JP2019075425A - Position detection apparatus, imprint apparatus, and article manufacturing method - Google Patents

Position detection apparatus, imprint apparatus, and article manufacturing method Download PDF

Info

Publication number
JP2019075425A
JP2019075425A JP2017199048A JP2017199048A JP2019075425A JP 2019075425 A JP2019075425 A JP 2019075425A JP 2017199048 A JP2017199048 A JP 2017199048A JP 2017199048 A JP2017199048 A JP 2017199048A JP 2019075425 A JP2019075425 A JP 2019075425A
Authority
JP
Japan
Prior art keywords
period
position detection
diffraction grating
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017199048A
Other languages
Japanese (ja)
Other versions
JP7057094B2 (en
Inventor
佐藤 浩司
Koji Sato
浩司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017199048A priority Critical patent/JP7057094B2/en
Publication of JP2019075425A publication Critical patent/JP2019075425A/en
Application granted granted Critical
Publication of JP7057094B2 publication Critical patent/JP7057094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an advantageous position detection device in terms of the detection accuracy of the relative position between a mold and a substrate.SOLUTION: A position detection apparatus having an imaging element having an imaging surface on which moire fringes generated by diffracted light diffracted by a plurality of diffraction gratings having different periods are formed includes a division unit that includes am imaging optical system that forms diffracted light on an imaging surface and performs division of first diffracted light that generates a first moire fringe having a period in a first direction and second diffracted light that generates a second moire fringe having a period in a second direction intersecting the first direction in a pupil plane of the imaging optical system.SELECTED DRAWING: Figure 3

Description

位置検出装置、インプリント装置および、物品製造方法に関する。 The present invention relates to a position detection device, an imprint apparatus, and an article manufacturing method.

半導体デバイス、液晶表示素子等を製造する装置として、露光装置やインプリント装置などのリソグラフィ装置がある。リソグラフィ装置により微細なパターンを基板に形成するためには、パターンを有する型(モールド)あるいはマスクとパターンが形成される基板との位置合わせの精度が重要となる。   As apparatuses for manufacturing semiconductor devices, liquid crystal display elements and the like, there are lithography apparatuses such as an exposure apparatus and an imprint apparatus. In order to form a fine pattern on a substrate by a lithography apparatus, the accuracy of alignment between a mold (pattern) having a pattern or a mask and a substrate on which the pattern is formed is important.

例えば、インプリント装置の場合、型に形成された型側マークとパターンが形成されるショット領域ごとに基板に形成された基板側マークとをショット領域ごとに検出し、相対位置を補正するダイバイダイアライメント方式の位置合わせが用いられる。   For example, in the case of an imprint apparatus, a die-by-die that detects a mold side mark formed on a mold and a substrate side mark formed on a substrate for each shot area on which a pattern is formed Alignment alignment is used.

この方式を用いる特許文献1の位置検出装置は、モールドおよび基板に設けられた互いに周期が異なる回折格子からの回折光が重なって発生するモアレ縞の計測結果に基づいてモールドと基板との相対位置を検出する。この位置検出装置は、複数の極を有する照明光学系によって各回折格子を照明して、各回折格子からの回折光の光量を多くしている。   The position detection device of Patent Document 1 using this method is a relative position between the mold and the substrate based on measurement results of moire fringes generated by overlapping of diffracted light from diffraction gratings provided on the mold and the substrate and having different periods. To detect In this position detection device, each diffraction grating is illuminated by an illumination optical system having a plurality of poles to increase the amount of diffracted light from each diffraction grating.

特開2013−030757号公報JP, 2013-030757, A

上記特許文献1の位置検出装置は、ある方向についての相対位置を計測するために用いる回折格子に対して、不要な光を照明しうる。不要な光が照明されることでモアレ縞の計測精度が低下して、位置検出精度が低下しうる。   The position detection device of Patent Document 1 can illuminate unnecessary light on a diffraction grating used to measure the relative position in a certain direction. By irradiating unnecessary light, the measurement accuracy of moire fringes may be reduced, and the position detection accuracy may be reduced.

本発明は、例えば、型と基板との相対位置の検出精度の点で有利な位置検出装置を提供することを目的とする。   An object of the present invention is, for example, to provide a position detection device that is advantageous in terms of detection accuracy of the relative position between the mold and the substrate.

上記課題を解決するために、本発明は、互いに周期の異なる複数の回折格子で回折された回折光により生じるモアレ縞が結像される撮像面を備えた撮像素子を有する位置検出装置であって、回折光を撮像面に結像する結像光学系を有し、結像光学系の瞳面において、第1方向に周期をもつ第1モアレ縞を生じさせる第1回折光と、第1方向と交差する第2方向に周期をもつ第2モアレ縞を生じさせる第2回折光と、を分割する分割部を有する、ことを特徴とする。   In order to solve the above problems, the present invention is a position detection device having an imaging element provided with an imaging surface on which moire fringes generated by diffracted light diffracted by a plurality of diffraction gratings having different periods are formed. A first diffraction light that has an imaging optical system that forms diffracted light on an imaging surface, and generates a first moiré fringe having a period in a first direction on a pupil plane of the imaging optical system; And a second diffracted light generating a second moiré fringe having a period in a second direction intersecting with the second light source.

本発明によれば、例えば、型と基板との相対位置の検出精度の点で有利な位置検出装置を提供することができる。   According to the present invention, for example, it is possible to provide a position detection device that is advantageous in terms of the detection accuracy of the relative position between the mold and the substrate.

第1実施形態に係る位置検出装置を備えたインプリント装置の構成を示す概略図である。It is the schematic which shows the structure of the imprint apparatus provided with the position detection apparatus which concerns on 1st Embodiment. 型および基板に設けられるマークの例を示す図である。It is a figure which shows the example of the mark provided in a type | mold and a board | substrate. 第1実施形態に係る位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the position detection apparatus which concerns on 1st Embodiment. 第1実施形態に係る第1光学系の瞳面を示す図である。It is a figure which shows the pupil plane of the 1st optical system which concerns on 1st Embodiment. 図5の(A)および(B)は、回折光を計測方向ごとに分割することによる相対位置の検出精度に対する効果を示す図である。(A) and (B) of FIG. 5 is a figure which shows the effect with respect to the detection precision of the relative position by dividing | segmenting diffracted light for every measurement direction. 第2実施形態に係る位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the position detection apparatus which concerns on 2nd Embodiment. 第2実施形態に係る第1光学系の瞳面を示す図である。It is a figure which shows the pupil plane of the 1st optical system which concerns on 2nd Embodiment. 第3実施形態に係る位置検出装置の構成を示す概略図である。It is the schematic which shows the structure of the position detection apparatus which concerns on 3rd Embodiment. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods.

以下、本発明を実施するための形態について図面などを参照して説明する。
(第1実施形態)
Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like.
First Embodiment

<インプリント装置>
図1は、本実施形態に係る位置検出装置100を備えたインプリント装置1の構成を示す概略図である。なお、位置検出装置100は、露光装置など他のリソグラフィ装置にも適用可能である。ここでは、光硬化法を用いたインプリント装置として、紫外線UVの照射によって基板W上の未硬化のインプリント材を硬化させる紫外線硬化型のインプリント装置を使用した。ただし、インプリント材の硬化方法として、他の波長域の光の照射による方法や、他のエネルギー(例えば、熱)による方法を用いてもよい。また、以下の図においては、基板W上のインプリント材に対して照射される紫外線の光軸に平行にZ軸を取り、Z軸に垂直な平面内に互いに直交するX軸およびY軸を取っている。
<Imprint Device>
FIG. 1 is a schematic view showing a configuration of an imprint apparatus 1 provided with a position detection apparatus 100 according to the present embodiment. The position detection apparatus 100 is also applicable to another lithography apparatus such as an exposure apparatus. Here, as an imprint apparatus using a photo-curing method, an ultraviolet-curable imprint apparatus is used which cures the uncured imprint material on the substrate W by irradiation with ultraviolet light UV. However, as a method of curing the imprint material, a method by irradiation of light in another wavelength range or a method by other energy (for example, heat) may be used. Also, in the following figures, the Z axis is parallel to the optical axis of the ultraviolet light irradiated to the imprint material on the substrate W, and the X axis and the Y axis orthogonal to each other are in a plane perpendicular to the Z axis. taking it.

インプリント装置1は、型Mを保持する型保持部10および基板Wを保持する基板保持部20を有する。インプリント装置1は、型Mを用いて基板Wの上にインプリント材のパターンを形成する。型Mは、例えば、外周部が矩形であり、基板Wに対向する面において、所定の凹凸パターンPが3次元状に形成されており、紫外線を透過する材料(石英など)で構成される。基板Wは、凹凸パターンが転写される基板であって、例えば、単結晶シリコン基板やSOI(Silicon on Insulator)基板などを含む。   The imprint apparatus 1 includes a mold holding unit 10 that holds a mold M and a substrate holding unit 20 that holds a substrate W. The imprint apparatus 1 forms a pattern of an imprint material on a substrate W using a mold M. For example, the mold M has a rectangular outer peripheral portion, and a predetermined concavo-convex pattern P is three-dimensionally formed on a surface facing the substrate W, and is made of a material (such as quartz) that transmits ultraviolet light. The substrate W is a substrate to which the concavo-convex pattern is transferred, and includes, for example, a single crystal silicon substrate or an SOI (Silicon on Insulator) substrate.

インプリント材のパターンは、基板Wへのインプリント材の供給、型Mとインプリント材との接触および型MのパターンPへのインプリント材の充填、位置合わせ、硬化、型Mの剥離を含む、一連のサイクルにより形成される。   The pattern of the imprint material includes the supply of the imprint material to the substrate W, the contact of the mold M with the imprint material, and the filling of the imprint material into the pattern P of the mold M, alignment, curing, and peeling of the mold M. It is formed by a series of cycles including.

位置検出装置100は、例えば、型保持部10内に配置される。位置検出装置100は、型Mに形成されたマークMおよび基板Wに形成されたマークMを光学的に観察することで型Mと基板WとのX方向およびY方向の相対位置のずれ量を求める。求められたずれ量に基づいて、型Mと基板Wとの位置合わせが行われる。なお、位置検出装置100が用いる光の光源としては、ハロゲンランプやLED、LDを用いうる。また、位置検出装置100が用いる光の波長は、インプリント材を硬化させるための光の波長と異なることが望ましい。 The position detection device 100 is disposed, for example, in the mold holding unit 10. The position detection apparatus 100 shifts the relative position between the mold M and the substrate W in the X direction and the Y direction by optically observing the mark M 1 formed on the mold M and the mark M 2 formed on the substrate W. Determine the quantity. Alignment between the mold M and the substrate W is performed based on the calculated amount of deviation. In addition, as a light source of the light which the position detection apparatus 100 uses, a halogen lamp, LED, and LD can be used. Further, it is desirable that the wavelength of light used by the position detection apparatus 100 be different from the wavelength of light for curing the imprint material.

図2は、型および基板に設けられるマークの例を示す図である。本実施形態では、型Mおよび基板Wのいずれか一方に第1回折格子Dを設け、いずれか他方に第2回折格子Dを設ける。第1回折格子Dは、X方向に周期Tを有する。第2回折格子Dは、X方向に第1周期Tと異なる周期T´を有し、かつ、Y方向に第3周期Tを有する。位置検出装置100は、第1回折格子Dおよび第2回折格子Dにより回折された回折光により生じたX方向に周期をもつ第1モアレ縞Fによって、X方向の相対位置ずれ量を求める。 FIG. 2 is a view showing an example of a mark provided on a mold and a substrate. In the present embodiment, the first diffraction grating D 1 provided on one of the mold M and the substrate W, and the other to provide the second diffraction grating D 2. The first diffraction grating D 1 has a period T 1 in the X direction. The second diffraction grating D 2 has a first period T 1 and period different T 1 'in the X direction, and a third period T 3 in the Y direction. The position detection device 100 detects the relative positional deviation amount in the X direction by the first moiré fringe F 1 having a period in the X direction generated by the diffracted light diffracted by the first diffraction grating D 1 and the second diffraction grating D 2. Ask.

同様に、型Mおよび基板Wのいずれか一方に第3回折格子Dを設け、いずれか他方に第4回折格子Dを設ける。第3回折格子Dは、Y方向に第2周期Tを有する。第4回折格子Dは、Y方向に第2周期Tと異なる周期T´を有し、かつ、X方向に第4周期Tを有する。位置検出装置100は、第3回折格子Dおよび第4回折格子Dにより回折された回折光により生じたY方向に周期をもつ第2モアレ縞Fによって、Y方向の相対位置ずれ量を求める。 Similarly, the third diffraction grating D 3 provided in one type of M and the substrate W, and the other to provide a fourth diffraction grating D 4. The third diffraction grating D 3 has a second period T 2 in the Y direction. The fourth diffraction grating D 4 has a second period T 2 and the different periods T 2 'in the Y-direction, and has a fourth period T 4 in the X direction. The position detection apparatus 100 detects the relative positional deviation amount in the Y direction by the second moiré fringes F 2 having a period in the Y direction generated by the diffracted light diffracted by the third diffraction grating D 3 and the fourth diffraction grating D 4. Ask.

なお、X方向およびY方向が直交していなくとも交差していれば本実施形態の位置検出装置100は、2方向について相対位置ずれ量を求めることができる。また、相対位置ずれ量の検出精度を考慮すると、第2回折格子DのY方向の第3周期Tは、第3回折格子DのY方向の第2周期Tと異なり、第4回折格子DのX方向の第4周期Tは、第1回折格子DのX方向の第1周期Tと異なることが望ましい。 If the X direction and the Y direction cross each other even if they are not orthogonal to each other, the position detection apparatus 100 according to this embodiment can obtain the relative positional deviation amount in two directions. In consideration of the detection accuracy of the relative positional deviation amount, the third period T 3 of the second diffraction grating D 2 Y direction is different from the second period T 2 of the third diffraction grating D 3 Y direction, fourth fourth period T 4 in the X direction of the diffraction grating D 4 is preferably different from the first period T 1 of the first diffraction grating D 1 of the X direction.

本実施形態の位置検出装置100は、型Mおよび基板Wのいずれか一方に設けるマークをチェッカーボード状の回折格子(第2回折格子D、第4回折格子D)として、ゼロ次反射光を検出しない暗視野の構成でモアレ縞を検出している。これにより、ゼロ次反射光によるモアレ縞のコントラストの低下を抑制できる。 The position detection apparatus 100 of this embodiment has a mark provided on any one of the mold M and the substrate W as a checkerboard diffraction grating (second diffraction grating D 2 , fourth diffraction grating D 4 ) as a zero-order reflected light. Moire fringes are detected in the configuration of the dark field that does not detect. Thereby, the fall of the contrast of the moire fringe by zero-order reflected light can be suppressed.

<位置検出装置>
図3は、本実施形態に係る位置検出装置100の構成を示す概略図である。位置検出装置100は、第1光学系(照明光学系)110と、第2光学系(結像光学系)120と、第1撮像素子130と、第2撮像素子140とを有する。第1撮像素子130および第2撮像素子140としては、CCDやCMOSが用いられうる。型Mが備えるマークMは、第1回折格子Dおよび第3回折格子Dを含む。基板Wが備えるマークMは、第2回折格子Dおよび第4回折格子Dを含む。
<Position detection device>
FIG. 3 is a schematic view showing the configuration of the position detection device 100 according to the present embodiment. The position detection apparatus 100 includes a first optical system (illumination optical system) 110, a second optical system (imaging optical system) 120, a first imaging element 130, and a second imaging element 140. As the first imaging device 130 and the second imaging device 140, a CCD or a CMOS may be used. Mark M 1 included in the mold M includes a first diffraction grating D 1 and the third diffraction grating D 3. Mark M 2 where the substrate W is provided includes a second diffraction grating D 2 and the fourth diffraction grating D 4.

第1光学系110は、複数の回折格子を照明する光を透過させ、かつ、複数の回折格子により回折された回折光を反射させる。なお、第1光学系110は、回折光を透過させ、照明光を反射させてもよい。第2光学系120は、第1光学系110で反射された回折光を撮像素子130の撮像面131へ導く。第1撮像素子130は、第1モアレ縞Fが結像される第1撮像面131を備える。第2撮像素子140は、第2モアレ縞Fが結像される第2撮像面141を備える。 The first optical system 110 transmits light illuminating the plurality of diffraction gratings and reflects diffracted light diffracted by the plurality of diffraction gratings. The first optical system 110 may transmit diffracted light and reflect illumination light. The second optical system 120 guides the diffracted light reflected by the first optical system 110 to the imaging surface 131 of the imaging element 130. The first image sensor 130 includes a first imaging plane 131 which the first Moire fringe F 1 is imaged. The second image sensor 140 includes a second imaging plane 141 second moire fringes F 2 is imaged.

図4は、第1光学系110の瞳面S1を示す図である。第1光学系110は、第1モアレ縞Fを生じさせる第1回折光を反射させる第1反射部(第1検出瞳)NAおよび、第2モアレ縞を生じさせる第2回折光を反射させる第2反射部(第2検出瞳)NAを備える。 FIG. 4 is a view showing a pupil plane S1 of the first optical system 110. As shown in FIG. The first optical system 110 is reflected first reflecting section for reflecting the first diffracted beam to produce a first Moire fringes F 1 (first detection pupil) NA 1 and the second diffracted beam to produce a second moire fringes the second reflection portion which includes a (second detection pupil) NA 2.

第1反射部NAは、瞳面S1において、瞳面S1の中心Oを通るY軸上に配置され、第2反射部NAは、瞳面S1の中心Oを通るX軸上に配置されることが、信号の効率的な取得の観点から望ましい。配置との兼ね合いによりずれた位置でも計測は可能である。 First reflecting portion NA 1, in the pupil plane S1, is disposed on the Y-axis passing through the center O of the pupil plane S1, the second reflecting portion NA 2 is disposed on the X-axis passing through the center O of the pupil plane S1 Is desirable from the viewpoint of efficient acquisition of signals. Measurement is possible even at a shifted position due to the balance with the arrangement.

第1光学系110は、瞳面S1において、第1反射部NAに回折格子を照明する光の光強度分布を有する照明瞳ILおよび第2反射部NAに光強度分布を有する照明瞳ILを有する。照明瞳ILにより、第1回折格子Dおよび第2回折格子Dを照明して生じた回折光による第1モアレ縞Fにより、X方向の相対位置ずれが検出される。照明瞳ILにより、第3回折格子Dおよび第4回折格子Dを照明して生じた回折光による第2モアレ縞Fにより、Y方向の相対位置ずれが検出される。 The first optical system 110, the pupil plane S1, the illumination pupil with the light intensity distribution on the illumination pupil IL 1 and the second reflecting portion NA 2 having a light intensity distribution of the light illuminating the diffraction grating on the first reflecting portion NA 1 It has IL 2 . The illumination pupil IL 1, the first moire fringes F 1 due to diffraction light generated by illuminating the first diffraction grating D 1 and second diffraction grating D 2, X direction relative positional deviation is detected. The illumination pupil IL 2, the third diffraction grating D 3 and the fourth diffraction grating D 4 second moire fringes F 2 due to diffraction light generated by illuminating a, Y direction relative positional deviation is detected.

照明瞳ILから第1回折格子Dに入射する光の入射角および第2回折格子DのY方向の周期は、第1回折格子Dおよび第2回折格子Dを照明することで生じた回折光が第1反射部NAに戻るように調整される。同様に、照明瞳ILから第3回折格子Dに入射する光の入射角および第4回折格子DのY方向の周期は、第3回折格子Dおよび第4回折格子Dを照明することで生じた回折光が第2反射部NAに戻るように調整される。 Angle of incidence and period of the second diffraction grating D 2 Y direction of the light incident from the illumination pupil IL 1 in the first diffraction grating D 1, by illuminating the first diffraction grating D 1 and second diffraction grating D 2 resulting diffracted light is adjusted to return to the first reflecting portion NA 1. Similarly, Y-direction period of the incident angle and the fourth diffraction grating D 4 of the light incident from the illumination pupil IL 2 in the third diffraction grating D 3, lighting third diffraction grating D 3 and the fourth diffraction grating D 4 diffracted light generated by is adjusted back to the second reflection portion NA 2.

各回折格子の周期および照明瞳の入射角を上記のようにすることで、第1モアレ縞Fを生じさせる第1回折光および第2モアレ縞Fを生じさせる第2回折光をそれぞれ異なる検出瞳へ導くことができる。 The angle of incidence of the period and the illumination pupil of the diffraction grating In the manner described above, different second diffracted beam to produce a first diffracted light and second Moire fringes F 2 generating a first Moire fringes F 1 respectively It can be led to the detection pupil.

照明光の波長によっては、照明瞳から各回折格子に照射された光が回折して各反射部に戻る位置がずれることがあるため、回折光を収めるため第1反射部NAおよび第2反射部NAの方が照明瞳ILおよび照明瞳ILの方よりも大きくしてある。照明光として、単色波長や狭帯域波長のみ使用する場合は、同じ位置に戻ってくるため照明瞳と反射部(検出瞳)を同じ大きさにしても良い。また、照明瞳のほうを検出瞳より大きくすると、使用しない光が多くなるため効率(入射した光に対するマークの信号の割合)が低下するが、実施は可能である。 The wavelength of the illumination light, since it is the light which is irradiated on the diffraction grating from the illumination pupil is returned to the reflective portion by the diffraction position shifts, the first reflecting portion NA 1 and the second reflection to accommodate the diffracted light Write parts NA 2 is is made larger than towards the illumination pupil IL 1 and the illumination pupil IL 2. In the case of using only a monochromatic wavelength or a narrow band wavelength as illumination light, the illumination pupil and the reflection portion (detection pupil) may have the same size because they return to the same position. In addition, if the illumination pupil is larger than the detection pupil, the efficiency (the ratio of the signal of the mark to the incident light) decreases because more light is not used, but this is possible.

第1光学系110は、ハーフミラー111を含む。ハーフミラー111の位置に絞りを構成する。絞りを構成する位置は、ハーフミラー111の反射面に限らない。また、ハーフミラー111の代わりに偏光ビームスプリッタを用いてもよい。この場合、照明光と回折光の偏光を90度変える必要があるため、偏光ビームスプリッタと型Mおよび基板Wの間に1/4λ板を構成する必要がある。この構成であれば偏光ビームスプリッタを透過した照明光は、一方向の偏光のみを持った光となる。1/4λ板を透過することで円偏光となり、被検物体に照明される。被検物体から戻ってきた光は1/4λ板を透過することで、照明光とは、90度回転した偏光となる。この光は、偏光ビームスプリッタで反射され、第2光学系へ導光される。ハーフミラーを使用すると照明光で光が1/2、検出光で1/2の合計1/4となるが、偏光ビームスプリッタだと照明時に1/2になるだけなので、光量は有利である。   The first optical system 110 includes a half mirror 111. An aperture is configured at the position of the half mirror 111. The position at which the diaphragm is configured is not limited to the reflection surface of the half mirror 111. Also, instead of the half mirror 111, a polarization beam splitter may be used. In this case, since it is necessary to change the polarization of the illumination light and the diffracted light by 90 degrees, it is necessary to form a 1⁄4λ plate between the polarization beam splitter and the mold M and the substrate W. In this configuration, the illumination light transmitted through the polarization beam splitter is light having only one polarization. By passing through the 1⁄4 λ plate, it becomes circularly polarized light and illuminates the test object. The light returned from the object to be detected is transmitted through the 1⁄4 λ plate, so that the illumination light is polarized 90 degrees. This light is reflected by the polarization beam splitter and guided to the second optical system. When a half mirror is used, the light is 1⁄2 in illumination light and 1⁄2 in detection light, but the light amount is advantageous because it is only 1⁄2 in illumination light when it is a polarization beam splitter.

第2光学系120は、第1モアレ縞Fを発生させる第1回折光および第2モアレ縞Fを発生させる第2回折光のうちいずれか一方を反射させる反射部121および、いずれか他方を透過する透過部122を備える。反射部121および透過部122は、第1光学系110の第1反射部NAおよび第2反射部NAと光学的に共役な位置に配置される。 The second optical system 120, reflective portion 121 for reflecting either one of the second diffracted beam to generate a first diffracted light and second Moire fringes F 2 generating a first Moire fringes F 1 and any other And a transparent portion 122 that transmits light. The reflective portion 121 and the transmissive portion 122 are disposed at positions optically conjugate with the first reflective portion NA 1 and the second reflective portion NA 2 of the first optical system 110.

第2光学系120は、複数のレンズ123および反射部121および透過部122を備えた第1分離部(第1分割部)124および複数のレンズ125を有する。第1光学系110、レンズ150を通過した照明光が各回折格子に照射され、回折光はレンズ150、第1光学系110を経て、第2光学系120に入射する。反射部121および透過部122は、回折格子が形成された面を物体面とする第2光学系120のフーリエ変換面(瞳面)に構成されている。フーリエ変換面であれば、各照明光により発生した回折光が重ならないため分離しやすい。また配置の問題で、フーリエ変換面からずれた位置に構成すると、回折光がぼけて大きくなる。しかし、回折光が重ならなければ、分離は可能である。   The second optical system 120 includes a first separation unit (first division unit) 124 including a plurality of lenses 123, a reflection unit 121, and a transmission unit 122, and a plurality of lenses 125. The illumination light having passed through the first optical system 110 and the lens 150 is irradiated to each diffraction grating, and the diffracted light passes through the lens 150 and the first optical system 110 and is incident on the second optical system 120. The reflecting unit 121 and the transmitting unit 122 are configured on the Fourier transform surface (pupil surface) of the second optical system 120 in which the surface on which the diffraction grating is formed is an object surface. In the case of the Fourier transform plane, the diffracted lights generated by the respective illumination lights do not overlap with each other, so that they are easily separated. Further, due to the problem of arrangement, when it is arranged at a position deviated from the Fourier transform plane, the diffracted light is blurred and becomes large. However, if diffracted light does not overlap, separation is possible.

透過部122は、第1反射部NAと共役な第1領域NA´を有し、反射部121は、第2反射部NAと共役な第2領域NA´を有する。第1領域NA´には、第1モアレ縞Fを発生させる第1回折光が入射し、第2領域NA´には、第2モアレ縞Fを発生させる第2回折光が入射する。その後、第1回折光は、第1撮像素子130の第1撮像面131に第1モアレ縞Fを結像し、第2回折光は、第2撮像素子140の第2撮像面141に第2モアレ縞Fを結像する。 The transmission part 122 has a first area NA 1 ′ conjugate to the first reflection part NA 1, and the reflection part 121 has a second area NA 2 ′ conjugate to the second reflection part NA 2 . ', The first diffracted beam is incident to generate a first Moire fringes F 1, the second region NA 2' first area NA 1, the second diffracted light for generating a second moire fringes F 2 are incident Do. Thereafter, the first diffracted light, the first moire fringes F 1 forms an image on the first imaging plane 131 of the first image sensor 130, the second diffraction light, first to the second imaging plane 141 of the second image sensor 140 2 moire fringes F 2 to form an image.

以上のように、本実施形態の位置検出装置100は、相対位置ずれを計測する方向ごとに、回折光を分割することができる。図5の(A)および(B)は、回折光を計測方向ごとに分割することによる相対位置の検出精度に対する効果を示す図である。   As described above, the position detection apparatus 100 according to the present embodiment can divide diffracted light in each direction in which relative positional deviation is measured. (A) and (B) of FIG. 5 is a figure which shows the effect with respect to the detection precision of the relative position by dividing | segmenting diffracted light for every measurement direction.

図5の(A)は、光学シミュレーションで求めた回折光を分割しない場合に得られるモアレ縞の光強度分布を示す。横軸は計測方向、縦軸は光強度である。回折光を分割しない場合、回折格子に対し、計測に不要な光が入射しうる。例えば、X方向の相対位置ずれの検出のために用いる光は、X方向と直交する軸に配置された照明瞳ILからの光である。照明瞳ILからの光は、第1回折格子Dおよび第2回折格子Dの端部で散乱などを起こす。 (A) of FIG. 5 shows the light intensity distribution of moire fringes obtained when the diffracted light determined by the optical simulation is not divided. The horizontal axis is the measurement direction, and the vertical axis is the light intensity. When the diffracted light is not divided, light unnecessary for measurement may be incident on the diffraction grating. For example, light used for detection in the X direction of the relative displacement is a light from the illumination pupil IL 1 disposed axis orthogonal to the X direction. Light from the illumination pupil IL 2 may cause scattering and the first end portion of the diffraction grating D 1 and second diffraction grating D 2.

図5の(A)において、丸で囲った部分のピーク値は、端部における散乱の影響を示す。これは、連続的な格子条件が端部で途切れることによって発生すると考えられる。このピーク値が計測に用いるモアレ信号に混入することで、計測値に誤差を発生させる要因となる。   In (A) of FIG. 5, the peak value of the encircled part shows the influence of scattering at the end. It is believed that this occurs as the continuous grid condition breaks off at the end. By mixing the peak value with the moiré signal used for measurement, it causes an error in the measurement value.

一方、図5の(B)は、光学シミュレーションで求めた回折光を分割する場合に得られるモアレ縞の光強度分布を示す。図5の(B)に示す通り、端部からの光を示す丸で囲ったピーク値が図5の(A)と比べて低くなっていることがわかる。また、モアレ信号に近しい部分に見られるサブピークも低減している様子が見られる。したがって、本実施形態の位置検出装置100により、モアレ信号に対するノイズが減り、S/N比がよくなるため、誤差が減り、従来に比べて相対位置の検出精度が向上しているといえる。
〔第2実施形態〕
On the other hand, (B) of FIG. 5 shows the light intensity distribution of moire fringes obtained when dividing the diffracted light obtained by the optical simulation. As shown to (B) of FIG. 5, it turns out that the circled peak value which shows the light from an edge part is low compared with (A) of FIG. In addition, it can be seen that the subpeaks seen in the portion close to the moiré signal are also reduced. Therefore, the position detection apparatus 100 according to the present embodiment reduces noise to the moiré signal and improves the S / N ratio, thereby reducing the error and improving the detection accuracy of the relative position as compared to the conventional case.
Second Embodiment

本実施形態は、照明瞳を一つとした場合である。図6は、本実施形態に係る位置検出装置200の構成を示す概略図である。第1実施形態と同様の構成には、同じ符号を付して説明は省略する。位置検出装置200は、第1光学系210および第2光学系220を有する。   In the present embodiment, the number of illumination pupils is one. FIG. 6 is a schematic view showing the configuration of the position detection device 200 according to the present embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The position detection device 200 has a first optical system 210 and a second optical system 220.

図7は、第1光学系210の瞳面S2を示す図である。第1光学系210は、第1モアレ縞Fを生じさせる第1回折光を反射させる第1反射部NAおよびNA、第2モアレ縞を生じさせる第2回折光を反射させる第2反射部NAおよびNAを備える。 FIG. 7 is a view showing a pupil plane S2 of the first optical system 210. As shown in FIG. The first optical system 210 includes a first reflecting portion reflecting the first diffracted beam to produce a first Moire fringes F 1 NA 1 and NA 3, second reflector for reflecting the second diffracted beam to produce a second moire fringes Parts NA 2 and NA 4 are provided.

瞳面S2の中心に対して、第1反射部NAは、第1反射部NAと対称の位置に配置され、第4反射部NAは、第2反射部NAと対称の位置に配置される。第1実施形態と比べ、各計測方向に対応する検出瞳が増えているため、より多くの回折光を取り込むことができる。また、照明瞳ILは、瞳面S2の中心に一つ配置され、第1実施形態よりも構成をシンプルにしうる。 With respect to the center of the pupil plane S2, the first reflecting portion NA 3 is disposed at a position of the first reflecting portion NA 1 symmetrical, fourth reflection portion NA 4 is of the second reflecting portion NA 2 and symmetrical position Be placed. Compared to the first embodiment, since the detection pupils corresponding to each measurement direction are increased, more diffracted light can be taken. In addition, one illumination pupil IL is disposed at the center of the pupil plane S2, and the configuration can be simplified as compared with the first embodiment.

第2光学系220は、第1モアレ縞Fを発生させる第1回折光および第2モアレ縞Fを発生させる第2回折光のうちいずれか一方を反射させる反射部221および、いずれか他方を透過する透過部222を備えた第2分離部(第2分割部)224を有する。反射部221および透過部222は、第1光学系210の第1反射部NA〜NAと光学的に共役な位置に配置される。 The second optical system 220 is reflected portion 221 is reflected either one of the second diffracted beam to generate a first diffracted light and second Moire fringes F 2 generating a first Moire fringes F 1 and any other And a second separation part (second division part) 224 provided with a transmission part 222 that transmits light. The reflective portion 221 and the transmissive portion 222 are disposed at positions optically conjugate with the first reflective portions NA 1 to NA 4 of the first optical system 210.

透過部222は、第1反射部NAと共役な第1領域NA´および第3反射部NAと共役な第3領域NA´を有し、反射部121は、第2反射部NAと共役な第2領域NA´および第4反射部NAと共役な第4領域NA´を有する。第1領域NA´および第3領域NA´には、第1モアレ縞Fを発生させる第1回折光が入射し、第2領域NA´および第4領域NA´には、第2モアレ縞Fを発生させる第2回折光が入射する。 The transmission part 222 has a first area NA 1 ′ conjugate to the first reflection part NA 1 and a third area NA 3 ′ conjugate to the third reflection part NA 3, and the reflection part 121 has a second reflection part NA A second area NA 2 ′ conjugate to 2 and a fourth area NA 4 ′ conjugate to the fourth reflection part NA 4 are provided. The first area NA 1 'and the third region NA 3', the first diffracted beam is incident to generate a first Moire fringes F 1, the second region NA 2 'and the fourth region NA 3', the second diffracted light for generating the 2 moire fringes F 2 are incident.

その後、第1回折光は、第1撮像素子130の第1撮像面131に入射し、第1モアレ縞Fが結像され、第2回折光は、第2撮像素子140の第2撮像面141に入射し、第2モアレ縞Fが結像される。本実施形態によっても、第1実施形態と同様の効果を得られる。
〔第3実施形態〕
Thereafter, the first diffracted light is incident on the first imaging plane 131 of the first image sensor 130, the first moire fringe F 1 is imaged, the second diffracted light, the second imaging plane of the second image sensor 140 It enters the 141, second moire fringes F 2 is imaged. The same effect as that of the first embodiment can be obtained by this embodiment as well.
Third Embodiment

本実施形態は、第2実施形態において、撮像素子を1つとした場合である。図8は、本実施形態に係る位置検出装置300の構成を示す概略図である。第1実施形態または第2実施形態と同様の構成には、同じ符号を付して説明は省略する。位置検出装置300は、第2光学系320および撮像素子330を有する。   The present embodiment is a case where one imaging device is used in the second embodiment. FIG. 8 is a schematic view showing the configuration of a position detection apparatus 300 according to the present embodiment. The same components as those in the first embodiment or the second embodiment are denoted by the same reference numerals and description thereof is omitted. The position detection device 300 has a second optical system 320 and an imaging device 330.

第2光学系320は、第1反射面Rを備えた第1光学素子321、第2反射面Rを備えた第2光学素子322、第3分離部(第3分割部)323および複数のレンズ324を有する。第1光学素子321および第2光学素子322は、第2光学系320における基板Wの面を物体面とした際の像面に相当する場所に配置されている。これにより、モアレ縞が各反射面に結像される。 The second optical system 320, the first optical element 321 having a first reflecting surface R 1, the second optical element 322 having a second reflecting surface R 2, third separation unit (third divided portion) 323 and a plurality The lens 324 of The first optical element 321 and the second optical element 322 are disposed at a position corresponding to an image plane when the surface of the substrate W in the second optical system 320 is an object plane. As a result, moire fringes are imaged on each reflection surface.

第3分離部323は、反射部325および透過部326を備える。反射部325および透過部326は、回折格子が形成された面を物体面とする第2光学系320のフーリエ変換面(瞳面)に構成されている。すなわち、反射部325および透過部326は、第1光学系110および第2分離部224と光学的に共役である。   The third separation unit 323 includes a reflection unit 325 and a transmission unit 326. The reflecting unit 325 and the transmitting unit 326 are configured on the Fourier transform surface (pupil surface) of the second optical system 320 in which the surface on which the diffraction grating is formed is an object surface. That is, the reflecting unit 325 and the transmitting unit 326 are optically conjugate to the first optical system 110 and the second separating unit 224.

透過部326は、第1反射部NAおよび第1領域NA´と共役な第1領域NA´´および第3反射部NAおよび第3領域NA´と共役な第3領域NA´´を有する。反射部325は、第2反射部NAおよび第2領域NA´と共役な第2領域NA´´および第4反射部NAおよび第4領域NA´と共役な第4領域NA´´を有する。第1モアレ縞Fを発生させる第1回折光は、第1反射面Rで反射され、透過部326を透過し、撮像素子330の第1撮像領域331に入射する。第2モアレ縞Fを発生させる第2回折光は、第2反射面Rで反射され、反射部325で反射され、撮像素子330の第2撮像領域332に入射する。本実施形態では、ひとつの撮像素子に第1モアレ縞Fおよび第2モアレ縞Fが結像される。本実施形態によっても、第1実施形態および第2実施形態と同様の効果を得られる。 Transmitting portion 326, the first reflecting portion NA 1 and the first region NA 1 'conjugate with the first region NA 1'' and third reflection portion NA 3 and the third region NA 3' conjugate with the third region NA 3 Have a '. Reflecting portion 325, the second reflecting portion NA 2 and the second region NA 2 'conjugate with the second region NA 2'' and fourth reflecting portion NA 4 and the fourth region NA 4' conjugate with the fourth region NA 4 Have a '. The first diffracted light that generates the first moiré fringes F 1 is reflected by the first reflection surface R 1 , passes through the transmission portion 326, and is incident on the first imaging region 331 of the imaging element 330. The second diffracted light that generates the second moiré fringes F 2 is reflected by the second reflection surface R 2 , is reflected by the reflection portion 325, and is incident on the second imaging region 332 of the imaging element 330. In this embodiment, the first moire fringe F 1 and second moire fringes F 2 is imaged in one imaging element. The same effects as those of the first embodiment and the second embodiment can be obtained also by the present embodiment.

(物品の製造方法)
インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
(Product manufacturing method)
The pattern of the cured product formed using the imprint apparatus is used permanently on at least a part of various articles or temporarily for manufacturing various articles. The article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold. Examples of the electric circuit element include volatile or nonvolatile semiconductor memories such as DRAM, SRAM, flash memory and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA. The mold may, for example, be a mold for imprinting.

硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。   The pattern of the cured product is used as it is as a component member of at least a part of the article or temporarily used as a resist mask. After etching, ion implantation, or the like is performed in the substrate processing step, the resist mask is removed.

次に、物品の具体的な製造方法について説明する。図9(a)に示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。   Next, a specific method of manufacturing an article will be described. As shown in FIG. 9 (a), a substrate 1z such as a silicon wafer on which a workpiece 2z such as an insulator is formed is prepared, and subsequently, the surface of the workpiece 2z is exposed by an inkjet method or the like. Apply the printing material 3z. Here, a state in which a plurality of droplet-shaped imprint materials 3z are applied onto a substrate is shown.

図9(b)に示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図9(c)に示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを透過させて照射すると、インプリント材3zは硬化する。   As shown in FIG. 9B, the mold 4z for imprint is faced with the side on which the concavo-convex pattern is formed facing the imprint material 3z on the substrate. As shown in FIG. 9C, the substrate 1z to which the imprint material 3z is applied is brought into contact with the mold 4z, and pressure is applied. The imprint material 3z is filled in the gap between the mold 4z and the workpiece 2z. In this state, when light is transmitted through the mold 4z as energy for curing, the imprint material 3z is cured.

図9(d)に示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凹部が硬化物の凸部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。   As shown in FIG. 9D, after the imprint material 3z is cured, when the mold 4z and the substrate 1z are separated, a pattern of a cured product of the imprint material 3z is formed on the substrate 1z. In the pattern of the cured product, the concave portions of the mold correspond to the convex portions of the cured product, and the concave portions of the mold correspond to the convex portions of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will be done.

図9(e)に示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図9(f)に示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。   As shown in FIG. 9 (e), when etching is performed using the pattern of the cured product as an etching resistant mask, the portion of the surface of the workpiece 2z which has no cured material or remains thin is removed, and the groove 5z is removed. Become. As shown in FIG. 9F, when the pattern of the cured product is removed, an article having grooves 5z formed on the surface of the workpiece 2z can be obtained. Although the pattern of the cured product is removed here, it may be used, for example, as a film for interlayer insulation included in a semiconductor element or the like, that is, as a component of an article without removing it even after processing.

(その他の実施形態)
以上、本発明の実施の形態を説明してきたが、本発明はこれらの実施の形態に限定されず、その要旨の範囲内において様々な変更が可能である。
(Other embodiments)
The embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and various modifications can be made within the scope of the present invention.

100 位置検出装置
110 第1光学系
120 第2光学系
130 第1撮像素子
140 第2撮像素子
100 Position Detection Device 110 First Optical System 120 Second Optical System 130 First Image Sensor 140 Second Image Sensor

Claims (12)

互いに周期の異なる複数の回折格子で回折された回折光により生じるモアレ縞が結像される撮像面を備えた撮像素子を有する位置検出装置であって、
前記回折光を前記撮像面に結像する結像光学系を有し、
前記結像光学系の瞳面において、第1方向に周期をもつ第1モアレ縞を生じさせる第1回折光と、前記第1方向と交差する第2方向に周期をもつ第2モアレ縞を生じさせる第2回折光と、を分割する分割部を有する、
ことを特徴とする位置検出装置。
A position detection device having an imaging element provided with an imaging surface on which moire fringes generated by diffracted light diffracted by a plurality of diffraction gratings having mutually different periods are formed, comprising:
An imaging optical system for imaging the diffracted light on the imaging surface;
In the pupil plane of the imaging optical system, first diffracted light causing first moiré fringes having a period in a first direction and second moiré fringes having a period in a second direction intersecting the first direction are produced. And a division unit that divides the second diffracted light to
A position detection device characterized by
前記分割部は、前記第1回折光および前記第2回折光のうちいずれか一方を反射させる反射部および、いずれか他方を透過する透過部を備える、
ことを特徴とする請求項1に記載の位置検出装置。
The dividing unit includes a reflecting unit that reflects either one of the first diffracted light and the second diffracted light, and a transmitting unit that transmits the other.
The position detection device according to claim 1,
前記複数の回折格子が設けられた物体に光を照明する照明光学系をさらに有し、
前記分割部は、前記照明光学系の瞳面と光学的に共役な位置に配置される、
ことを特徴とする請求項1または2に記載の位置検出装置。
It further comprises an illumination optical system that illuminates light on the object provided with the plurality of diffraction gratings,
The dividing unit is disposed at a position optically conjugate with a pupil plane of the illumination optical system.
The position detection device according to claim 1 or 2, characterized in that:
前記照明光学系は、その瞳面の中心に前記物体に照明される前記光の光強度分布を有する照明瞳を有することを特徴とする請求項3に記載の位置検出装置。   The position detection apparatus according to claim 3, wherein the illumination optical system has an illumination pupil having a light intensity distribution of the light to be illuminated on the object at the center of the pupil plane. 前記照明光学系は、瞳面の中心を通り前記第1方向に沿う第1軸上および、瞳面の中心を通り前記第2方向に沿う第2軸上のそれぞれに前記光の光強度分布を有する照明瞳を有することを特徴とする請求項3に記載の位置検出装置。   The illumination optical system has a light intensity distribution of the light on a first axis passing through the center of the pupil plane along the first direction and on a second axis passing through the center of the pupil plane along the second direction. The position detection apparatus according to claim 3, comprising an illumination pupil. 前記照明光学系は、前記第1軸上に前記中心に対して互いに対称な位置に前記照明瞳を有し、前記第2軸上に前記中心に対して互いに対称な位置に前記照明瞳を有することを特徴とする請求項5に記載の位置検出装置。   The illumination optical system has the illumination pupil at mutually symmetrical positions with respect to the center on the first axis, and has the illumination pupil at mutually symmetrical positions with respect to the center on the second axis. The position detection device according to claim 5, 前記撮像面は、前記第1モアレ縞が結像される第1撮像領域および、前記第2モアレ縞が結像される第2撮像領域を有することを特徴とする請求項1乃至6のいずれか1項に記載の位置検出装置。   7. The image pickup surface according to claim 1, wherein the image pickup surface has a first image pickup area on which the first moiré fringes are formed, and a second image pickup area on which the second moiré fringes are formed. The position detection device according to item 1. 前記第1モアレ縞が結像される前記撮像面を有する第1撮像素子および、前記第2モアレ縞が結像される前記撮像面を有する第2撮像素子を有することを特徴とする請求項1乃至6のいずれか1項に記載の位置検出装置。   The imaging device according to claim 1, further comprising: a first imaging device having the imaging surface on which the first moiré fringes are imaged, and a second imaging device having the imaging surface on which the second moiré fringes are imaged. The position detection device according to any one of items 1 to 6. 前記第1方向と前記第2方向とは、互いに直交することを特徴とする請求項1乃至8のいずれか1項に記載の位置検出装置。   The position detection device according to any one of claims 1 to 8, wherein the first direction and the second direction are orthogonal to each other. 前記第1モアレ縞は、前記第1方向に第1周期をもつ第1回折格子および前記第1方向に前記第1周期と異なる周期をもち、かつ前記第2方向に周期をもつ第2回折格子により回折された回折光により生じ、
前記第2モアレ縞は、前記第2方向に第2周期をもつ第3回折格子および前記第2方向に前記第2周期と異なる周期をもち、かつ前記第1方向に周期をもつ第4回折格子により回折された回折光により生じ、
前記第2回折格子の前記第2方向の前記周期は、前記第3回折格子の前記第2周期と異なり、前記第4回折格子の前記第1方向の前記周期は、前記第1回折格子の前記第1周期と異なる、
ことを特徴とする請求項9に記載の位置検出装置。
The first moiré fringe has a first diffraction grating having a first period in the first direction, and a second diffraction grating having a period different from the first period in the first direction and having a period in the second direction. Produced by diffracted light diffracted by
The second moiré fringe has a third diffraction grating having a second period in the second direction, and a fourth diffraction grating having a period different from the second period in the second direction and having a period in the first direction. Produced by diffracted light diffracted by
The period in the second direction of the second diffraction grating is different from the second period of the third diffraction grating, and the period in the first direction of the fourth diffraction grating is different from the period of the first diffraction grating. Different from the first period,
The position detection device according to claim 9, characterized in that:
型を用いて基板の上にインプリント材のパターンを形成するインプリント装置であって、
型および基板のいずれか一方に設けられた前記第1回折格子および前記第3回折格子と、いずれか他方に設けられた前記第2回折格子および前記第4回折格子で回折された前記第1モアレ縞および前記第2モアレ縞に基づいて前記型と前記基板との前記第1方向および前記第2方向の相対位置のずれ量を求める請求項10に記載の位置検出装置を備える、
ことを特徴とするインプリント装置。
An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold,
And the third diffraction grating provided on one of the mold and the substrate, and the first moiré diffracted by the second diffraction grating and the fourth diffraction grating provided on the other. 11. The position detection device according to claim 10, wherein the amount of deviation of the relative position between the mold and the substrate in the first direction and the second direction is determined based on fringes and the second moiré fringes.
An imprint apparatus characterized in that
請求項11に記載のインプリント装置を用いてパターン形成を基板上に行う工程と、
前記工程で前記パターン形成を行われた前記基板を加工する工程と、を含み、
前記加工された基板から物品を製造する、
ことを特徴とする物品製造方法。
Performing pattern formation on a substrate using the imprint apparatus according to claim 11;
Processing the substrate on which the pattern formation has been performed in the step;
Manufacturing an article from the processed substrate,
An article manufacturing method characterized by
JP2017199048A 2017-10-13 2017-10-13 Position detection device, imprint device, and article manufacturing method Active JP7057094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017199048A JP7057094B2 (en) 2017-10-13 2017-10-13 Position detection device, imprint device, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199048A JP7057094B2 (en) 2017-10-13 2017-10-13 Position detection device, imprint device, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2019075425A true JP2019075425A (en) 2019-05-16
JP7057094B2 JP7057094B2 (en) 2022-04-19

Family

ID=66544267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199048A Active JP7057094B2 (en) 2017-10-13 2017-10-13 Position detection device, imprint device, and article manufacturing method

Country Status (1)

Country Link
JP (1) JP7057094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020077B2 (en) * 2005-07-01 2012-09-05 株式会社日立メディコ Power supply apparatus and magnetic resonance imaging apparatus using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343292A (en) * 1990-10-19 1994-08-30 University Of New Mexico Method and apparatus for alignment of submicron lithographic features
JPH10103917A (en) * 1996-09-27 1998-04-24 Nikon Corp Position measuring apparatus
JPH11135406A (en) * 1997-10-28 1999-05-21 Canon Inc Projection aligner
JP2013030757A (en) * 2011-06-21 2013-02-07 Canon Inc Position detector, imprint device and position detection method
JP2013191777A (en) * 2012-03-14 2013-09-26 Canon Inc Imprint device, mold, imprint method, and method of manufacturing article
JP2017041608A (en) * 2015-08-21 2017-02-23 キヤノン株式会社 Detection device, imprinting device, manufacturing method for article and illumination optical system
JP6138189B2 (en) * 2015-04-08 2017-05-31 キヤノン株式会社 Imprint apparatus and article manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343292A (en) * 1990-10-19 1994-08-30 University Of New Mexico Method and apparatus for alignment of submicron lithographic features
JPH10103917A (en) * 1996-09-27 1998-04-24 Nikon Corp Position measuring apparatus
JPH11135406A (en) * 1997-10-28 1999-05-21 Canon Inc Projection aligner
JP2013030757A (en) * 2011-06-21 2013-02-07 Canon Inc Position detector, imprint device and position detection method
JP2013191777A (en) * 2012-03-14 2013-09-26 Canon Inc Imprint device, mold, imprint method, and method of manufacturing article
JP6138189B2 (en) * 2015-04-08 2017-05-31 キヤノン株式会社 Imprint apparatus and article manufacturing method
JP2017041608A (en) * 2015-08-21 2017-02-23 キヤノン株式会社 Detection device, imprinting device, manufacturing method for article and illumination optical system

Also Published As

Publication number Publication date
JP7057094B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
TWI654422B (en) Measuring device, imprinting device, method of manufacturing product, method for determining light amount, and method for adjusting light amount
JP6712349B2 (en) Alignment system
JP6341883B2 (en) Position detection apparatus, position detection method, imprint apparatus, and article manufacturing method
JP4948213B2 (en) Displacement measuring system and lithographic apparatus
TWI557513B (en) Overlay measurement apparatus, and lithographic apparatus and device manufacturing method using such overlay measurement apparatus
TWI636280B (en) Objective lens system
TWI651762B (en) Alignment device, alignment method, photo etching device, and article manufacturing method
JP6632252B2 (en) Detecting device, imprint device, article manufacturing method, and illumination optical system
JP5721858B2 (en) System and method for manufacturing nanostructures over a large area
KR100730245B1 (en) Transmission shear grating in checkerboard configuration for euv wavefront sensor
JP5943717B2 (en) Position detection system, imprint apparatus, device manufacturing method, and position detection method
JP6162137B2 (en) Low coherence interferometry using an encoder system
JP2015021904A5 (en)
KR20090027175A (en) Measurement apparatus, exposure apparatus, and device fabrication method
US11537056B2 (en) Measurement apparatus, lithography apparatus, and method of manufacturing article
JP2019212672A (en) Detector, imprint device, flattening apparatus, detection method and article manufacturing method
JP2022502689A (en) Equipment and methods for measuring the position of marks
JP7057094B2 (en) Position detection device, imprint device, and article manufacturing method
JP6817468B2 (en) Sensors, lithography equipment, and device manufacturing methods
JP2017092294A (en) Imprinting device, mold, and manufacturing method for article
JP2019004143A (en) Detection device, lithography device, and article manufacturing method
KR102605547B1 (en) Imprint apparatus and method of manufacturing article
JP7030569B2 (en) Position detection device, position detection method, imprint device and manufacturing method of articles
JP6701263B2 (en) Position detection device, position detection method, imprint device, and article manufacturing method
JP2024014030A (en) Detection device, lithography device, and article manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R151 Written notification of patent or utility model registration

Ref document number: 7057094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151