JP2019070488A - Combustion furnace with denitration device - Google Patents

Combustion furnace with denitration device Download PDF

Info

Publication number
JP2019070488A
JP2019070488A JP2017197038A JP2017197038A JP2019070488A JP 2019070488 A JP2019070488 A JP 2019070488A JP 2017197038 A JP2017197038 A JP 2017197038A JP 2017197038 A JP2017197038 A JP 2017197038A JP 2019070488 A JP2019070488 A JP 2019070488A
Authority
JP
Japan
Prior art keywords
combustion
liquid fuel
reducing agent
flame
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017197038A
Other languages
Japanese (ja)
Other versions
JP7320917B2 (en
Inventor
太祐 舛添
Daisuke Masuzoe
太祐 舛添
恭士 工藤
Takashi Kudo
恭士 工藤
裕二 有福
Yuji Arifuku
裕二 有福
聡之 田中
Satoyuki Tanaka
聡之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2017197038A priority Critical patent/JP7320917B2/en
Publication of JP2019070488A publication Critical patent/JP2019070488A/en
Application granted granted Critical
Publication of JP7320917B2 publication Critical patent/JP7320917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

To provide a combustion furnace with a denitration device that can efficiently denitrate a combustion exhaust gas, produced by burning liquid fuel, in a simple method without any large alteration of the combustion furnace.SOLUTION: A combustion furnace with a denitration device which is constituted by installing a liquid fuel combustion burner and a reductant blowing nozzle in a furnace in which liquid fuel is burnt is characterized in that a cylindrical body is installed surrounding a side face of flames generated from the liquid fuel burning burner or a high-temperature combustion gas following the flames, and a tip of the reductant blowing nozzle is provided inside the cylindrical body to blow a reductant to non-contact parts of the flames.SELECTED DRAWING: Figure 1

Description

本発明は新規な排ガス脱硝装置を備えた燃焼炉に関するものである。   The present invention relates to a combustion furnace provided with a novel exhaust gas denitration apparatus.

化学設備等の熱媒加熱炉や直火炉等の熱源としてコークス炉ガス、高炉ガス等のガス燃料や軽油、重油等の液体燃料を燃焼させることが知られている。しかし、これらの燃料は、しばしば窒素化合物を含有することから、燃焼により発生する燃焼ガス中のNOxが増加するため、還元剤により脱硝することで排ガス中の窒素酸化物(NOx)を排出基準以下とする必要がある。   It is known to burn a gas fuel such as coke oven gas or blast furnace gas, or a liquid fuel such as light oil or heavy oil as a heat source such as a heat medium heating furnace such as a chemical facility or a direct furnace. However, since these fuels often contain nitrogen compounds, NOx in the combustion gas generated by the combustion increases, so nitrogen oxides (NOx) in the exhaust gas can be reduced below the emission standard by denitrifying with a reducing agent. You need to

脱硝方法としては、触媒脱硝法や無触媒脱硝法がある。その中で無触媒脱硝方法は、NOxを含むガスに高温状態でアンモニア等の還元剤を導入することにより、触媒を使用することなくNOxを還元除去する方法であり、他の方法より設備コストがかからない利点がある。この無触媒脱硝方法において、脱硝反応に影響を及ぼす主な要因は、排ガス温度、反応時間、排ガスと還元剤との混合条件等が挙げられる。   As a denitration method, there are a catalytic denitration method and a noncatalytic denitration method. Among them, the non-catalytic NOx removal method is a method of reducing and removing NOx without using a catalyst by introducing a reducing agent such as ammonia in a high temperature state to gas containing NOx, and equipment cost is higher than other methods. There is an advantage that does not cost. In this noncatalytic denitration method, the main factors affecting denitration reaction include exhaust gas temperature, reaction time, mixing conditions of exhaust gas and reducing agent, and the like.

しかし、これらの燃料のうち、特に液体燃料は、発熱量が大きい為、炉内温度が上がり過ぎてしまい、無触媒脱硝に必要な温度領域(700〜1050℃程度)を十分に確保できず、脱硝反応が十分に進行しない問題があった。   However, among these fuels, liquid fuel, in particular, has a large calorific value, so the temperature in the furnace rises too much, and a temperature range (about 700 to 1050 ° C.) necessary for noncatalytic denitration can not be sufficiently secured. There was a problem that the denitrification reaction did not proceed sufficiently.

また、触媒を使用する脱硝であっても、燃焼ガスの温度が高すぎたり、反応温度領域において必要な滞留時間をとることができないと、脱硝反応が十分に進行しない。   Further, even in the case of denitration using a catalyst, the denitration reaction does not proceed sufficiently if the temperature of the combustion gas is too high or the required residence time can not be taken in the reaction temperature range.

一般に、一定規模以上の既設の燃焼炉には脱硝装置が備えられているが、上記の課題により、既設の脱硝装置では十分な脱硝ができないという問題が生じる。   Generally, an existing combustion furnace having a certain size or more is equipped with a denitration device, but the above problem causes a problem that the existing denitration device can not sufficiently denitration.

液体燃料を用いて脱硝反応を進行させる技術としては、例えば、スプレーノズルの改良による還元剤の微粒子化(特許文献1)が報告されているが、この技術は低温度域において高い脱硝効果を得るための技術であり、前記課題を解決するための開示はない。   As a technology to advance the denitrification reaction using liquid fuel, for example, the atomization of the reducing agent by improvement of the spray nozzle (Patent Document 1) has been reported, but this technology achieves high denitrification effect in a low temperature range Technology, and there is no disclosure for solving the problems.

ガス燃料を用いて脱硝反応を進行させる技術としては、筒状体をガス燃焼用バーナから発生する炎又は炎に続く高温燃焼ガスの側面周囲を取り囲むように設置し、還元剤吹込み用ノズル先端を筒状体の内部に設ける技術(特許文献2)があるが、これを液体燃料用の燃焼炉に適用することに困難があった。
すなわち、一般に、液体燃料はガス燃料と比較して燃焼速度が遅く、火炎が長炎化するため、筒状体内で脱硝を行う場合、筒状体内の脱硝温度領域が狭くなるという問題があり、脱硝効率の低下が生じるものであった。
As a technology to advance the denitration reaction using gas fuel, the cylindrical body is installed so as to surround the flame or the high temperature combustion gas following the flame generated from the gas combustion burner, and the tip of the reducing agent injection nozzle There is a technology (patent document 2) which provides the inside of a cylindrical body, but there was a difficulty in applying this to a combustion furnace for liquid fuel.
That is, in general, liquid fuel burns slower than gas fuel, and the flame lengthens, so when denitrifying in the tubular body, there is a problem that the denitration temperature range in the tubular body becomes narrow, A decrease in denitration efficiency occurred.

特開2002-136837号公報Japanese Patent Application Publication No. 2002-136837 特開2014-70785号公報JP, 2014-70785, A

本発明は、上記の問題を解決するために、液体燃焼炉またはその付帯設備の大幅な改造を必要とせず、排ガスの脱硝、特に無触媒脱硝を効率よく行う装置およびその方法を提供するものである。   The present invention provides an apparatus and a method for efficiently performing denitration of exhaust gas, particularly non-catalytic denitration without requiring significant modification of a liquid combustion furnace or its ancillary equipment to solve the above problems. is there.

すなわち本発明は、液体燃料燃焼用バーナ及び還元剤吹込み用ノズルを設置してなる脱硝装置を備えた液体燃料燃焼炉において、筒状体を当該液体燃料燃焼用バーナから発生する炎又は炎に続く高温燃焼ガスの側面周囲を取り囲むように設置し、還元剤吹込み用ノズル先端を筒状体の内部に設け、前記炎との非接触部に還元剤を吹き付けることを特徴とする脱硝装置を備えた燃焼炉である。   That is, according to the present invention, in a liquid fuel combustion furnace provided with a denitration apparatus provided with a liquid fuel combustion burner and a reducing agent injection nozzle, the cylindrical body is a flame or a flame generated from the liquid fuel combustion burner. A denitrification apparatus is provided so as to surround the side of the subsequent high temperature combustion gas, the tip of a reducing agent blowing nozzle is provided inside the cylindrical body, and the reducing agent is sprayed to the noncontact portion with the flame. It is a equipped combustion furnace.

上記液体燃料燃焼用バーナから吹込まれる液体燃料のザウター平均粒子径は、110μm以下であることが好ましい。
また、上記筒状体の形状としては、円筒型であることが好ましい。また、上記脱硝装置としては、無触媒脱硝反応用の装置であることが好ましい。
また、本発明は、上記の燃焼炉を使用し、液体燃料燃焼用バーナから吹込まれる液体燃料のザウター平均粒子径を110μm以下とし、筒状体の内部に設けた還元剤吹込み用ノズル先端から還元剤を炎との非接触部に吹き付けて脱硝することを特徴とする燃焼方法である。
The Sauter average particle diameter of the liquid fuel blown from the liquid fuel combustion burner is preferably 110 μm or less.
Moreover, as a shape of the said cylindrical body, it is preferable that it is a cylindrical shape. Moreover, as said denitration apparatus, it is preferable that it is an apparatus for noncatalytic denitration reaction.
Further, the present invention uses the above-described combustion furnace, and has a Sauter average particle diameter of 110 μm or less of liquid fuel blown from a burner for liquid fuel combustion, and a reducing agent injection nozzle tip provided inside a cylindrical body. From the above, it is a combustion method characterized by spraying a reducing agent to a non-contact portion with a flame to denitrify.

本発明の脱硝装置を備えた燃焼炉は、液体燃料燃焼用バーナの近傍に筒状体を設置し、さらに、還元剤の吹き付け位置を制御するというものであるので、燃焼炉の大幅な改造なしに、簡便な方法で高温燃焼ガス又は排ガスの温度や流動等の状態をコントロールできる。その結果、液体燃料の燃焼効率が向上し、排ガスの脱硝を効率よく行うことができる。また、燃焼炉を新設する場合であっても、簡単な設計変更で済むという利点がある。   The combustion furnace provided with the NOx removal system of the present invention installs a cylindrical body in the vicinity of the liquid fuel combustion burner and further controls the spraying position of the reducing agent, so there is no significant modification of the combustion furnace. In addition, it is possible to control the conditions such as the temperature and the flow of the high temperature combustion gas or the exhaust gas by a simple method. As a result, the combustion efficiency of the liquid fuel is improved, and the denitration of the exhaust gas can be performed efficiently. In addition, even when a combustion furnace is newly built, there is an advantage that only a simple design change is required.

本発明の熱媒加熱装置の一例を示す概略の縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the heat-medium heating apparatus of this invention.

以下、本発明を更に説明する。
本発明の燃焼炉は、液体燃料の燃焼を行う炉内に液体燃料燃焼用バーナ及び還元剤吹込み用ノズルを設置してなる脱硝装置を備えており、筒状体を当該液体燃料燃焼用バーナから発生する炎又は炎に続く高温燃焼ガスの側面周囲を取り囲むように設置し、還元剤吹込み用ノズル先端を筒状体の内部に設け、前記炎の非接触部に還元剤を吹き付ける構造を有する脱硝装置を備えている。
この筒状体は炎又は炎に続く高温燃焼ガスの温度を担保し、脱硝温度領域を構築する為に設けられる。温度を担保するとは、具体的には対流による低温排ガスの混入又は輻射による熱放散を抑制することなどである。
Hereinafter, the present invention will be further described.
The combustion furnace according to the present invention includes a denitration apparatus in which a liquid fuel combustion burner and a reducing agent injection nozzle are installed in a liquid fuel combustion furnace, and the cylindrical body is a liquid fuel combustion burner. It is installed to surround the side of the high temperature combustion gas following the flame or flame generated from the flame, and the tip of the reducing agent blowing nozzle is provided inside the cylindrical body, and the reducing agent is sprayed to the noncontact part of the flame. It has the denitrification equipment which it has.
The cylinder secures the temperature of the high temperature combustion gas following the flame or the flame, and is provided to construct a denitration temperature range. Securing the temperature specifically includes suppressing mixing of low temperature exhaust gas by convection or heat dissipation by radiation.

以下、本発明の燃焼炉の一例を、図面を参照して説明する。
燃焼炉は、燃焼部10と燃焼部からの排ガス又は熱によって加熱される加熱室を有する。燃焼部10は、バーナ15を有し、そこに液体燃料が供給される。バーナ15の周囲からは酸素含有ガス、有利には空気14が供給され、燃焼が生じ、燃焼炎とそれに続く高温燃焼ガスが生じる。一方、脱硝用の還元剤ガスは、高温燃焼ガスと接触して、混合するように管16から吹き込まれる。バーナ15の先端は、炉壁12より下部に設けられているが、それと同じ高さであってもよいし、上部であってもよい。好ましくは、脱硝温度領域確保という観点から、炉壁12より下部に設ける。図面ではバーナ15の先端は、炉壁12より下部に設けられており、炉壁12とバーナ15の先端の間の側壁はバーナタイル13で構成されている。高温排ガスは開口部17から加熱室内に流入する。筒状体11内に流入する高温排ガスは、燃焼炎部分を含んでもよく、それに続く高温燃焼ガスだけでもよく、両方を含んでもよい。なお、前記側壁を構成する材料は、バーナタイル以外の公知の材料を使用出来る。
Hereinafter, an example of the combustion furnace of the present invention will be described with reference to the drawings.
The combustion furnace has a combustion chamber 10 and a heating chamber heated by the exhaust gas or heat from the combustion chamber. The combustion unit 10 has a burner 15 to which liquid fuel is supplied. From the surroundings of the burner 15 an oxygen-containing gas, preferably air 14, is supplied, combustion takes place and a combustion flame followed by a hot combustion gas is generated. On the other hand, the reducing agent gas for denitrification comes in contact with the high temperature combustion gas and is blown from the pipe 16 to be mixed. The tip of the burner 15 is provided below the furnace wall 12 but may be at the same height or at the top. Preferably, it is provided below the furnace wall 12 from the viewpoint of securing a denitration temperature region. In the drawing, the tip of the burner 15 is provided below the furnace wall 12, and the side wall between the furnace wall 12 and the tip of the burner 15 is formed of the burner tile 13. The high temperature exhaust gas flows into the heating chamber from the opening 17. The high temperature exhaust gas flowing into the cylindrical body 11 may include a combustion flame portion, may be only the high temperature combustion gas that follows, or may include both. In addition, the material which comprises the said side wall can use well-known materials other than a burner tile.

液体燃料15は、高温排ガスの温度が高く、還元剤ガスと接触しても、脱硝に必要な温度領域を確保できないことがある。そこで、本発明では筒状体11を炉壁12に接して設け、更に、前記燃焼炎の非接触部に還元剤を吹き付けるように、還元剤用ノズル先端を筒状体の内部に設ける。ここで、燃焼炎の非接触部とは、燃焼炎の外部を意味する。燃焼炎の非接触部に還元剤を吹き付けることにより脱硝効率が向上する。   The liquid fuel 15 has a high temperature of the high temperature exhaust gas, and may not be able to secure a temperature range necessary for denitrification even when in contact with the reducing agent gas. Therefore, in the present invention, the cylindrical body 11 is provided in contact with the furnace wall 12, and the reducing agent nozzle tip is provided inside the cylindrical body so as to spray the reducing agent on the non-contact portion of the combustion flame. Here, the non-contact part of the combustion flame means the outside of the combustion flame. By blowing the reducing agent to the non-contact part of the combustion flame, the NOx removal efficiency is improved.

この筒状体11により、筒状体中の高温排ガスの温度を保ち、還元剤用ノズルから還元剤ガスを脱硝温度領域に吹き付けることで脱硝反応を行う。そして、本発明の燃焼炉は、筒状体11および還元剤用ノズルを中心とする脱硝装置に特徴があるので、液体燃料燃焼炉の材質、形状及び容積は、被燃焼ガスの燃焼に耐え得る耐熱性と、排気装置以外から排ガスが漏洩しない密封性を備えていれば特に制限はない。   The temperature of the high temperature exhaust gas in the cylindrical body is maintained by the cylindrical body 11, and the reducing agent gas is sprayed from the reducing agent nozzle to the denitration temperature range to perform the denitrification reaction. And since the combustion furnace of the present invention is characterized by the denitration device centering on the cylindrical body 11 and the nozzle for reducing agent, the material, shape and volume of the liquid fuel combustion furnace can endure the combustion of the gas to be burned. There is no particular limitation as long as the heat resistance and the sealing property that the exhaust gas does not leak from other than the exhaust device are provided.

また、液体燃料燃焼用バーナ15及び還元剤吹込み用管16に設けられるノズルの大きさ及び形状は、液体燃料燃焼炉、筒状体及び液体燃料燃焼用バーナ開口部の形状、還元ガス噴霧量及び濃度、被燃焼ガス及び排ガスの全体量、含窒素量、酸素濃度及びNOx濃度により、適宜調整し最適化することができる。例えば、図1に例示するように、液体燃料燃焼炉中に開口部17を設け、開口部17に埋没するように液体燃料燃焼用バーナを設置し、液体燃料燃焼用バーナ及び燃焼炎を取り囲むように、バーナタイル等の耐火物を設置する。しかし、後記するように液体燃料のザウター平均粒子径を110μm以下とすることが好ましく、そのために微粒化に適したバーナ開口部の形状とすることがよい。   Further, the size and shape of the nozzles provided in the liquid fuel combustion burner 15 and the reducing agent injection pipe 16 are the shape of the liquid fuel combustion furnace, the cylindrical body and the liquid fuel combustion burner opening, the reduction gas spray amount The concentration can be appropriately adjusted and optimized according to the concentration, the total amount of gases to be burned and exhaust gases, the nitrogen-containing amount, the oxygen concentration, and the NOx concentration. For example, as illustrated in FIG. 1, an opening 17 is provided in the liquid fuel combustion furnace, a liquid fuel combustion burner is installed to be buried in the opening 17, and the liquid fuel combustion burner and the combustion flame are surrounded. , Install refractory materials such as burner tiles. However, as described later, it is preferable to set the Sauter average particle diameter of the liquid fuel to 110 μm or less, and for that purpose, it is preferable to make the shape of the burner opening suitable for atomization.

また、筒状体の材質は、燃料ガスの燃焼に耐え得る耐熱性を備えていれば特に制限はないが、好ましくは、キャスタブル、セラミックウールをステンレス板等で補強したものや、耐火レンガが保温性、耐久性の観点から好ましい。また、筒状体の形状は、筒形状を有していれば良く、例えば角筒、三角筒等の多角筒や円筒、楕円筒が挙げられるが、高温排ガスの対流や保温性の観点から円筒型が好ましい。   Further, the material of the cylindrical body is not particularly limited as long as it has heat resistance that can endure the combustion of the fuel gas, but preferably, castables, ceramic wool reinforced with a stainless steel plate or the like, and firebricks keep warm It is preferable from the viewpoint of the properties and durability. Further, the shape of the cylindrical body may be a cylindrical shape, and examples thereof include polygonal cylinders such as square cylinders and triangular cylinders, cylinders, and elliptical cylinders, but from the viewpoint of heat exhaustion and high temperature exhaust gas convection The mold is preferred.

また、筒状体の大きさは、高温排ガスの温度、排ガス量、排ガス中の酸素濃度及びNOx濃度等により適宜調整し最適化できるが、脱硝に必要な温度領域で、一定時間以上、還元剤を燃焼排ガスと効率よく接触させるという観点から定めることができる。好ましくは、無触媒脱硝の場合は、700〜1050℃の温度領域で、0.1秒以上接触させるように定める。したがって、上記接触時間から筒状体の体積又は高さが定まる。   The size of the cylindrical body can be appropriately adjusted and optimized according to the temperature of the high-temperature exhaust gas, the amount of exhaust gas, the oxygen concentration and NOx concentration in the exhaust gas, etc. Can be determined from the viewpoint of efficiently contacting the flue gas. Preferably, in the case of non-catalytic denitration, contact is made in a temperature range of 700 to 1050 ° C. for 0.1 seconds or more. Therefore, the volume or height of the cylindrical body is determined from the contact time.

また、燃焼炉は複数の燃焼用バーナを有することもでき、この場合燃焼用バーナの全てに筒状体を設置しても、しなくともよい。燃焼炉の形状には制限はないが、筒状体を出た高温排ガスが加熱炉内の被加熱材料を所定温度に加熱し、一定温度に低下したガスが外部に出る排気装置を備えることがよい。   Also, the combustion furnace may have a plurality of combustion burners, in which case all or all of the combustion burners may or may not be provided with a cylindrical body. There is no restriction on the shape of the combustion furnace, but the high temperature exhaust gas leaving the cylindrical body heats the material to be heated in the heating furnace to a predetermined temperature, and is provided with an exhaust device from which the gas lowered to a certain temperature is discharged. Good.

また、無触媒脱硝反応は、炎の非接触部で効率よく進行する。その中でも、700℃〜1050℃の温度領域で特に効率よく進行するので好ましい。より好ましくは850℃〜1050℃の温度領域である。従って、高温排ガスと還元ガスの接触箇所における温度が、上記温度領域になるように、高温排ガスの温度を還元ガスが未接触時において、800℃〜1300℃とすることが好ましい。触媒脱硝反応は無触媒脱硝反応より十分に低い温度で進行するので、160℃〜600℃程度の温度領域とすればよい。   In addition, the noncatalytic denitration reaction proceeds efficiently in the noncontact part of the flame. Among them, it is preferable because it proceeds particularly efficiently in the temperature range of 700 ° C to 1050 ° C. More preferably, it is a temperature range of 850 ° C to 1050 ° C. Therefore, it is preferable to set the temperature of the high temperature exhaust gas to 800 ° C. to 1300 ° C. when the reducing gas is not in contact, so that the temperature at the contact point between the high temperature exhaust gas and the reducing gas is in the above temperature range. Since the catalytic denitration reaction proceeds at a temperature sufficiently lower than the noncatalytic denitration reaction, it may be in a temperature range of about 160 ° C. to 600 ° C.

還元剤は、排ガス中のNOxを窒素に還元できれば、その種類は問わない。例えば、尿素、アンモニア水、アンモニアガスを使用できるが、水分蒸発による排ガス温度低下防止の観点から、アンモニアガスが好ましい。また、複数の上記還元ガスを使用してもよく、またCO、水素等の還元ガスを混合させても良い。   The reducing agent may be of any type as long as it can reduce NOx in the exhaust gas to nitrogen. For example, although urea, aqueous ammonia and ammonia gas can be used, ammonia gas is preferable from the viewpoint of preventing the temperature decrease of the exhaust gas due to water evaporation. Also, a plurality of the above-mentioned reducing gases may be used, or reducing gases such as CO and hydrogen may be mixed.

また、本発明の脱硝装置は、液体燃料として、化学設備等にて発生する副生油を使用した場合、排ガスの脱硝効果が大きいが、含窒素濃度が低い液体燃料を使用した場合でも、排ガスの脱硝効果は十分にある。   Further, the denitration apparatus of the present invention has a large denitration effect of the exhaust gas when the by-product oil generated in a chemical facility etc. is used as the liquid fuel, but even when using a liquid fuel having a low nitrogen concentration, Have sufficient denitrification effect.

また、還元剤吹込み用ノズル先端を筒状体の内部に設け、前記炎の非接触部に還元剤を吹き付けることが重要である。炎の非接触部の中でも、無触媒脱硝反応に適した700〜1050℃の温度領域の部分に還元剤を吹き付けることで、無触媒脱硝反応が特に効率よく進行するので好ましい。一方で、炎との接触部では、1200℃以上であることから、この部分に還元剤を吹き付けると、還元剤の酸化反応等の副反応が進行し、無触媒脱硝反応が十分進行しない。好ましくは、炎から、0.1m以上離れた位置であり、より好ましくは、0.15m以上離れた位置で、上記温度領域となる領域である。筒状体とその内部は、脱硝装置として機能する。   In addition, it is important that the reducing agent blowing nozzle tip be provided inside the cylindrical body and the reducing agent be sprayed to the non-contact portion of the flame. Among the non-contact parts of the flame, it is preferable to spray the reducing agent to a temperature range of 700 to 1050 ° C. suitable for non-catalytic denitration reaction, because the non-catalytic denitration reaction proceeds particularly efficiently. On the other hand, since the temperature is 1200 ° C. or higher at the contact portion with the flame, when the reducing agent is sprayed to this portion, side reactions such as oxidation reaction of the reducing agent proceed and the noncatalytic denitrification reaction does not proceed sufficiently. Preferably, the temperature region is a position at a distance of 0.1 m or more from the flame, more preferably a position at a distance of 0.15 m or more. The cylindrical body and the inside thereof function as a NOx removal device.

また、筒状体の内部における炎の長さを短くすることが好ましい。これにより、筒状対の内部における非接触部、つまり無触媒脱硝反応に適した領域の体積が大きくなる。より好ましくは、(筒状体の高さ)/(炎の高さ)の値が1.5以上であり、さらに好ましくは2以上である。   Moreover, it is preferable to shorten the length of the flame in the inside of a cylindrical body. Thereby, the volume of the non-contact part in the inside of a cylindrical pair, ie, the area | region suitable for non-catalytic denitrification reaction, becomes large. More preferably, the value of (height of cylindrical body) / (height of flame) is 1.5 or more, and more preferably 2 or more.

また、液体燃料の燃焼速度を上げ、燃焼反応速度を向上させるために、前記液体燃料を吹込むノズルから吹込まれる液体燃料を、微粒化することが好ましい。液体燃料を微粒化することで、液体燃料の表面積が大きくなるため、燃焼反応速度が早くなる。液体燃料の粒径は、小さいほど好ましいが、具体的には、ザウター平均粒子径が、110μm以下が好ましく、より好ましくは80μm以下であり、さらに好ましくは、60μm以下である。   In addition, in order to increase the burning rate of the liquid fuel and to improve the burning reaction rate, it is preferable to atomize the liquid fuel blown from the nozzle for blowing the liquid fuel. By atomizing the liquid fuel, the surface area of the liquid fuel is increased, so that the combustion reaction rate is increased. The smaller the particle diameter of the liquid fuel, the more preferable. However, specifically, the Sauter average particle diameter is preferably 110 μm or less, more preferably 80 μm or less, and still more preferably 60 μm or less.

以下、実施例及び比較例に基づいて本発明について更に詳細に説明するが、本発明はこれらにより制限されるものではない。   Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited by these.

脱硝前後における排ガス中のNOx濃度は、NOx計により測定し、酸素濃度6%換算した値を使用した。脱硝率は、アンモニア添加前後の安定した値より算出した。   The NOx concentration in the exhaust gas before and after denitration was measured by an NOx meter, and a value obtained by converting the oxygen concentration to 6% was used. The NOx removal rate was calculated from stable values before and after the addition of ammonia.

実施例1
図1に示す構造の液体燃料燃焼炉を使用して、脱硝試験を行った。この燃焼炉は、油滴を微粒化させるための噴霧孔を有する液体燃料燃焼用バーナ1本及びアンモニア吹込み用ノズルを備え、液体燃料燃焼用バーナの開口部17の開口部直径は600mmである。この液体燃料燃焼用バーナの上部に、円筒型の筒状体(内径=1400mm、高さ=2500mm、厚さ=100mm、キャスタブル製)を設置した。
Example 1
A denitration test was conducted using a liquid fuel combustion furnace having a structure shown in FIG. This combustion furnace is equipped with one liquid fuel combustion burner having spray holes for atomizing oil droplets and an ammonia injection nozzle, and the diameter of the opening 17 of the liquid fuel combustion burner 17 is 600 mm. . A cylindrical tubular body (inner diameter = 1400 mm, height = 2500 mm, thickness = 100 mm, castable) was installed at the top of the liquid fuel combustion burner.

上記液体燃料燃焼用バーナで含窒素燃料油を燃焼した。液体燃料燃焼用バーナから吹込む液体燃料のザウター平均粒子径は、110μmであった。この時発生する排ガスは、530Nm3/hであり、バーナ近傍の燃焼炎温度は1200℃であり、筒状体中央部付近の高温排ガスの温度は約900℃であった。また、(筒状体の高さ)/(炎の高さ)は1.5であった。
上記燃焼炉中のNOx濃度が安定した後に、燃焼炉中のNOx濃度を測定したところ、439ppm(vol)であった。
次に、上記アンモニア吹込み用ノズルから、空気及びアンモニアの混合ガスを、アンモニアとして1.2Nm3/hの速度で導入した。尚、噴出した混合ガスは火炎の非接触領域(炎の接触部から、0.1m離れた位置)に吹き付けた。燃焼炉中のNOx濃度が安定した後に、再び燃焼炉中のNOx濃度を測定したところ、146ppm(vol)であった。アンモニアガスの導入による脱硝率は67%と計算される。
Nitrogen-containing fuel oil was burned by the liquid fuel burning burner. The Sauter average particle diameter of the liquid fuel blown from the liquid fuel combustion burner was 110 μm. The exhaust gas generated at this time was 530 Nm 3 / h, the combustion flame temperature in the vicinity of the burner was 1200 ° C., and the temperature of the high temperature exhaust gas in the vicinity of the central portion of the cylindrical body was about 900 ° C. Moreover, (the height of the cylindrical body) / (the height of the flame) was 1.5.
After the NOx concentration in the combustion furnace was stabilized, the NOx concentration in the combustion furnace was measured to be 439 ppm (vol).
Next, a mixed gas of air and ammonia was introduced at a rate of 1.2 Nm 3 / h as ammonia from the ammonia blowing nozzle. The jetted mixed gas was blown to a non-contact area of the flame (a position 0.1 m away from the contact portion of the flame). After the concentration of NOx in the combustion furnace was stabilized, the concentration of NOx in the combustion furnace was again measured to be 146 ppm (vol). The NOx removal rate by the introduction of ammonia gas is calculated to be 67%.

比較例1
実施例1と同じ燃焼炉に、同様にして液体燃料を吹き込んで、NOx濃度が安定した後に、燃焼炉中のNOx濃度を測定したところ、401ppm(vol)であった。
次に、上記アンモニア吹込み用ノズルから、空気及びアンモニアの混合ガスを、アンモニアとして1.2Nm3/hの速度で導入した。尚、噴出した混合ガスは火炎の接触領域に吹き付けた。上記燃焼炉中のNOx濃度が安定した後に、再び燃焼炉中のNOx濃度を測定したところ、337ppm(vol)であった。アンモニアガスの導入による脱硝率は16%と計算される。
Comparative Example 1
Similarly, the liquid fuel was blown into the same combustion furnace as in Example 1, and after the NOx concentration was stabilized, the NOx concentration in the combustion furnace was measured and found to be 401 ppm (vol).
Next, a mixed gas of air and ammonia was introduced at a rate of 1.2 Nm 3 / h as ammonia from the ammonia blowing nozzle. The jetted mixed gas was blown to the contact area of the flame. After the NOx concentration in the combustion furnace was stabilized, the NOx concentration in the combustion furnace was again measured to be 337 ppm (vol). The NOx removal rate by the introduction of ammonia gas is calculated to be 16%.

10 燃焼部
11 筒状体
12 炉壁
13 バーナタイル
14 空気
15 バーナ
16 還元剤導入管
17 開口部
DESCRIPTION OF SYMBOLS 10 combustion part 11 cylindrical body 12 furnace wall 13 burner tile 14 air 15 burner 16 reducing agent introduction tube 17 opening part

Claims (5)

液体燃料燃焼用バーナ及び還元剤吹込み用ノズルを設置してなる脱硝装置を備えた液体燃料燃焼炉において、筒状体を当該液体燃料燃焼用バーナから発生する炎又は炎に続く高温燃焼ガスの側面周囲を取り囲むように設置し、還元剤吹込み用ノズル先端を筒状体の内部に設け、前記炎の非接触部に還元剤を吹き付ける構造としたことを特徴とする脱硝装置を備えた燃焼炉。   In a liquid fuel combustion furnace provided with a denitration apparatus provided with a liquid fuel combustion burner and a reducing agent injection nozzle, the tubular body is a flame generated from the liquid fuel combustion burner or a high temperature combustion gas following the flame. It was installed so as to surround the side circumference, the tip of the reducing agent blowing nozzle was provided inside the cylindrical body, and the reducing agent was sprayed to the non-contact part of the flame, and the combustion was equipped with the NOx removal device. Furnace. 前記液体燃料燃焼用バーナから吹込まれる液体燃料のザウター平均粒子径が、110μm以下である請求項1に記載の燃焼炉。   The combustion furnace according to claim 1, wherein a Sauter average particle diameter of the liquid fuel blown from the liquid fuel combustion burner is 110 μm or less. 前記筒状体が、円筒型である請求項1又は2に記載の燃焼炉。   The combustion furnace according to claim 1, wherein the cylindrical body is cylindrical. 前記脱硝装置が、無触媒脱硝反応用装置である請求項1〜3のいずれか一項に記載の燃焼炉。   The combustion furnace according to any one of claims 1 to 3, wherein the denitration apparatus is an apparatus for noncatalytic denitration reaction. 請求項1〜4のいずれか一項に記載の燃焼炉を使用し、液体燃料燃焼用バーナから吹込まれる液体燃料のザウター平均粒子径を110μm以下とし、筒状体の内部に設けた還元剤吹込み用ノズル先端から還元剤を炎の非接触部に吹込んで脱硝することを特徴とする燃焼方法。   The reducing agent which used the combustion furnace as described in any one of Claims 1-4, made the Sauter average particle diameter of the liquid fuel blown into from the burner for liquid fuel combustion 110 micrometers or less, and was provided in the inside of a cylindrical body. A method of combustion comprising blowing a reducing agent from a tip of a blowing nozzle into a non-contact part of a flame for denitrification.
JP2017197038A 2017-10-10 2017-10-10 Combustion furnace with denitration equipment Active JP7320917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197038A JP7320917B2 (en) 2017-10-10 2017-10-10 Combustion furnace with denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197038A JP7320917B2 (en) 2017-10-10 2017-10-10 Combustion furnace with denitration equipment

Publications (2)

Publication Number Publication Date
JP2019070488A true JP2019070488A (en) 2019-05-09
JP7320917B2 JP7320917B2 (en) 2023-08-04

Family

ID=66441536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197038A Active JP7320917B2 (en) 2017-10-10 2017-10-10 Combustion furnace with denitration equipment

Country Status (1)

Country Link
JP (1) JP7320917B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347172A (en) * 1993-06-03 1994-12-20 Nippon Cement Co Ltd Denitration device of kiln for light-weight aggregate
JPH07124439A (en) * 1993-11-01 1995-05-16 Bull-Notsukusu Japan Kk Spray nozzle
JPH11179148A (en) * 1997-12-24 1999-07-06 Taiheiyo Cement Corp Denitrification method and apparatus
JP2002136837A (en) * 2000-11-01 2002-05-14 Taiheiyo Cement Corp Non-catalytic denitration method
JP2005331204A (en) * 2004-05-21 2005-12-02 Sumitomo Metal Ind Ltd Exhaust gas denitration method in waste incinerator
JP2014070785A (en) * 2012-09-28 2014-04-21 Nippon Steel & Sumikin Chemical Co Ltd Combustion furnace including denitrification device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347172A (en) * 1993-06-03 1994-12-20 Nippon Cement Co Ltd Denitration device of kiln for light-weight aggregate
JPH07124439A (en) * 1993-11-01 1995-05-16 Bull-Notsukusu Japan Kk Spray nozzle
JPH11179148A (en) * 1997-12-24 1999-07-06 Taiheiyo Cement Corp Denitrification method and apparatus
JP2002136837A (en) * 2000-11-01 2002-05-14 Taiheiyo Cement Corp Non-catalytic denitration method
JP2005331204A (en) * 2004-05-21 2005-12-02 Sumitomo Metal Ind Ltd Exhaust gas denitration method in waste incinerator
JP2014070785A (en) * 2012-09-28 2014-04-21 Nippon Steel & Sumikin Chemical Co Ltd Combustion furnace including denitrification device

Also Published As

Publication number Publication date
JP7320917B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
KR100230940B1 (en) Low nox burner
KR101278280B1 (en) Low nitrogen oxide burner
JP5492482B2 (en) Direct combustion deodorization furnace
CN100507366C (en) Equipment and technique for treating waste liquid from production of acrylonitrile
CN107667210B (en) Burner system
EP1335163B2 (en) Ultra low NOx burner for process heating
CN102705840A (en) Incinerator oxygen enrichment part oxygenation efflux combustion-supporting method and device
JP2006308249A (en) HEAT STORAGE TYPE BURNER AND ITS LOW NOx COMBUSTION METHOD
CN104132343B (en) A kind of radiant tube burner
CN105889921A (en) System for removing nitric oxide in smoke of gas boiler and method of system
JP2019070488A (en) Combustion furnace with denitration device
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
KR101359089B1 (en) Oxygen enriched combustion apparatus and method of the same
KR100876089B1 (en) Oxygen burner
JP3553409B2 (en) Hydrofuel combustion device
KR101253698B1 (en) Burning apparatus for purifying noxious gas
JP5886722B2 (en) Combustion furnace equipped with denitration equipment
KR101877641B1 (en) Degrading apparatus of catalyst using oxidation catalyst
CN104633661A (en) Low NOx double-end type radiant pipe burner
CN217209436U (en) SCR flue concurrent heating direct combustion nozzle
JP6079391B2 (en) Combustion burner for sulfur, combustion furnace equipped with the same, and sulfur combustion method
CN112240545B (en) Low-nitrogen combustor, combustor assembly and low-nitrogen combustor system
JP3846998B2 (en) Fuel oil and water mixed combustion equipment
RU2267703C1 (en) Gas radiation burner
Hilber et al. Boiler and a method for NO x emission control from a boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221028

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221101

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221202

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221206

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7320917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150