JP2019071503A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2019071503A
JP2019071503A JP2019031862A JP2019031862A JP2019071503A JP 2019071503 A JP2019071503 A JP 2019071503A JP 2019031862 A JP2019031862 A JP 2019031862A JP 2019031862 A JP2019031862 A JP 2019031862A JP 2019071503 A JP2019071503 A JP 2019071503A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
protons
phosphorus
semiconductor device
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031862A
Other languages
Japanese (ja)
Other versions
JP6702467B2 (en
Inventor
鈴木 健司
Kenji Suzuki
健司 鈴木
敦司 楢崎
Atsushi Narasaki
敦司 楢崎
龍 上馬場
Ryu Kamibaba
龍 上馬場
祐介 深田
Yusuke Fukada
祐介 深田
中村 勝光
Katsumitsu Nakamura
勝光 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019031862A priority Critical patent/JP6702467B2/en
Publication of JP2019071503A publication Critical patent/JP2019071503A/en
Application granted granted Critical
Publication of JP6702467B2 publication Critical patent/JP6702467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a semiconductor device capable of reducing a leak current and suppressing oscillation at turn-off or recovery.SOLUTION: A semiconductor device comprises a first n-type buffer layer containing a proton which has a plurality of peak concentrations and in which an amount of injection becomes low as the depth from a rear surface of a semiconductor substrate becomes deeper, and a second n-type buffer layer containing phosphorus. A position of a peak concentration of the phosphorous is a position deeper than 1 μm and shallower than 6 μm from the rear surface of the semiconductor substrate. Three or more of peak concentrations of the proton exist at depths of 6 μm or higher and 30 μm or lower from the rear surface of the semiconductor substrate.SELECTED DRAWING: Figure 1

Description

本発明は、ダイオード又は絶縁ゲート型バイポーラトランジスタ(IGBT)などの半導体装置及びその製造方法に関し、特にリーク電流を減らし、ターンオフ時やリカバリ時での発振を抑制でき、一般的な半導体工場でも容易にプロトン注入でn型バッファ層を形成することができる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device such as a diode or an insulated gate bipolar transistor (IGBT) and a method of manufacturing the same, and in particular, leakage current can be reduced, oscillation at turn-off or recovery can be suppressed, and easily in a general semiconductor factory. The present invention relates to a semiconductor device capable of forming an n-type buffer layer by proton injection and a method of manufacturing the same.

省エネの観点から、汎用インバータ・ACサーボ等の分野で三相モータの可変速制御を行なうためのパワーモジュール等にIGBTやダイオードが使用されている。インバータ損失を減らすために、IGBTやダイオードにはスイッチング損失とオン電圧が低いデバイスが求められている。   From the viewpoint of energy saving, IGBTs and diodes are used in power modules and the like for performing variable speed control of a three-phase motor in the field of general-purpose inverters, AC servos, and the like. In order to reduce inverter loss, IGBTs and diodes are required to have devices with low switching loss and on-state voltage.

オン電圧の大半は耐圧保持に必要な厚いn型ベース層の抵抗であり、その抵抗を低減させるためにはウエハを薄くすることが有効である。しかし、ウエハを薄くした場合、コレクタに電圧が印加されると空乏層が裏面に届き、耐圧の低下やリーク電流の増大が発生する。このため、一般的に基板裏面に、基板濃度よりも濃くて、浅いn型バッファ層をイオン注入機で形成している。 Most of the on-state voltage is the resistance of the thick n-type base layer required to hold the breakdown voltage, and to reduce the resistance, it is effective to make the wafer thinner. However, when the wafer is thinned, when a voltage is applied to the collector, the depletion layer reaches the back surface, causing a decrease in breakdown voltage and an increase in leakage current. Therefore, in general, a shallow n + -type buffer layer, which is denser than the substrate concentration, is formed on the rear surface of the substrate by an ion implantation machine.

しかし、IGBTの製造技術の技術革新に伴い、ウエハ厚みが耐圧を確保できる厚み付近まで薄くなってきたことから、浅いn型バッファ層ではIGBTやダイオードがスイッチング動作する時に、電源電圧+L*di/dtで決まるサージ電圧がコレクタ−エミッタ間やカソード−アノード間に印加され、空乏層が裏面側に到達すると、キャリアが枯渇し、電圧及び電流の発振が発生してしまう。発振が起きると、放射ノイズが発生し、周辺の電子機器に悪影響を及ぼしてしまう。 However, with the technological innovation in IGBT manufacturing technology, the wafer thickness has been reduced to near the thickness that can ensure breakdown voltage, so in the shallow n + -type buffer layer, when IGBTs and diodes perform switching operation, power supply voltage + L * di When a surge voltage determined by / dt is applied between the collector and the emitter or between the cathode and the anode, and the depletion layer reaches the back side, carriers are depleted, and voltage and current oscillation occur. When oscillation occurs, radiation noise is generated, which adversely affects surrounding electronic devices.

一方、基板裏面に濃度が低く、30μm程度の深いn型バッファ層を形成することで、スイッチング時にコレクタ又はカソードに大きな電圧が印加されても、空乏層を緩やかに止めることができる。その結果、裏面側のキャリアの枯渇を防ぎ、滞留させることで、急峻な電圧の上昇を防ぐことができる。 On the other hand, by forming a deep n + -type buffer layer having a low concentration of about 30 μm on the back surface of the substrate, the depletion layer can be gently stopped even if a large voltage is applied to the collector or cathode at the time of switching. As a result, it is possible to prevent the depletion of carriers on the back side and to prevent a sharp rise in voltage by retaining the carrier.

図23は、デバイスシミュレーションで耐圧1200VクラスのIGBTで実施したL負荷スイッチングのターンオフ波形を示す図である。スイッチング条件は、リンで形成されたn型バッファ層の深さが2μmと30μm、Vce=900V、Ic=150Aである。深さ2μmでは波形が発振しているが、30μmでは発振は起こっていない。 FIG. 23 is a diagram showing a turn-off waveform of L load switching implemented by an IGBT with a withstand voltage of 1200 V in device simulation. As switching conditions, the depth of the n + -type buffer layer formed of phosphorus is 2 μm and 30 μm, Vce = 900 V, and Ic = 150 A. The waveform oscillates at a depth of 2 μm, but no oscillation occurs at 30 μm.

30μm程度の深いn型バッファ層をリンの拡散で作ると、1100℃のような一般的な熱処理温度では24時間以上掛かり、量産性が低い。他にはサイクロトロンやバンデグラフなどの加速器を用いる方法がある(例えば、特許文献1参照)。例えば8MeVの加速電圧でシリコン基板にプロトンを照射した場合、飛程は約480μmで、半値幅は約20μmとなる。飛程の位置を調整するために、直接シリコン基板に打ち込むのではなく、アブソーバ越しに打ち込むことで、照射エネルギーを減速させ、シリコンの表面付近にブロードなプロトンのピークを作ることができる。その後350〜450℃で1〜5時間の熱処理を実施することで、プロトンが活性化しn型領域を形成することができる。なお、プロトンの活性化率は注入条件や熱処理条件にもよるが、1%程度である。 When a deep n + -type buffer layer of about 30 μm is formed by diffusion of phosphorus, it takes 24 hours or more at a general heat treatment temperature such as 1100 ° C., and mass productivity is low. Another method is to use an accelerator such as a cyclotron or a van degraph (see, for example, Patent Document 1). For example, when the silicon substrate is irradiated with protons at an acceleration voltage of 8 MeV, the range is about 480 μm and the half width is about 20 μm. In order to adjust the position of the range, irradiation energy can be decelerated to generate a broad proton peak near the surface of silicon by driving it through an absorber rather than directly into a silicon substrate. Thereafter, heat treatment is performed at 350 to 450 ° C. for 1 to 5 hours, whereby protons can be activated to form an n-type region. The rate of activation of protons is about 1% depending on the implantation conditions and heat treatment conditions.

特開2013−138172号公報JP, 2013-138172, A

プロトンがn型にドナー化するメカニズムは、注入された水素原子、注入時に形成された結晶欠陥、基板に残留している酸素原子の複合的な要因で決まり、シリコン基板の形成方法、固溶している酸素濃度、プロトン注入条件などで活性化率が変動する。プロトン注入で形成されたn型バッファ層の濃度が変動すると、リーク電流やオン電圧のばらつき増大、短絡耐量の悪化などが生じる。 The mechanism by which protons become donors is determined by the combined factor of the implanted hydrogen atoms, the crystal defects formed at the time of implantation, and the oxygen atoms remaining in the substrate, and the method of forming the silicon substrate, the solid solution The activation rate fluctuates depending on the oxygen concentration and proton injection conditions. When the concentration of the n + -type buffer layer formed by the proton injection fluctuates, the leak current, the variation of the on-state voltage increase, the deterioration of the short circuit resistance, etc. occur.

また、IGBTやダイオードに関して、深さが30μm程度のブロードな裏面n型バッファ層を作製するためには、8MeV程度の高い加速電圧で半値幅を大きくして、プロトンを注入する必要がある。これに対し、従来はサイクロトロンやバンデグラフなどの加速器が用いられていた。しかし、これらの加速器本体は放射線の問題で、1〜4m厚さのコンクリート遮蔽体で囲む必要があり、通常の半導体工場内では容易に使用することはできない。 In addition, in order to manufacture a broad backside n + -type buffer layer with a depth of about 30 μm for IGBTs and diodes, it is necessary to inject protons by increasing the half width at a high acceleration voltage of about 8 MeV. On the other hand, conventionally, accelerators such as cyclotrons and van degraphs have been used. However, these accelerator bodies are radiation problems and need to be surrounded by a 1 to 4 m thick concrete shield and can not be easily used in a typical semiconductor factory.

本発明は、上述のような課題を解決するためになされたもので、その目的はリーク電流を減らし、ターンオフ時やリカバリ時での発振を抑制でき、一般的な半導体工場でも容易にプロトン注入でn型バッファ層を形成することができる半導体装置及びその製造方法を得るものである。   The present invention has been made to solve the above-mentioned problems, and its object is to reduce leakage current, to suppress oscillation at turn-off or at recovery time, and to facilitate proton injection even in a general semiconductor factory. A semiconductor device capable of forming an n-type buffer layer and a method of manufacturing the same.

本発明に係る半導体装置は、半導体基板と、半導体基板の表面に形成されたp型層と、半導体基板の裏面に形成された第1及び第2のn型バッファ層とを備えた半導体装置であって、第1のn型バッファ層は、半導体基板の裏面からの深さが異なり、半導体基板の裏面からの深さが深いほど注入量が低い複数のピーク濃度を有するプロトンを含み、第2のn型バッファ層はリンを含み、リンのピーク濃度の位置は半導体基板の裏面から1μmより深く6μmより浅い位置であって、プロトンの複数のピーク濃度は、半導体基板の裏面から6μm以上30μm以下の深さにおいて3つ以上存在することを特徴とする。   A semiconductor device according to the present invention is a semiconductor device provided with a semiconductor substrate, a p-type layer formed on the surface of the semiconductor substrate, and first and second n-type buffer layers formed on the back surface of the semiconductor substrate. The first n-type buffer layer is different in depth from the back surface of the semiconductor substrate, and includes protons having a plurality of peak concentrations with a lower dose as the depth from the back surface of the semiconductor substrate is deeper; The n-type buffer layer contains phosphorus, and the position of the peak concentration of phosphorus is a position deeper than 1 .mu.m and shallower than 6 .mu.m from the back surface of the semiconductor substrate, and plural peak concentrations of protons are 6 .mu.m or more and 30 .mu.m or less from the back surface of the semiconductor substrate. 3 or more at the depth of

本発明では、プロトン注入で形成された低濃度で拡散深さが深い第1のn型バッファ層でIGBTのターンオフ時やダイオードのリカバリ時の発振を防止することができる。また、リンが注入された高濃度の第2のn型バッファ層で空乏層を止めて、リーク電流の増加を防止することができる。また、サイクロトロンを使用せず一般的な半導体工場でも容易にプロトン注入でn型バッファ層を形成することができる。   In the present invention, oscillation at the time of turn-off of the IGBT or at the time of recovery of the diode can be prevented by the first n-type buffer layer formed by proton implantation and having a low concentration and a deep diffusion depth. In addition, the depletion layer can be stopped by the high concentration second n-type buffer layer into which phosphorus is injected to prevent an increase in the leakage current. Further, the n-type buffer layer can be easily formed by proton injection even in a general semiconductor factory without using a cyclotron.

本発明の実施の形態1に係る半導体装置を示す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor device according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る半導体装置の裏面プロファイルを示す図である。It is a figure which shows the back surface profile of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device of the first embodiment of the present invention. 比較例1に係る半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing a semiconductor device according to Comparative Example 1; 比較例1に係る半導体装置の裏面プロファイルを示す図である。FIG. 7 is a view showing a back surface profile of the semiconductor device according to Comparative Example 1; 本発明の実施の形態2に係る半導体装置を示す断面図である。FIG. 5 is a cross-sectional view showing a semiconductor device in accordance with a second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の裏面プロファイルを示す図である。It is a figure which shows the back surface profile of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device of the second embodiment of the present invention. 比較例2に係る半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing a semiconductor device according to Comparative Example 2; 比較例2に係る半導体装置の裏面プロファイルを示す図である。FIG. 16 is a view showing a back surface profile of the semiconductor device according to Comparative Example 2; デバイスシミュレーションで耐圧1200VクラスのIGBTで実施したL負荷スイッチングのターンオフ波形を示す図である。It is a figure which shows the turn-off waveform of L load switching implemented with IGBT with a withstand voltage of 1200V by device simulation.

本発明の実施の形態に係る半導体装置及びその製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A semiconductor device according to an embodiment of the present invention and a method of manufacturing the same will be described with reference to the drawings. The same or corresponding components may be assigned the same reference numerals and repetition of the description may be omitted.

実施の形態1.
図1は、本発明の実施の形態1に係る半導体装置を示す断面図である。この半導体装置はIGBTである。n型シリコン基板1の表面にp型ベース層2が形成されている。p型ベース層2上にn型エミッタ層3とp型コンタクト層4が形成されている。p型ベース層2とn型エミッタ層3を貫通するトレンチ内にゲート絶縁膜を介してトレンチゲート5が形成されている。トレンチゲート5上に層間絶縁膜6が形成されている。エミッタ電極7がn型シリコン基板1の表面に形成され、p型コンタクト層4に接続されている。
Embodiment 1
FIG. 1 is a cross-sectional view showing a semiconductor device according to the first embodiment of the present invention. This semiconductor device is an IGBT. A p-type base layer 2 is formed on the surface of an n-type silicon substrate 1. An n + -type emitter layer 3 and a p + -type contact layer 4 are formed on the p-type base layer 2. A trench gate 5 is formed in a trench penetrating the p-type base layer 2 and the n + -type emitter layer 3 via a gate insulating film. Interlayer insulating film 6 is formed on trench gate 5. Emitter electrode 7 is formed on the surface of n-type silicon substrate 1 and connected to p + -type contact layer 4.

n型シリコン基板1の裏面に第1及び第2のn型バッファ層8,9が形成されている。第1のn型バッファ層8は加速電圧が異なる複数回のプロトンの注入で形成されている。第2のn型バッファ層9はリンの注入で形成されている。第1及び第2のn型バッファ層8,9よりもn型シリコン基板1の裏面から浅い位置に深さ1.0μm程度のp型コレクタ層10が形成されている。コレクタ電極11がn型シリコン基板1の裏面に形成され、p型コレクタ層10に接続されている。 First and second n + -type buffer layers 8 and 9 are formed on the back surface of the n-type silicon substrate 1. The first n + -type buffer layer 8 is formed by multiple injections of protons having different acceleration voltages. The second n + -type buffer layer 9 is formed by phosphorus implantation. A p-type collector layer 10 having a depth of about 1.0 μm is formed at a position shallower than the first and second n + -type buffer layers 8 and 9 from the back surface of the n-type silicon substrate 1. Collector electrode 11 is formed on the back surface of n-type silicon substrate 1 and connected to p-type collector layer 10.

図2は、本発明の実施の形態1に係る半導体装置の裏面プロファイルを示す図である。第1のn型バッファ層8のプロトンはn型シリコン基板1の裏面からの深さが異なる複数のピーク濃度を有する。第2のn型バッファ層9のリンのピーク濃度の位置は、第1のn型バッファ層8のプロトンのピーク濃度の位置よりもn型シリコン基板1の裏面から浅い。リンのピーク濃度はプロトンのピーク濃度よりも高い。プロトンのピーク濃度の位置においてプロトンの濃度がリンの濃度よりも高い。 FIG. 2 is a view showing a back surface profile of the semiconductor device according to the first embodiment of the present invention. The protons of the first n + -type buffer layer 8 have a plurality of peak concentrations different in depth from the back surface of the n-type silicon substrate 1. The position of the peak concentration of phosphorus in the second n + -type buffer layer 9 is shallower than the position of the peak concentration of protons in the first n + -type buffer layer 8 from the back surface of the n-type silicon substrate 1. The peak concentration of phosphorus is higher than the peak concentration of protons. At the position of the peak concentration of protons, the concentration of protons is higher than the concentration of phosphorus.

図3から図10は、本発明の実施の形態1に係る半導体装置の製造工程を示す断面図である。まず、図3に示すように、通常の表面プロセスによりIGBTの表面構造を形成する。この時点でウエハ厚みは700μm程度でベアウエハとほぼ同じである。   3 to 10 are cross-sectional views showing steps of manufacturing the semiconductor device according to the first embodiment of the present invention. First, as shown in FIG. 3, the surface structure of the IGBT is formed by a normal surface process. At this time, the wafer thickness is about 700 μm, which is almost the same as the bare wafer.

次に、図4に示すように、n型シリコン基板1の裏面側をグラインダーやウェットエッチングで、所望の厚みにまで研磨する。次に、図5に示すように、一般的な半導体製造用イオン注入装置を用いて、n型シリコン基板1の裏面にプロトンを500keV以上1.5MeV以下の異なる加速電圧で複数回注入する。プロトンの飛程は500keVで6μm、1500keVで30μm程度である。   Next, as shown in FIG. 4, the back surface side of the n-type silicon substrate 1 is polished to a desired thickness by grinder or wet etching. Next, as shown in FIG. 5, protons are implanted into the back surface of the n-type silicon substrate 1 a plurality of times at different acceleration voltages of 500 keV or more and 1.5 MeV or less using a general ion implantation apparatus for semiconductor manufacture. The range of protons is 6 μm at 500 keV and about 30 μm at 1500 keV.

次に、図6に示すように、350℃〜450℃のファーネスアニールでプロトンの活性化を実施して第1のn型バッファ層8を形成する。次に、図7に示すように、加速電圧1MeV以下でリンをn型シリコン基板1の裏面の浅い領域に注入する。次に、図8に示すように、リンの活性化をレーザーアニールで実施して第2のn型バッファ層9を形成する。 Next, as shown in FIG. 6, activation of protons is performed by furnace annealing at 350 ° C. to 450 ° C. to form the first n + -type buffer layer 8. Next, as shown in FIG. 7, phosphorous is implanted into the shallow region of the back surface of the n-type silicon substrate 1 at an acceleration voltage of 1 MeV or less. Next, as shown in FIG. 8, activation of phosphorus is performed by laser annealing to form a second n + -type buffer layer 9.

次に、図9に示すように、n型シリコン基板1の裏面にBを注入する。次に、図10に示すように、レーザーアニールを実施してp型コンタクト層4を形成する。その後、n型シリコン基板1の裏面に、Al/Ti/Ni/AuやAlSi/Ti/Ni/Auなどのコレクタ電極11をスパッタで形成する。最後に、コレクタ電極11とn型シリコン基板1のオーミック接触を取ってコンタクト抵抗を低減するために350℃程度の熱処理を実施する。この時、プロトンの活性化のための熱処理も兼ねて同一工程で実施することで、熱処理工程を1回削減することができるため、加工費を削減することができる。 Next, as shown in FIG. 9, B is implanted into the back surface of the n-type silicon substrate 1. Next, as shown in FIG. 10, laser annealing is performed to form the p + -type contact layer 4. Thereafter, a collector electrode 11 of Al / Ti / Ni / Au or AlSi / Ti / Ni / Au is formed on the back surface of the n-type silicon substrate 1 by sputtering. Finally, heat treatment at about 350 ° C. is performed to reduce the contact resistance by making ohmic contact between the collector electrode 11 and the n-type silicon substrate 1. At this time, the heat treatment process can be reduced by one time by performing the heat treatment for activation of protons and performing the same process in the same process, so that the processing cost can be reduced.

続いて、本実施の形態の効果を比較例と比較して説明する。図11は、比較例1に係る半導体装置を示す断面図である。図12は、比較例1に係る半導体装置の裏面プロファイルを示す図である。比較例1では、サイクロトロンやバンデグラフなどの加速器を用いたプロトン注入により、n型バッファ層12を30μm程度と深く形成している。 Subsequently, the effect of the present embodiment will be described in comparison with a comparative example. FIG. 11 is a cross-sectional view showing a semiconductor device according to Comparative Example 1. As shown in FIG. FIG. 12 is a diagram showing the back surface profile of the semiconductor device according to Comparative Example 1. As shown in FIG. In Comparative Example 1, the n + -type buffer layer 12 is formed as deep as about 30 μm by proton injection using an accelerator such as a cyclotron or a Bandograph.

1.5MeVでプロトンを注入した場合は、飛程は30μm程度で、発振抑制効果が期待できる深いバッファ層を形成することができる。一般的な半導体製造用イオン注入装置でも1.5MeV程度までは加速電圧を上げることができる。しかし、半導体製造用イオン注入装置により低加速電圧で形成した拡散層は半値幅が小さいので、サイクロトンで作製したようなブロードな拡散層を作ることが困難である。   When protons are injected at 1.5 MeV, the range is about 30 μm, and a deep buffer layer can be formed which can be expected to have an oscillation suppression effect. The acceleration voltage can be increased up to about 1.5 MeV even in a general ion implantation apparatus for semiconductor manufacturing. However, since the diffusion layer formed at a low acceleration voltage by the ion implantation apparatus for semiconductor manufacture has a small half width, it is difficult to form a broad diffusion layer as produced by cycloton.

そこで、本実施の形態では、500keV,1000keV,1500keVのように異なる加速電圧で複数回のプロトン注入を実施することで、図2のように比較的ブロードなプロファイルを持つ第1のn型バッファ層8を形成することができる。 Therefore, in the present embodiment, the first n + -type buffer having a relatively broad profile as shown in FIG. 2 is implemented by performing a plurality of proton injections at different acceleration voltages such as 500 keV, 1000 keV, and 1500 keV. Layer 8 can be formed.

しかし、複数回の注入を実施すると、基板裏面から浅いほど非常に多くの結晶欠陥が入る。プロトンの活性化には結晶欠陥量にも依存しているので、n型層の濃度がばらつく可能性がある。そこで、裏面の近くにリン注入で形成された高濃度の第2のn型バッファ層9を形成することで、電圧印加時に空乏層がコレクタ側に到達するのを防止し、耐圧の低下やリーク電流の増大を抑えることができる。 However, if multiple implantations are performed, the larger number of crystal defects will occur as the surface is shallower from the back surface of the substrate. Since the activation of protons also depends on the amount of crystal defects, the concentration of the n-type layer may vary. Therefore, by forming a high concentration second n + -type buffer layer 9 formed by phosphorus implantation in the vicinity of the back surface, the depletion layer can be prevented from reaching the collector side when a voltage is applied, and the breakdown voltage decreases. An increase in leakage current can be suppressed.

また、リンはプロトンと比べて原子半径が大きく、注入時には原子核の衝突により、注入損傷が多数発生し、プロトンの注入プロファイルにリンの注入プロファイルが重なると、プロトンのドナー化に影響を与える可能性がある。そこで、本実施の形態では、プロトンのピーク濃度の位置でプロトンの濃度がリンの濃度よりも高くなるようにピークの位置を設定する。これにより、互いの干渉を防止することができ、プロトンの活性化によって形成される第1のn型バッファ層8を所望の濃度にすることができる。 In addition, phosphorus has a large atomic radius compared to protons, collisions of nuclei during injection may cause a large number of injection damage, and proton injection profiles may overlap proton injection profiles, which may affect proton donor formation. There is. Therefore, in the present embodiment, the position of the peak is set so that the concentration of the proton is higher than the concentration of phosphorus at the position of the peak concentration of the proton. Thereby, mutual interference can be prevented, and the first n + -type buffer layer 8 formed by proton activation can be made to have a desired concentration.

以上説明したように、本実施の形態では、プロトン注入で形成された低濃度で拡散深さが深い第1のn型バッファ層8でIGBTのターンオフ時の発振を防止することができる。また、リンが注入された高濃度の第2のn型バッファ層9で空乏層を止めてリーク電流の増加を防止することができる。 As described above, in the present embodiment, oscillation at turn-off of the IGBT can be prevented by the first n + -type buffer layer 8 formed by proton implantation and having a low concentration and a deep diffusion depth. In addition, the depletion layer can be stopped by the high concentration second n + -type buffer layer 9 into which phosphorus is injected to prevent an increase in the leak current.

また、一般的な半導体製造用イオン注入装置を用いて異なる加速電圧で複数回のプロトン注入を実施して第1のn型バッファ層8を形成する。これにより、サイクロトロンを使用せず一般的な半導体工場でも容易にプロトン注入で第1のn型バッファ層8を形成することができる。 Also, proton implantation is performed a plurality of times at different acceleration voltages using a general ion implantation apparatus for semiconductor manufacture to form the first n + -type buffer layer 8. Thereby, the first n + -type buffer layer 8 can be easily formed by proton injection even in a general semiconductor factory without using a cyclotron.

また、複数回のプロトン注入において、加速電圧が高くなるほど、注入量を下げることが好ましい。これにより、複数回のプロトン注入で形成する第1のn型バッファ層8のプロファイルをガウス分布に近付けることができる。 In addition, in a plurality of proton injections, it is preferable to lower the injection amount as the acceleration voltage becomes higher. This makes it possible to approximate the profile of the first n + -type buffer layer 8 formed by multiple proton injections to a Gaussian distribution.

また、複数回のプロトン注入の中で最も加速電圧が高いプロファイルの注入量とその次に加速電圧が高いプロファイルの注入量が同じであることが好ましい。これにより勾配が非常に緩やかなプロファイルを形成することで、IGBTのターンオフ時やダイオードのリカバリ時に拡がる空乏層を緩やかに止めることができ、キャリアが急峻に掃き出され、枯渇するのを防止することができる。   In addition, it is preferable that the injection amount of the profile with the highest acceleration voltage among the plurality of proton injections be the same as the injection amount of the profile with the second highest acceleration voltage. As a result, by forming a profile having a very gentle gradient, it is possible to gently stop the depletion layer spreading at the time of IGBT turn-off or at the time of recovery of the diode, and to prevent carriers from being swept rapidly and depleted. Can.

また、リンの注入量はプロトンの注入量よりも低く、リンの活性化をレーザーアニールで実施し、プロトンの活性化を350℃〜450℃のファーネスアニールで実施する。このようにリンの活性化をレーザーアニールで実施することで、活性化率は70%程度に上がる。一方、プロトンのファーネスアニールによる活性化率は1%程度である。このため、リンの注入量をプロトンの注入量より下げても、リンのピーク濃度をプロトンのピーク濃度よりも十分高くすることができる。この結果、リン注入によるダメージの影響を抑えつつ、リン注入領域と近接しているプロトン注入領域のドナー化を実施することができる。   In addition, the injection amount of phosphorus is lower than the injection amount of protons, activation of phosphorus is performed by laser annealing, and activation of protons is performed by furnace annealing at 350 ° C. to 450 ° C. By performing activation of phosphorus by laser annealing in this manner, the activation rate rises to about 70%. On the other hand, the activation rate of proton by furnace annealing is about 1%. Therefore, the peak concentration of phosphorus can be made sufficiently higher than the peak concentration of protons even if the injection amount of phosphorus is lower than the injection amount of protons. As a result, it is possible to carry out donorization of the proton injection region close to the phosphorus injection region while suppressing the influence of damage due to phosphorus injection.

実施の形態2.
図13は、本発明の実施の形態2に係る半導体装置を示す断面図である。この半導体装置はダイオードである。n型シリコン基板1の表面にp型アノード層13が形成されている。アノード電極14がn型シリコン基板1の表面に形成され、p型アノード層13に接続されている。実施の形態1と同様にn型シリコン基板1の裏面に第1及び第2のn型バッファ層8,9が形成されている。カソード電極15がn型シリコン基板1の裏面に形成され、第2のn型バッファ層9に接続されている。
Second Embodiment
FIG. 13 is a cross-sectional view showing a semiconductor device according to the second embodiment of the present invention. This semiconductor device is a diode. A p-type anode layer 13 is formed on the surface of the n-type silicon substrate 1. An anode electrode 14 is formed on the surface of the n-type silicon substrate 1 and connected to the p-type anode layer 13. As in the first embodiment, the first and second n + -type buffer layers 8 and 9 are formed on the back surface of the n-type silicon substrate 1. A cathode electrode 15 is formed on the back surface of the n-type silicon substrate 1 and connected to the second n + -type buffer layer 9.

図14は、本発明の実施の形態2に係る半導体装置の裏面プロファイルを示す図である。実施の形態1と同様に、第1のn型バッファ層8のプロトンはn型シリコン基板1の裏面からの深さが異なる複数のピーク濃度を有する。第2のn型バッファ層9のリンのピーク濃度の位置は、第1のn型バッファ層8のプロトンのピーク濃度の位置よりもn型シリコン基板1の裏面から浅い。リンのピーク濃度はプロトンのピーク濃度よりも高い。プロトンのピーク濃度の位置においてプロトンの濃度がリンの濃度よりも高い。 FIG. 14 is a diagram showing the back surface profile of the semiconductor device according to the second embodiment of the present invention. As in the first embodiment, the protons of the first n + -type buffer layer 8 have a plurality of peak concentrations different in depth from the back surface of the n-type silicon substrate 1. The position of the peak concentration of phosphorus in the second n + -type buffer layer 9 is shallower than the position of the peak concentration of protons in the first n + -type buffer layer 8 from the back surface of the n-type silicon substrate 1. The peak concentration of phosphorus is higher than the peak concentration of protons. At the position of the peak concentration of protons, the concentration of protons is higher than the concentration of phosphorus.

図15から図20は、本発明の実施の形態2に係る半導体装置の製造工程を示す断面図である。まず、図15に示すように、通常の表面プロセスによりダイオードの表面構造を形成する。この時点でウエハ厚みは700μm程度でベアウエハとほぼ同じである。   15 to 20 are cross sectional views showing manufacturing steps of the semiconductor device according to the second embodiment of the present invention. First, as shown in FIG. 15, the surface structure of the diode is formed by a normal surface process. At this time, the wafer thickness is about 700 μm, which is almost the same as the bare wafer.

次に、図16に示すように、n型シリコン基板1の裏面側をグラインダーやウェットエッチングで、所望の厚みにまで研磨する。次に、図17に示すように、一般的な半導体製造用イオン注入装置を用いて、n型シリコン基板1の裏面にプロトンを500keV以上1.5MeV以下の異なる加速電圧で複数回注入する。プロトンの飛程は500keVで6μm、1500keVで30μm程度である。   Next, as shown in FIG. 16, the back surface side of the n-type silicon substrate 1 is polished to a desired thickness by grinder or wet etching. Next, as shown in FIG. 17, protons are implanted into the back surface of the n-type silicon substrate 1 a plurality of times at different acceleration voltages of 500 keV or more and 1.5 MeV or less using a general ion implantation apparatus for semiconductor manufacture. The range of protons is 6 μm at 500 keV and about 30 μm at 1500 keV.

次に、図18に示すように、350℃〜450℃のファーネスアニールでプロトンの活性化を実施して第1のn型バッファ層8を形成する。次に、図19に示すように、加速電圧1MeV以下でリンをn型シリコン基板1の裏面の浅い領域に注入する。次に、図20に示すように、リンの活性化をレーザーアニールで実施して第2のn型バッファ層9を形成する。 Next, as shown in FIG. 18, activation of protons is performed by furnace annealing at 350 ° C. to 450 ° C. to form the first n + -type buffer layer 8. Next, as shown in FIG. 19, phosphorus is implanted into the shallow region of the back surface of the n-type silicon substrate 1 at an acceleration voltage of 1 MeV or less. Next, as shown in FIG. 20, activation of phosphorus is performed by laser annealing to form a second n + -type buffer layer 9.

その後、n型シリコン基板1の裏面に、Al/Ti/Ni/AuやAlSi/Ti/Ni/Auなどのカソード電極15をスパッタで形成する。最後に、カソード電極15とn型シリコン基板1のオーミック接触を取ってコンタクト抵抗を低減するために350℃程度の熱処理を実施する。この時、プロトンの活性化のための熱処理も兼ねて同一工程で実施することで、熱処理工程を1回削減することができるため、加工費を削減することができる。   Thereafter, a cathode electrode 15 of Al / Ti / Ni / Au or AlSi / Ti / Ni / Au is formed on the back surface of the n-type silicon substrate 1 by sputtering. Finally, heat treatment at about 350 ° C. is performed to reduce the contact resistance by making ohmic contact between the cathode electrode 15 and the n-type silicon substrate 1. At this time, the heat treatment process can be reduced by one time by performing the heat treatment for activation of protons and performing the same process in the same process, so that the processing cost can be reduced.

続いて、本実施の形態の効果を比較例と比較して説明する。図21は、比較例2に係る半導体装置を示す断面図である。図22は、比較例2に係る半導体装置の裏面プロファイルを示す図である。比較例2では、サイクロトロンやバンデグラフなどの加速器を用いたプロトン注入により、n型バッファ層12を30μm程度と深く形成している。 Subsequently, the effect of the present embodiment will be described in comparison with a comparative example. FIG. 21 is a cross-sectional view showing a semiconductor device according to Comparative Example 2. As shown in FIG. FIG. 22 is a diagram showing the back surface profile of the semiconductor device according to Comparative Example 2. As shown in FIG. In Comparative Example 2, the n + -type buffer layer 12 is formed as deep as about 30 μm by proton injection using an accelerator such as a cyclotron or a van degraph.

これに対して、本実施の形態では、実施の形態1と同様に、プロトン注入で形成された低濃度で拡散深さが深い第1のn型バッファ層8でダイオードのリカバリ時の発振を防止することができる。また、リンが注入された高濃度の第2のn型バッファ層9で空乏層を止めてリーク電流の増加を防止することができる。また、サイクロトロンを使用せず一般的な半導体工場でも容易にプロトン注入で第1のn型バッファ層8を形成することができる。 On the other hand, in the present embodiment, as in the first embodiment, oscillation at the time of recovery of the diode is performed by the first n + -type buffer layer 8 formed by proton injection and having a deep diffusion depth. It can be prevented. In addition, the depletion layer can be stopped by the high concentration second n + -type buffer layer 9 into which phosphorus is injected to prevent an increase in the leak current. In addition, the first n + -type buffer layer 8 can be easily formed by proton injection even in a general semiconductor factory without using a cyclotron.

なお、半導体基板は、珪素によって形成されたものに限らず、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものでもよい。ワイドバンドギャップ半導体は、例えば、炭化珪素、窒化ガリウム系材料、又はダイヤモンドである。このようなワイドバンドギャップ半導体によって形成されたパワー半導体素子は、耐電圧性や許容電流密度が高いため、小型化できる。この小型化された素子を用いることで、この素子を組み込んだ半導体モジュールも小型化できる。また、素子の耐熱性が高いため、ヒートシンクの放熱フィンを小型化でき、水冷部を空冷化できるので、半導体モジュールを更に小型化できる。また、素子の電力損失が低く高効率であるため、半導体モジュールを高効率化できる。   The semiconductor substrate is not limited to one formed of silicon, and may be formed of a wide band gap semiconductor having a larger band gap than silicon. The wide band gap semiconductor is, for example, silicon carbide, gallium nitride based material, or diamond. A power semiconductor element formed of such a wide band gap semiconductor can be miniaturized because of its high voltage resistance and allowable current density. By using this miniaturized device, it is possible to miniaturize a semiconductor module incorporating this device. Further, since the heat resistance of the element is high, the heat dissipating fins of the heat sink can be miniaturized, and the water cooling portion can be air cooled, so that the semiconductor module can be further miniaturized. In addition, since the power loss of the element is low and the efficiency is high, the semiconductor module can be highly efficient.

1 n型シリコン基板(半導体基板)、2 p型ベース層(p型層)、8 第1のn型バッファ層(第1のn型バッファ層)、9 第2のn型バッファ層(第2のn型バッファ層)、11 コレクタ電極(裏面電極)、13 p型アノード層(p型層)、15 カソード電極(裏面電極) 1 n-type silicon substrate (semiconductor substrate), 2 p-type base layer (p-type layer), 8 first n + -type buffer layer (first n-type buffer layer), 9 second n + -type buffer layer Second n-type buffer layer), 11 collector electrode (back surface electrode), 13 p-type anode layer (p-type layer), 15 cathode electrode (back surface electrode)

Claims (14)

半導体基板と、
前記半導体基板の表面に形成されたp型層と、
前記半導体基板の裏面に形成された第1及び第2のn型バッファ層とを備えた半導体装置であって、
前記第1のn型バッファ層は、前記半導体基板の裏面からの深さが異なり、前記半導体基板の裏面からの深さが深いほど注入量が低い複数のピーク濃度を有するプロトンを含み、
前記第2のn型バッファ層はリンを含み、
前記リンのピーク濃度の位置は前記半導体基板の裏面から1μmより深く6μmより浅い位置であって、
前記プロトンの前記複数のピーク濃度は、前記半導体基板の裏面から6μm以上30μm以下の深さにおいて3つ以上存在することを特徴とする半導体装置。
A semiconductor substrate,
A p-type layer formed on the surface of the semiconductor substrate;
A semiconductor device comprising: first and second n-type buffer layers formed on the back surface of the semiconductor substrate;
The first n-type buffer layer has different depths from the back surface of the semiconductor substrate, and includes protons having a plurality of peak concentrations with a lower dose as the depth from the back surface of the semiconductor substrate is deeper,
The second n-type buffer layer contains phosphorus,
The position of the peak concentration of phosphorus is a position deeper than 1 μm and shallower than 6 μm from the back surface of the semiconductor substrate,
3. The semiconductor device according to claim 3, wherein the plurality of peak concentrations of the protons are present at a depth of 6 μm or more and 30 μm or less from the back surface of the semiconductor substrate.
半導体基板と、
前記半導体基板の表面に形成されたp型層と、
前記半導体基板の裏面に形成された第1及び第2のn型バッファ層とを備えた半導体装置であって、
前記第1のn型バッファ層は、前記半導体基板の裏面からの深さが異なり、前記半導体基板の裏面からの深さが深いほど注入量が低い複数のピーク濃度を有するプロトンを含み、
前記第2のn型バッファ層はリンを含み、
前記リンのピーク濃度の位置は前記半導体基板の裏面から1μmより深く6μmより浅い位置であって、
前記プロトンの前記複数のピーク濃度は、前記半導体基板の裏面から6μm以上30μm以下の深さのみに位置することを特徴とする半導体装置。
A semiconductor substrate,
A p-type layer formed on the surface of the semiconductor substrate;
A semiconductor device comprising: first and second n-type buffer layers formed on the back surface of the semiconductor substrate;
The first n-type buffer layer has different depths from the back surface of the semiconductor substrate, and includes protons having a plurality of peak concentrations with a lower dose as the depth from the back surface of the semiconductor substrate is deeper,
The second n-type buffer layer contains phosphorus,
The position of the peak concentration of phosphorus is a position deeper than 1 μm and shallower than 6 μm from the back surface of the semiconductor substrate,
The semiconductor device characterized in that the plurality of peak concentrations of the protons are located only at a depth of 6 μm or more and 30 μm or less from the back surface of the semiconductor substrate.
前記リンのピーク濃度は、前記プロトンのピーク濃度よりも高く、前記プロトンのピーク濃度の位置においてプロトンの濃度がリンの濃度よりも高い請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the peak concentration of the phosphorus is higher than the peak concentration of the protons, and the concentration of the protons is higher than the concentration of phosphorus at the peak concentration position of the protons. 前記リンの注入量は前記プロトンの注入量よりも低いことを特徴とする請求項1から3の何れか1項に記載の半導体装置。   The semiconductor device according to any one of claims 1 to 3, wherein an injection amount of the phosphorus is lower than an injection amount of the proton. 半導体基板の裏面からプロトンをそれぞれ異なる加速電圧で複数回注入する工程と、
前記半導体基板の裏面からリンを注入する工程と、
前記半導体基板に注入された前記リンを活性化した後に、前記半導体基板に注入された前記プロトンを活性化する工程とを備える半導体装置の製造方法。
Injecting protons from the back surface of the semiconductor substrate a plurality of times at different acceleration voltages;
Injecting phosphorus from the back side of the semiconductor substrate;
And activating the protons implanted into the semiconductor substrate after activating the phosphorus implanted into the semiconductor substrate.
前記リンはレーザーアニールで活性化され、前記プロトンはファーネスアニールで活性化される請求項5に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 5, wherein the phosphorus is activated by laser annealing, and the protons are activated by furnace annealing. 前記半導体基板の裏面からホウ素を注入する工程と、
前記リンを活性化した後、前記プロトンを活性化する前に、前記ホウ素を活性化する工程とを更に備える請求項5又は6に記載の半導体装置の製造方法。
Implanting boron from the back side of the semiconductor substrate;
7. The method of manufacturing a semiconductor device according to claim 5, further comprising the step of activating the boron after activating the phosphorus and before activating the proton.
前記リンの注入量は前記プロトンの注入量よりも低い請求項5から7の何れか1項に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to any one of claims 5 to 7, wherein an injection amount of the phosphorus is lower than an injection amount of the proton. 前記プロトンを複数回注入する工程において、前記加速電圧が高くなるほどプロトンの注入量を下げる請求項5から8の何れか1項に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to any one of claims 5 to 8, wherein in the step of injecting the proton a plurality of times, the amount of proton injection is reduced as the acceleration voltage becomes higher. 前記プロトンを複数回注入する工程において、前記加速電圧が最も高い場合のプロトンの注入量とその次に前記加速電圧が高いプロトンの注入量とが同じである請求項5から8の何れか1項に記載の半導体装置の製造方法。   9. The method according to any one of claims 5 to 8, wherein in the step of injecting the proton a plurality of times, the injection amount of protons when the acceleration voltage is the highest is the same as the injection amount of protons next to the highest acceleration voltage. The manufacturing method of the semiconductor device as described in these. 前記プロトンの注入の加速電圧は500keV以上1.5MeV以下である請求項5から9の何れか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 5 to 9, wherein an acceleration voltage of the proton injection is 500 keV or more and 1.5 MeV or less. 前記リンの注入の加速電圧は1MeV以下である請求項5から10の何れか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to any one of claims 5 to 10, wherein an acceleration voltage of the phosphorus injection is 1 MeV or less. 前記プロトンの活性化により、前記半導体基板の裏面からの深さが異なる複数のピーク濃度を有するプロトンを含む第1のn型バッファ層が形成され、
前記リンの活性化により、前記プロトンのピーク濃度の位置よりも前記半導体基板の裏面から浅い位置にピーク濃度を有するリンを含む第2のn型バッファ層が形成され、
前記リンのピーク濃度は前記プロトンのピーク濃度よりも高く、
前記プロトンのピーク濃度の位置において前記プロトンの濃度が前記リンの濃度よりも高い請求項5から11の何れか1項に記載の半導体装置の製造方法。
The activation of the protons forms a first n-type buffer layer containing protons having a plurality of peak concentrations different in depth from the back surface of the semiconductor substrate,
The activation of the phosphorus forms a second n-type buffer layer containing phosphorus having a peak concentration at a position shallower from the back surface of the semiconductor substrate than the position of the peak concentration of the protons.
The peak concentration of the phosphorus is higher than the peak concentration of the protons,
The method of manufacturing a semiconductor device according to claim 5, wherein a concentration of the proton is higher than a concentration of the phosphorus at a position of the peak concentration of the proton.
前記第1のn型バッファ層に含まれる前記プロトンの前記複数のピーク濃度は、前記半導体基板の裏面からの距離が大きくなるにつれ小さくなることを特徴とする請求項12に記載の半導体装置の製造方法。   13. The semiconductor device according to claim 12, wherein the plurality of peak concentrations of the protons contained in the first n-type buffer layer decrease as the distance from the back surface of the semiconductor substrate increases. Method.
JP2019031862A 2019-02-25 2019-02-25 Semiconductor device and manufacturing method thereof Active JP6702467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019031862A JP6702467B2 (en) 2019-02-25 2019-02-25 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031862A JP6702467B2 (en) 2019-02-25 2019-02-25 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017505779A Division JP6519649B2 (en) 2015-03-13 2015-03-13 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019071503A true JP2019071503A (en) 2019-05-09
JP6702467B2 JP6702467B2 (en) 2020-06-03

Family

ID=66441306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031862A Active JP6702467B2 (en) 2019-02-25 2019-02-25 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6702467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345959A (en) * 2020-03-02 2021-09-03 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7456349B2 (en) 2020-10-08 2024-03-27 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128777B2 (en) * 2000-05-05 2008-07-30 インターナショナル・レクチファイヤー・コーポレーション Insulated gate bipolar transistor (IGBT) and manufacturing method thereof
JP2009176892A (en) * 2008-01-23 2009-08-06 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method therefor
WO2013073623A1 (en) * 2011-11-15 2013-05-23 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2013100155A1 (en) * 2011-12-28 2013-07-04 富士電機株式会社 Semiconductor device and method for producing semiconductor device
WO2013108911A1 (en) * 2012-01-19 2013-07-25 富士電機株式会社 Semiconductor device and method for producing same
WO2014065080A1 (en) * 2012-10-23 2014-05-01 富士電機株式会社 Semiconductor device and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128777B2 (en) * 2000-05-05 2008-07-30 インターナショナル・レクチファイヤー・コーポレーション Insulated gate bipolar transistor (IGBT) and manufacturing method thereof
JP2009176892A (en) * 2008-01-23 2009-08-06 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method therefor
WO2013073623A1 (en) * 2011-11-15 2013-05-23 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2013100155A1 (en) * 2011-12-28 2013-07-04 富士電機株式会社 Semiconductor device and method for producing semiconductor device
WO2013108911A1 (en) * 2012-01-19 2013-07-25 富士電機株式会社 Semiconductor device and method for producing same
WO2014065080A1 (en) * 2012-10-23 2014-05-01 富士電機株式会社 Semiconductor device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345959A (en) * 2020-03-02 2021-09-03 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7456349B2 (en) 2020-10-08 2024-03-27 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP6702467B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6519649B2 (en) Semiconductor device and method of manufacturing the same
US11469297B2 (en) Semiconductor device and method for producing semiconductor device
US10651269B2 (en) Semiconductor device and method for producing semiconductor device
KR101794182B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5754545B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5396689B2 (en) Semiconductor device and manufacturing method thereof
JP5365009B2 (en) Semiconductor device and manufacturing method thereof
CN107195544B (en) Method for manufacturing semiconductor device
JP6661575B2 (en) Semiconductor device and method of manufacturing the same
US20110108941A1 (en) Fast recovery diode
JP2017201644A (en) Diode, and power conversion device using the same
JP2013197306A (en) Manufacturing method of semiconductor device
TW201432916A (en) Semiconductor device and method for manufacturing same
JP6702467B2 (en) Semiconductor device and manufacturing method thereof
EP3300121A1 (en) Semiconductor device, method for manufacturing the same, and power conversion system
JP6268117B2 (en) Semiconductor device, manufacturing method thereof, and power conversion system
JP2017188569A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6702467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250