JP2019070508A - Method for operating coal combustion facility - Google Patents

Method for operating coal combustion facility Download PDF

Info

Publication number
JP2019070508A
JP2019070508A JP2018097417A JP2018097417A JP2019070508A JP 2019070508 A JP2019070508 A JP 2019070508A JP 2018097417 A JP2018097417 A JP 2018097417A JP 2018097417 A JP2018097417 A JP 2018097417A JP 2019070508 A JP2019070508 A JP 2019070508A
Authority
JP
Japan
Prior art keywords
coal
ash
fuel
gypsum
combustion facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018097417A
Other languages
Japanese (ja)
Inventor
岳史 山下
Takeshi Yamashita
岳史 山下
高憲 岡
Takanori Oka
高憲 岡
弘次 菅原
Koji Sugawara
弘次 菅原
知朗 松宮
Tomoaki Matsumiya
知朗 松宮
優貴 藤井
Yuki Fujii
優貴 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2019070508A publication Critical patent/JP2019070508A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for operating a coal combustion facility excellent in quality of gypsum collected by a wet desulfurizer.SOLUTION: A method for operating a coal combustion facility is directed to operate a coal combustion facility comprising: a furnace configured to combust fuel coal; an electric precipitator configured to remove particles from exhaust gas discharged from the furnace; and a wet desulfurizer configured to remove a sulfur oxide from the exhaust gas from which the particles are removed by the electric precipitator, with use of the limestone-gypsum method. For coal used as the fuel coal, a content of ash having a grain diameter of 1.0 μm in ash obtained with heating and ashing is equal to or more than 0.20 mass% with respect to the fuel coal.SELECTED DRAWING: Figure 2

Description

本発明は、石炭燃焼設備の運転方法に関する。   The present invention relates to a method of operating a coal combustion facility.

例えば石炭ボイラーを有する火力発電設備等、石炭を燃料とする燃焼設備は、一般に、排ガス中の微粒子(粉塵)であるフライアッシュを除去する電気集塵機と、排ガス中の硫黄酸化物を除去する脱硫装置とを備える。   For example, combustion equipment using coal as fuel, such as thermal power generation equipment having a coal boiler, generally uses an electric precipitator for removing fly ash which is fine particles (dust) in exhaust gas, and a desulfurization device for removing sulfur oxides in exhaust gas And

脱硫装置としては、水に石灰石を分散したスラリー(吸収液)に排ガスを接触させることにより、排ガス中の酸化硫黄(SO)を石灰(CaCO)と反応させて、硫黄分を石膏(CaSO・2HO)として回収する石灰石石膏法による湿式脱硫装置が広く用いられている。このような湿式脱硫装置を用いる場合、脱硫装置において回収された石膏を販売することで、運転コストを低減することができる。 As a desulfurization apparatus, the sulfur oxide (SO 2 ) in the exhaust gas is reacted with lime (CaCO 3 ) by bringing the exhaust gas into contact with a slurry (absorbent liquid) in which limestone is dispersed in water, and the sulfur content is gypsum (CaSO 3 ). wet desulfurization system is widely used by 4 · 2H 2 O) limestone gypsum method to recover as. When using such a wet desulfurization device, operating costs can be reduced by selling the gypsum recovered in the desulfurization device.

しかしながら、電気集塵機において微粒子を完全に除去することはできないため、湿式脱硫装置において回収される石膏中には、電気集塵機を通過した微粒子の一部が混入する。このような微粒子の混入量が多くなると、石膏の品質が低下するため、石膏の価値が低下する。   However, since particulates can not be completely removed in the electrostatic precipitator, some of the particulates that have passed through the electrostatic precipitator mix in the gypsum recovered by the wet desulfurization apparatus. When the mixing amount of such fine particles is increased, the quality of gypsum is reduced, and thus the value of gypsum is reduced.

例えば特開平11−179147号公報には、湿式脱硫装置で回収される石膏を含むスラリーから、例えば簡易セトラー(重力沈降分離装置)、磁気式粉塵分離装置、遠心分離機等によって粉塵を多く含むスラリーを分離することで、石膏純度が高いスラリーを得る排煙処理方法が提案されている。   For example, in JP-A-11-179147, a slurry containing a large amount of dust, for example, by a simple settler (gravity sedimentation separator), a magnetic dust separator, a centrifuge, etc. A flue gas treatment method is proposed to obtain a slurry with high gypsum purity by separating

特開平11−179147号公報Japanese Patent Application Laid-Open No. 11-179147

上記公報に記載の方法では、粉塵を多く含むスラリーを分離するためにコストがかかると共に、分離した粉塵を多く含むスラリーの処理にもコストがかかる。   The method described in the above publication is costly in separating a dust-rich slurry, and is also costly in treating a slurry containing a large amount of separated dust.

上記不都合に鑑みて、本発明は、湿式脱硫装置で回収される石膏の品質に優れる石炭燃焼設備の運転方法を提供することを課題とする。   In view of the above problems, the present invention has an object to provide a method of operating a coal combustion facility which is excellent in the quality of gypsum recovered by a wet desulfurization apparatus.

本発明者らは、石炭燃焼設備の電気集塵機で捕集された石炭灰及び湿式脱硫装置で回収された石膏について、特に石膏を着色してその品質を大きく低下させる未燃炭素粒子に着目して詳しく観察した。未燃炭素粒子の形状は、70μmから90μm程度にピークを有する粒径分布を有する中空の粒子状であり、その外殻が微細な空孔を有するポーラス状であった。   The present inventors particularly focused on unburned carbon particles that color the gypsum and greatly reduce the quality of the coal ash collected by the electrostatic precipitator of the coal combustion facility and the gypsum collected by the wet desulfurization apparatus. I observed it in detail. The shape of the unburned carbon particles was in the form of a hollow particle having a particle size distribution having a peak at about 70 μm to 90 μm, and the outer shell thereof was porous with fine pores.

本発明者らは、未燃炭素粒子は、外殻中に微細な粒子状の灰分を包含しており、電気集塵機で捕集される石炭灰中の未燃炭素粒子は、外殻の中に灰分をより多く内包しているとの印象を得た。このため、本発明者らは、電気集塵機での除去率に与える灰分の影響を多面的に検証し、未燃炭素粒子の灰分含有量が大きい程電気集塵機における除去率が高く、湿式脱硫装置で回収される石膏の品質が高くなることを確認した。   The present inventors have found that the unburned carbon particles contain fine particulate ash in the outer shell, and the unburned carbon particles in the coal ash collected by the electrostatic precipitator are in the outer shell. I got the impression that it contained more ash. For this reason, the present inventors multilaterally examine the influence of the ash content on the removal rate in the electrostatic precipitator, and the larger the ash content of the unburned carbon particles, the higher the removal rate in the electrostatic precipitator, and the wet desulfurization device It was confirmed that the quality of the recovered gypsum was high.

本発明者は、さらに研究を重ねた結果、未燃炭素粒子中の灰分含有量と、燃料石炭を加熱灰化して得られる灰分の粒径分布との間に相関関係があることを見出し、本発明を完成させた。   As a result of further researches, the inventor found that there is a correlation between the ash content in the unburned carbon particles and the particle size distribution of the ash obtained by heat-ashing fuel coal. Completed the invention.

上記課題を解決するためになされた本発明に係る石炭燃焼設備の運転方法は、燃料石炭を燃焼する火炉と、この火炉から排出される排ガスから微粒子を除去する電気集塵機と、この電気集塵機で微粒子を除去した排ガスから石灰石石膏法により硫黄酸化物を除去する湿式脱硫装置とを備える石炭燃焼設備の運転方法であって、上記燃料石炭として、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記燃料石炭の0.20質量%以上である石炭を用いることを特徴とする。   The operating method of coal combustion equipment according to the present invention made to solve the above problems comprises: a furnace for burning fuel coal, an electrostatic precipitator for removing particulates from exhaust gas discharged from the furnace, and particulates with this electrostatic precipitator And a wet desulfurizing apparatus for removing sulfur oxides from the exhaust gas from the waste gas by the limestone gypsum method, wherein the particle size of 1.0 μm in the ash content obtained by heat-ashing as the fuel coal. It is characterized by using coal whose ash content below is 0.20 mass% or more of the above-mentioned fuel coal.

当該石炭燃焼設備の運転方法は、燃料石炭として、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記燃料石炭の0.20質量%以上である石炭を用いることによって、電気集塵機における未燃炭素の除去率を向上することができる結果として、湿式脱硫装置で回収される石膏中の未燃炭素含有量が小さく、品質に優れる石膏を得ることができる。   The operation method of the coal combustion facility is by using, as fuel coal, coal having an ash content with a particle diameter of 1.0 μm or less in the ash obtained by heat ashing and having a content of 0.20 mass% or more of the fuel coal As a result of being able to improve the removal rate of unburned carbon in the electrostatic precipitator, the unburned carbon content in the gypsum recovered by the wet desulfurization apparatus is small, and gypsum excellent in quality can be obtained.

当該石炭燃焼設備の運転方法において、上記燃料石炭として、上記灰分含有量を満たすよう混炭した石炭を用いてもよい。この方法によれば、燃料の入手が容易となるため、燃料コストの上昇を抑制することができる。   In the method of operating the coal combustion facility, coal mixed with coal to satisfy the ash content may be used as the fuel coal. According to this method, the fuel can be easily obtained, so that the increase in fuel cost can be suppressed.

当該石炭燃焼設備の運転方法において、上記燃料石炭として、歴青炭を用いることが好ましい。この方法によれば、熱量単価を抑制しつつ、副産物として高品質な石膏を得ることができる。   In the method of operating the coal combustion facility, it is preferable to use bituminous coal as the fuel coal. According to this method, high-quality gypsum can be obtained as a by-product while suppressing the unit cost of heat.

なお、「加熱灰化」は、JIS−M8812(2006)の「灰分定量方法」における加熱灰化の手順に従っておこなう。また、「粒径」は、レーザー回折散乱法によって測定される粒径を意味する。また、「灰分含有量」は、気乾ベースの値とする。また、「歴青炭」とは、JIS−M1002(1978)に規定される炭種である。   In addition, "heat ashing" is performed according to the procedure of the heat ashing in "the ash content determination method" of JIS-M8812 (2006). Also, "particle size" means the particle size measured by laser diffraction scattering method. In addition, “ash content” is a value on an air-dry basis. Moreover, "bituminous coal" is a carbon type prescribed | regulated to JIS-M1002 (1978).

以上のように、本発明に係る石炭燃焼設備の運転方法は、湿式脱硫装置で回収される石膏の品質に優れる。   As mentioned above, the operation method of the coal combustion equipment concerning the present invention is excellent in the quality of the plaster collected with a wet desulfurization device.

本発明に用いることができる石炭燃焼設備の構成を示す模式図である。It is a schematic diagram which shows the structure of the coal combustion installation which can be used for this invention. 複数の燃料石炭の加熱灰化後の灰分の粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the ash content after heat-ashing of several fuel coal. 燃料石炭の加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量と、回収される石膏中の未燃炭素含有量との関係を示すグラフである。It is a graph which shows the relationship between the ash content with a particle size of 1.0 micrometer or less in the ash obtained by heat-ashing fuel coal, and the unburned carbon content in the gypsum collect | recovered.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[石炭燃焼設備]
図1に、本発明に用いられる石炭燃焼設備の概略構成を示す。この石炭燃焼設備は、燃料石炭を燃焼する火炉1と、この火炉1から排出される排ガスから微粒子を除去する電気集塵機2と、この電気集塵機で微粒子を除去した排ガスから石灰石石膏法により硫黄酸化物を除去する湿式脱硫装置3とを備える。また、石炭燃焼設備は、最終的に排ガスを大気に放出する煙突4をさらに備える。
[Coal combustion equipment]
FIG. 1 shows a schematic configuration of a coal combustion facility used in the present invention. The coal combustion facility includes a furnace 1 for burning fuel coal, an electric precipitator 2 for removing particulates from the exhaust gas discharged from the furnace 1, and sulfur oxide by the limestone gypsum method from the exhaust gas from which particulates are removed by the electrostatic precipitator. And a wet desulfurization device 3 for removing the In addition, the coal combustion facility further includes a chimney 4 that finally releases the exhaust gas to the atmosphere.

<火炉>
火炉1としては、例えばボイラー、加熱炉等、燃料石炭を燃焼するものであれば特に限定されないが、再利用可能な量の石膏を回収できる規模、具体的には1万kW以上好ましくは10万kW以上の発熱量の炉であることが経済的に妥当である。
<Fuel furnace>
The furnace 1 is not particularly limited as long as it burns fuel coal, for example, a boiler, a heating furnace, etc., but a scale capable of recovering a reusable amount of gypsum, specifically 10,000 kW or more, preferably 100,000 It is economically reasonable that the furnace has a calorific value of kW or more.

火炉1の燃焼方式としては、例えば、固定層燃焼方式、流動層(気泡流動層又は循環流動層)燃焼方式、噴流層(微粉炭)燃焼方式等を挙げることができる。   Examples of the combustion method of the furnace 1 include a fixed bed combustion method, a fluidized bed (bubble fluidized bed or circulating fluidized bed) combustion method, a spouted bed (pulverized coal) combustion method and the like.

<電気集塵機>
電気集塵機2は、放電極からのコロナ放電によって排ガス中の微粒子(フライアッシュ)を帯電させ、帯電した微粒子を電極(集塵極)に引き寄せて排ガスから分離して捕集する装置である。
<Electric dust collector>
The electrostatic precipitator 2 is a device that charges fine particles (fly ash) in the exhaust gas by corona discharge from the discharge electrode, attracts the charged fine particles to the electrode (collection electrode), separates from the exhaust gas and collects it.

電気集塵機2の放電方法としては、直流放電であってもよく、パルス放電であってもよい。また、電気集塵機は、集塵極に付着した微粒子を振動によって払い落とす乾式電気集塵機であってもよく、集塵極に付着した微粒子を水で洗い流す湿式電気集塵機であってもよい。   The discharge method of the electrostatic precipitator 2 may be direct current discharge or pulse discharge. In addition, the electrostatic precipitator may be a dry electrostatic precipitator that cleans off particulates adhering to the dust collection electrode by vibration, or may be a wet electrostatic precipitator that flushes fine particles adhering to the dust collection pole with water.

<湿式脱硫装置>
湿式脱硫装置3は、水に石灰石を分散したスラリー(吸収液)を排ガスに接触させることで、石灰と硫黄酸化物とを反応させて硫黄酸化物を吸収すると共に、副生物として石膏を回収する装置である。
<Wet desulfurization system>
The wet desulfurization apparatus 3 causes a slurry (absorbent liquid) in which limestone is dispersed in water to be brought into contact with exhaust gas, thereby causing lime to react with sulfur oxides to absorb sulfur oxides and recover gypsum as a by-product It is an apparatus.

湿式脱硫装置3としては、排ガスに吸収液を噴霧するスプレー方式の装置、排ガスの流路にグリッド状の充填物を配置して気液接触を促進するグリッド方式の装置、排ガスを吸収液にバブリングさせる装置等を利用することができる。   As the wet desulfurization apparatus 3, a spray-type apparatus for spraying the absorbing liquid to the exhaust gas, a grid-type apparatus for promoting gas-liquid contact by arranging a grid-like filler in the flow path of the exhaust gas, and bubbling the exhaust gas into the absorbing liquid It is possible to use an apparatus for

[運転方法]
本発明に係る石炭燃焼設備の運転方法の一実施形態は、火炉1で燃焼する燃料石炭として、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が比較的大きい石炭を用いる。
[how to drive]
One embodiment of a method of operating a coal combustion facility according to the present invention comprises, as fuel coal burning in the furnace 1, coal having a relatively large ash content with a particle size of 1.0 μm or less in the ash obtained by heat ashing. Use.

加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量を大きくする理由としては、小径の灰分は火炉1で燃料石炭を燃焼したときに生じる排ガス中の未燃炭素粒子に包含される可能性が大きく、電気集塵機2における未燃炭素粒子の帯電性を向上し、未燃炭素粒子を除去しやすくするからである。   As the reason for increasing the ash content with a particle size of 1.0 μm or less in the ash content obtained by heat ashing, the small diameter ash content is included in the unburned carbon particles in the exhaust gas produced when the fuel coal is burned in the furnace 1 This is because the chargeability of the unburned carbon particles in the electrostatic precipitator 2 is improved and the unburned carbon particles are easily removed.

燃料石炭を加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量の下限としては、0.20質量%であり、0.25質量%が好ましく、0.30質量%がより好ましい。一方、燃料石炭を加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量の上限としては、1.5質量%が好ましく、1.0質量%がより好ましく、0.8質量%がさらに好ましい。燃料石炭を加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記下限に満たない場合、火炉1での燃料石炭の燃焼により発生する排ガス中の未燃炭素に含まれる灰分量が小さくなり、電気集塵機における未燃炭素の除去率が不十分となる結果、湿式脱硫装置3で回収される石膏が着色するおそれがある。逆に、燃料石炭を加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記上限を超える場合、排ガス中の石炭灰量が大きくなることで、電気集塵機を通過する石炭灰の総量が増大して湿式脱硫装置3で回収される石膏の品質が低下するおそれがある。   The lower limit of the ash content with a particle size of 1.0 μm or less in the ash obtained by heat-ashing fuel coal is 0.20 mass%, preferably 0.25 mass%, and 0.30 mass% preferable. On the other hand, as an upper limit of ash content with a particle diameter of 1.0 micrometer or less in the ash content obtained by heat-ashing fuel coal, 1.5 mass% is preferable, 1.0 mass% is more preferable, and 0.8 mass % Is more preferred. Contained in unburned carbon in exhaust gas generated by combustion of fuel coal in furnace 1 when ash content with particle diameter of 1.0 μm or less in ash obtained by heat-ashing fuel coal does not reach the above lower limit As the amount of ash decreases and the removal rate of unburned carbon in the electrostatic precipitator becomes insufficient, the gypsum recovered by the wet desulfurization device 3 may be colored. Conversely, when the ash content of the particle size of 1.0 μm or less in the ash content obtained by heat-ashing fuel coal exceeds the above upper limit, the amount of coal ash in the exhaust gas becomes large, so that the coal passing through the electrostatic precipitator The total amount of ash increases, and the quality of gypsum recovered by the wet desulfurization apparatus 3 may be degraded.

燃料石炭の灰分全体の含有量の下限としては、2%が好ましく、3%がより好ましい。一方、燃料石炭の灰分含有量の上限としては、20%が好ましく、18%がより好ましい。燃料石炭の灰分含有量が上記下限に満たない場合、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分の含有量が不十分となることで湿式脱硫装置3で回収される石膏が着色するおそれがある。逆に、燃料石炭の灰分含有量が上記上限を超える場合、電気集塵機を通過する石炭灰の総量が増大して湿式脱硫装置3で回収される石膏の品質が低下するおそれがある。   The lower limit of the total content of ash in fuel coal is preferably 2%, more preferably 3%. On the other hand, as an upper limit of ash content of fuel coal, 20% is preferred and 18% is more preferred. When the ash content of fuel coal is less than the above lower limit, the content of ash having a particle diameter of 1.0 μm or less in the ash obtained by heat-ashing is insufficient and the gypsum recovered by the wet desulfurization apparatus 3 May be colored. Conversely, when the ash content of the fuel coal exceeds the above upper limit, the total amount of coal ash passing through the electrostatic precipitator may increase and the quality of gypsum recovered by the wet desulfurization apparatus 3 may be degraded.

上記燃料石炭としては、無煙炭、歴青炭、亜瀝青炭等を用いることができる。中でも、上記燃料石炭としては、無煙炭よりは熱量単価を抑制でき、亜歴青炭よりは熱量が高いことから、歴青炭が特に好適に用いられる。   Anthracite coal, bituminous coal, sub-bituminous coal etc. can be used as said fuel coal. Among them, bituminous coal is particularly preferably used as the above-mentioned fuel coal because it can suppress the unit cost of heat than anthracite coal and has a higher amount of heat than subbituminous coal.

また、燃料石炭としては、上記灰分含有量を満たすよう混炭した石炭を用いてもよい。混炭した石炭を燃料石炭として用いることによって、燃料の入手が容易となるため、燃料コストの上昇を抑制することができる。   Moreover, you may use coal coal mixed so that the said ash content may be satisfy | filled as fuel coal. By using mixed coal as fuel coal, it becomes easy to obtain fuel, so it is possible to suppress an increase in fuel cost.

<利点>
以上のように、当該石炭燃焼設備の運転方法では、火炉1で燃焼する燃料石炭として、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が比較的大きい石炭を用いることによって、電気集塵機2における未燃炭素粒子の除去率を向上し、湿式脱硫装置3において回収される石膏に含まれる未燃炭素量を低減することができるので、高品質の石膏を得ることができる。このため、回収された石膏を比較的高い値段で販売することができ、全体として石炭燃焼設備の運転コストを低減することができる。
<Advantage>
As described above, in the method of operating the coal combustion facility, coal having a relatively large ash content with a particle size of 1.0 μm or less in the ash obtained by heat-ashing is used as the fuel coal burned in the furnace 1 As a result, the removal rate of unburned carbon particles in the electrostatic precipitator 2 can be improved, and the amount of unburned carbon contained in gypsum recovered in the wet desulfurization apparatus 3 can be reduced, so high quality gypsum can be obtained. . For this reason, the recovered gypsum can be sold at a relatively high price, and the operating cost of the coal combustion facility can be reduced as a whole.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
Other Embodiments
The above embodiment does not limit the configuration of the present invention. Therefore, the above-mentioned embodiment can omit, substitute or add the components of each part of the above-mentioned embodiment based on the description of the present specification and technical common sense, and all of them are interpreted as belonging to the scope of the present invention It should.

当該石炭燃焼設備の運転方法に用いる石炭燃焼設備は、排ガスの熱で水を加熱するエコノマイザー、排ガスの熱で燃焼用空気を加熱するエアヒーター、湿式脱硫装置の上流で排ガスから熱回収して湿式脱硫装置を通過した排ガスを再加熱するガス−ガスヒータ熱回収器(GGH)、選択触媒還元脱硝装置(SCR)等のさらなる装置を備えてもよい。   The coal combustion equipment used for the operation method of the coal combustion equipment is an economizer that heats water with the heat of exhaust gas, an air heater that heats combustion air with the heat of exhaust gas, and heat recovery from exhaust gas upstream of a wet desulfurization device Additional devices such as a gas-gas heater heat recovery unit (GGH), a selective catalytic reduction denitrification unit (SCR), and the like may be provided to reheat the exhaust gas having passed through the wet desulfurization unit.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not to be construed as being limited based on the description of the examples.

石炭燃焼設備として、火炉として石炭焚きボイラーを備え、排ガス流路に選択触媒還元脱硝装置、電気集塵機及び湿式脱硫装置をこの順に設けた発電所において、加熱灰化して得られる灰分の粒径分布が異なる複数の燃料石炭No.1〜5を燃焼して、湿式脱硫装置で回収される石膏に着色が生じるか否かを確認した。なお、燃料石炭No.1,5はインドネシア産歴青炭であり、燃料石炭No.2〜4はオーストラリア産歴青炭である。   At a power plant where a coal-fired boiler is installed as a furnace and a selective catalyst reduction denitrification unit, an electric precipitator and a wet desulfurization unit are installed in this order as a coal combustion facility, the particle size distribution of ash obtained by heating ashing Several different fuel coal No. 1 to 5 were burned to check whether the gypsum recovered by the wet desulfurization apparatus was colored. In addition, fuel coal No. 1, 5 are bituminous coal produced in Indonesia; 2 to 4 are Australian bituminous coals.

燃料石炭No.1〜5を、JIS−M8812(1978)の「灰分定量方法」に準拠して、灰分合計含有量を測定すると共に、灰化したサンプルの粒径分布をレーザー回折散乱法により測定して、各粒径以下の灰分の燃料石炭の質量を基準とする累積含有量を算出した。この結果を次の表1に示す。また、表1には、上記燃料石炭No.1〜5を、上記石炭燃焼設備において燃焼し、湿式脱硫装置で回収された石膏への着色の有無を合わせて示す。   Fuel coal No. The total ash content is measured according to JIS-M8812 (1978) “ash determination method”, and the particle size distribution of the incinerated sample is measured by the laser diffraction scattering method, and each The cumulative content was calculated based on the mass of the fuel coal with an ash content less than the particle size. The results are shown in Table 1 below. In Table 1, the above-mentioned fuel coal No. 1 to 5 are also shown together with the presence or absence of coloring in the gypsum recovered by the wet desulfurization device by burning in the coal combustion facility.

Figure 2019070508
Figure 2019070508

表1に示すように、燃料石炭No.1〜3は石膏への有意な着色がなかったのに対し、燃料石炭No.4,5は石膏への着色(未燃炭素粒子による黒色化)が見られた。   As shown in Table 1, fuel coal No. While No. 1 to 3 did not have significant coloring to gypsum, No. 1 fuel coal No. In 4 and 5, coloring to gypsum (blackening with unburned carbon particles) was observed.

図2に、燃料石炭No.1〜5を加熱灰化して得られる灰分の粒径分布を示す。図2において、石膏への有意な着色がなかったものは白抜きのマーカーを用い、石膏への着色があったものは塗りつぶしたマーカーを用いて示す。   As shown in FIG. The particle size distribution of the ash content obtained by heat-ashing 1-5 is shown. In FIG. 2, those without significant coloration to gypsum are shown using white markers, and those having coloration to gypsum are shown using filled markers.

図示するように、黒色化による石膏の品質劣化が確認されなかった燃料石炭No.1〜3は、加熱灰化して得られる灰分中の粒径が小さい灰分の含有量が比較的大きく、黒色化による石膏の品質劣化があった燃料石炭No.4,5は、加熱灰化して得られる灰分中の粒径が小さい灰分の含有量が比較的小さかった。一方、加熱灰化して得られる灰分中の粒径が大きい灰分の含有量と石膏の黒色化との間には有意な相関関係は認められなかった。   As shown in the figure, the fuel coal No. 1 in which the deterioration in the quality of gypsum due to the blackening was not confirmed. In the fuel coal No. 1 to 3, fuel ash having a relatively large content of ash having a small particle size in the ash obtained by heat ashing was used, and the quality of gypsum was deteriorated due to blackening. As for 4,5, the content of the small particle size ash content in the ash content obtained by heat ashing was relatively small. On the other hand, no significant correlation was found between the content of ash having a large particle size in the ash obtained by heat ashing and the blackening of gypsum.

燃料石炭中の灰分の石膏の黒色化防止に対する効果は、燃料石炭を加熱灰化して得られる灰分の粒径が小さい程大きく、加熱灰化後に一定の粒径を超える灰分は石膏の黒色化防止に寄与しないと考えられる。より詳細には、石炭燃焼設備の運転において湿式脱硫装置で得られる石膏の着色の有無は、燃料石炭を加熱灰化して得られる灰分中の粒径1.0μm以下の灰分の燃料石炭の質量を基準とする含有率によって判断することが適当と考えられる。   The effect of the ash in the fuel coal on the prevention of blackening of gypsum is greater as the particle size of the ash obtained by heat-ashing the fuel coal is smaller, and the ash exceeding a certain particle size after heating-ashing prevents the blackening of gypsum It is thought that it does not contribute to More specifically, the presence or absence of coloring of gypsum obtained by the wet desulfurization apparatus in the operation of the coal combustion facility is determined by the mass of the ash coal having a particle size of 1.0 μm or less in the ash obtained by heating the fuel coal. It is considered appropriate to judge by the reference content rate.

具体的には、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記燃料石炭の0.20質量%以上である石炭を燃料石炭として用いることによって、湿式脱硫装置で得られる石膏の着色を防止することができると考えられる。   Specifically, a wet desulfurization apparatus is used by using coal having an ash content with a particle diameter of 1.0 μm or less in the ash obtained by heat ashing as 0.20% by mass or more of the fuel coal as the fuel coal. It is believed that the coloration of the resulting gypsum can be prevented.

さらに、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量と湿式脱硫装置で回収される石膏の着色との関係を確認するために、複数種類の石炭を混合することによって、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が異なる燃料石炭を調製した。このように混炭によって得られた燃料石炭を同じ石炭燃焼設備を用いて燃焼し、湿式脱硫装置で回収された石膏中の未燃炭素の含有率をJIS−M8819(1997)に準拠して測定した。   Furthermore, in order to confirm the relationship between the ash content in the ash content obtained by heat ashing and the particle size of 1.0 μm or less in the ash content and the color of gypsum recovered by the wet desulfurization apparatus, by mixing plural types of coal Then, a fuel coal having a particle size of 1.0 μm or less and different in ash content in the ash content obtained by heat ashing was prepared. The fuel coal thus obtained by mixed coal was burned using the same coal combustion facility, and the content of unburned carbon in gypsum recovered by the wet desulfurization apparatus was measured in accordance with JIS-M 8819 (1997) .

図3に、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量の測定値と、湿式脱硫装置で回収された石膏中の未燃炭素の含有率の測定値との関係をプロットしたグラフを示す。   Fig. 3 shows the relationship between the measured value of the ash content with a particle size of 1.0 μm or less in the ash obtained by heat-ashing and the measured value of the unburned carbon content in gypsum recovered by the wet desulfurization device Shows a graph plotting.

図示するように、若干のばらつきは見られるものの、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記燃料石炭の0.20質量%以上である石炭を燃料石炭として用いることによって、湿式脱硫装置で得られる石膏中の未燃炭素濃度、つまり石膏の着色を十分に抑制できることが確認できた。   As shown in the figure, although there is some variation, coal having an ash content with a particle size of 1.0 μm or less in the ash obtained by heat ashing is 0.20 mass% or more of the above fuel coal as fuel coal By using it, it has been confirmed that the unburned carbon concentration in gypsum obtained by the wet desulfurization apparatus, that is, the coloration of gypsum can be sufficiently suppressed.

本発明に係る石炭燃焼設備の運転方法は、特に石炭火力発電所の運転方法として好適に利用することができる。   The operation method of the coal combustion facility according to the present invention can be suitably used particularly as an operation method of a coal-fired power plant.

1 火炉
2 電気集塵機
3 湿式脱硫装置
4 煙突
1 furnace 2 electric precipitator 3 wet desulfurization device 4 chimney

Claims (3)

燃料石炭を燃焼する火炉と、この火炉から排出される排ガスから微粒子を除去する電気集塵機と、この電気集塵機で微粒子を除去した排ガスから石灰石石膏法により硫黄酸化物を除去する湿式脱硫装置とを備える石炭燃焼設備の運転方法であって、
上記燃料石炭として、加熱灰化して得られる灰分中の粒径1.0μm以下の灰分含有量が上記燃料石炭の0.20質量%以上である石炭を用いることを特徴とする石炭燃焼設備の運転方法。
A furnace for burning fuel coal, an electrostatic precipitator for removing particulates from exhaust gas discharged from the furnace, and a wet desulfurization apparatus for removing sulfur oxides from the exhaust gas from which particulates are removed by the electrostatic precipitator by limestone gypsum method A method of operating a coal combustion facility,
Operation of a coal combustion facility characterized by using, as the fuel coal, coal having an ash content with a particle diameter of 1.0 μm or less in the ash obtained by heat-ashing and having an ash content of 0.20 mass% or more of the fuel coal Method.
上記燃料石炭として、上記灰分含有量を満たすよう混炭した石炭を用いる請求項1に記載の石炭燃焼設備の運転方法。   The method for operating a coal combustion facility according to claim 1, wherein coal mixed with coal to satisfy the ash content is used as the fuel coal. 上記燃料石炭として、歴青炭を用いる請求項1又は請求項2に記載の石炭燃焼設備の運転方法。   The method according to claim 1 or 2, wherein bituminous coal is used as the fuel coal.
JP2018097417A 2017-10-10 2018-05-21 Method for operating coal combustion facility Pending JP2019070508A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017196789 2017-10-10
JP2017196789 2017-10-10

Publications (1)

Publication Number Publication Date
JP2019070508A true JP2019070508A (en) 2019-05-09

Family

ID=66441552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097417A Pending JP2019070508A (en) 2017-10-10 2018-05-21 Method for operating coal combustion facility

Country Status (1)

Country Link
JP (1) JP2019070508A (en)

Similar Documents

Publication Publication Date Title
US7837962B2 (en) Method and apparatus for removing mercury and particulates from combustion exhaust gas
ES2315002T3 (en) INJECTION OF SORBENT ALKALINE FOR THE CONTROL OF MERCURY.
US20080107579A1 (en) Bromine Addition for the Improved Removal of Mercury from Flue Gas
US7381387B2 (en) Mercury reduction system and method in combustion flue gas using coal blending
US7766997B2 (en) Method of reducing an amount of mercury in a flue gas
CA2625518A1 (en) Methods and apparatus for removing mercury from combustion exhaust gas
WO2006031237A1 (en) Scrubbing systems and methods for coal fired combustion units
CN101703875A (en) Oxidizing method for removing gaseous elemental mercury in boiler fume
Nihalani et al. Emission control technologies for thermal power plants
JPH0249772B2 (en)
CN206676190U (en) Promote system of the burned-coal fly ash to the pollutant adsorbing and removing such as mercury in flue gas
CN103657408A (en) Device of removing arsenic and mercury in flue gas and method of removing arsenic and mercury
CN108373936A (en) A kind of flue gas purification system and method for the gasification of fire coal coupled biological matter
JP2019070508A (en) Method for operating coal combustion facility
CN205252893U (en) Glass smoke pollutants is purifier in coordination
JP2005321120A (en) Ash melting furnace system
CN105435621A (en) Glass smoke pollutant synergistic purification device
JP2013202434A (en) Method for disposing of fluidized bed-system boiler ash and disposer
US20100055015A1 (en) Low temperature mercury control process
JP5878408B2 (en) Treatment method for fluidized bed boiler ash
CN104028101B (en) Flue gas desulfurizing and hydrargyrum-removing integral system and technique
JP3035015B2 (en) Desulfurization method
JP6206618B1 (en) Coal-fired power generation facility
JPS6153106B2 (en)
KR101424129B1 (en) Boiler System for Petro Coke with Wet Scrubber and Dust Collector Equipment