JP2019076814A - Water treatment system, and electrode corrosion inhibition method and electrode corrosion inhibition apparatus of water treatment system - Google Patents

Water treatment system, and electrode corrosion inhibition method and electrode corrosion inhibition apparatus of water treatment system Download PDF

Info

Publication number
JP2019076814A
JP2019076814A JP2017204074A JP2017204074A JP2019076814A JP 2019076814 A JP2019076814 A JP 2019076814A JP 2017204074 A JP2017204074 A JP 2017204074A JP 2017204074 A JP2017204074 A JP 2017204074A JP 2019076814 A JP2019076814 A JP 2019076814A
Authority
JP
Japan
Prior art keywords
tank
alkali
treatment system
water treatment
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017204074A
Other languages
Japanese (ja)
Other versions
JP6300252B1 (en
Inventor
雅志 長尾
Masashi Nagao
雅志 長尾
英幸 永岡
Hideyuki Nagaoka
英幸 永岡
竹内 郁雄
Ikuo Takeuchi
郁雄 竹内
博美 斎藤
Hiromi Saito
博美 斎藤
小林 孝裕
Takahiro Kobayashi
孝裕 小林
走者 石井
Hayahito Ishii
走者 石井
善久 関根
Yoshihisa Sekine
善久 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2017204074A priority Critical patent/JP6300252B1/en
Application granted granted Critical
Publication of JP6300252B1 publication Critical patent/JP6300252B1/en
Publication of JP2019076814A publication Critical patent/JP2019076814A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a water treatment system which can prevent pH decrease caused in an electrolytic cell in electrolytic treatment and inhibit progression of corrosion of an electrode by an acid.SOLUTION: A water treatment system 100 provided with: a circulation adjustment tank 20 into which wastewater flows; an electrolytic cell 22 which performs electrolytic treatment of the wastewater with at least one pair of electrodes; and circulation pipes 26,28 through which the wastewater is circulated between the circulation adjustment tank 20 and the electrolytic cell 22 comprises: an alkali mixing tank 36 which mixes the wastewater transferred thereto flowing from the circulation adjustment tank 20 with an alkali between an outlet 20d of the circulation adjustment tank 20 and an inlet 22c of the electrolytic cell 22.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニア性窒素や有機物を含有する廃水の電解処理を行う水処理システムに関する。   The present invention relates to a water treatment system for electrolytically treating wastewater containing ammonia nitrogen and organic matter.

廃水処理には、微生物を用いて処理する方法が広く知られている。しかしながら、微生物による処理は、各工程の水槽が必要であり小型化が困難であること、また、寒冷地では処理能力が低下すること、さらに、微生物を維持管理することなど、性能の保持及びコストの面で課題がある。   For wastewater treatment, methods using microorganisms are widely known. However, treatment with microorganisms requires a water tank at each step and is difficult to miniaturize, and in cold regions, there is a reduction in processing capacity, and maintenance and management of microorganisms, such as maintenance and management of microorganisms. There are challenges in terms of

そこで、廃水の電解処理に注目が集まっている。電解処理による水処理システムは、廃水を一時的に蓄える原水槽と、循環調整槽と、電解槽と、それらを接続する循環配管とから構成される電解処理機構と、から構成される。   Therefore, attention has been focused on the electrolytic treatment of wastewater. The water treatment system by the electrolytic treatment is composed of a raw water tank for temporarily storing the waste water, a circulation control tank, an electrolytic tank, and an electrolytic treatment mechanism constituted of circulation pipes connecting them.

特許文献1には、アンモニア性窒素含有廃水を、電解槽を循環させながら塩素イオンの存在下で一対の電極により電解処理し、電解により生成した次亜塩素酸をアンモニア性窒素と反応させて窒素ガスに分解するアンモニア性窒素含有排水の電解処理方法において、電解槽にて、廃水をpH5以上且つpH8未満の範囲内で電解処理するとともに、一対の電極とは別体であり、金属材料で形成された触媒部材を電解槽内に配置し、廃水を触媒部材に接触させて、アンモニア性窒素の分解反応を促進するようにしたことが記載されている。   In Patent Document 1, an ammoniacal nitrogen-containing wastewater is electrolytically treated by a pair of electrodes in the presence of chlorine ions while circulating an electrolytic cell, and hypochlorous acid generated by electrolysis is reacted with ammoniacal nitrogen to obtain nitrogen In the electrolytic treatment method of the ammonia nitrogen containing wastewater to be decomposed into gas, the wastewater is electrolytically treated in the range of pH 5 or more and less than pH 8 in the electrolytic cell, and is separate from the pair of electrodes and formed of metal material It is described that the catalyst member thus disposed is disposed in the electrolytic cell, and the waste water is brought into contact with the catalyst member so as to promote the decomposition reaction of ammoniacal nitrogen.

特許第4671743号公報Patent No. 4671743

特許文献1には、廃水を電解槽において電解処理するシステムにおいて、電流効率の低下を防止し、さらに処理効率を向上するために、電解槽内に金属触媒を配し、循環調整槽に補助剤(pH調整剤)として酸若しくはアルカリを添加している。しかしながら、電解槽において廃水を電解処理する際に生じる酸により、電解槽内の電極が腐食されることへの対策がなされていない。電解処理により廃水を処理するシステムでは、電極に白金等の希少金属が用いられることが多く、その腐食は、処理性能の低下や運用コストの増大を招く可能性がある。   According to Patent Document 1, in a system for electrolytically treating waste water in an electrolytic cell, a metal catalyst is disposed in the electrolytic cell to prevent a decrease in current efficiency and to further improve the treatment efficiency, and an auxiliary agent is added to the circulation control tank. An acid or an alkali is added as (pH adjuster). However, no measure is taken against corrosion of the electrode in the electrolytic cell due to the acid generated when the wastewater is electrolytically treated in the electrolytic cell. In systems that treat wastewater by electrolytic treatment, rare metals such as platinum are often used for the electrodes, and the corrosion thereof can lead to a decrease in treatment performance and an increase in operation costs.

本発明は、前記の課題を解決するための発明であって、電極の腐食の進行を抑えることができる水処理システム、水処理システムの電極腐食抑制方法、廃水の電解処理の際に電解槽に生じるpH低下を抑制する電極腐食抑制装置を提供することを目的とする。   The present invention is an invention for solving the above-mentioned problems, and is a water treatment system capable of suppressing the progress of corrosion of an electrode, a method for suppressing electrode corrosion in a water treatment system, and an electrolytic cell in electrolytic treatment of wastewater. An object of the present invention is to provide an electrode corrosion inhibitor which suppresses the pH drop that occurs.

前記目的を達成するため、本発明の水処理システムは、廃水が流入する調整槽(例えば、循環調整槽20)と、少なくとも一対の電極により廃水を電解処理する電解槽(例えば、電解槽22)と、調整槽と電解槽との間で廃水を循環させる循環配管(例えば、循環配管26,28)とを備える水処理システムにおいて、調整槽の出口から電解槽の入口までの間に、調整槽から移流する廃水とアルカリとを混合するアルカリ混合槽を有することを特徴とする。また、本発明の電極腐食抑制装置は、調整槽の出口から電解槽の入口までの間に配置されたアルカリ混合槽にアルカリを添加して、調整槽から移流する廃水とアルカリとを混合し、電解槽内の電極の腐食を抑制する。本発明のその他の態様については、後記する実施形態において説明する。   In order to achieve the above object, the water treatment system of the present invention comprises a control tank (for example, circulation control tank 20) into which waste water flows and an electrolytic tank (for example, electrolytic tank 22) for electrolytically treating waste water with at least a pair of electrodes. And a circulation pipe (for example, circulation pipes 26 and 28) for circulating waste water between the adjustment tank and the electrolytic cell, the adjustment tank being between the outlet of the adjustment tank and the inlet of the electrolytic cell It has a feature that it has an alkaline mixing tank which mixes the wastewater and the alkaline that are transferred from the Further, according to the electrode corrosion suppressing apparatus of the present invention, the alkali is added to the alkali mixing tank disposed between the outlet of the adjusting tank and the inlet of the electrolytic tank, and the wastewater and the advection flowing from the adjusting tank are mixed. Suppress corrosion of electrodes in the electrolytic cell. Other aspects of the invention are described in the embodiments described below.

本発明によれば、水処理システムの電解処理の際に電解槽に生じるpH低下を抑制し、酸による電極の腐食の進行を抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, the pH fall which arises in an electrolytic cell at the time of the electrolytic treatment of a water treatment system can be suppressed, and advancing of corrosion of the electrode by an acid can be suppressed.

実施形態に係る水処理システムを示す構成図である。It is a block diagram which shows the water treatment system which concerns on embodiment. アルカリ混合槽の詳細を示す構成図である。It is a block diagram which shows the detail of an alkali mixing tank. Pt−H2O−Clの電位−pHを示すグラフである。Is a graph showing the potential -pH of Pt-H 2 O-Cl. 電極腐食抑制装置のアルカリ供給処理を示すフローチャートである。It is a flowchart which shows the alkali supply process of an electrode corrosion suppression apparatus. 電極腐食抑制装置の供給量調整処理を示すフローチャートである。It is a flow chart which shows supply amount adjustment processing of an electrode corrosion control device. 電極腐食抑制装置によるpH調整状況を示す説明図である。It is explanatory drawing which shows the pH adjustment condition by an electrode corrosion suppression apparatus.

以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each of the drawings, the same reference numerals are given to the common parts, and the duplicated explanation is omitted.

図1は、実施形態に係る水処理システムを示す構成図である。本実施形態の水処理システム100は、原水槽10から導入路12を介して廃水が流入する循環調整槽20(調整槽)と、一対の電極(第1電極22a及び第2電極22b)を有し、廃水を電解処理する電解槽22と、電極に電流を印加する電極電源装置25と、循環調整槽20と電解槽22との間で循環調整水を循環させる循環路27と、循環路27上の循環配管26に配設され、循環調整槽20から電解槽22へ循環調整水を送水する循環ポンプ21と、水処理システム100を運転する際のポンプ類、弁類の制御を統括する制御装置50とを備え、廃水を連続的に電解処理する。循環調整槽20は、オーバーフロー口29を有し、導入路12の供給ポンプ11から送出する流量と同等の流量が、オーバーフロー口29から排出される。なお、電極の極性は、例えば、第1電極22aは陽極、第2電極22bは陰極とする。   FIG. 1: is a block diagram which shows the water treatment system which concerns on embodiment. The water treatment system 100 of the present embodiment has a circulation control tank 20 (control tank) into which wastewater flows in from the raw water tank 10 through the introduction path 12 and a pair of electrodes (first electrode 22a and second electrode 22b). An electrolytic power supply 25 for applying an electric current to the electrodes, a circulation path 27 for circulating the circulation adjustment water between the circulation control tank 20 and the electrolysis tank 22, and a circulation path 27. The circulation pump 21 disposed on the circulation pipe 26 on the upper side and supplying the circulation adjustment water from the circulation adjustment tank 20 to the electrolytic cell 22 and the control for controlling the pumps and valves when operating the water treatment system 100 The apparatus 50 is provided, and the wastewater is electrolyzed continuously. The circulation control tank 20 has an overflow port 29, and a flow rate equivalent to the flow rate sent from the supply pump 11 of the introduction path 12 is discharged from the overflow port 29. The polarity of the electrodes is, for example, the anode of the first electrode 22a and the cathode of the second electrode 22b.

水処理システム100は、電解槽22の出口22dから循環調整槽20への循環配管28(移流管)において、電解槽22で電解処理された処理水のpHを計測するpHセンサ39と、循環調整槽20の出口20dから電解槽22の入口22cまでの間に、循環調整槽20から移流する廃水とアルカリを混合するアルカリ混合槽36を有し、アルカリ混合槽36にアルカリを添加して循環調整槽20から移流する廃水とアルカリを混合し、電解槽22内の電極の腐食を抑制する電極腐食抑制装置30と、を備える。   The water treatment system 100 includes a pH sensor 39 for measuring the pH of the treated water electrolyzed in the electrolytic cell 22 in the circulation pipe 28 (advection pipe) from the outlet 22 d of the electrolytic cell 22 to the circulation adjustment tank 20, and Between the outlet 20d of the tank 20 and the inlet 22c of the electrolytic cell 22, there is provided an alkali mixing tank 36 for mixing the wastewater and the alkali transferred from the circulation adjusting tank 20, and adding alkali to the alkali mixing tank 36 to adjust circulation. And an electrode corrosion suppression device 30 for mixing the wastewater transferred from the tank 20 and the alkali and suppressing the corrosion of the electrode in the electrolytic cell 22.

本実施形態では、アルカリ混合槽36の位置は、循環調整槽20の下流であり、電解槽22の上流である。即ち、循環調整槽20と電解槽22との間でアルカリを添加する。そのために、循環調整槽20と電解槽22との間にアルカリ混合槽36を配し、アルカリ混合槽36において、廃水にアルカリを添加・混合するものである。これにより、添加したアルカリは全量(100%)が電極の腐食の進行を抑える目的のために使用されることになる。   In the present embodiment, the position of the alkali mixing tank 36 is downstream of the circulation adjustment tank 20 and upstream of the electrolytic tank 22. That is, an alkali is added between the circulation adjustment tank 20 and the electrolytic tank 22. For that purpose, an alkali mixing tank 36 is disposed between the circulation control tank 20 and the electrolytic tank 22, and in the alkali mixing tank 36, alkali is added to and mixed with the wastewater. Thus, the total amount (100%) of the added alkali is used for the purpose of suppressing the progress of the corrosion of the electrode.

なお、特許文献1(図1参照)のように、循環調整槽20においてアルカリを添加すると、処理された水が放流される際にアルカリも放流されることとなり、添加したアルカリが全量使用されなくなり、効率の低下を招く。また、循環調整槽20には常時、原水槽10から廃水が移流しており、添加するアルカリの濃度に影響を与えることとなる。   As described in Patent Document 1 (see FIG. 1), when alkali is added in the circulation adjustment tank 20, when treated water is discharged, the alkali is also discharged, and the total amount of the added alkali is not used. , Cause a decrease in efficiency. In addition, waste water is always transferred from the raw water tank 10 to the circulation adjustment tank 20, which affects the concentration of the added alkali.

また、本実施形態でのpH(水素イオン濃度指数)を計測する位置は、電解槽22の出口22dから、電解処理された処理水が循環調整槽20に移流するまでの間、即ち、処理水のpHが他から影響を受けない位置である。   Further, the position where the pH (hydrogen ion concentration index) in this embodiment is measured is from the outlet 22 d of the electrolytic cell 22 to the time when the treated water subjected to the electrolytic treatment is transferred to the circulation adjustment tank 20, ie, the treated water PH is not affected by others.

pHセンサ39は、例えば、ガラス電極法のセンサを使用する。ガラス電極法とは、pHガラス電極と比較電極の2本の電極を用い、この2つの電極の間に生じた電圧(電位差)を知ることで、ある溶液のpHを測定する方法である。ガラスの薄膜の内側・外側にpHの異なる溶液があると、薄膜部分にpHの差に比例した起電力が生じる。この薄膜を「pHガラス応答膜」と言い、理論上、溶液が25℃の場合2つの溶液のpHの差が1違えば、約59mVの起電力が生じる。通常、pHガラス電極の内部液にはpH7の液を用いるため、pHガラス応答膜に生じた起電力を測定すれば、サンプルのpH値がわかる。   The pH sensor 39 uses, for example, a glass electrode sensor. The glass electrode method is a method of measuring the pH of a certain solution by using two electrodes of a pH glass electrode and a reference electrode and knowing the voltage (potential difference) generated between the two electrodes. When a solution of different pH exists on the inside and outside of the thin film of glass, an electromotive force proportional to the difference of pH is generated in the thin film portion. This thin film is referred to as a "pH glass response film", and theoretically, when the solution is at 25 ° C, if the difference in pH between the two solutions is one difference, an electromotive force of about 59 mV is generated. In general, since a solution of pH 7 is used as the internal solution of the pH glass electrode, the pH value of the sample can be determined by measuring the electromotive force generated in the pH glass response film.

電極腐食抑制装置30は、電解槽22で電解処理された処理水のpHをpHセンサ39で計測し、pHが6以上且つ8以下の範囲に保持するようにアルカリ混合槽36へのアルカリの添加量を制御する。詳細について、図4〜図6を参照して後記する。   The electrode corrosion suppression device 30 measures the pH of the treated water electrolytically treated in the electrolytic cell 22 with the pH sensor 39, and adds alkali to the alkali mixing tank 36 so as to maintain the pH in the range of 6 to 8 inclusive. Control the quantity. The details will be described later with reference to FIGS.

電極腐食抑制装置30は、具体的には、電解槽22で電解処理された処理水のpHを計測するpH計測部31と、アルカリ溶液を貯蔵するアルカリ貯液槽33と、循環調整槽20から廃水を流入するとともに、アルカリ供給配管35を介してアルカリ貯液槽33からアルカリ溶液を流入し、廃水とアルカリ溶液を混合する前記したアルカリ混合槽36と、pH計測部31で計測されたpHの単位時間当たりの増減量に応じて、アルカリ貯液槽33からアルカリ混合槽36へのアルカリ溶液の流入量を決定する制御部32と、を有する。制御部32は、決定した流入量に応じて、アルカリ供給配管35に配設した供給ポンプ34に対し回転速度指令をする。   Specifically, from the pH measurement unit 31 that measures the pH of the treated water that has been electrolytically treated in the electrolytic cell 22, the alkaline storage tank 33 that stores an alkaline solution, and the circulation adjustment tank 20, the electrode corrosion suppression device 30 While the wastewater flows in, the alkaline solution flows in from the alkaline storage tank 33 through the alkaline supply pipe 35, and the above-mentioned alkaline mixing tank 36 which mixes the wastewater and the alkaline solution, and the pH measured by the pH measuring unit 31 The controller 32 determines the inflow of the alkaline solution from the alkaline storage tank 33 to the alkaline mixing tank 36 in accordance with the amount of increase or decrease per unit time. The control unit 32 issues a rotational speed command to the supply pump 34 disposed in the alkali supply pipe 35 in accordance with the determined inflow.

アルカリ溶液としては、例えば、10%水酸化ナトリウム(NaOH)を用いることができる。水酸化ナトリウムは強塩基(アルカリ)の化学品である。   As the alkaline solution, for example, 10% sodium hydroxide (NaOH) can be used. Sodium hydroxide is a chemical of a strong base (alkali).

本実施形態の水処理システム100は、処理対象の廃水中に含まれるアンモニアや有機物を電解処理によって低減(除去)して、処理水として排出するシステムである。   The water treatment system 100 according to the present embodiment is a system for reducing (removing) ammonia and organic substances contained in the wastewater to be treated by electrolytic treatment and discharging it as treated water.

本実施形態に係る水処理システム100は、廃水中のアンモニアを電解処理することによって、処理水におけるアンモニア性窒素濃度を低減することができるようになっている。ちなみに、廃水中に含まれる窒素(N)は、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素等があるが、主成分がアンモニア性窒素である場合、アンモニア性窒素を低減することが、廃水中の窒素(N)を目標値以下まで低減する(脱窒する)上で有効である。   The water treatment system 100 according to the present embodiment can reduce the ammoniacal nitrogen concentration in the treated water by electrolytically treating the ammonia in the waste water. By the way, nitrogen (N) contained in wastewater includes ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, etc., but when the main component is ammonia nitrogen, it is possible to reduce ammonia nitrogen; It is effective in reducing nitrogen (N) in the medium to below the target value (denitrifying).

原水槽10は、処理対象の廃水が貯留される槽である。原水槽10から循環調整槽20に向かって廃水が流れる導入路12が設けられており、この導入路12には、供給ポンプ11を介して送水する。   The raw water tank 10 is a tank in which the wastewater to be treated is stored. An introduction passage 12 in which the waste water flows from the raw water tank 10 toward the circulation adjustment tank 20 is provided, and water is supplied to the introduction passage 12 via a supply pump 11.

循環調整槽20は、原水槽10からの廃水(及び、電解質槽(図示せず)からの電解質水溶液)、循環路27を介して電解槽22で処理された循環調整水が貯留するタンクである。循環路27は、循環調整槽20から、循環配管26を介して、循環ポンプ21、アルカリ混合槽36、電解槽22を経由して循環調整槽20に戻る経路である。   The circulation adjustment tank 20 is a tank in which the waste water from the raw water tank 10 (and the electrolyte aqueous solution from the electrolyte tank (not shown)) and the circulation adjusted water processed in the electrolytic tank 22 through the circulation path 27 are stored. . The circulation path 27 is a path that returns from the circulation adjustment tank 20 to the circulation adjustment tank 20 via the circulation pump 21, the alkali mixing tank 36, and the electrolytic tank 22 via the circulation pipe 26.

電解槽22は、流路上に第1電極22a及び第2電極22bが設けられ、電極電源装置25によって第1電極22a及び第2電極22b間に電流が流れるようになっている。なお、電極電源装置25は、制御装置50によって制御されるようになっている。   In the electrolytic cell 22, a first electrode 22a and a second electrode 22b are provided on the flow path, and a current flows between the first electrode 22a and the second electrode 22b by the electrode power supply device 25. The electrode power supply device 25 is controlled by the control device 50.

電解槽22は、電気分解処理によって、廃水中の有機物やアンモニアを分解することができるようになっている。ここで、電解質として塩化ナトリウム(NaCl)を用いた場合、電気分解の反応式は以下の反応式(1)〜(3)のようになる。
陽極反応:2Cl- → Cl2+2e- …(1)
陰極反応:2Na++2H2O+2e- → 2NaOH+H2 …(2)
Cl2+2NaOH → NaClO+NaCl+H2O …(3)
このように、電気分解によって、次亜塩素酸ナトリウム(NaClO)が生成される。なお、生成された次亜塩素酸ナトリウムは水溶液中であるため、この生成は次亜塩素酸(HClO)及び次亜塩素酸イオン(ClO-)が発生することでもある。
The electrolytic cell 22 is configured to be capable of decomposing organic substances and ammonia in the waste water by the electrolytic treatment. Here, when sodium chloride (NaCl) is used as the electrolyte, reaction formulas of electrolysis are as shown in the following reaction formulas (1) to (3).
Anode reaction: 2Cl - → Cl 2 + 2e - ... (1)
Cathodic reaction: 2Na + + 2H 2 O + 2e - → 2NaOH + H 2 ... (2)
Cl 2 +2 NaOH → NaClO + NaCl + H 2 O (3)
Thus, electrolysis produces sodium hypochlorite (NaClO). In addition, since sodium hypochlorite produced | generated is in aqueous solution, this production | generation is that hypochlorous acid (HClO) and hypochlorite ion (ClO < - >) generate | occur | produce.

そして、電気分解によって生成した次亜塩素酸ナトリウム(NaClO)は、アンモニア(NH3)と反応することによって、反応式(4)〜(6)のようになる。
NH3 +NaClO → NH2Cl+NaOH …(4)
NH2Cl+NaClO → NHCl2+NaOH …(5)
NH2Cl+NHCl2 → N2+3HCl …(6)
このように、次亜塩素酸ナトリウムによって、廃水中のアンモニア(NH3)に由来するアンモニア性窒素(N)を窒素ガス(N2)として脱窒する。
Then, sodium hypochlorite produced by electrolysis (NaClO) by reacting with ammonia (NH 3), so that the reaction formula (4) to (6).
NH 3 + NaClO → NH 2 Cl + NaOH (4)
NH 2 Cl + NaClO → NHCl 2 + NaOH (5)
NH 2 Cl + NHCl 2 → N 2 + 3 HCl (6)
Thus, sodium hypochlorite denitrifies ammonia nitrogen (N) derived from ammonia (NH 3 ) in waste water as nitrogen gas (N 2 ).

また、反応式は、省略するが、生成した次亜塩素酸ナトリウム(NaClO)を用いて、次亜塩素酸(HClO)及び次亜塩素酸イオン(ClO-)の酸化作用によって、有機物が水(H2O)や二酸化炭素(CO2)に分解する。このように、電解槽22は、電気分解処理によって、廃水中のアンモニア性窒素や有機物を低減する。 In addition, although the reaction formula is omitted, the organic substance is water (by the action of oxidizing hypochlorous acid (HClO) and hypochlorite ion (ClO ) using sodium hypochlorite (NaClO) generated). Decomposition into H 2 O) and carbon dioxide (CO 2 ). Thus, the electrolytic cell 22 reduces ammoniacal nitrogen and organic substances in the waste water by the electrolysis process.

図2は、アルカリ混合槽の詳細を示す構成図である。アルカリ混合槽36は、その内部に、流体混合機構を有するものとし、循環調整槽20から移流する廃水とアルカリ貯液槽33から供給されるアルカリ溶液とが効率よく混合する構造である。流体混合機構は、コストの面で有利であって十分に混合性能を有する静的流体混合機構とする。   FIG. 2 is a block diagram showing the details of the alkali mixing tank. The alkali mixing tank 36 has a fluid mixing mechanism in its inside, and the waste water transferred from the circulation control tank 20 and the alkali solution supplied from the alkali storage tank 33 are efficiently mixed. The fluid mixing mechanism is a static fluid mixing mechanism that is advantageous in cost and has sufficient mixing performance.

図2には、Kenics混合器の例を示す。T字管36aの一方から廃液が供給され、他方からアルカリ溶液が供給される。そして、静的流体混合器36bを介して、廃液とアルカリ溶液とが、効果的に混合される。静的流体混合器36bは、180°右及び左捻りの螺旋状の羽根体を90°ずつずらして直列に交互に配置することによって、分割作用、回転作用、反転作用により、流体を効果的に混合する。   FIG. 2 shows an example of a Kenics mixer. The waste liquid is supplied from one of the T-shaped tubes 36a, and the alkaline solution is supplied from the other. Then, the waste fluid and the alkaline solution are effectively mixed via the static fluid mixer 36b. The static fluid mixer 36b effectively alternates the fluid by the dividing action, the rotating action, and the reversing action by alternately arranging the 180 ° right and left twist spiral blade members in series by shifting them by 90 °. Mix.

本実施形態では、前記したように、廃水は多くのアンモニア性窒素や有機物成分を含んでおり、それらが、電解処理することで電解処理水中のpH(水素イオン濃度指数)を低下させ、電解処理水を酸性化する。これにより、電解槽の電極の腐食を進行するので、電極等のメンテナンス期間を延ばす必要があった。このため、図1に示す電極腐食抑制装置30を適用している。電解処理用の電極には、白金族系金属が主に使用される。   In the present embodiment, as described above, the wastewater contains a large amount of ammonia nitrogen and organic components, and by performing electrolytic treatment, the pH (hydrogen ion concentration index) in the electrolytically treated water is lowered by the electrolytic treatment, and the electrolytic treatment is performed. Acidify the water. As a result, the corrosion of the electrode of the electrolytic cell proceeds, so it is necessary to extend the maintenance period of the electrode and the like. For this reason, the electrode corrosion suppression device 30 shown in FIG. 1 is applied. Platinum group metals are mainly used for electrodes for electrolytic processing.

図3は、Pt−H2O−Clの電位−pHを示すグラフである。図3は、特開2011−252217号公報の図10に示す図であり、横軸はpHの値、縦軸は水素電極基準の電圧を示す。電位‐pH図から電極の使用環境においてpHが少なくとも6以下では、白金(Pt)は腐食領域となる。 FIG. 3 is a graph showing the potential-pH of Pt-H 2 O-Cl. FIG. 3 is a view shown in FIG. 10 of JP-A-2011-252217. The horizontal axis represents the value of pH, and the vertical axis represents the voltage based on the hydrogen electrode. From the potential-pH diagram, platinum (Pt) becomes a corrosion area when the pH is at least 6 or less in the use environment of the electrode.

また、発明者らの実験結果等から、前記したように、pH6以上且つ8以下の範囲に保持するようにアルカリ混合槽36へのアルカリの添加量を制御するのがよい。   Moreover, as described above, it is preferable to control the amount of alkali added to the alkali mixing tank 36 so as to maintain the pH in the range of 6 or more and 8 or less based on the experimental results of the inventors.

次に、電極腐食抑制装置30の制御部32の処理について説明する。
図4は、電極腐食抑制装置の処理を示すフローチャートである。制御部32は、pH計測部31から所定時間ごとにpHを取得する(ステップS1)。制御部32は、pHが閾値pHT1未満であるか否かを判定し(ステップS2)、pHが閾値pHT1未満であるならば(ステップS2,Yes)、アルカリの供給を開始し(ステップS3)、ステップS1に戻る。一方、制御部32は、pHが閾値pHT1未満でなければ、即ち、pHが閾値pHT1以上であれば(ステップS2,No)、ステップS4に進む。
Next, processing of control part 32 of electrode corrosion control device 30 is explained.
FIG. 4 is a flow chart showing processing of the electrode corrosion control device. The control unit 32 acquires pH from the pH measurement unit 31 every predetermined time (step S1). The control unit 32 determines whether the pH is less than the threshold pHT1 (step S2), and if the pH is less than the threshold pHT1 (step S2, Yes), starts the supply of alkali (step S3), It returns to step S1. On the other hand, if the pH is not less than the threshold pHT1, that is, if the pH is not less than the threshold pHT1 (step S2, No), the control unit 32 proceeds to step S4.

ステップS4において、制御部32は、アルカリの供給中であるか否かを判定する。アルカリの供給中でなければ(ステップS4,No)、ステップS1に戻り、アルカリの供給中であれば(ステップS4,Yes)、制御部32は、供給量調整をし(ステップS5)、ステップS6に進む。   In step S4, the control unit 32 determines whether or not alkali is being supplied. If alkali is not being supplied (Step S4, No), the process returns to Step S1. If alkali is being supplied (Step S4, Yes), the controller 32 adjusts the supply amount (Step S5), and Step S6. Go to

ステップS6において、制御部32は、pHが閾値pHT2を超えるか否かを判定する。pHが閾値pHT2(ここで、pHT2>pHT1)を超えるならば(ステップS6,Yes)、アルカリの供給を停止し(ステップS7)、ステップS1に戻る。一方、制御部32は、pHが閾値pHT2を超えなければ、即ち、pHが閾値pHT2以下であれば(ステップS6,No)、ステップS1に戻る。   In step S6, the control unit 32 determines whether the pH exceeds the threshold pHT2. If the pH exceeds the threshold pHT2 (here, pHT2> pHT1) (step S6, Yes), the supply of alkali is stopped (step S7), and the process returns to step S1. On the other hand, if the pH does not exceed the threshold pHT2, that is, if the pH is equal to or lower than the threshold pHT2 (step S6, No), the control unit 32 returns to step S1.

図5は、電極腐食抑制装置の供給量調整処理を示すフローチャートである。図5は図4のステップS5の処理フローである。制御部32は、pHの時間変化(ΔpH/Δt)が閾値ΔpHT3以下であるか否かを判定する(ステップS51)。pHの時間変化が閾値ΔpHT3以下であるならば(ステップS51,Yes)、制御部32は、アルカリの供給量を増加させる(ステップS52)。一方、pHの時間変化が閾値ΔpHT3以下でなければ(ステップS51,No)、pHの時間変化が閾値ΔpHT4以上であるか否かを判定する(ステップS53)。pHの時間変化が閾値ΔpHT4以上であるならば(ステップS53,Yes)、制御部32は、アルカリの供給量を減少させる(ステップS54)。一方、pHの時間変化が閾値ΔpHT4以上でなければ(ステップS53,No)、供給量調整処理を終了する。   FIG. 5 is a flowchart showing the supply amount adjustment processing of the electrode corrosion suppression device. FIG. 5 is a process flow of step S5 of FIG. The control unit 32 determines whether the temporal change in pH (ΔpH / Δt) is equal to or less than the threshold ΔpHT3 (step S51). If the time change of pH is equal to or less than the threshold value ΔpHT3 (step S51, Yes), the control unit 32 increases the supply amount of alkali (step S52). On the other hand, if the time change of pH is not less than the threshold ΔpHT3 (step S51, No), it is determined whether the time change of pH is more than the threshold ΔpHT4 (step S53). If the time change of pH is equal to or higher than the threshold value ΔpHT4 (step S53, Yes), the control unit 32 reduces the supply amount of alkali (step S54). On the other hand, if the time change of pH is not more than threshold value ΔpHT4 (Step S53, No), the supply amount adjustment process is ended.

図6は、電極腐食抑制装置によるpH調整状況を示す説明図である。適宜図1、図4、図5を参照して説明する。ここでは、図4において、pHT1=6、pHT2=8としている。水処理システム100の電気分解の処理が開始すると、循環調整槽20中の循環調整水のpHは減少する。時刻t1までは、pHが6以上であり、アルカリ供給されていない状態である。   FIG. 6 is an explanatory view showing a state of pH adjustment by the electrode corrosion suppression device. Description will be made with reference to FIGS. 1, 4 and 5 as appropriate. Here, in FIG. 4, pHT1 = 6 and pHT2 = 8. When the treatment of electrolysis of the water treatment system 100 starts, the pH of the circulation regulation water in the circulation regulation tank 20 decreases. Until the time t1, the pH is 6 or more, and the alkali is not supplied.

時刻t1において、pHが6未満となると、制御部32は、供給ポンプ34を起動しアルカリの供給を開始する。時刻t2において、pHが8を超えると、制御部32は、供給ポンプ34を停止しアルカリの供給を停止する。以後同様に、時刻t3において、pHが6未満となると、制御部32は、供給ポンプ34を起動しアルカリの供給を開始する。時刻t4において、pHが8を超えると、制御部32は、供給ポンプ34を停止しアルカリの供給を停止する。時刻t5において、pHが6未満となると、制御部32は、供給ポンプ34を起動しアルカリの供給を開始する。時刻t6において、pHが8を超えると、制御部32は、供給ポンプ34を停止しアルカリの供給を停止する。   At time t1, when the pH becomes less than 6, the control unit 32 starts the supply pump 34 to start supply of alkali. At time t2, when the pH exceeds 8, the control unit 32 stops the supply pump 34 and stops the supply of alkali. After that, similarly, when the pH becomes less than 6 at time t3, the control unit 32 starts the supply pump 34 to start supply of alkali. At time t4, when the pH exceeds 8, the control unit 32 stops the supply pump 34 to stop the supply of alkali. At time t5, when the pH is less than 6, the control unit 32 starts the supply pump 34 to start supply of alkali. At time t6, when the pH exceeds 8, the control unit 32 stops the supply pump 34 and stops the supply of alkali.

このpH調整により、電解槽22の出口22dからの処理水は、pHを6以上且つ8以下に調整できる。これにより、循環路27の循環配管28及び電解槽22の電極(第1電極22a及び第2電極22b)の酸による腐食の進行を抑えることができる。   By this pH adjustment, the treated water from the outlet 22 d of the electrolytic cell 22 can be adjusted to a pH of 6 or more and 8 or less. Thereby, it is possible to suppress the progress of the corrosion of the circulation pipe 28 of the circulation path 27 and the electrodes (the first electrode 22a and the second electrode 22b) of the electrolytic cell 22 due to the acid.

本実施形態の廃水の電解処理における電極腐食抑制装置によれば、廃水が循環調整槽20から電解槽22に移流する際に、十分にアルカリを添加し、電解槽22内で電解処理されるときに酸が生じても、電極への影響度合いを抑制することができる。そのために、循環調整槽20と電解槽22との間にアルカリ混合槽36を配し、アルカリ混合槽36において、循環調整槽20から移流する廃水にアルカリを添加・混合し、それを電解槽22に移流して電解処理し、電解槽の出口22dにおいて、その処理水のpHを6以上且つ8以下の範囲に保持している。   According to the apparatus for suppressing corrosion of electrodes in the electrolytic treatment of waste water of the present embodiment, when the waste water is transferred from the circulation adjustment tank 20 to the electrolytic cell 22, the alkali is sufficiently added and the electrolytic treatment is performed in the electrolytic cell 22. Even if the acid is generated, the degree of influence on the electrode can be suppressed. For that purpose, an alkali mixing tank 36 is disposed between the circulation adjusting tank 20 and the electrolytic tank 22, and in the alkali mixing tank 36, the alkali is added to and mixed with the wastewater transferred from the circulation adjusting tank 20, and it is electrolyzed 22. The electrolytic solution is subjected to electrolytic transfer, and the pH of the treated water is maintained in the range of 6 or more and 8 or less at the outlet 22 d of the electrolytic cell.

10 原水槽
11 供給ポンプ
12 導入路
20 循環調整槽(調整槽)
21 循環ポンプ
22 電解槽
22a 第1電極
22b 第2電極
25 電極電源装置
26 循環配管
27 循環路
28 循環配管(移流管)
29 オーバーフロー口
30 電極腐食抑制装置
31 pH計測部
32 制御部
33 アルカリ貯液槽
34 供給ポンプ
35 アルカリ供給配管
36 アルカリ混合槽
39 pHセンサ
50 制御装置
100 水処理システム
pHT1,pHT2 閾値
ΔpHT3,ΔpHT4 閾値
10 Raw water tank 11 Supply pump 12 Introduction passage 20 Circulation adjustment tank (adjustment tank)
Reference Signs List 21 circulation pump 22 electrolyzer 22a first electrode 22b second electrode 25 electrode power supply device 26 circulation piping 27 circulation path 28 circulation piping (advection pipe)
29 Overflow port 30 Electrode corrosion suppression device 31 pH measurement unit 32 Control unit 33 Alkaline storage tank 34 Supply pump 35 Alkaline supply piping 36 Alkaline mixing tank 39 pH sensor 50 control device 100 Water treatment system pHT1, pHT2 threshold ΔPHT3, ΔPHT4 threshold

前記目的を達成するため、本発明の水処理システムは、廃水が流入する調整槽(例えば、循環調整槽20)と、少なくとも一対の電極により廃水を電解処理する電解槽(例えば、電解槽22)と、調整槽と電解槽との間で廃水を循環させる循環配管(例えば、循環配管26,28)とを備える水処理システムにおいて、調整槽の出口から電解槽の入口までの間に、調整槽から移流する廃水とアルカリとを混合するアルカリ混合槽と、電解槽の出口から調整槽の入り口までの間の移流管において、処理水のpHを計測するpH計測部と、計測されたpHにより、アルカリ混合槽へのアルカリの添加を制御する制御部と、を有することを特徴とする。また、本発明の電極腐食抑制装置は、調整槽の出口から電解槽の入口までの間に配置されたアルカリ混合槽にアルカリを添加して、調整槽から移流する廃水とアルカリとを混合し、電解槽内の電極の腐食を抑制する。本発明のその他の態様については、後記する実施形態において説明する。 In order to achieve the above object, the water treatment system of the present invention comprises a control tank (for example, circulation control tank 20) into which waste water flows and an electrolytic tank (for example, electrolytic tank 22) for electrolytically treating waste water with at least a pair of electrodes. And a circulation pipe (for example, circulation pipes 26 and 28) for circulating waste water between the adjustment tank and the electrolytic cell, the adjustment tank being between the outlet of the adjustment tank and the inlet of the electrolytic cell In the alkaline mixing tank which mixes the wastewater and the alkali which are transferred from the flow, the pH measuring unit which measures the pH of the treated water in the advection pipe between the outlet of the electrolytic cell and the inlet of the adjusting tank, and the measured pH And a control unit that controls the addition of alkali to the alkali mixing tank . Further, according to the electrode corrosion suppressing apparatus of the present invention, the alkali is added to the alkali mixing tank disposed between the outlet of the adjusting tank and the inlet of the electrolytic tank, and the wastewater and the advection flowing from the adjusting tank are mixed. Suppress corrosion of electrodes in the electrolytic cell. Other aspects of the invention are described in the embodiments described below.

Claims (9)

廃水が流入する調整槽と、少なくとも一対の電極により前記廃水を電解処理する電解槽と、前記調整槽と前記電解槽との間で前記廃水を循環させる循環配管とを備える水処理システムにおいて、
前記調整槽の出口から前記電解槽の入口までの間に、前記調整槽から移流する廃水とアルカリとを混合するアルカリ混合槽を有する
ことを特徴とする水処理システム。
A water treatment system comprising: a control tank into which waste water flows, an electrolytic cell for electrolytically treating the waste water with at least a pair of electrodes, and a circulation pipe for circulating the waste water between the control tank and the electrolytic cell
A water treatment system characterized by comprising an alkali mixing tank for mixing the wastewater and the alkali transferred from the adjustment tank between the outlet of the adjustment tank and the inlet of the electrolytic cell.
請求項1に記載された水処理システムにおいて、
前記電解槽の出口から前記調整槽の入り口までの間の移流管において、処理水のpHを計測するpH計測部と、前記pHが6以上且つ8以下の範囲に保持するようにアルカリ混合槽へのアルカリの添加を制御する制御部とを備える
ことを特徴とする水処理システム。
In the water treatment system according to claim 1,
In the advection tube between the outlet of the electrolytic cell and the inlet of the adjustment tank, a pH measurement unit for measuring the pH of treated water, and an alkali mixing tank so as to maintain the pH in the range of 6 or more and 8 or less And a control unit that controls the addition of alkali.
請求項1に記載された水処理システムにおいて、
前記電解槽で電解処理された処理水のpHを計測するpH計測部と、
アルカリ溶液を貯蔵するアルカリ貯液槽と、
前記アルカリ貯液槽から前記アルカリ混合槽に前記アルカリ溶液を流入させるアルカリ供給配管と、
前記pH計測部で計測されたpHの単位時間当たりの増減量に応じて、前記アルカリ貯液槽から前記アルカリ混合槽へのアルカリ溶液の流入を決定する制御部と、を有する
ことを特徴とする水処理システム。
In the water treatment system according to claim 1,
A pH measurement unit that measures the pH of the treated water electrolytically treated in the electrolytic cell;
An alkaline storage tank for storing an alkaline solution,
An alkali supply pipe for causing the alkali solution to flow from the alkali storage tank to the alkali mixing tank;
And a controller configured to determine the inflow of the alkaline solution from the alkaline storage tank to the alkaline mixing tank according to the amount of increase or decrease per unit time of the pH measured by the pH measuring section. Water treatment system.
請求項3に記載の水処理システムにおいて、
前記アルカリ供給配管に配設された供給ポンプを備え、
前記制御部は、前記供給ポンプを制御して前記決定した流入量のアルカリ溶液を、前記アルカリ貯液槽から前記アルカリ混合槽に流入させる
ことを特徴とする水処理システム。
In the water treatment system according to claim 3,
A supply pump disposed in the alkali supply pipe;
The said control part controls the said supply pump, and makes the alkaline solution of the determined inflow flow in into the said alkali mixing tank from the said alkaline storage tank. The water treatment system characterized by the above-mentioned.
前記アルカリは、水酸化ナトリウムである
ことを特徴とする請求項1ないし4のいずれか1項に記載の水処理システム。
The water treatment system according to any one of claims 1 to 4, wherein the alkali is sodium hydroxide.
廃水を調整槽と電解槽で循環させて電解処理する水処理システムの電解処理用電極の腐食抑制方法であって、
前記電解槽の出口から前記調整槽までの間の移流管にて、前記電解槽で電解処理された処理水のpHを計測して、前記調整槽の出口から前記電解槽の入口までの間にアルカリを添加し、前記pHを6以上且つ8以下の範囲に保持する
ことを特徴とする水処理システムの電極腐食抑制方法。
A method of inhibiting corrosion of an electrode for electrolytic treatment of a water treatment system in which waste water is circulated in a control tank and an electrolytic tank for electrolytic treatment
The pH of the treated water electrolyzed in the electrolyzer is measured by the advection tube between the outlet of the electrolyzer and the adjustment tank, and between the outlet of the adjustment tank and the inlet of the electrolyzer A method of inhibiting electrode corrosion in a water treatment system, comprising adding an alkali and maintaining the pH in the range of 6 or more and 8 or less.
廃水が流入する調整槽と、少なくとも一対の電極により前記廃水を電解処理する電解槽と、前記調整槽と前記電解槽との間で前記廃水を循環させる循環配管とを備える水処理システムに併設される電極腐食抑制装置において、
前記調整槽の出口から前記電解槽の入口までの間に、前記調整槽から移流する廃水とアルカリとを混合するアルカリ混合槽を有することを特徴とする電極腐食抑制装置。
It is juxtaposed to a water treatment system provided with a control tank into which the wastewater flows, an electrolytic tank which electrolytically treats the waste water with at least a pair of electrodes, and a circulation pipe which circulates the wastewater between the control tank and the electrolytic tank. Electrode corrosion control device,
An electrode corrosion inhibiting device, characterized in that an alkaline mixing tank is provided between the outlet of the adjusting tank and the inlet of the electrolytic cell to mix the wastewater and the alkali transferred from the adjusting tank.
請求項7に記載された電極腐食抑制装置において、
前記電解槽の出口から前記調整槽の入り口までの間の移流管において、処理水のpHを計測するpH計測部と、アルカリ溶液を貯蔵するアルカリ貯液槽と、前記pHを6以上且つ8以下の範囲に保持するようにアルカリ混合槽へのアルカリの添加量を制御する制御部と、を備えることを特徴とする電極腐食抑制装置。
In the electrode corrosion inhibitor according to claim 7,
In the advection tube from the outlet of the electrolytic cell to the inlet of the adjustment tank, a pH measurement unit that measures the pH of treated water, an alkaline storage tank that stores an alkaline solution, and the pH of 6 to 8 And a control unit configured to control the amount of alkali added to the alkali mixing tank so as to be held in the range of (4).
請求項8に記載された電極腐食抑制装置において、
前記アルカリ貯液槽から前記アルカリ混合槽に前記アルカリ溶液を流入させるアルカリ供給配管と、前記アルカリ供給配管に配設された供給ポンプとを備え、
前記制御部は、前記pH計測部で計測されたpHの単位時間当たりの増減量に応じて、前記アルカリ貯液槽から前記アルカリ混合槽へのアルカリ溶液の流入量を決定し、前記供給ポンプを制御して前記決定した流入量のアルカリ溶液を、前記アルカリ貯液槽から前記アルカリ混合槽に流入させることを特徴とする電極腐食抑制装置。
In the electrode corrosion inhibitor according to claim 8,
And an alkali supply pipe for causing the alkali solution to flow from the alkali storage tank into the alkali mixing tank, and a supply pump provided in the alkali supply pipe.
The control unit determines the inflow of the alkaline solution from the alkaline storage tank to the alkaline mixing tank according to the amount of increase or decrease per unit time of the pH measured by the pH measurement unit, and the supply pump An electrode corrosion inhibiting device characterized in that an alkaline solution having a controlled inflow amount determined is made to flow from the alkaline storage tank into the alkaline mixing tank.
JP2017204074A 2017-10-20 2017-10-20 Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system Active JP6300252B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204074A JP6300252B1 (en) 2017-10-20 2017-10-20 Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204074A JP6300252B1 (en) 2017-10-20 2017-10-20 Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system

Publications (2)

Publication Number Publication Date
JP6300252B1 JP6300252B1 (en) 2018-03-28
JP2019076814A true JP2019076814A (en) 2019-05-23

Family

ID=61756547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204074A Active JP6300252B1 (en) 2017-10-20 2017-10-20 Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system

Country Status (1)

Country Link
JP (1) JP6300252B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078178A (en) * 2019-05-10 2019-08-02 浙江浙能嘉华发电有限公司 A kind of strong ammonia wastewater cyclic electrolysis treatment process and equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109758A (en) * 1976-03-12 1977-09-14 Kobayashi Kagaku Kk Method of removing poisonous heavy metal in waste water
JP3585085B2 (en) * 1998-02-23 2004-11-04 ノーリツ鋼機株式会社 Method for treating waste liquid containing organic matter and heavy metal compound
JP4011197B2 (en) * 1998-06-03 2007-11-21 四国電力株式会社 Method for treating ethanolamine-containing water
JP4671743B2 (en) * 2005-04-15 2011-04-20 三菱重工環境・化学エンジニアリング株式会社 Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP5122074B2 (en) * 2006-01-12 2013-01-16 三菱重工環境・化学エンジニアリング株式会社 Water treatment method and system

Also Published As

Publication number Publication date
JP6300252B1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US20240034648A1 (en) Half-cell electrochemical configurations for self-cleaning electrochlorination devices
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP3716042B2 (en) Acid water production method and electrolytic cell
EP1295853B1 (en) Method of treating water and apparatus therefor
JP2007069199A (en) Apparatus for treating water
JP4932529B2 (en) Water treatment method
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2006255653A (en) Electrolytic treatment method of water system
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
WO2015122435A1 (en) Seawater electrolysis system and electrolytic solution infusion method
JP5122074B2 (en) Water treatment method and system
JP4013486B2 (en) Cooling water slime prevention method
JP3521896B2 (en) Water treatment method for cooling water system
JP2006272060A (en) Continuous treatment method and device for waste water containing nitrate nitrogen
JP5700736B1 (en) Water treatment apparatus and control method for water treatment apparatus
JP2006289298A (en) Water treatment method and water treatment device
JP5995242B2 (en) Nitrogen removal method and apparatus
JP4554326B2 (en) Waste water treatment method and apparatus
JP5700735B1 (en) Water treatment apparatus and control method for water treatment apparatus
JP2007260492A (en) Electrolyzing method of water
JP2005288238A (en) Cooling water treatment device and its operation method
JP2003154368A (en) Method and apparatus for water treatment in cooling water system
JP2010104972A (en) Method for sterilizing raw water
KR20050044230A (en) Electrolytic system with enhanced performance of pollute destroy
JP2007000827A (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171020

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6300252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250