respective functional groups are almost identical, it can be inferred that the synthesized one is F-HAp.
また、合成したF−HApを走査型電子顕微鏡(SEM)により観察することで、F−HAp粒子の表面形状や粒径を測定することができる。 Further, by observing the synthesized F-HAp with a scanning electron microscope (SEM), it is possible to measure the surface shape and the particle diameter of the F-HAp particle.
また、フッ素イオン濃度計を用いることで、合成したF−HAp中のフッ化物イオンの濃度を測定することができ、当該フッ化物イオン濃度の測定値と、理論濃度(化学両論的に求めたF−HAp中のフッ化物イオン濃度)との比から、HAp中の水酸化物イオンのフッ化物イオン置換率を求めることもできる。 In addition, the concentration of fluoride ion in the synthesized F-HAp can be measured by using a fluorine ion concentration meter, and the measured value of the fluoride ion concentration and the theoretical concentration (the theoretically determined F It is also possible to determine the fluoride ion substitution rate of hydroxide ion in HAp from the ratio with-fluoride ion concentration in HAp.
[F−HAp:抗菌力]
上述したようにして得られるF−HApの抗菌力は、例えば、以下に述べる条件を満たすことが好ましい。すなわち、マイクロプレートリーダーで測定した吸光度の値が0.1(105個/μL)に濃度調整した所定の細胞を含む菌液と、該菌液と同体積のNaCl溶液にF−HAp粒子をフッ化物イオン換算で89.3mmol/L以上の濃度で分散させた溶液と、を混合した混合液を培地にスポットし、37℃で1日培養した後の殺菌率が50%以上であることが好ましい。これにより、本発明の抗菌剤が、健全な組織に対しては悪影響を与えずに細菌等を静菌することが可能な、マイルドな抗菌性をより確実に発揮することができる。さらに、マイクロプレートリーダーで測定した吸光度の値が0.1(105個/μL)に濃度調整した所定の細胞を含む菌液と、該菌液と同体積のNaCl溶液にF−HAp粒子をフッ化物イオン換算で178.6mmol/L以上の濃度で分散させた溶液と、を混合した混合液を培地にスポットし、37℃で1日培養した後の殺菌率が95%以上であることが好ましい。これにより、本発明の抗菌剤が、健全な組織に対しては悪影響を与えずに細菌等を殺菌することが可能な、マイルドな抗菌性をより確実に発揮することができる。なお、ここでの「フッ化物イオン換算の濃度」とは、抗菌力の評価に使用したF−HApの組成(Ca10(PO4)6F2−y(OH)y)からその式量を求め、この式量と、上記NaCl溶液中のF−HApのモル濃度(mol/L)とから算出された、上記NaCl溶液中に含まれるフッ化物イオンのモル濃度(mol/L)を意味する。
[F-HAp: antibacterial activity]
The antibacterial activity of F-HAp obtained as described above preferably satisfies, for example, the conditions described below. That is, a cell suspension containing predetermined cells whose absorbance value measured with a microplate reader was adjusted to 0.1 (10 5 cells / μL), and F-HAp particles in the same volume of NaCl solution as the cell suspension A mixed solution obtained by mixing a solution dispersed at a concentration of 89.3 mmol / L or more in terms of fluoride ion is spotted on a culture medium, and the sterilization rate after culturing for 1 day at 37 ° C. is 50% or more preferable. Thus, the antibacterial agent of the present invention can more reliably exhibit mild antibacterial properties capable of bacteriostatic bacteria and the like without adversely affecting healthy tissue. Furthermore, a bacterial solution containing predetermined cells whose concentration is adjusted to 0.1 (10 5 cells / μL) and the absorbance value measured with a microplate reader, and F-HAp particles in the same volume of NaCl solution as the bacterial solution. A mixed solution obtained by mixing a solution dispersed at a concentration of 178.6 mmol / L or more in terms of fluoride ion is spotted on a culture medium, and the bactericidal rate after culturing for 1 day at 37 ° C. is 95% or more preferable. Thus, the antibacterial agent of the present invention can more reliably exhibit mild antibacterial properties that can kill bacteria and the like without adversely affecting healthy tissue. Here, "the concentration of fluoride ion in terms" is the formula weight of the composition of F-HAp was used to evaluate the antibacterial activity (Ca 10 (PO 4) 6 F 2-y (OH) y) Calculated is the molar concentration (mol / L) of fluoride ion contained in the NaCl solution calculated from the formula weight and the molar concentration (mol / L) of F-HAp in the NaCl solution. .
≪抗菌作用の原理≫
本発明に係る抗菌剤の作用機序は不明であるが、本発明者らは、上述したようにHAp誘導体をナノ粒子にした結果、数μm程度の大きさの菌の内部に取り込まれやすくなり、このようにして菌の内部に取り込まれたマイルドな抗菌性を有するHAp誘導体が、菌の内部から菌を静菌又は殺菌する作用を示すものと推測している。
«Principle of antibacterial action»
Although the mechanism of action of the antibacterial agent according to the present invention is unknown, as a result of using the HAp derivative as nanoparticles as described above, the present inventors are likely to be easily incorporated into bacteria of about several μm in size. Thus, it is presumed that the mildly antibacterial HAp derivative incorporated into the inside of the fungus exhibits an action of bacteriostatic or sterilizing the fungus from the inside of the fungus.
≪抗菌剤の用途≫
本発明に係るHAp誘導体、特に、焼成HAp誘導体は、生体活性が非常に高いため、医療分野において、例えば、骨充填剤、歯科用充填剤、薬物徐放剤等の歯科用材料または医療用材料として広く用いることができる。また、HAp誘導体は、生体活性が高いので、特に医療用材料として好適に用いることができる。また、焼成HAp誘導体粒子群は、菌体、酵母等の固定化担体、カラムクロマトグラフィー用充填剤、消臭剤等の吸着剤等に好適に用いることができる。さらに、本発明にHAp誘導体は、ナノメートルサイズのドラッグデリバリーシステム(ナノDDS)にもその利用が期待される。特に、本発明に係るHAp誘導体及びこれを含む抗菌剤は、これらの用途の中でも、抗菌性が要求される用途、例えば、体外と体内を繋いで、カテーテル、人工関節等の医療機器等の用途に好適に用いられる。
«Applications of antibacterial agents»
The HAp derivatives according to the present invention, in particular calcined HAp derivatives, have a very high biological activity, and therefore, in the medical field, for example, dental materials or medical materials such as bone fillers, dental fillers, drug sustained release agents, etc. It can be used widely as In addition, since HAp derivatives have high biological activity, they can be particularly suitably used as medical materials. In addition, the calcined HAp derivative particle group can be suitably used as an immobilized carrier such as bacterial cells and yeast, a filler for column chromatography, an adsorbent such as a deodorant, and the like. Furthermore, the HAp derivative according to the present invention is expected to be used for nanometer sized drug delivery systems (nano DDS). In particular, the HAp derivative according to the present invention and the antibacterial agent containing the same are, among these uses, applications requiring antibacterial properties, for example, medical devices such as catheters, artificial joints, etc. by connecting the outside and the body Are preferably used.
次に、本発明を実施例及び比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。 Next, the present invention will be described more specifically by Examples and Comparative Examples, but the present invention is not limited by these examples.
≪Ag−HAp≫
初めに、Ag−HApを合成し、得られたAg−HApを同定した上で、当該Ag−HApの抗菌性について評価した結果を説明する。
«Ag-HAp»
First, Ag-HAp is synthesized, the obtained Ag-HAp is identified, and then the result of evaluating the antibacterial property of the Ag-HAp will be described.
<Ag−HApの合成>
湿式法の一つである共沈法を用いて、Ag−HAp{Ca10−xAgx(PO4)6(OH)2(式中、x=0、0.1、0.2)}ナノ単結晶の作製を行った。出発原料については、Ca源として硝酸カルシウム四水和物{Ca(NO3)2・4H2O}、P源としてリン酸二水素アンモニウム{(NH4)2HPO4}、Ag源として硝酸銀{AgNO3}を用い、脱イオン水中で混合しながら室温で合成された。具体的には以下のようにして行った。
<Synthesis of Ag-HAp>
Using a coprecipitation method, which is one of the wet method, Ag-HAp {Ca 10- x Ag x (PO 4) 6 (OH) 2 ( wherein, x = 0,0.1,0.2)} A nano single crystal was prepared. For starting material, calcium nitrate tetrahydrate as Ca source {Ca (NO 3) 2 · 4H 2 O}, ammonium dihydrogen phosphate as the P source {(NH 4) 2 HPO 4 }, nitrate as Ag source { AgNO 3 } was synthesized at room temperature with mixing in deionized water. Specifically, it carried out as follows.
(一次粒子生成工程)
硝酸カルシウム四水和物、硝酸銀、及びリン酸二水素アンモニウムとしては、いずれも和光純薬工業株式会社から購入したものを精製せずに用いた。また、HAp中の銀含有量を確認するために、Ca:Ag=80:20(モル%)のAg含有HApを調製した。すべての反応は100℃の温度で行い、(Ca2+ + Ag+):PO4 3−のモル比が10:6となるように計算して反応物の量を定めた。
(Primary particle generation process)
As calcium nitrate tetrahydrate, silver nitrate and ammonium dihydrogen phosphate, any of those purchased from Wako Pure Chemical Industries, Ltd. was used without purification. Moreover, in order to confirm the silver content in HAp, Ag containing HAp of Ca: Ag = 80: 20 (mol%) was prepared. All reactions were carried out at a temperature of 100 ° C., and the amount of reactants was determined by calculation such that the molar ratio of (Ca 2+ + Ag + ): PO 4 3- is 10: 6.
まず、80mmolの硝酸カルシウム四水和物及び20mmolの硝酸銀をそれぞれ300mLの脱イオン水と混合し、0.3Mの溶液(Ca及びAgの硝酸塩溶液)を調製した。この溶液を油浴内において、100℃で30分間撹拌した。同様に、所定量のリン酸二水素アンモニウムを300mLの脱イオン水と混合し、0.2Mの溶液(リン溶液)を調製した。この溶液に28%濃度のNH4OHを加えることによりpHを10.0に調整し、室温で30分間撹拌した。次いで、100℃の温度に維持したCa及びAgの窒化物溶液に、リン溶液を一滴ずつ添加し、これらの溶液を混合した。リン溶液の添加が終了した後、混合物を2時間100℃に維持した状態で撹拌した。撹拌(反応)中、溶液のpHが10.0に保たれるように常にpHを調整した。リン溶液をCa及びAgの窒化物溶液に混合する前は、両者の溶液は透明であったが、リン溶液の添加量を増やすにつれ、混合溶液は徐々に白色になった。得られた混合溶液を12時間放置した後、不純物イオン(NH4 +、NO3 −)を取り除くために遠心分離法を用いて脱イオン水で3回洗浄した。洗浄後、混合物をろ過して湿ったケーク(Ag−HApケーク)を得た。湿ったケークを低圧ポンプにより十分に乾燥した後に、オーブン内に60℃で一晩放置した。さらに、Ag−HApケークをめのう乳鉢と乳棒を用いて粉砕してAg−HAp粉体を得た。 First, 80 mmol of calcium nitrate tetrahydrate and 20 mmol of silver nitrate were respectively mixed with 300 mL of deionized water to prepare a 0.3 M solution (a nitrate solution of Ca and Ag). The solution was stirred in an oil bath at 100 ° C. for 30 minutes. Similarly, a predetermined amount of ammonium dihydrogen phosphate was mixed with 300 mL of deionized water to prepare a 0.2 M solution (phosphorus solution). The pH was adjusted to 10.0 by adding 28% strength NH 4 OH to this solution and stirred at room temperature for 30 minutes. Next, the phosphorus solution was added dropwise to a nitride solution of Ca and Ag maintained at a temperature of 100 ° C., and these solutions were mixed. After the addition of the phosphorus solution was complete, the mixture was stirred for 2 hours, maintained at 100 ° C. During stirring (reaction), the pH was always adjusted so that the pH of the solution was kept at 10.0. Before the phosphorus solution was mixed with the Ca and Ag nitride solution, both solutions were clear, but as the addition of the phosphorus solution was increased, the mixed solution gradually became white. The resulting mixed solution was allowed to stand for 12 hours and then washed three times with deionized water using centrifugation to remove impurity ions (NH 4 + , NO 3 − ). After washing, the mixture was filtered to obtain a wet cake (Ag-HAp cake). The wet cake was fully dried by a low pressure pump and then left in an oven at 60 ° C. overnight. Further, the Ag-HAp cake was crushed using a mortar and pestle to obtain an Ag-HAp powder.
(混合工程及び焼成工程)
次に、上記で得られたAg−HAp粉体の一部を融着防止剤を添加せずに焼成し、他の一部を融着防止剤と混合した後に焼成した。焼成は、るつぼ内にて700℃で2時間行った。
(Mixing process and firing process)
Next, a part of the Ag-HAp powder obtained above was fired without adding the anti-fusion agent, and another part was mixed with the anti-fusion agent and then fired. Baking was performed at 700 ° C. for 2 hours in a crucible.
(除去工程)
最後に、Ag−HApの焼成体にNH4NO3溶液を加えることでpHを約7まで低下させた後に、遠心分離を用いて脱イオン水で洗浄した。洗浄後、Ag−HApの焼成体をろ過し、60℃のオーブンで十分に乾燥させ、Ag−HApの焼成体のサンプルを得た。
(Removal process)
Finally, the pH was lowered to about 7 by adding NH 4 NO 3 solution to the calcined Ag-HAp, and then it was washed with deionized water using centrifugation. After washing, the calcined Ag-HAp was filtered and sufficiently dried in an oven at 60 ° C. to obtain a sample of the calcined Ag-HAp.
<Ag−HApの同定>
上述のようにして得られたAg−HApのサンプルに関し、Ag−HApの同定として、フーリエ変換型赤外分光光度計(FTIR)による官能基分析、X線回折装置(XRD)による結晶構造解析、走査型電子顕微鏡(SEM)による表面形状及び粒径測定、並びに、誘導結合プラズマ−原子発光分析法(ICP−AES)による元素組成分析を行った。
<Identification of Ag-HAp>
Regarding the sample of Ag-HAp obtained as described above, as identification of Ag-HAp, functional group analysis by Fourier transform infrared spectrophotometer (FTIR), crystal structure analysis by X-ray diffractometer (XRD), The surface shape and particle size measurement by a scanning electron microscope (SEM) and the elemental composition analysis by inductively coupled plasma-atomic emission spectrometry (ICP-AES) were performed.
(FTIRによる官能基分析)
赤外分光測定による官能基の測定は、フーリエ変換型赤外分光光度計(パーキンエルマー(株)製、Spectrum50)を用いて行った。測定方法としてはKBr法を採用した。Ag−HApのサンプル1質量%に対して臭化カリウム(KBr)粉末を99質量%の比率で混合し、乳鉢を用いて十分にすりつぶし、均一に混合した粉末を拡散反射モードで測定波長範囲を4000cm−1から400cm−1、分解能4で積算回数は16回で測定した。なお、F−HApのサンプルとしては、(a)上記一次粒子生成工程で作製したAg−HApと、(b)(a)のAg−HApを融着防止剤を添加せずに焼成したサンプルと、(c)(a)のAg−HApを融着防止剤{Ca(NO3)2}を添加して焼成したサンプルとを用いた。図1に、上記(a)〜(c)のサンプルのIRスペクトルを示す。
(Functional group analysis by FTIR)
The measurement of functional groups by infrared spectroscopy was performed using a Fourier transform infrared spectrophotometer (Spectrum 50, manufactured by Perkin Elmer Co., Ltd.). The KBr method was adopted as the measurement method. Mix potassium bromide (KBr) powder in a ratio of 99% by weight to 1% by weight of Ag-HAp sample, fully grind using a mortar, and uniformly mix the powder in the diffuse reflection mode and measure the wavelength range The number of integrations was measured 16 times at 4000 cm −1 to 400 cm −1 with a resolution of 4. In addition, as a sample of F-HAp, (a) Ag-HAp prepared in the above-mentioned primary particle generation step, and (b) a sample obtained by firing Ag-HAp of (a) without adding an anti-fusion agent were used and samples fired by the addition of (c) anti-fusing agent Ag-HAp of (a) {Ca (NO 3 ) 2}. The IR spectrum of the sample of said (a)-(c) is shown in FIG.
図1からわかるように、P−O結合に帰属される吸収ピークが、1095cm−1、1035cm−1、及び960cm−1付近に認められた。また、O−P−O結合に帰属されると考えられる吸収ピークが、606cm−1、561cm−1及び473cm−1付近に認められた。これらの吸収ピークから、いずれのサンプルもホスフェート基を含有していることが示唆された。 As can be seen from FIG. 1, absorption peaks attributable to PO bonds were observed around 1095 cm −1 , 1035 cm −1 and 960 cm −1 . Further, the absorption peak is thought to be attributed to O-P-O bonds, 606 cm -1, were observed around 561cm -1 and 473cm -1. These absorption peaks suggested that all samples contained phosphate groups.
また、ヒドロキシル基(水酸基)に帰属される吸収ピークが、3571cm−1および629cm−1付近に認められたことから、いずれのサンプルもヒドロキシル基を含有していることが示唆された。 In addition, absorption peaks attributed to hydroxyl groups (hydroxyl groups) were observed at around 3571 cm −1 and 629 cm −1 , which suggested that all samples contained hydroxyl groups.
さらに、いずれのサンプルにおいても、H2O分子に帰属される2つのブロードな吸収ピークが、1630cm−1及び3400cm−1付近に観察されたが、700℃で2時間焼成することで大幅にピーク強度が小さくなっていることがわかった。 Further, in any of the samples, two broad absorption peaks attributed in H 2 O molecules, was observed in the vicinity of 1630 cm -1 and 3400 cm -1, greatly peaks by baking for 2 hours at 700 ° C. It was found that the strength was reduced.
加えて、図1に示すように、サンプル(b)及び(c)の方がサンプル(a)よりも、632及び3571cm−1のヒドロキシル基に帰属されるピーク強度と、962cm−1のホスフェート基に帰属されるピーク強度が増加していることから、焼成されたサンプルにおいて結晶性が増大していることが示唆された。なお、この結果は、後述するXRDによる結果と一致している。 In addition, as shown in FIG. 1, than the sample (b) and it is a sample of (c) (a), the peak intensity assigned to the hydroxyl group of 632 and 3571cm -1, phosphate groups of 962cm -1 The increase in the peak intensity attributable to <10> indicates that the crystallinity is increased in the fired sample. In addition, this result is in agreement with the result by XRD mentioned later.
また、サンプル(a)では、ヒドロキシル基に帰属されるピークがシャープではなかったのに対し、焼成されたサンプル(b)及び(c)では、ヒドロキシル基に帰属されるピークがシャープになったことから、焼成したサンプルでは、完全な結晶質のAg−HApが生成されていることが示唆された。なお、このことは、後述するXRDの回折ピークにおいても観察された。 Also, in the sample (a), the peak attributed to the hydroxyl group was not sharp, while in the fired samples (b) and (c), the peak attributed to the hydroxyl group became sharp From these results, it was suggested that in the fired sample, completely crystalline Ag-HAp was produced. In addition, this was observed also in the diffraction peak of XRD mentioned later.
(XRDによる結晶構造解析)
粉末X線回析装置(理学電機(株)製、RAD−X)を用いて、作製したAg−HApの結晶構造解析を行った。XRDで使用したX線源としてはCuKα線源(λ=1.541841Å(オングストローム))を用い、出力は30kV/15mA、スキャンスピードは1.0°/min、サンプリング幅は0.01°、測定モードは連続の条件とした。図2に、作製したAg−HApのX線回析ピークを示す。なお、ピークの同定には、ICCD−PDFカード(00−009−0432)のHApの標準データと、ICCD−PDFカード(04−0783)の金属銀の標準データとを用いた。
(Crystal structure analysis by XRD)
The crystal structure analysis of the produced Ag-HAp was performed using a powder X-ray diffraction apparatus (manufactured by Rigaku Corporation, RAD-X). As a X-ray source used in the XRD, a CuKα source (λ = 1.541841 Å (angstrom)) is used, the output is 30 kV / 15 mA, the scan speed is 1.0 ° / min, the sampling width is 0.01 °, and the measurement The mode was a continuous condition. FIG. 2 shows an X-ray diffraction peak of the produced Ag-HAp. In addition, the standard data of HAp of ICCD-PDF card (00-009-0432) and the standard data of metallic silver of ICCD-PDF card (04-0783) were used for the identification of a peak.
図2に示す作製したAg−HApは、主要なピークについては、ICCD−PDFカード(00−009−0432)のHApデータ(標準HApデータ)とほぼ一致した。また、図2に示すように、2θ=38.1°における金属銀のピークは、上記3種のサンプルのいずれにもほとんど観察されなかった。従って、上記方法で合成したAg−HApは、一次粒子生成直後及び焼成後(融着防止剤の有無に関わらず)のいずれにおいても、銀イオンがHAp結晶中にドープされていることがわかった。 The prepared Ag-HAp shown in FIG. 2 substantially matched the HAp data (standard HAp data) of the ICCD-PDF card (00-009-0432) for the main peak. Further, as shown in FIG. 2, the peak of metallic silver at 2θ = 38.1 ° was hardly observed in any of the above three types of samples. Therefore, it was found that Ag-HAp synthesized by the above method was doped with silver ions in HAp crystals immediately after primary particle formation and after firing (regardless of presence or absence of anti-fusion agent). .
また、上記で測定したX線回折ピークに基づき、上記サンプル(a)〜(c)の結晶格子の(211)面における半値全幅(FWHM:Full Width Half Maximum)を下記表1に示す。なお、表1の上段から順にサンプル(a)、(b)、(c)の結果を示している。なお、標準HApデータにおける(211)面におけるピークは、2θ=31.773°であった。 Further, based on the X-ray diffraction peaks measured above, the full width at half maximum (FWHM: Full Width Half Maximum) in the (211) plane of the crystal lattice of the above samples (a) to (c) is shown in Table 1 below. The results of samples (a), (b) and (c) are shown in order from the top of Table 1. The peak on the (211) plane in the standard HAp data was 2θ = 31.773 °.
一般に、X線回折ピークにおけるFWHMは、焼成温度を高くすればするほど減少し、且つ、粒子はより完全な結晶質になることが知られている。本実施例においては、焼成を行っていないサンプル(a)のFWHMよりも、700℃で焼成温度したサンプル(b)及び(c)のFWHMが減少していることから、本実施例で焼成したAg−HApはより完全な結晶質になっていると言える。 In general, it is known that the FWHM in the X-ray diffraction peak decreases as the firing temperature increases, and the particles become more completely crystalline. In the present example, since the FWHMs of the samples (b) and (c) having a firing temperature of 700 ° C. are lower than the FWHM of the sample (a) not subjected to the firing, the firing was performed in the present example. It can be said that Ag-HAp is more completely crystalline.
また、上記で測定したX線回折ピーク値から軸長を調べた。軸長は、上記で測定したXRDピークから得られた2θの値に基づき、「単位格子ソフト(unit cell soft)」を用いることで計算することができる。その結果を表2に示す。なお、表2の上段から順に、HAp標準データ、サンプル(a)、(b)、(c)の結果を示している。 Moreover, the axial length was investigated from the X-ray diffraction peak value measured above. The axial length can be calculated using “unit cell soft” based on the value of 2θ obtained from the XRD peak measured above. The results are shown in Table 2. The HAp standard data and the results of samples (a), (b) and (c) are shown in order from the top of Table 2.
表2より、作製したAg−HApは、a軸がHAp標準データの軸長より長いことが確認できた。カルシウムイオンの半径(=0.99Å)より銀イオンの半径(=1.28Å)の方が大きいため、HApのカルシウムイオンが銀イオンに置換されたことが示唆された。 From Table 2, it was confirmed that the a-axis of the produced Ag-HAp was longer than the axis length of the HAp standard data. The larger radius of silver ion (= 1.28 Å) than the radius of calcium ion (= 0.99 Å) suggested that the calcium ion of HAp was replaced with silver ion.
(SEMによる表面形状及び粒径測定)
作製したAg−HApの形態をSEMを用いて観察した。作製したAg−HApのサンプル(a)〜(c)のSEM画像を図3に示す。図3に示すように、一次粒子の状態のサンプル(a)では、各粒子が互いに近づいていることが観察された。すなわち、サンプル(a)は、不十分な結晶質(非晶質)であることがわかった。また、融着防止剤を添加せずに焼成したサンプル(b)では、一次粒子同士が融着して大きな塊状となっていることが観察された。一方、融着防止剤を添加して焼成したサンプル(c)では、一次粒子同士がほとんど融着されずに焼結され、球形又は棒状の粒子の混合物である(各粒子が互いに分離されている)ことが観察された。また、一次粒子の粒径は、融着防止剤の有無で殆ど変わらなかった。
(Measurement of surface shape and particle size by SEM)
The form of the produced Ag-HAp was observed using SEM. The SEM images of the prepared samples (a) to (c) of Ag-HAp are shown in FIG. As shown in FIG. 3, in the sample (a) in the state of primary particles, it was observed that the particles were approaching each other. That is, it was found that sample (a) was insufficiently crystalline (amorphous). Moreover, in the sample (b) fired without adding the anti-fusion agent, it was observed that the primary particles were fused to form a large block. On the other hand, in the sample (c) fired by adding the anti-fusion agent, the primary particles are sintered with almost no fusion and are a mixture of spherical or rod-like particles (each particle is separated from each other) ) Was observed. In addition, the particle size of the primary particles was hardly changed by the presence or absence of the anti-fusion agent.
また、作製したAg−HApのサンプル(a)〜(c)の平均粒径を動的光散乱法(ELS、「大塚電子製ELS−8000」を用いた)により測定した。 Moreover, the average particle diameter of the prepared samples (a) to (c) of Ag-HAp was measured by a dynamic light scattering method (ELS, “ELS-8000 manufactured by Otsuka Electronics Co., Ltd.”).
その結果、サンプル(a)の平均粒径が502.0nmであったのに対して、融着防止剤を添加せずに焼成したサンプル(b)の平均粒径は1671.8nmと大きくなることがわかった。一方、融着防止剤を添加して焼成したサンプル(c)の平均粒径は374.7nmと小さかった。このことより、融着防止剤を用いない場合には、一次粒子同士が凝集、融着して二次粒子を形成し、粒径が大きくなることが示唆された。 As a result, while the average particle size of the sample (a) was 502.0 nm, the average particle size of the sample (b) fired without the addition of the anti-fusion agent increased to 1671.8 nm. I understand. On the other hand, the average particle diameter of the sample (c) fired by adding the anti-fusion agent was as small as 374.7 nm. From this, it was suggested that when the anti-fusion agent is not used, primary particles aggregate and fuse to form secondary particles, and the particle size becomes large.
以上のことから、融着防止剤を用いてF−HApの合成を行ったことにより、1次粒子及び2次粒子ともに小さいF−HApが作製できたと考えられた。 From the above, it was thought that by synthesizing F-HAp using an anti-fusion agent, small F-HAp could be produced for both primary particles and secondary particles.
(ICP−AESによる元素組成分析)
Ag−HAp中の銀の組成比を、誘導結合プラズマ原子発光分光法(ICP−AES)により求めた。測定装置としては、Optima 2000DV(株式会社パーキンエルマージャパン製)を用いた。ICP測定用のサンプルとして、100ppmのAg−HAp溶液を調製した。その結果を表3に示した。一次粒子の状態のサンプル(a)(表中の「sample−1」に相当)中のAgは1.5%であるが、融着防止剤を添加して焼成したサンプル(c)(表中の「sample−3」に相当)のAgは0.5%であった。このAgの減少は、除去工程におけるAg−HApの洗浄に起因するものと推測された。
(Element composition analysis by ICP-AES)
The composition ratio of silver in Ag-HAp was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). As a measurement apparatus, Optima 2000DV (made by Perkin-Elmer Japan) was used. A 100 ppm Ag-HAp solution was prepared as a sample for ICP measurement. The results are shown in Table 3. Ag in the sample (a) in the state of primary particles (corresponding to “sample-1” in the table) is 1.5%, but the sample (c) fired by adding the anti-fusion agent (in the table) Ag of “sample-3” in the above was 0.5%. This decrease in Ag was presumed to be due to the washing of Ag-HAp in the removal step.
<抗菌性評価>
次に、上記で作成したAg−HApに対する抗菌性評価について説明する。以下の説明では、評価方法、評価結果の順に説明する。
<Antimicrobial evaluation>
Next, the antimicrobial evaluation with respect to Ag-HAp created above is demonstrated. The following description will be made in the order of the evaluation method and the evaluation result.
(評価方法)
作製したAg−HApを用いて、粉末添加法によりAg−HApの抗菌性を評価した。なお、Ag−HApの抗菌性はE.Coliに対して行った.E.coliは、インプラントに関連する感染の原因となりうる微生物であり、グラム陰性細菌の一種である。
(Evaluation method)
The antibacterial property of Ag-HAp was evaluated by the powder addition method using Ag-HAp produced. In addition, the antibacterial property of Ag-HAp is E. coli. I went to Coli. E. E. coli is a microorganism that can cause infections associated with implants, and is a type of gram-negative bacteria.
〔Ag−HApの洗浄〕
まず、抗菌性試験に使用するAg−HAp(Ca9.95Ag0.05(PO4)6(OH)2:式量=1015.0)の洗浄を行った。乳鉢で十分に粉砕しチューブの中に入れたAg−HAp10mgに、70%エタノールを1mL加えピペッティングした。その後15,000rpmで5分間遠心分離し、上澄みを捨てた。これを2回繰り返し、次に140mMのNaClで同様に洗浄を行った。
[Washing of Ag-HAp]
First, washing of Ag-HAp (Ca 9.95 Ag 0.05 (PO 4 ) 6 (OH) 2 : formula weight = 1015.0) used in the antibacterial property test was performed. To 10 mg of Ag-HAp sufficiently ground in a mortar and placed in a tube, 1 mL of 70% ethanol was added and pipetted. Thereafter, it was centrifuged at 15,000 rpm for 5 minutes, and the supernatant was discarded. This was repeated twice and then similarly washed with 140 mM NaCl.
〔菌の準備〕
菌液の濃度を調整するためにマイクロプレートリーダーで吸光度を測定した。液体培養した菌を20倍に希釈し、プレートに150μLスポットし波長600nmにおける吸光度を測定した。バックグラウンドには140mMのNaClを用いた。吸光度の値が0.1(105個/μL)になるよう菌液を希釈した。
[Preparation of bacteria]
Absorbance was measured with a microplate reader in order to adjust the concentration of bacterial solution. The liquid-cultured bacteria were diluted 20-fold, spotted on a plate with 150 μL, and the absorbance at a wavelength of 600 nm was measured. As background, 140 mM NaCl was used. The bacterial solution was diluted so that the absorbance value was 0.1 (10 5 cells / μL).
〔アッセイ〕
粉末添加法
100μL の140mM NaCl溶液に分散させたAg−HApを含む溶液と、菌液100μLをチューブの中に入れ、ピペッティングし、1時間プチローターで撹拌を行い、Ag−HApと細菌とを接触させた。次いで、チューブ5本に180μLずつNaCl溶液を入れたものを用意し、順番に(1)〜(5)と番号をつけ、1時間撹拌させた細菌とAg−HApの混合液20μLを(1)に入れ、ピペッティングして十分に撹拌した。次に(1)の溶液20μLを(2)に入れ、ピペッティングして十分に撹拌した。これを図4のように(2)から(3)、(3)から(4)・・・と同様の手順で繰り返し、細菌とAg−HApの混合液を希釈した(20μLを180μLに加えているため、10倍ずつ希釈していることになる)。さらに、10倍ずつ5段階に希釈した溶液を濃度の薄い(5)から順番に5μLずつ寒天培地のシャーレにスポットし、37℃に設定したインキュベータで1日培養した。なお、抗菌性試験のコントロールとしてB社製HApを使用した。以上のような評価を、100μLのNaCl溶液に分散させるAg−HApをそれぞれ上記サンプル(a)〜(c)としたNo.1〜No.3の溶液に対して行った。なお、NaCl溶液中のAg−HAp濃度は、49.3mmol/L(5.0mg/100μL)とした。
[Assay]
Powder addition method A solution containing Ag-HAp dispersed in 100 μL of 140 mM NaCl solution and 100 μL of bacterial solution are placed in a tube, pipetted, stirred for 1 hour with a petit rotor, and Ag-HAp and bacteria I was in contact. Next, prepare 180 μL of NaCl solution in 5 tubes, numbered as (1) to (5) in order, and stir for 1 hour to make 20 μL of a mixed solution of bacteria and Ag-HAp (1) , Pipetting and stirring well. Next, 20 μL of the solution of (1) was added to (2), and the solution was pipetted and sufficiently stirred. This was repeated in the same procedure as (2) to (3), (3) to (4) ... as shown in FIG. 4 to dilute the mixed solution of bacteria and Ag-HAp (add 20 μL to 180 μL Will be diluted by 10 times). Furthermore, 5 μl of the solution diluted in 10 steps of 5 steps was spotted in order of 5 μl each from the lightest concentration (5) on the petri dish of agar medium, and cultured in an incubator set at 37 ° C. for 1 day. As a control of the antibacterial test, HAp manufactured by B company was used. In the above evaluations, the samples No. 1 and No. 2 in which Ag-HAp dispersed in 100 μL of NaCl solution was used as the above samples (a) to (c) respectively. 1 to No. Performed on the solution of 3. The Ag-HAp concentration in the NaCl solution was 49.3 mmol / L (5.0 mg / 100 μL).
(評価結果)
〔Ag−HApの抗菌性〕
上記粉末添加法によりAg−HApの抗菌性試験を行った結果を図5及び表4に示す。なお、図5の最上段にはコントロールとしてのHApの結果を示し、それ以下の段にはAg−HApの結果を示している。表4に記載の殺菌率は、コントロールのコロニー数に対するAg−HApのコロニー数の割合、すなわち、(F−HApのコロニー数の減少数)/(コントロールのコロニー数)から求めた。その結果、全てのサンプル(a)〜(c)において、すなわち、焼成の有無に関わらず、90%以上の殺菌率を示した。なお、本抗菌性試験は、上記No.1〜No.3の溶液に対して、それぞれ3回ずつ(n=3)行った。また、図5には、n=3のうちの特定の1回の試験の結果を一例として示している。
(Evaluation results)
[Antibacterial property of Ag-HAp]
The result of having carried out the antimicrobial test of Ag-HAp by the said powder addition method is shown in FIG. The top row in FIG. 5 shows the result of HAp as a control, and the lower row shows the result of Ag-HAp. The bactericidal rate described in Table 4 was determined from the ratio of the colony number of Ag-HAp to the colony number of the control, that is, (the number of colonies of F-HAp decreased) / (the colony number of control). As a result, in all the samples (a) to (c), that is, 90% or more of the sterilization rate was shown regardless of the presence or absence of baking. In this antimicrobial test, the above-mentioned No. 1 to No. Each of the solutions of 3 was carried out three times (n = 3). Further, FIG. 5 shows the result of one specific test of n = 3 as an example.
ここで、本抗菌性試験に使用したAg−HApの組成は、Ca9.95Ag0.05(PO4)6(OH)2であることから、Agイオン換算での濃度(Agイオン濃度)は、49.3mmol×0.05=2.47mmol/Lである。一般に、Agイオン単独での抗菌性としては、Agイオン濃度が5〜10ppb(0.093×10−3mmol)であれば大腸菌に対して抗菌性を発現すると言われている。一方で、上記試験に示すように、Ag−HApとしての抗菌性を発現させるためには、Agイオン換算で、2.47mmol/L必要となり、Agイオン単独の場合と比較して、抗菌性を発現するためにより多くのAgイオンを必要とすることがわかった。このことから、Ag−HApの抗菌性は、Agイオン単独の抗菌性と比較してマイルドであると言える。 Here, since the composition of Ag-HAp used in the present antibacterial test is Ca 9.95 Ag 0.05 (PO 4 ) 6 (OH) 2 , the concentration in terms of Ag ion (Ag ion concentration) Is 49.3 mmol × 0.05 = 2.47 mmol / L. Generally, as an antibacterial property by Ag ion alone, it is said that when the Ag ion concentration is 5 to 10 ppb (0.093 × 10 −3 mmol), the antibacterial property is expressed against E. coli. On the other hand, as shown in the above test, 2.47 mmol / L in terms of Ag ion is required to express the antimicrobial property as Ag-HAp, and the antimicrobial property is required compared to the case of Ag ion alone. It was found that more Ag ions were needed to express. From this, it can be said that the antibacterial activity of Ag-HAp is mild as compared to the antibacterial activity of Ag ion alone.
≪F−HAp≫
次に、F−HApを合成し、得られたF−HApを同定した上で、当該F−HApの耐酸性及び抗菌性について評価した結果を説明する。
«F-HAp»
Next, F-HAp is synthesized, and the obtained F-HAp is identified, and then the results of evaluation of the acid resistance and antibacterial properties of the F-HAp will be described.
<F−HApの合成>
湿式法の一つである共沈法を用いて、F−HApナノ単結晶の作製を行った。出発原料については、Ca源として硝酸カルシウム四水和物、P源としてリン酸、F源としてフッ化ナトリウムを用いた。具体的には以下のようにして行った。
<Synthesis of F-HAp>
Preparation of F-HAp nano single crystal was performed using the coprecipitation method which is one of the wet methods. For the starting materials, calcium nitrate tetrahydrate as a Ca source, phosphoric acid as a P source, and sodium fluoride as an F source were used. Specifically, it carried out as follows.
(一次粒子生成工程)
エタノール(99.5%水溶液)200mlに硝酸カルシウム四水和物7.03gとフッ化ナトリウム0.254gをそれぞれ溶解させ、窒素雰囲気下で30分間撹拌した。同様に、エタノール50mlにリン酸2.04gを溶解させ、窒素雰囲気下で30分間撹拌した。次に、硝酸カルシウムにフッ化ナトリウムを一気に混合し、5分撹拌後リン酸を加え、ウォーターバスにて80℃に保ったまま1時間撹拌し反応させた。その後、常温で15時間撹拌を行った。撹拌後、遠心分離機を用いて6,500rpmで3分間遠心分離し、上澄み液を捨てた。純水を加え超音波照射を行い、沈殿した反応物を十分に分散させ、6,500rpmで3分間遠心分離を行った。この精製を3回繰り返し、得られたサンプル(F−HAp)を水に分散させた。
(Primary particle generation process)
In 200 ml of ethanol (99.5% aqueous solution), 7.03 g of calcium nitrate tetrahydrate and 0.254 g of sodium fluoride were respectively dissolved, and stirred for 30 minutes under a nitrogen atmosphere. Similarly, 2.04 g of phosphoric acid was dissolved in 50 ml of ethanol and stirred for 30 minutes under a nitrogen atmosphere. Next, sodium fluoride was mixed with calcium nitrate in a stroke, and after stirring for 5 minutes, phosphoric acid was added, and the mixture was reacted by stirring for 1 hour while maintaining at 80 ° C. in a water bath. Then, it stirred at normal temperature for 15 hours. After stirring, the mixture was centrifuged at 6,500 rpm for 3 minutes using a centrifuge, and the supernatant was discarded. Pure water was added to perform ultrasonic irradiation, the precipitated reaction product was sufficiently dispersed, and centrifugation was performed at 6,500 rpm for 3 minutes. This purification was repeated three times, and the obtained sample (F-HAp) was dispersed in water.
(混合工程及び焼成工程)
上記で作製したF−HAp 1.0gに対して、ポリアクリル酸1.0gを100mlの純水に溶解させ、アンモニア水(28.0%)を用いてポリアクリル酸のpHが5になるように調製した(溶液A)。その後、F−HAp溶液を撹拌しながら、溶液Aをペリスタポンプを用いて1分間10mlの割合で滴下した。さらに、5分間そのまま撹拌させた(溶液B)。同様に、作製したF−HAp 1.0gに対して、硝酸カルシウム3.7gを370mlの純水に溶解させた(溶液C)。溶液Bを撹拌しながら、溶液Cをぺリスタポンプを用いて1分間10mlの割合で滴下した。その後、混合液をアスピレータを用いて吸引濾過し、取り出したサンプルを1時間減圧乾燥した。乾燥させたサンプルを乳鉢で粉砕し、るつぼに入れ電気炉にて800℃で1時間焼成した。炉冷後、焼成したF−HApを乳鉢で粉砕した。
(Mixing process and firing process)
1.0 g of polyacrylic acid is dissolved in 100 ml of pure water with respect to 1.0 g of the above-prepared F-HAp, and the pH of the polyacrylic acid is adjusted to 5 using aqueous ammonia (28.0%) Prepared (solution A). After that, while stirring the F-HAp solution, solution A was dropped at a rate of 10 ml for 1 minute using a peristaltic pump. Further, it was allowed to stir for 5 minutes (solution B). Similarly, 3.7 g of calcium nitrate was dissolved in 370 ml of pure water with respect to 1.0 g of the prepared F-HAp (solution C). While stirring Solution B, Solution C was dropped at a rate of 10 ml for 1 minute using a peristaltic pump. Then, the mixture was suction filtered using an aspirator, and the removed sample was dried under reduced pressure for 1 hour. The dried sample was ground in a mortar, placed in a crucible and fired at 800 ° C. for 1 hour in an electric furnace. After furnace cooling, the fired F-HAp was crushed in a mortar.
(除去工程)
純水800mlに硝酸アンモニウム8.0gを溶解させ、窒素雰囲気下で30分間撹拌した。焼成したF−HApに溶液を加え、超音波照射を行い沈殿した反応物を十分に分散させ、8,500rpmで3分間遠心分離を行った。上澄み液を捨てて硝酸水素アンモニウム水溶液を加え、以下、この精製を上澄み液のpHが中性になるまで4回繰り返した。さらに取り出したサンプルを、純水を用いて同様の方法で精製した。最後に、サンプルを1時間減圧乾燥させ、乳鉢で粉砕し回収した。
(Removal process)
In 800 ml of pure water, 8.0 g of ammonium nitrate was dissolved and stirred for 30 minutes under a nitrogen atmosphere. The solution was added to the calcined F-HAp, the mixture was irradiated with ultrasonic waves, the precipitated reaction product was sufficiently dispersed, and centrifuged at 8,500 rpm for 3 minutes. The supernatant was discarded and an aqueous ammonium hydrogen nitrate solution was added, and this purification was repeated four times until the pH of the supernatant became neutral. Furthermore, the sample taken out was purified in the same manner using pure water. Finally, the sample was dried under vacuum for 1 hour, crushed and collected in a mortar.
<F−HApの同定>
上述のようにして得られたF−HApのサンプルに関し、F−HApの同定として、X線回折装置(XRD)による結晶構造解析、走査型電子顕微鏡(SEM)による表面形状測定及び粒径測定(DLS)による分散性評価、並びに、フッ素イオン濃度計による濃度分析を行った。
<Identification of F-HAp>
With respect to the sample of F-HAp obtained as described above, as identification of F-HAp, crystal structure analysis by X-ray diffractometer (XRD), surface shape measurement by scanning electron microscope (SEM) and particle size measurement ( Evaluation of dispersibility by DLS) and concentration analysis by a fluorine ion concentration meter were performed.
(XRDによる結晶構造解析)
粉末X線回析装置(理学電機(株)製、Mini Flex/HCM)を用いて、作製したF−HApの結晶構造解析を行った。XRDで使用したX線源としてはCuKα線源(λ=1.541841Å(オングストローム))を用い、出力は30kV/15mA、スキャンスピードは1.0°/min、サンプリング幅は0.01°、測定モードは連続の条件とした。図6に、作製したF−HApのX線回析ピークを示す。なお、図6の上段がF−HApのピークであり、下段がJCPDSカードのF−HApデータである。
(Crystal structure analysis by XRD)
The crystal structure of the produced F-HAp was analyzed using a powder X-ray diffraction apparatus (Mini Flex / HCM, manufactured by Rigaku Denki Co., Ltd.). As a X-ray source used in the XRD, a CuKα source (λ = 1.541841 Å (angstrom)) is used, the output is 30 kV / 15 mA, the scan speed is 1.0 ° / min, the sampling width is 0.01 °, and the measurement The mode was a continuous condition. The X-ray diffraction peak of the produced F-HAp is shown in FIG. In addition, the upper stage of FIG. 6 is a peak of F-HAp, and the lower stage is F-HAp data of JCPDS card.
図6からわかるように、作製したF−HApは、JCPDSカードのF−HApデータ(標準データ)のピーク値とほぼ一致した。作製したF−HApにおいて、F単体の回析パターンが検出されていないため、HApの結晶構造の中にフッ化物イオンが置換されていると推測された。以上より、JCPDSカードのF−HApデータと結晶構造が類似したF−HApが作製できたと推測された。 As can be seen from FIG. 6, the produced F-HAp substantially matches the peak value of the F-HAp data (standard data) of the JCPDS card. In the produced F-HAp, since the diffraction pattern of F alone was not detected, it was presumed that fluoride ions were substituted in the crystal structure of HAp. From the above, it was presumed that F-HAp having a crystal structure similar to that of the F-HAp data of the JCPDS card could be produced.
また、上記で測定したX線回折ピーク値から軸長を調べた。その結果を表5に示す。 Moreover, the axial length was investigated from the X-ray diffraction peak value measured above. The results are shown in Table 5.
表5より、作製したF−HApは、a軸がHAp標準品の軸長より短いことが確認できた。水酸化物イオンの半径(=1.37Å)よりフッ化物イオンの半径(=1.33Å)の方が小さいため、HApの水酸化物イオンがフッ化物イオンに置換されたことが分かった。 From Table 5, it was confirmed that the a-axis of the produced F-HAp was shorter than the axial length of the HAp standard. Since the radius of the fluoride ion (= 1.33 Å) was smaller than the radius of the hydroxide ion (= 1.37 Å), it was found that the hydroxide ion of HAp was replaced with the fluoride ion.
(SEMによる表面形状測定及びDLSによる分散性評価)
作製したF−HApの形態をSEMを用いて観察した。市販のF−HApを図7に、作製したF−HApのSEM画像を図8に示す。図7、8より、融着防止剤を用いて合成した(上記で作製した)F−HApの方が、市販のF−HApよりも1次粒子が小さく、均一な球体状であることが分かった。
(Surface shape measurement by SEM and dispersion evaluation by DLS)
The form of the produced F-HAp was observed using SEM. The commercially available F-HAp is shown in FIG. 7, and the SEM image of the prepared F-HAp is shown in FIG. From FIGS. 7 and 8, it is understood that F-HAp synthesized (using the above-mentioned) using an anti-fusion agent has smaller primary particles and more uniform spherical shape than commercial F-HAp. The
また、作製したF−HApの分散性をDLSによる平均粒径測定の結果から評価した。サンプル(作製したF−HAp及び市販のF−HAp)をエタノール中に分散させ、1重量%のエタノール分散体を調製した。調製後、四面セルにサンプル/エタノール分散体を加えた。解析条件として、解析手法:NNLS、表示項目:自己相関関数、散乱強度ヒストグラム、重量換算ヒストグラム、個数換算ヒストグラムとし、測定波長範囲:8500cm−1〜100cm−1とし粒径分布解析を行った。 Moreover, the dispersibility of the produced F-HAp was evaluated from the result of the average particle diameter measurement by DLS. The samples (made F-HAp and commercially available F-HAp) were dispersed in ethanol to prepare a 1 wt% ethanol dispersion. After preparation, the sample / ethanol dispersion was added to the four sided cell. As analysis conditions, analysis method: NNLS, display item: autocorrelation function, scattering intensity histogram, weight conversion histogram, number conversion histogram, and measurement wavelength range: 8500 cm −1 to 100 cm −1 and particle size distribution analysis was performed.
その結果、平均粒径は図8の市販のF−HApが17507.7±1161.0nmであり、図8の作製したF−HApが319.2±51.3nmであった。よって、融着防止剤を用いて合成したF−HApの方が2次粒子が小さく、また、粒度分布も小さいことが分かった。 As a result, the average particle size was 17507.7 ± 1161.0 nm for the commercially available F-HAp in FIG. 8 and 319.2 ± 51.3 nm for the F-HAp produced in FIG. Therefore, it was found that F-HAp synthesized using the anti-fusion agent had smaller secondary particles and smaller particle size distribution.
以上のことから、融着防止剤を用いてF−HApの合成を行ったことにより、1次粒子及び2次粒子ともに小さいF−HApが作製できたと考えられた。 From the above, it was thought that by synthesizing F-HAp using an anti-fusion agent, small F-HAp could be produced for both primary particles and secondary particles.
(フッ素イオン濃度計による濃度分析)
フッ素イオン濃度計(笠原理化工業(株)製、F−10Z)を用いて、市販のF−HApと作製したF−HApのフッ化物イオン濃度を測定した。サンプル(市販のF−HAp及び作製したF−HAp)約50mgに、0.5M塩酸4mlと純水15mlとを混ぜ合わせ、純水を容積が25mlになるまで加えた。しばらく溶液を振り混ぜた後、サンプルの溶解を確認し、溶解していなければ0.5Mの塩酸を加え溶かした。サンプルの入った溶液25mlとマスキング剤2mlを100mlのメスフラスコに入れ、更に純水を加えて溶液が100mlになるよう調整した。超音波照射により溶液中の濃度を均一にした後、アンモニア水を加えてpHを5.0に調整した。表6にそれぞれのサンプルの理論濃度(mmol/L)、測定濃度(mmol/L)を示す。
(Concentration analysis by fluorine ion concentration meter)
The fluoride ion concentration of commercially available F-HAp and produced F-HAp was measured using a fluorine ion densitometer (F-10Z, manufactured by Sakai Principles, Ltd.). About 50 mg of a sample (commercially available F-HAp and prepared F-HAp) was mixed with 4 ml of 0.5 M hydrochloric acid and 15 ml of pure water, and pure water was added to a volume of 25 ml. After shaking the solution for a while, the sample was checked for dissolution, and if not dissolved, 0.5 M hydrochloric acid was added and dissolved. 25 ml of a solution containing a sample and 2 ml of a masking agent were placed in a 100 ml measuring flask, and pure water was further added to adjust the solution to 100 ml. After the concentration in the solution was made uniform by ultrasonic irradiation, ammonia water was added to adjust the pH to 5.0. Table 6 shows the theoretical concentration (mmol / L) and the measured concentration (mmol / L) of each sample.
表6より、作製したF−HApの方がフッ化物イオン濃度が高いことが確認できた。理論濃度と測定濃度との比から水酸化物イオンのフッ化物イオンによる置換率は約90%であると推測された。 From Table 6, it could be confirmed that the produced F-HAp had a higher fluoride ion concentration. From the ratio of the theoretical concentration to the measured concentration, it was estimated that the substitution rate of hydroxide ion by fluoride ion was about 90%.
<耐酸性評価>
次に、上記で作成したF−HApに対する耐酸性評価について説明する。以下の説明では、評価方法、評価結果の順に説明する。
<Acid resistance evaluation>
Next, the acid resistance evaluation for F-HAp prepared above will be described. The following description will be made in the order of the evaluation method and the evaluation result.
(評価方法)
作製したF−HApの溶解点を調べるため耐酸性試験を行った。比較のために、A社製F−HAp、B社製HAp、C社製HApの3つを加えた合計4つのサンプルの耐酸性を評価した。
(Evaluation method)
An acid resistance test was conducted to determine the melting point of the produced F-HAp. For comparison, the acid resistance of a total of four samples to which three of A-made F-HAp, B- made HAp and C- made HAp were added were evaluated.
まず、純水に0.02mMの塩酸溶液を加え、pHの異なる溶媒(pH=1.6、2.0、2.5、2.8、3.2、3.6、4.0、4.6)を準備した。pH調整した溶液5mLにサンプル2mgを加え、ボルテックスミキサーで1分間撹拌後、石英ガラスセルに移し、紫外・可視分光光度計(日本分光(株)製、V550)で吸光度を測定した。固定波長測定を選択し、測光モード:Abs、レスポンス:Quick、バンド幅:2.0nm、測定波長:595nm、繰り返し回数:3、繰り返し間隔:0という条件で各サンプル、各濃度における測定を行った。測定した吸光度から透過度を求め、縦軸を透過度、横軸をpHとしたグラフを作成し、4つのサンプルの溶解点を比較した。グラフに漸近線を2本引き、その交点のpHを溶解点とした。作成したグラフを図9に示す。 First, 0.02 mM hydrochloric acid solution is added to pure water, and solvents having different pH (pH = 1.6, 2.0, 2.5, 2.8, 3.2, 3.6, 4.0, 4 I prepared .6). 2 mg of a sample was added to 5 mL of the pH-adjusted solution, stirred for 1 minute with a vortex mixer, transferred to a quartz glass cell, and the absorbance was measured with a UV-visible spectrophotometer (V550, manufactured by JASCO Corporation). Fixed wavelength measurement was selected, and measurement was performed for each sample and each concentration under the conditions of photometry mode: Abs, response: Quick, bandwidth: 2.0 nm, measurement wavelength: 595 nm, number of repetitions: 3, repetition interval: 0 . The transmittance was determined from the measured absorbance, and a graph in which the vertical axis represents the transmittance and the horizontal axis represents the pH was created, and the melting points of the four samples were compared. Two asymptotes were drawn on the graph, and the pH at the intersection was taken as the melting point. The created graph is shown in FIG.
(評価結果)
図9より、C社製化学製とB社製のHApの溶解点はpH=4.0、A社製のF−HApの溶解点はpH=3.2、作製したF−HApの溶解点はpH=2.9であった。よって、作製したF−HApは、HApと比較して耐酸性が高いことが確認できた。今回合成したF−HApとA社製F−HApの耐酸性の違いは、フッ素含有率の違いに由来するものと考えられた。
(Evaluation results)
From FIG. 9, the dissolution point of HAP manufactured by Chemical Co., Ltd. and HAp manufactured by B Co. is pH = 4.0, the dissolution point of F-HAp manufactured by A Co. Was pH = 2.9. Therefore, it could be confirmed that the prepared F-HAp was higher in acid resistance as compared to HAp. The difference in acid resistance between the F-HAp synthesized this time and the F-HAp manufactured by company A was considered to be derived from the difference in the fluorine content.
<抗菌性評価>
次に、上記で作成したF−HApに対する抗菌性評価について説明する。以下の説明では、評価方法、評価結果の順に説明する。
<Antimicrobial evaluation>
Next, the antimicrobial evaluation with respect to F-HAp created above is demonstrated. The following description will be made in the order of the evaluation method and the evaluation result.
(評価方法)
作製したF−HApを用いて、粉末添加法によりF−HApの抗菌性を評価した。なお、F−HApの抗菌性は、大腸菌に対して行った。なお、フッ化ナトリウムを用いてフッ化物イオンの抗菌性も併せて評価した。フッ化物イオンの抗菌性評価については、表7に記載の7菌種に対して行った。
(Evaluation method)
The antibacterial property of F-HAp was evaluated by the powder addition method using the produced F-HAp. The antibacterial activity of F-HAp was carried out against E. coli. The antibacterial activity of fluoride ion was also evaluated using sodium fluoride. About the antimicrobial property evaluation of the fluoride ion, it did with respect to seven types of bacteria described in Table 7.
〔菌の準備〕
菌液の濃度を調整するためにマイクロプレートリーダーで吸光度を測定した。液体培養した菌を20倍に希釈し、プレートに150μLスポットし波長600nmにおける吸光度を測定した。バックグラウンドには140mMのNaClを用いた。吸光度の値が0.1(105個/μL)になるよう菌液を希釈した。
[Preparation of bacteria]
Absorbance was measured with a microplate reader in order to adjust the concentration of bacterial solution. The liquid-cultured bacteria were diluted 20 times, spotted on a plate with 150 μL, and the absorbance at a wavelength of 600 nm was measured. As background, 140 mM NaCl was used. The bacterial solution was diluted so that the absorbance value was 0.1 (10 5 cells / μL).
〔アッセイ〕
粉末添加法
100μL の140mM NaCl溶液に分散させたF−HAp(Ca10(PO4)6F1.8(OH)0.2:式量=1008.2)を含む溶液と、菌液100μLをチューブの中に入れ、ピペッティングし、1時間プチローターで撹拌を行い、F−HApと細菌とを接触させた。次いで、チューブ5本に180μLずつNaCl溶液を入れたものを用意し、順番に(1)〜(5)と番号をつけ、1時間撹拌させた細菌とF−HApの混合液20μLを(1)に入れ、ピペッティングして十分に撹拌した。次に(1)の溶液20μLを(2)に入れ、ピペッティングして十分に撹拌した。これを図4のように(2)から(3)、(3)から(4)・・・と同様の手順で繰り返し、細菌とF−HApの混合液を希釈した(20μLを180μLに加えているため、10倍ずつ希釈していることになる)。さらに、10倍ずつ5段階に希釈した溶液を濃度の薄い(5)から順番に5μLずつ寒天培地のシャーレにスポットし、37℃に設定したインキュベータで1日培養した。なお、抗菌性試験のコントロールとしてB社製HApを使用した。以上のような評価を、100μLのNaCl溶液に分散させるF−HApの含有量を変化させた実施例1〜7の溶液に対して行った。なお、上記F−HApの組成式は、F−HApサンプル中のフッ化物イオンの理論濃度18.8mg/L(100%フッ化物イオンに置換されていた場合)をベースに、作製したサンプルの実測値(16.9mg/L)との比を計算し、元々のHAp;Ca10(PO4)6(OH2)と100%フッ化物イオンに置換されたF−HAp;Ca10(PO4)6F2より、理論量に不足したイオン種は、すべて水酸化物イオンに換算して求めた。
[Assay]
Powder Addition Method A solution containing F-HAp (Ca 10 (PO 4 ) 6 F 1.8 (OH) 0.2 : formula weight = 1008.2) dispersed in 100 μL of 140 mM NaCl solution, and 100 μL of bacterial solution The mixture was placed in a tube, pipetted, and stirred for 1 hour in a peti-rotor to bring F-HAp into contact with bacteria. Next, prepare 180 μL of NaCl solution in 5 tubes, numbered as (1) to (5) in order, and mix for 1 hour with 20 μL of a mixed solution of bacteria and F-HAp (1) , Pipetting and stirring well. Next, 20 μL of the solution of (1) was added to (2), and the solution was pipetted and sufficiently stirred. Repeat this procedure as in (2) to (3), (3) to (4) ... as shown in Fig. 4 to dilute the mixture of bacteria and F-HAp (add 20 μL to 180 μL Will be diluted by 10 times). Further, 5 μl of the solution diluted in 10 steps of 5 steps was spotted in order of 5 μl each from the lightest concentration (5) on the petri dish of agar medium and cultured in an incubator set at 37 ° C. for 1 day. As a control of the antibacterial test, HAp manufactured by B company was used. The above evaluation was performed on the solutions of Examples 1 to 7 in which the content of F-HAp dispersed in 100 μL of NaCl solution was changed. The composition formula of F-HAp is an actual measurement of a sample prepared based on the theoretical concentration of 18.8 mg / L of fluoride ion in the F-HAp sample (when substituted by 100% fluoride ion). The ratio to the value (16.9 mg / L) was calculated, and the original HAp; F-HAp substituted for 100% fluoride ion with Ca 10 (PO 4 ) 6 (OH 2 ) and Ca 10 (PO 4 ) From 6 F 2 , all ion species lacking in the theoretical amount were determined in terms of hydroxide ion.
フッ化ナトリウムを用いた抗菌性試験の方法
人体に害のない濃度の50mMのNaF溶液を作製し、フィルトレーションを行い除菌した。それをオートクレーブしたLB溶液と混合して5mM、0.5mM、0.05mM、0.005mM、0mMの5つの濃度の異なる混合液を作製し、プレートに流し込んでNaF入りの寒天培地を用意した。液体培養させた細菌をOD600の値を1(106個/μL)として濃度のことなる5つのプレートに5μLスポットし図10のようにコンラージ棒で塗り広げた。その後37℃に設定したインキュベータで1日培養した。
Method of Antibacterial Test Using Sodium Fluoride A 50 mM NaF solution at a concentration not harmful to human body was prepared, filtered and sterilized. It was mixed with an autoclaved LB solution to prepare mixed mixtures of five different concentrations of 5 mM, 0.5 mM, 0.05 mM, 0.005 mM, and 0 mM, and poured into a plate to prepare an agar medium containing NaF. Bacteria were liquid cultured and spread with a Conradi rod as 5μL spot diagram 10 into five plates made that the concentration values of OD 600 as a 1 (106 / [mu] L). Then, the cells were cultured for 1 day in an incubator set at 37 ° C.
(評価結果)
〔F−HApの抗菌性〕
上記粉末添加法によりF−HApの抗菌性試験を行った結果、菌液に加えるF−HAp溶液の濃度を49.6mmol/L以上にすると53.7〜99.9%の抗菌性を確認することができた。その結果を表8に示す。なお、表8の上段にはコントロールとしてのHApの結果を示し、下段にはF−HApの結果を示している。表8に記載の殺菌率は、コントロールのコロニー数に対するF−HApのコロニー数の割合、すなわち、(F−HApのコロニー数の減少数)/(コントロールのコロニー数)から求めた。
(Evaluation results)
[Antibacterial property of F-HAp]
As a result of conducting an antibacterial test of F-HAp by the above-mentioned powder addition method, when the concentration of F-HAp solution added to the bacterial solution is 49.6 mmol / L or more, 53.7 to 99.9% of the antibacterial property is confirmed I was able to. The results are shown in Table 8. The upper part of Table 8 shows the result of HAp as a control, and the lower part shows the result of F-HAp. The bactericidal rate described in Table 8 was determined from the ratio of the number of colonies of F-HAp to the number of colonies of the control, that is, (the number of decreases in the number of colonies of F-HAp) / (the number of colonies of control).
表8に記載のようにF−HApの濃度を変えて抗菌性試験を行ったところ、全ての実施例において抗菌性を確認することができた。その殺菌率はF−HAp濃度が99.2mmol/L以上で98.0%〜99.9%であった。 When the concentration of F-HAp was changed as described in Table 8 and the antibacterial test was conducted, the antibacterial properties could be confirmed in all the examples. The sterilization rate was 98.0% to 99.9% when the F-HAp concentration was 99.2 mmol / L or more.
F−HAp濃度が49.6mmol/Lでは53.7%の殺菌率がみられたため、F−HApが49.6mmol/L以上の場合、静菌性を有すると言える。また、F−HApが99.2mmol/L以上の場合、殺菌性を有すると言える。 When the F-HAp concentration was 49.6 mmol / L, a bactericidal rate of 53.7% was observed. Therefore, when the F-HAp is 49.6 mmol / L or more, it can be said to be bacteriostatic. Moreover, when F-HAp is 99.2 mmol / L or more, it can be said that it has bactericidal properties.
ここで、本抗菌性試験に使用したF−HApの組成は、Ca10(PO4)6F1.8(OH)0.2であることから、F−HApが抗菌性(静菌性)を発現するためのフッ化物イオン換算での濃度(フッ化物イオン濃度)は、49.6mmol×1.8=89.3mmol/L以上(さらに殺菌率95%以上の抗菌性を発現するためには、178.6mmol/L以上)である。このフッ化物イオン濃度は、例えば、広く抗菌性が認知されている銀イオンが大腸菌に対する抗菌性を発現可能な濃度である5〜10ppb(0.093×10−3mmol)や、上記Ag−HApの抗菌性を発現可能な銀イオン濃度である2.47mmol/Lと比較して、抗菌性を発現するためにより高い(フッ化物)イオン濃度を必要とすることがわかった。このことから、F−HApの抗菌性は、銀イオン単独の抗菌性、更にはAg−HApの抗菌性と比較してもマイルドであると言える。 Here, since the composition of F-HAp used in this antibacterial test is Ca 10 (PO 4 ) 6 F 1.8 (OH) 0.2 , F-HAp is antibacterial (bacteriostatic) The concentration (fluoride ion concentration) in terms of fluoride ion for expressing the acid is 49.6 mmol × 1.8 = 89.3 mmol / L or more (in order to further express the antibacterial property of 95% or more of the sterilization rate , 178.6 mmol / L or more). The fluoride ion concentration is, for example, 5 to 10 ppb (0.093 × 10 -3 mmol) which is a concentration at which silver ions, which are widely recognized as having antibacterial activity, can exhibit antibacterial activity against E. coli, or the above Ag-HAp It was found that a higher (fluoride) ion concentration is required to express the antibacterial property, as compared to 2.47 mmol / L, which is the silver ion concentration capable of expressing the antibacterial property. From this, it can be said that the antibacterial activity of F-HAp is mild also in comparison with the antibacterial activity of silver ion alone, and further, the antibacterial activity of Ag-HAp.
〔フッ化物イオンの抗菌性〕
上記方法で行ったフッ化ナトリウム用いた抗菌性試験の結果を図11に示す。(1)がセレウス菌、(2)がサルモネラ菌、(3)が黄色ブドウ球菌、(4)が大腸菌、(5)が緑膿菌、(6)が肺炎桿菌、(7)が化膿レンサ球菌である。
[Antibacterial properties of fluoride ion]
The results of the antibacterial test using sodium fluoride conducted by the above method are shown in FIG. (1) is Bacillus cereus, (2) is Salmonella, (3) is Staphylococcus aureus, (4) is E. coli, (5) is Pseudomonas aeruginosa, (6) is Klebsiella pneumoniae, (7) is Streptococcus pyogenes is there.
図11に示すように、5つの濃度の異なるプレートを比較すると、(7)の化膿レンサ球菌が濃度が上がるにつれて薄くなっていることが確認できた。よって、フッ化物イオン自体は化膿レンサ球菌に対して抗菌性があることが分かった。ここで、フッ化物イオン自体は大腸菌に対しては抗菌性を有していないにも関わらず、F−HApは大腸菌に対する抗菌性を有している理由は明らかではないが、F−HApの抗菌性は、単にフッ化物イオン自体の抗菌性によるものではないことが推測された。このように、本試験及びF−HApの抗菌性試験の結果から、フッ化物イオン単独では、抗菌性を発現可能な菌種と発現不可能な菌種があるが、F−HApはフッ化物イオン単独では抗菌性を発現できない菌種(例えば、化膿レンサ球菌)に対しても抗菌性を発現できることがわかった。 As shown in FIG. 11, when the plates of five different concentrations were compared, it could be confirmed that (7) S. pylori streptococcus became thinner as the concentration increased. Thus, it was found that fluoride ion itself is antibacterial against Streptococcus pyogenes. Here, although the fluoride ion itself has no antibacterial activity against E. coli, the reason why F-HAp has antibacterial activity against E. coli is not clear, but the antibacterial effect of F-HAp It was speculated that the sex was not simply due to the antibacterial activity of the fluoride ion itself. Thus, according to the results of the present test and the antibacterial test of F-HAp, there are species of bacteria capable of expressing antibacterial activity and species of bacteria that can not express antibacterial activity with fluoride ion alone, but F-HAp is a fluoride ion. It has been found that antibacterial properties can be expressed even against bacterial species which can not express antibacterial properties alone (for example, Streptococcus pyogenes).
以上、図面を参照しながら本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態または各種の変更例についても本発明の技術的範囲に属するものと理解される。
Although the preferred embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the above-described embodiments. That is, it is understood that other forms or various modifications that can be conceived by those skilled in the art within the scope of the invention described in the claims fall within the technical scope of the present invention.
Claims (4)
前記抗菌性ハイドロキシアパタイト誘導体粒子のXRDにより定量したハイドロキシアパタイト結晶相純度が90%以上であり、
前記抗菌性ハイドロキシアパタイト誘導体粒子の粒子径が10nm〜1,000nmの範囲内であり、
前記抗菌性ハイドロキシアパタイト誘導体粒子のa軸の長さが9.424Å以上であることを特徴とする、ハイドロキシアパタイト誘導体粒子群。 It consists of antibacterial hydroxyapatite derivative particles in which at least a part of calcium ions in the crystal structure of hydroxyapatite is replaced by silver ions,
90% or more of hydroxyapatite crystal phase purity determined by XRD of the antibacterial hydroxyapatite derivative particles,
The particle size of the antibacterial hydroxyapatite derivative particles is in the range of 10 nm to 1,000 nm,
The hydroxyapatite derivative particle group, wherein the length of the a axis of the antimicrobial hydroxyapatite derivative particles is 9.424 Å or more.
前記所定の微生物が、大腸菌(Escherichia coli)である、請求項1に記載のハイドロキシアパタイト誘導体粒子群。 A dispersion liquid in which 5.0 × 10 4 cells / μL of a predetermined microorganism and the antibacterial hydroxyapatite derivative particles are allowed to coexist at a concentration of 2.47 mmol / L or more in terms of silver ion is prepared, and the dispersion liquid Is spotted on the medium, and the sterilization rate after culturing for 1 day at 37.degree. C. is 90% or more,
The hydroxyapatite derivative particle group according to claim 1, wherein the predetermined microorganism is Escherichia coli.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019014457A JP6820537B2 (en) | 2019-01-30 | 2019-01-30 | Hydroxyapatite derivative particle group |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019014457A JP6820537B2 (en) | 2019-01-30 | 2019-01-30 | Hydroxyapatite derivative particle group |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014108961A Division JP2015223259A (en) | 2014-05-27 | 2014-05-27 | Hydroxyapatite derivative particle group |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019077720A true JP2019077720A (en) | 2019-05-23 |
JP2019077720A5 JP2019077720A5 (en) | 2019-11-07 |
JP6820537B2 JP6820537B2 (en) | 2021-01-27 |
Family
ID=66626369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019014457A Active JP6820537B2 (en) | 2019-01-30 | 2019-01-30 | Hydroxyapatite derivative particle group |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6820537B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110510592A (en) * | 2019-09-06 | 2019-11-29 | 武汉理工大学 | The method that regulation preparation has the hydroxyapatite of superior cell compatibility |
WO2021157662A1 (en) * | 2020-02-04 | 2021-08-12 | 国立研究開発法人産業技術総合研究所 | Crystal, powder, block material, porous object, bone filler material, and oral bone filler material of calcium phosphate, method for producing calcium phosphate crystal, method for producing block material, and method for producing porous object |
-
2019
- 2019-01-30 JP JP2019014457A patent/JP6820537B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110510592A (en) * | 2019-09-06 | 2019-11-29 | 武汉理工大学 | The method that regulation preparation has the hydroxyapatite of superior cell compatibility |
CN110510592B (en) * | 2019-09-06 | 2021-09-03 | 武汉理工大学 | Method for regulating and preparing hydroxyapatite with excellent cell compatibility |
WO2021157662A1 (en) * | 2020-02-04 | 2021-08-12 | 国立研究開発法人産業技術総合研究所 | Crystal, powder, block material, porous object, bone filler material, and oral bone filler material of calcium phosphate, method for producing calcium phosphate crystal, method for producing block material, and method for producing porous object |
JPWO2021157662A1 (en) * | 2020-02-04 | 2021-08-12 | ||
JP7410586B2 (en) | 2020-02-04 | 2024-01-10 | 国立研究開発法人産業技術総合研究所 | Calcium phosphate crystals, powders, block materials, porous bodies, bone grafting materials and oral bone grafting materials, and methods for producing calcium phosphate crystals, block materials, and porous bodies |
Also Published As
Publication number | Publication date |
---|---|
JP6820537B2 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stanić et al. | Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering | |
Andrade et al. | Preparation, characterization and antibacterial properties of silver nanoparticles–hydroxyapatite composites by a simple and eco-friendly method | |
Alshemary et al. | Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite | |
Rameshbabu et al. | Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization | |
KR100898218B1 (en) | Ceramic Particle Group and Method for Production Thereof and Use Thereof | |
Padmanabhan et al. | Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies | |
Kolmas et al. | Effect of carbonate substitution on physicochemical and biological properties of silver containing hydroxyapatites | |
Iqbal et al. | Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process | |
Wiglusz et al. | Hydroxyapatites and europium (III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity | |
ES2341749A1 (en) | Nanostructured calcium-silver phosphate composite powder, method for obtaining same, and bactericidal and fungicidal uses thereof | |
JP6820537B2 (en) | Hydroxyapatite derivative particle group | |
Vukomanovic et al. | The growth of silver nanoparticles and their combination with hydroxyapatite to form composites via a sonochemical approach | |
Afifi et al. | Improvement of physicochemical properties of ternary nanocomposites based on hydroxyapatite/CuO/graphene oxide for biomedical usages | |
Sikder et al. | Processing-structure-property correlations of crystalline antibacterial magnesium phosphate (newberyite) coatings and their in vitro effect | |
JP6072968B1 (en) | Method for producing sintered calcium phosphate particles | |
US20200181026A1 (en) | Calcium phosphate sintered body particles and method for producing same | |
Yücel et al. | Synthesis and characterization of whitlockite from sea urchin skeleton and investigation of antibacterial activity | |
Sukhodub et al. | Antibacterial and physical characteristics of silver-loaded hydroxyapatite/alginate composites | |
KR20210025624A (en) | Stabilized amorphous calcium carbonate doped with fluorine ions and method for producing same | |
JP2015223259A (en) | Hydroxyapatite derivative particle group | |
WO2014038447A1 (en) | Material containing dispersed hydroxyapatite microparticles and manufacturing method therefor | |
Femi et al. | Anti bacterial effect of ZnO-Au nanocomposites | |
Sobczak-Kupiec et al. | Hydroxyapatite/silver nanoparticles powders as antimicrobial agent for bone replacements | |
JP2015136469A (en) | Phosphate type ceramic thin film containing bone formation accelerator, bone tissue implant having the thin film as surface layer, and method for producing the same | |
US10723625B2 (en) | Method for producing octacalcium phosphate shaped product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200121 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6820537 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |