JP2019067771A - Led直管ランプ - Google Patents

Led直管ランプ Download PDF

Info

Publication number
JP2019067771A
JP2019067771A JP2018241047A JP2018241047A JP2019067771A JP 2019067771 A JP2019067771 A JP 2019067771A JP 2018241047 A JP2018241047 A JP 2018241047A JP 2018241047 A JP2018241047 A JP 2018241047A JP 2019067771 A JP2019067771 A JP 2019067771A
Authority
JP
Japan
Prior art keywords
circuit
led
signal
detection
straight tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018241047A
Other languages
English (en)
Inventor
シオン・アイミン
Aiming Xiong
リウ・シントン
Xintong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Super Lighting Electric Appliance Co Ltd
Original Assignee
Jiaxing Super Lighting Electric Appliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Super Lighting Electric Appliance Co Ltd filed Critical Jiaxing Super Lighting Electric Appliance Co Ltd
Publication of JP2019067771A publication Critical patent/JP2019067771A/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/24Circuit arrangements for protecting against overvoltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/26Circuit arrangements for protecting against earth faults
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Abstract

【課題】ランプ管が部分的に破断もしくは破損した場合でも、直管構成が維持されるがために、LED直管ランプに手で触れたり、取付けようとしたユーザが感電する恐れがある。【解決手段】LED直管ランプは、ランプ管と、第1端と、第1および第2ダイオードのアノードと第2端との間に接続されたスイッチ回路と、コンデンサに接続される駆動回路と、駆動回路から駆動信号を受信して発光するLEDモジュールとを備える。外部端子の一方に外部駆動信号が入力され、外部端子の他方に人体が触れた場合、スイッチ回路は周期的に1ミリ秒未満の間オンになる。【選択図】なし

Description

本開示の実施形態は、発光ダイオード(light emitting diode(LED))照明の特徴に関する。より詳細には、開示された実施形態は、LED直管ランプに対する様々な改良について述べる。
LED照明技術は急速に発展しており、従来型の白熱照明や蛍光照明に取って代わりつつある。不活性ガスや水銀の充填を必要とする直管形蛍光ランプと比べ、LED直管ランプは水銀を使用しない。よって、かつては電球形蛍光ランプ(compact fluorescent light bulbs(CFLs))や直管形蛍光ランプといった従来型の照明装置が主流であった家庭や職場において用いられる様々な入手可能な照明システムの中で、LED直管ランプが非常に望ましい照明の選択肢となってきたとしても驚くにはあたらない。LED直管ランプの利点としては、耐久性や耐用年数の向上、エネルギー消費量の大幅な削減が挙げられる。従って、あらゆる要素を考慮すると、LED直管ランプは概して費用効率の高い照明の選択肢といえるだろう。
典型的なLED直管ランプは、ランプ管と、ランプ管内に配置され、複数の光源を搭載した回路基板と、ランプ管の両端に設けられ、電源を搭載したエンドキャップとを備え、電源からの電気が回路基板を通じて複数の光源へと送られる。しかしながら、既存のLED直管ランプにはいくつかの欠点がある。例えば、典型的な回路基板は硬質であるため、ランプ管が部分的に破断もしくは破損した場合でも、ランプ管全体としての直管構成を維持することができるが、直管構成が維持されるがために、LED直管ランプがまだ使用可能であるかのような間違った印象をユーザに与えてしまうこととなり、LED直管ランプに手で触れたり、取付けようとしたユーザが感電する恐れがある。
一般に、従来のLED直管ランプの回路設計は、関連認証規格適合に向けた適切な解決策を提供していない。例えば、蛍光ランプは通常電子部品を含まないため、アンダーライターズ・ラボラトリーズ(Underwriters Laboratories(UL))が提供する照明機器のための電磁波障害(electromagnetic interference(EMI))規格や安全規格に基づく認証を得ることは実に簡単である。しかしながら、LED直管ランプには相当数の電子部品が含まれているため、それら電子部品のレイアウト(構造)による影響を考慮することが重要であり、その結果上記のような規格に適合させることが難しくなっている。
また、LEDの駆動には直流駆動信号を用いるが、蛍光ランプ用の駆動信号は、交流送電線により提供される低周波かつ低電圧の交流信号、安定器により提供される高周波かつ高電圧の交流信号、または非常照明用バッテリーにより提供される直流信号もある。こういった信号の電圧や周波数スペクトルは種類によってかなり違いがあるため、LED直管ランプに必要な直流駆動信号を生成するために単に整流をおこなうだけでは、従来の蛍光ランプの駆動システムにLED直管ランプを適合させることができない可能性がある。
さらに、LED直管ランプがデュアルエンド電源構造を有し、その一方のエンドキャップはランプソケットに挿入されているが、他方は挿入されていない場合、ランプソケットに挿入されていない方のエンドキャップの金属部分や導電部分に触れたユーザが感電状態に陥る可能性がある。
現在、従来型の蛍光照明装置の代替品として用いられているLED直管ランプは、二種類に大別することができる。一つは、例えばT−LEDランプといった安定器互換型のLED直管ランプであり、照明装置の回路を全く変更せずに直管形蛍光ランプから直接取り替えられる。もう一つは、安定器バイパス型LED直管ランプであり、回路上に従来の安定器を置かず、商用電源をLED直管ランプに直接接続するものである。後者のLED直管ランプは、新しい駆動回路やLED直管ランプを備えた新しい設備環境に適している。
なお、本開示は、特許が請求されている発明も未だされていない発明も含めて1以上の発明を実際には含み得るものである。これらの含まれ得る発明を本明細書の作成段階においてむやみに区別することによる混乱を避けるため、本明細書中では、これらの含まれ得る複数の発明をまとめて「(本)発明」という。
この「発明の概要」の項では様々な実施形態の概要を示しており、その際「本発明」と関連付けて実施形態の説明をする場合があるが、「本発明」という用語は、請求の如何を問わず現在開示されているある特定の実施形態の説明に用いられ、必ずしも可能な実施形態をすべて網羅的に説明するものではなく、むしろある特定の実施形態を要約したものにすぎない。以下に「本発明」の様々な態様として説明する実施形態のいくつかは、様々な形に組み合わせてLED直管ランプまたはその一部を形成することができる。
本開示は、新規なLED直管ランプとその様々な態様を提供する。
ある特定の実施形態によれば、LED(発光ダイオード)直管ランプ内において、LED直管ランプとランプソケットとの取付状態を検出するよう構成された取付検出モジュールが提供される。この取付検出モジュールは、第1パルス信号を生成するよう構成された検出パルス生成モジュールと、第1パルス信号を受信および出力するよう構成された検出結果ラッチ回路と、検出結果ラッチ回路からの第1パルス信号を受信するよう構成され、第1パルスの期間中、導通状態を維持することによりLED直管ランプの電源ループを導通状態にするよう構成されたスイッチ回路と、電源ループ上の第1サンプリング信号を検出することによりLED直管ランプとランプソケットとの取付状態を判定するよう構成された検出判定回路とを備える。
いくつかの実施形態において、検出判定回路は、第1サンプリング信号が規定の信号より大きいか又は等しいとき第1高レベル信号を出力し、検出結果ラッチ回路は、第1高レベル信号を受信して第2高レベル信号を出力し、スイッチ回路は、第2高レベル信号を受信し、導通状態を維持することにより電源ループを導通状態のままにする。
いくつかの実施形態において、検出判定回路は、第1サンプリング信号が規定の信号より小さいとき第1低レベル信号を出力し、検出結果ラッチ回路は、第1低レベル信号を受信して第2低レベル信号を出力し、スイッチ回路は、第2低レベル信号を受信し、オフ状態を維持することにより電源ループを開状態のままにする。
いくつかの実施形態において、検出パルス生成モジュールはさらに、電源ループが開状態のままであるとき第2パルス信号を生成し、検出結果ラッチ回路は、第2パルス信号を受信および出力し、スイッチ回路は、検出結果ラッチ回路から第2パルス信号を受信し、第2パルスの期間中、オフ状態を再び導通状態に変更することにより電源ループを再度導通状態にし、検出判定回路は、電源ループ上の第2サンプリング信号を新たに検出することによりLED直管ランプとランプソケットとの取付状態を判定する。
いくつかの実施形態において、検出判定回路は、第2サンプリング信号が規定の信号より大きいか又は等しいとき第1高レベル信号を出力し、検出結果ラッチ回路は、第1高レベル信号を受信して第2高レベル信号を出力し、スイッチ回路は、第2高レベル信号を受信し、導通状態を維持することにより電源ループを導通状態のままにする。
いくつかの実施形態において、検出判定回路は、第2サンプリング信号が規定の信号より小さいとき第1低レベル信号を出力し、検出結果ラッチ回路は、第1低レベル信号を受信して第2低レベル信号を出力し、スイッチ回路は、第2低レベル信号を受信し、オフ状態を維持することにより電源ループを開状態のままにする。
いくつかの実施形態において、検出パルス生成モジュールは、一端が駆動信号に接続された第1コンデンサと、一端が第1コンデンサの他端に接続され、他端が接地された第1抵抗と、入力端および出力端を有し、入力端が第1コンデンサの他端に接続された第1バッファと、一端が第1バッファの出力端に接続された第2コンデンサと、一端が第1バッファの出力端に接続された第3コンデンサと、一端が駆動信号に接続され、他端が第2コンデンサの他端に接続された第2抵抗と、一端が第3コンデンサの他端に接続され、他端が接地された第3抵抗と、第3抵抗の他端に接続されたアノード、および第3抵抗の一端に接続されたカソードを有する第1ダイオードと、入力端および出力端を有し、入力端が第2コンデンサの他端に接続された第1インバータと、入力端と出力端とを有し、入力端が第3コンデンサの他端に接続された第2バッファと、第1入力端、第2入力端、および出力端を有し、第1入力端が第1インバータの出力端に接続され、第2入力端が第2バッファの出力端に接続され、出力端が検出結果ラッチ回路に接続された第1ORゲートとを備える。
ある特定の実施形態において、第1バッファおよび第2バッファは、直列に接続されているインバータを2つずつ備える。
いくつかの実施形態において、検出結果ラッチ回路は、データ入力端、クロック入力端、および出力端を有し、データ入力端が駆動信号に接続され、クロック入力端が検出判定回路に接続された第1Dフリップフロップと、一端が第1Dフリップフロップの出力端に接続され、他端が接地された第4抵抗と、第1入力端、第2入力端、および出力端を有し、第1入力端が第1ORゲートの出力端に接続され、第2入力端が第1Dフリップフロップの出力端に接続され、出力端がスイッチ回路に接続された第2ORゲートとを備える。
いくつかの実施形態において、スイッチ回路は、ベースと、コレクタと、エミッタとを有し、ベースが第2ORゲートの出力端に接続され、コレクタが電源ループの一端に接続され、エミッタが検出判定回路に接続された第1トランジスタを備える。
いくつかの実施形態において、検出判定回路は、一端が第1トランジスタのエミッタに接続され、他端が電源ループの他端に接続された第5抵抗と、第1入力端、第2入力端、および出力端を有し、第1入力端が規定の信号に接続され、第2入力端が第5抵抗の一端に接続され、出力端が第1Dフリップフロップのクロック入力端に接続された第1コンパレータとを備える。
いくつかの実施形態において、検出パルス生成モジュールは、一端が駆動信号に接続された第6抵抗と、一端が第6抵抗の他端に接続され、他端が接地された第4コンデンサと、入力端および出力端を有し、入力端が第4コンデンサの一端に接続され、出力端が検出結果ラッチ回路に接続されたシュミット・トリガーと、一端が第4コンデンサの一端に接続された第7抵抗と、ベース、コレクタ、およびエミッタを有し、コレクタが第7抵抗の他端に接続され、エミッタが接地された第2トランジスタと、一端が第2トランジスタのベースに接続され、他端が検出結果ラッチ回路とスイッチ回路に接続された第8抵抗とを備える。
ある特定の実施形態において、検出パルス生成モジュールはさらに、アノードとカソードとを有し、アノードが第4コンデンサの他端に接続され、カソードが第4コンデンサの一端に接続されたツェナー・ダイオードを備える。
いくつかの実施形態において、検出結果ラッチ回路は、データ入力端、クロック入力端、および出力端を有し、データ入力端が駆動信号に接続され、クロック入力端が検出判定回路に接続された第2Dフリップフロップと、第1入力端、第2入力端、および出力端を有し、第1入力端がシュミット・トリガーの出力端に接続され、第2入力端が第2Dフリップフロップの出力端に接続され、出力端が第8抵抗の他端とスイッチ回路に接続された第3ORゲートとを備える。
いくつかの実施形態において、スイッチ回路は、ベースと、コレクタと、エミッタとを有し、ベースが第3ORゲートの出力端に接続され、コレクタが電源ループの一端に接続され、エミッタが検出判定回路に接続された第3トランジスタを備える。
いくつかの実施形態において、検出判定回路は、一端が第3トランジスタのエミッタに接続され、他端が電源ループの他端に接続された第9抵抗と、第1入力端、第2入力端、および出力端を有し、第1入力端が規定の信号に接続され、第2入力端が第9抵抗の一端に接続され、出力端が第2Dフリップフロップのクロック入力端に接続された第2コンパレータとを備える。
いくつかの実施形態において、検出判定回路は、一端が第3トランジスタのエミッタに接続され、他端が電源ループの他端に接続された第9抵抗と、アノードおよびカソードを有し、アノードが第9抵抗の一端に接続された第2ダイオードと、第1入力端、第2入力端、および出力端を有し、第1入力端が規定の信号に接続され、第2入力端が第2ダイオードのカソードに接続され、出力端が第2Dフリップフロップのクロック入力端に接続された第2コンパレータと、第1入力端、第2入力端、および出力端を有し、第1入力端が第2ダイオードのカソードに接続され、第2入力端が別の規定の信号に接続され、出力端が第2Dフリップフロップのクロック入力端に接続された第3コンパレータと、一端が駆動信号に接続された第10抵抗と、一端が第10抵抗の他端および第2コンパレータの第2入力端に接続され、他端が接地された第11抵抗と、第11抵抗に並列に接続された第5コンデンサとを備える。
ある特定の実施形態において、第1パルス信号の期間は10マイクロ秒から1ミリ秒の間で、第2パルス信号の期間は10マイクロ秒から1ミリ秒の間である。
ある特定の実施形態において、Tを駆動信号の周期、Xをゼロ以上の整数とし、0<Y<1を満たすとき、第1パルス信号から前記第2パルス信号までの時間間隔は(X+Y)(T/2)である。
ある特定の実施形態において、第1パルス信号の期間は1マイクロ秒から100マイクロ秒の間で、第2パルス信号の期間は1マイクロ秒から100マイクロ秒の間である。
ある特定の実施形態において、第1パルス信号から前記第2パルス信号までの時間間隔は3ミリ秒から500ミリ秒の間である。
いくつかの実施形態によれば、LED直管ランプは、取付検出モジュールが構成されているプリント回路基板に電気的に接続された屈曲性回路シート上に配置されたLEDモジュールを備え、屈曲性回路シートは、はんだ付けによってプリント回路基板に電気的に接続されるように、プリント回路基板の下に配置される。
いくつかの実施形態によれば、屈曲性回路シートは、第1表面と第2表面とを備え、屈曲性回路シートの第1表面には複数の第1はんだ付けパッドが形成されている。プリント回路基板は、上面と底面とを備え、プリント回路基板の上面には複数の第2はんだ付けパッドが形成されており、プリント回路基板の底面には、それぞれ複数の第2はんだ付けパッドに対応する複数の第3はんだ付けパッドが形成されている。屈曲性回路シートの第1表面上の複数の第1はんだ付けパッドは、はんだ付けによってプリント回路基板の底面上の複数の第3はんだ付けパッドに電気的に接続されている。
いくつかの実施形態によれば、プリント回路基板はさらに、プリント回路基板の上面および底面上の複数の第2および第3はんだ付けパッドを貫通するように位置を合わせた複数の貫通孔を備え、はんだ付け工程において屈曲性回路シートへの電気的接続を行うために、複数の貫通孔のうち少なくとも1つにははんだ材が充填されている。
いくつかの実施形態によれば、屈曲性回路シートはさらに、屈曲性回路シートの端部の縁に配置された少なくとも1つの切り込みを備え、少なくとも1つの切り込みは、複数の貫通孔のうち少なくとも1つと位置を合わせて、プリント回路基板にはんだ付けされる。
いくつかの実施形態によれば、本発明はさらに、LED(発光ダイオード)直管ランプ内において、LED直管ランプとランプソケットとの取付状態を検出するよう構成された取付検出モジュールを提供する。取付検出モジュールは、第1パルス信号を生成するよう構成された第1回路と、第1パルス信号を受信および出力するよう構成された第2回路と、第2回路からの第1パルス信号を受信するよう構成され、第1パルスの期間中、導通状態を維持することによりLED直管ランプの電源ループを導通状態にするよう構成された第3回路と、電源ループ上の第1サンプリング信号を検出することによりLED直管ランプとランプソケットとの取付状態を判定するよう構成された第4回路とを備える。
いくつかの実施形態によれば、本発明はさらに、LED(発光素子)直管ランプをランプソケットに取付ける際にユーザの感電を防止するためにLED直管ランプにより採用される検出方法を提供する。この検出方法は、前記LED直管ランプ内に構成された検出パルス生成モジュールにより第1パルス信号を生成するステップと、前記LED直管ランプの電源ループ上にあるスイッチ回路により、検出結果ラッチ回路を通じて前記第1パルス信号を受信し、前記第1パルス信号の期間中、前記スイッチ回路の導通状態を維持することにより前記電源ループを導通状態にするステップと、前記電源ループが導通状態にあるとき、検出判定回路により前記電源ループ上の第1サンプリング信号を検出し、前記第1サンプリング信号を規定の信号と比較するステップとを含む。前記第1サンプリング信号が前記規定の信号より大きいか又は等しいとき、前記検出方法はさらに、前記検出判定回路により第1高レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1高レベル信号を受信し、第2高レベル信号を出力するステップと、前記スイッチ回路により前記第2高レベル信号を受信し、導通を維持することにより前記電源ループを導通状態のままにするステップとを含む。
いくつかの実施形態において、前記第1サンプリング信号が前記規定の信号より小さいとき、前記検出方法はさらに、前記検出判定回路により第1低レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1低レベル信号を受信し、第2低レベル信号を出力するステップと、前記スイッチ回路により前記第2低レベル信号を受信し、オフ状態を維持することにより前記電源ループを開状態のままにするステップとを含む。
いくつかの実施形態において、前記スイッチ回路のオフ状態を維持することにより前記電源ループが開状態のままであるとき、前記検出方法はさらに、前記検出パルス生成モジュールにより第2パルス信号を生成するステップと、前記スイッチ回路により前記検出結果ラッチ回路を通じて前記第2パルス信号を受信し、前記第2パルス信号の期間中、前記スイッチ回路のオフ状態を再び導通状態にすることにより前記電源ループを再度導通状態にするステップと、前記電源ループが再度導通状態になったとき、前記検出判定回路により前記電源ループ上の第2サンプリング信号を検出し、前記第2サンプリング信号を前記規定の信号と比較するステップとを含む。前記第2サンプリング信号が前記規定の信号より大きいか又は等しいとき、前記検出方法はさらに、前記検出判定回路により前記第1高レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1高レベル信号を受信し、前記第2高レベル信号を出力するステップと、前記スイッチ回路により前記第2高レベル信号を受信し、導通状態を維持することにより前記電源ループを導通状態のままにするステップとを含む。
いくつかの実施形態において、前記第2サンプリング信号が前記規定の信号より小さいとき、前記検出方法はさらに、前記検出判定回路により前記第1低レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1低レベル信号を受信し、前記第2低レベル信号を出力するステップと、前記スイッチ回路により前記第2低レベル信号を受信し、オフ状態を維持することにより前記電源ループを開状態のままにするステップとを含む。
上述した検出方法によれば、いくつかの実施形態において、前記第1パルス信号の期間(もしくは幅)は10マイクロ秒から1ミリ秒の間で、前記第2パルス信号の期間(もしくは幅)は10マイクロ秒から1ミリ秒の間である。
上述した検出方法によれば、いくつかの実施形態において、Tを前記駆動信号の周期、Xをゼロ以上の整数とし、0<Y<1を満たすとき、前記第1パルス信号から前記第2パルス信号までの時間間隔は(X+Y)(T/2)である。
上述した検出方法によれば、いくつかの実施形態において、前記第1パルス信号の期間は1マイクロ秒から100マイクロ秒の間で、前記第2パルス信号の期間は1マイクロ秒から100マイクロ秒の間である。
上述した検出方法によれば、いくつかの実施形態において、前記第1パルス信号から前記第2パルス信号までの時間間隔(または前記パルス信号の周期)は3ミリ秒から500ミリ秒の間である。
図1は、いくつかの例示的な実施形態に係るLED直管ランプであって、電源に接続されるLED直管ランプのランプ管の渡り部(transition region)内を通り抜ける両端部を備えた屈曲性回路シートであるLEDライトストリップを備えるLED直管ランプを模式的に示す平断面図である。 図2は、いくつかの例示的な実施形態に係るLED直管ランプにおける、LEDライトストリップの屈曲性回路シートの二層構造を模式的に示す平断面図である。 図3は、いくつかの例示的な実施形態に係るLED直管ランプにおける、電源へのはんだ接続用の、LEDライトストリップの屈曲性回路シートのはんだ付けパッドを模式的に示す斜視図である。 図4Aは、例示的な一実施形態に係る、互いにはんだ付けされた屈曲性回路シートと電源のプリント回路基板の斜視図である。 図4Bは、例示的な一実施形態に係る、図4Aの屈曲性回路シートと電源のプリント回路基板とのはんだ付け工程の図である。 図4Cは、例示的な一実施形態に係る、図4Aの屈曲性回路シートと電源のプリント回路基板とのはんだ付け工程の図である。 図4Dは、例示的な一実施形態に係る、図4Aの屈曲性回路シートと電源のプリント回路基板とのはんだ付け工程の図である。 図5は、いくつかの例示的な実施形態に係る、LEDライトストリップの屈曲性回路シートと電源のプリント回路基板とから成る回路基板アセンブリを模式的に示す斜視図である。 図6は、いくつかの例示的な実施形態に係る、回路基板アセンブリの別の配置を模式的に示す斜視図である。 図7は、いくつかの例示的な実施形態に係る、2つの導電性配線層で形成されるLEDライトストリップの屈曲性回路シートを模式的に示す斜視図である。 図8Aは、いくつかの例示的な実施形態に係るLED直管ランプ用の例示的な電源システムのブロック図である。 図8Bは、いくつかの例示的実施形態に係るLED直管ランプ用の例示的な電源システムを示すブロック図である。 図8Cは、いくつかの例示的な実施形態に係る例示的なLEDランプのブロック図である。 図9は、いくつかの例示的な実施形態に係る整流回路の模式図である。 図10Aは、いくつかの例示的な実施形態に係る例示的なフィルタ回路のブロック図である。 図10Bは、いくつかの例示的な実施形態に係る例示的なフィルタ回路のブロック図である。 図10Cは、いくつかの例示的な実施形態に係る例示的なフィルタ回路のブロック図である。 図11Aは、いくつかの例示的な実施形態に係る例示的なLEDモジュールの模式図である。 図11Bは、いくつかの例示的な実施形態に係る例示的なLEDモジュールの模式図である。 図11Cは、いくつかの例示的な実施形態に係るLEDモジュールの回路レイアウトの平面図である。 図11Dは、いくつかの例示的な実施形態に係るLEDモジュールの回路レイアウトの平面図である。 図11Eは、いくつかの例示的な実施形態に係るLEDモジュールの回路レイアウトの平面図である。 図12Aは、いくつかの例示的な実施形態に係るLEDランプの例示的な電源モジュールのブロック図である。 図12Bは、いくつかの例示的な実施形態に係る駆動回路のブロック図である。 図12Cは、いくつかの例示的な実施形態に係る例示的な駆動回路の模式図である。 図12Dは、いくつかの例示的な実施形態に係る例示的な駆動回路の模式図である。 図12Eは、いくつかの例示的な実施形態に係る例示的な駆動回路の模式図である。 図12Fは、いくつかの例示的な実施形態に係る例示的な駆動回路の模式図である。 図13Aは、いくつかの例示的な実施形態に係るLED直管ランプの例示的な電源モジュールのブロック図である。 図13Bは、いくつかの例示的な実施形態に係る過電圧保護(over−voltage protection(OVP))回路の模式図である。 図14Aは、いくつかの例示的な実施形態に係るLED直管ランプにおける例示的な電源モジュールのブロック図である。 図14Bは、いくつかの例示的な実施形態に係るLED直管ランプにおける例示的な電源モジュールのブロック図である。 図14Cは、いくつかの例示的な実施形態に係る補助電源モジュールの模式図である。 図15Aは、いくつかの例示的な実施形態に係るLED直管ランプのブロック図である。 図15Bは、いくつかの例示的な実施形態に係る取付検出モジュールのブロック図である。 図15Cは、いくつかの例示的な実施形態に係る模式的な検出パルス生成モジュールである。 図15Dは、いくつかの例示的な実施形態に係る模式的な検出判定回路である。 図15Eは、いくつかの例示的な実施形態に係る模式的な検出結果ラッチ回路である。 図15Fは、いくつかの例示的な実施形態に係る模式的なスイッチ回路である。 図15Gは、いくつかの例示的な実施形態に係る取付検出モジュールのブロック図である。 図15Hは、いくつかの例示的な実施形態に係る模式的な検出パルス生成モジュールである。 図15Iは、いくつかの例示的な実施形態に係る模式的な検出結果ラッチ回路である。 図15Jは、いくつかの例示的な実施形態に係る模式的なスイッチ回路である。 図15Kは、いくつかの例示的な実施形態に係る模式的な検出判定回路である。
本開示は、新規なLED直管ランプを提供する。以下の実施形態において、図面を参照しながら、本開示について説明する。本明細書中において、以下の本発明の様々な実施形態の説明は、図示および例示のみの目的で提示される。よって、すべてを網羅的に説明するものでもなく、開示された正確な形態に限定されるものでもない。これら例示的な実施形態は単に「例」であって、本明細書中での詳細な説明を必要としない様々な実施や変形が可能である。なお、本開示は代替例についても詳細な説明をおこなっているが、すべての代替例を網羅しているわけではないことを強調しておく。さらに、様々な例について詳細な点まで整合性があるからといって、そのような詳細な点まで説明する必要があると解釈すべきではない。本明細書中で説明される特徴すべてについて可能な変形例をすべて挙げることは非現実的である。請求項の文言は、本発明の要件を確定する際に参照すべきである。
図面においては、わかりやすくするために、各部品の大きさや相対的な大きさが誇張されている場合がある。全体を通して、同様の要素には同様の番号が付されている。
本明細書中で用いられる用語は、特定の実施形態を説明するためだけに用いられており、本発明を限定するものではない。本明細書中で用いられる単数形「a」「an」「the」は、本文中に明確な特段の指示がない限り、複数形も同様に含むものとする。本明細書中で用いられる「および/または(and/or)」という用語は、列挙された関連項目の1つ以上の任意かつすべての組み合わせを含み、「/」と略記する場合がある。
当然のことながら、本明細書中では、第1、第2、第3といった用語が様々な要素、部品、領域、層、またはステップの説明に用いられるが、これらの要素、部品、領域、層、および/またはステップは、これらの用語に限定されるものではない。本文中に特段の指示がない限り、これらの用語は、例えば命名規則として、ある要素、部品、領域、層またはステップを、別の要素、部品、領域、またはステップと区別するために用いられているにすぎない。よって、以下の本明細書のある項で論じられた第1要素、部品、領域、層またはステップは、本発明の教示から逸脱しない範囲で、本明細書中の別の項または請求項では、第2要素、部品、領域、層またはステップと呼ばれる場合もある。さらに、場合によっては、たとえ本明細書中において「第1」「第2」といった語を用いた説明がなされていない用語であっても、請求項では異なる請求要素を互いに区別するために「第1」または「第2」と呼ぶ場合がある。
さらに、当然ながら、本明細書中において「備える、含む(comprises)および/または(comprising)」、または「備える、含む(includes)および/または(including)」という用語は、所定の特徴、領域、整数、ステップ、動作、要素および/または部品の存在を明記するものであるが、その他の1つ以上の特徴、領域、整数、ステップ、動作、要素、部品および/またはグループの存在または追加を排除するものではない。
当然ながら、ある要素が別の要素に、または別の要素「上(on)」に「接続(connected)」または「連結(coupled)」されていると述べている場合、ある要素は別の要素に、または別の要素上に直接接続または連結されてもよいし、介在要素が存在していてもよい。一方、ある要素が別の要素に「直接接続(directly connected)」または「直接連結(directly coupled)」されていると書いてある場合、介在要素は存在しない。要素間の関係を説明するのに用いられるその他の単語も同様に解釈されるべきである(例えば、「との間で(between)」と「との間で直接(directly between)」や「隣接する(adjacent)」と「直接隣接する(directly adjacent)」など)。しかしながら、本明細書中で用いられる「接触(contact)」という用語は、本文中に特段の指示がない限り、直接接続(つまり接触)を指す。
理想的な模式図により平面図および/または断面図を参照しながら、本明細書中で述べる実施形態について説明する。つまり、製造技術および/または製造上の許容範囲によっては、これら例示的な図面を修正してもよい。従って、開示された実施形態は図に示されたものに限定されず、製造工程に基づき形成された構成への修正も含む。従って、図面に例示的に示された領域は模式的な性質のもので、図面に示された領域の形状は、本発明の態様により限定されない要素の領域の特定の形状を例示する場合がある。
図面に示すように、ある要素または特徴と他の要素または特徴との関係をわかりやすく説明するために、本明細書において「の下に(beneath)」「より下に(below)」「より低い(lower)」「の上方に(above)」「より上の(upper)」といった空間的な相対関係を表す用語を用いる場合がある。当然ながら、空間的な相対関係を表す用語は、図面に描かれた向きだけでなく、使用または動作中に変化する装置の様々な向きも包含するものである。例えば、図面中の装置の上下を反転させると、他の要素または特徴「の下に(beneath)」または「より下に(below)」と説明された要素が、他の要素または特徴「の上方(above)」を向くことになる。よって、「より下に(below)」という語は、上下両方の向きを包含し得る。装置は別の向きをとる(90度回転する、またはそれ以外の様々な向きをとる)場合もあり、本明細書中で用いられる空間的な相対関係を説明する用語の解釈も場合によって変わる。
向き、レイアウト、位置、形状、大きさ、量、その他測定物について述べる場合に本明細書中で用いられる「同じ(same)」「等しい(equal)」「平面の(planar)」「同一平面の(coplanar)」といった用語は、必ずしも全く同一の向き、レイアウト、位置、形状、大きさ、量、その他測定物を意味するものではなく、例えば製造工程により起こりうる許容差の範囲内で、ほぼ同一の向き、レイアウト、位置、形状、大きさ、量、その他測定物を包含するものである。「実質的に(substantially)」という用語は、本文中またはその他記載中に特段の指示がない限り、上記の意味を強調するために本明細書中で用いられる場合がある。例えば、「実質的に同じ(substantially the same)」、「実質的に等しい(substantially equal)」、または「実質的に平面の(substantially planar)」と説明される項目は、全く同じ、等しい、または平面であってもよいし、例えば製造工程により起こりうる許容差の範囲内で、「同じ」、「等しい」、または「平面の」であってもよい。
「約、およそ(about)」「略、ほぼ(approximately)」といった用語は、相対関係がわずかに変化する、および/または特定の要素の向き、機能性、または構造を実質的に変えないように変化する大きさ、向き、またはレイアウトを表す場合がある。例えば、「約0.1から約1」の範囲は、特に、多少の誤差があってもこの範囲と同じ効果を維持できるのであれば、0.1プラスマイナス0%〜5%の誤差から1プラスマイナス0%〜5%の誤差の範囲を包含してもよい。
特段の定義がない場合、本明細書中で用いられるすべての用語(専門用語や科学用語を含む)は、本開示が属する技術分野における当業者により一般的に理解されるのと同じ意味を有している。さらに、当然のことながら、一般的に用いられる辞書に定義されているような用語は、関連技術および/または本願の文脈中での意味と整合性のある意味を有するものと解釈されるべきであり、本明細書中で明記されない限り、理想化された意味や過度に形式的な意味に解釈されることはない。
本明細書中において、「電気的に接続された(electrically connected)」と記載されている項目は、ある項目から別の項目へと電気信号を通すことができるように構成されている。従って、電気絶縁性の受動部品(例えば、プリント回路基板のプリプレグ層、2つの装置を接続する電気絶縁性接着剤、電気絶縁性アンダーフィルまたはモールド層など)に物理的に接続された導電性受動部品(例えば、ワイヤー、パッド、内部電線など)は、絶縁性部品に電気的に接続されているとは言えない。さらに、互いに「直接電気的に接続された(directly electrically connected)」項目は、例えば、ワイヤ、パッド、内部電線、抵抗などの1つ以上の受動素子を通じて電気的に接続されている。このように、直接電気的に接続された部品には、トランジスタやダイオードといった能動素子を通じて電気的に接続された部品は含まれない。直接電気的に接続された要素は、直接物理的に接続され、かつ直接電気的に接続されていてもよい。
熱的に接続された、または熱的に連通したと説明される部品は、その部品間の経路を辿って第1部品から第2部品へと熱を伝達できるように配置されている。単に2つの部品が同一装置または同一基板の一部であるからといって、熱的に接続されるものではない。一般に、熱伝導性のある部品であって、他の熱伝導性または発熱性部品に直接接続された(または、介在する熱伝導性部品を通じてそのような部品と接続されたか、実質的に熱の伝達が可能になるようごく近くに置かれた)部品のことを、そのような部品に熱的に接続された、または熱的に連通したと記載する。一方、2つの部品間の熱伝達を実質的に妨げる材料、または付随的な熱伝達のみ可能にする材料である断熱材を間に挟持した2つの部品は、互いに熱的に接続した、または熱的に連通したとは記載しない。「熱伝導性の(heat−conductive)(thermally−conductive)」という用語は、付随的な熱伝導をもたらす材料には適用されないが、一般的に熱伝導性がよいとされる材料、熱伝達に有用性があるとされる材料、またはそのような材料と同様の熱伝導性を有する部品を指すものである。
各実施形態は、機能ブロック、ユニットおよび/またはモジュールの形で記載および図示されてもよい。当業者であれば、このようなブロック、ユニットおよび/またはモジュールが、半導体ベースの作製技法やその他製造技術を用いて形成され得る論理回路、個別部品、アナログ回路、ハードワイヤード回路、メモリ素子、配線接続などといった電子(または光学)回路によって物理的に実施されることがわかるだろう。マイクロプロセッサや同様のもので実施されるブロック、ユニットおよび/またはモジュールの場合、ソフトウェア(例えばマイクロコード)を使ってプログラミングすることにより、本明細書中で述べるような様々な機能を行ってもよいし、ファームウェアおよび/またはソフトウェアによって任意に駆動されてもよい。あるいは、各ブロック、ユニットおよび/またはモジュールを専用のハードウェアで実施してもよいし、なんらかの機能を行う専用ハードウェアと、その他の機能を行うプロセッサ(例えば、1つ以上のプログラムされたマイクロプロセッサと関連回路)との組み合わせとして実施してもよい。また、各実施形態の各ブロック、ユニットおよび/またはモジュールを、2つ以上の相互作用する離散ブロック、ユニットおよび/またはモジュールに物理的に分割してもよい。さらに、様々な実施形態のブロック、ユニットおよび/またはモジュールを物理的に組み合わせて、より複雑なブロック、ユニットおよび/またはモジュールにしてもよい。
本願中の用語が、本願が優先権を主張する別の出願で用いられている用語、または本願もしくは本願が優先権を主張する別の出願中において言及することにより組み込まれる用語と矛盾する場合は、本願において用いられるか定義される用語に基づく構成が適用されるものとする。
一例として、本出願人による先行米国特許出願第14/724840号明細書(米国特許出願公開第2016/0091156号明細書、その開示内容は参照として全体が本明細書に組み込まれている)では、屈曲性回路シートを提供することにより、従来のLEDランプ使用時の感電の発生に関連する特定の問題に取り組んでいる。米国特許出願第14/724840号明細書に開示された実施形態のいくつかは、本明細書中に開示された1つ以上の例示的な実施形態と組み合わせることによって、LEDランプ使用時の感電の発生をさらに削減することができる。
図1を参照すると、LED直管ランプはLEDライトストリップ2を備えてもよい。ある特定の実施形態において、LEDライトストリップ2は、例えば柔軟性のある屈曲性回路シートから形成されてもよい。さらに以下に記載するように、屈曲性回路シートは、屈曲性回路基板またはフレキシブル又は非硬質テープと記載されることもある。この屈曲性回路シートの両端は、LED直管ランプのランプ管の渡り部内を通り抜けて電源5に接続されてもよい。いくつかの実施形態において、屈曲性回路シートの両端は、LED直管ランプの一方のエンドキャップ内の電源に接続されてもよい。例えば、LED直管ランプの両端は、屈曲性回路シートの一部がランプ管から離れる方向に曲がってランプ管が細くなる渡り部を通り抜けるように、かつ屈曲性回路シートがLED直管ランプの一方のエンドキャップ内の電源の一部と上下に重なり合うように接続されてもよい。
図2を参照すると、LEDライトストリップ2を形成するために、屈曲性回路シートは導電効果のある配線層2aを備えてもよい。LED光源202は、配線層2a上に配置され、配線層2aを通じて電源に電気的に接続される。図2にはLED光源202は1つだけしか示されていないが、図1に示すように、複数のLED光源202がLEDライトストリップ2上に配置されてもよい。例えば、複数の光源202は、図1に示すように、ランプ管の長さ方向に沿って延びるLEDライトストリップ2の長さに沿って延びる1つ以上の列状に配置されてもよい。本明細書において、導通効果のある配線層は導電層とも呼ばれる。再び図2を参照して、一実施形態において、LEDライトストリップ2は、積層するように配置された導電性配線層2aと誘電体層2bとを有する屈曲性回路シートを備えている。いくつかの実施形態において、配線層2aおよび誘電体層2bの面積は同じでもよいし、配線層2aの面積が誘電体層2bの面積より若干小さくてもよい。LED光源202は、導電性配線層2aの一方の表面に配置され、誘電体層2bは、導電性配線層2aの、LED光源202とは反対側の他方の表面(例えば、LED光源202が配置されている第1表面とは反対側の第2表面)に配置されている。配線層2aは(図1に示すように)電源5に電気的に接続され、直流(DC)信号を伝達する。いくつかの実施形態において、誘電体層2bの、配線層2aから遠い方の表面(例えば、配線層2aと対向する誘電体層2bの第1表面とは反対側の第2表面)は、例えば接着シート4によってランプ管の内周面に固定されている。ランプ管1の内周面に固定された誘電体層2bの部分は、ランプ管1の内周面の形状と実質的に合致していてもよい。配線層2aは、金属層または銅線などの配線を含む電源層とすることができる。
本明細書中に記載される電源は、電力を供給してLED直管ランプのLEDモジュールやLED光源202を動作させるために、受信した電圧に基づいて電力を変換または生成する回路を備えてもよい。電源は、電源5に関連付けて記載されているが、別の呼び方として、電力変換モジュールもしくは回路、または電力モジュールと呼んでもよい。電力変換モジュールもしくは回路、または電力モジュールは、交流送電線または安定器等の外部からの信号由来の電力をLEDモジュールやLED光源202に供給または提供してもよい。例えば、電源5は、交流線電圧を直流電圧に変換して、電力をLEDやLEDモジュールに供給する回路を指してもよい。
いくつかの例示的な実施形態において、配線層2aまたは誘電体層2bの外側表面は、はんだ付けに対する耐性を与え、反射率を高める機能を有したインクでできた回路保護層で覆われていてもよい。あるいは、他の例示的な実施形態において、誘電体層を省略して、ランプ管の内周面に配線層を直接接合してもよいし、配線層2aの外側表面を回路保護層でコーティングしてもよい。配線層2aが一層構造であろうと二層構造であろうと、回路保護層を採用してもよい。いくつかの実施形態において、回路保護層は、LED光源202を有する表面のように、LEDライトストリップ2の一方の表面/一方の側だけに配置される。いくつかの実施形態において、屈曲性回路シートは、1つの配線層2aだけからなる一層構造または1つの配線層2aと1つの誘電体層2bとからなる二層構造であるため、従来の三層構造のフレキシブル基板(2つの配線層と、その間に挟まれた1つの誘電体層)と比べてより屈曲性や柔軟性があってカールさせやすい。その結果、LEDライトストリップ2の屈曲性回路シートを、カスタマイズされた形状または非筒状形状のランプ管に取付けてもよいし、そのようなランプ管の内表面にぴったりと取り付けてもよい。場合によっては、そのようなランプ管の内表面に密着させた屈曲性回路シートが望ましい。さらに、層の数が少ない屈曲性回路シートを使用すると、放熱性が向上し、材料費が削減され、より環境に優しく、柔軟性の効果を高めるチャンスをもたらすことになる。
しかしながら、屈曲性回路シートは一層構造または二層構造に限られない。他の実施形態において、屈曲性回路シートは、複数の配線層2aからなる複数層と複数の誘電体層2bからなる複数層とを備え、複数の配線層2aと複数の誘電体層2bとが交互に積層されてもよい。このような積層体は、LED光源202が配置される(ランプ管の内周面から見て)最外層の配線層2aと、ランプ管の内周面との間に位置し、(図1に示されるように)電源5に電気的に接続されていてもよい。さらに、いくつかの実施形態において、屈曲性回路シートの長さ(例えば、屈曲性回路シートの一端部から第2端部までの表面に沿った長さ)(または屈曲性回路シートを軸方向に投影して見たときの長さ)は、ランプ管の長さ(またはランプ管を軸方向に投影して見たときの長さ)より長い、または、ランプ管の両端部の2つの渡り部(例えばランプ管の円周が狭くなる領域)の間にあたる中央部分よりは少なくとも長い。例えば、屈曲性回路シートの一方の表面(例えば、回路シートの上面)の輪郭に沿った長さは、ランプ管の一方の末端部から他方の末端部までの長さよりも長くてもよい。また、ランプ管が延びる方向と同じ方向に、屈曲性回路シートの第1端部から屈曲性回路シートの反対側の第2端部に向かって延びる直線に沿った長さは、ランプ管の同じ直線に沿った長さより長くてもよい。
図7を参照すると、一実施形態において、LEDライトストリップ2は、第1配線層2aと誘電体層2bと第2配線層2cとを順に有する屈曲性回路シートを備えている。一例において、第2配線層2cの厚み(例えば、層2aから2cが積層される方向の厚み)は、第1配線層2aの厚みより大きく、LEDライトストリップ2の長さ(またはLEDライトストリップ2を軸方向に投影して見たときの長さ)は、ランプ管1の長さよりも長い、または、ランプ管の両端部の2つの渡り部(例えばランプ管の円周が狭くなる領域)の間にあたるランプ管の中央部よりは少なくとも長い。ランプ管1の端部を超えて延びる、光源202が配置されないLEDライトストリップ2の端部領域には、2つの独立した貫通孔203と204が形成されており、それぞれ第1配線層2aと第2配線層2cとを電気的に連通する。ショートを避けるため、貫通孔203および204は互いに連通していない。
このように、第2配線層2cの厚みを大きくすることにより、第2配線層2cが第1配線層2aと誘電体層2bとを支持する一方で、ずれや変形が生じないようにLEDライトストリップ2を内周面に装着することができるため、製品の歩留まりを向上させることができる。加えて、第1配線層2aと第2配線層2cとが電気的に連通しているため、第1配線層2aの回路レイアウトを第2配線層2cまで下方に延ばしてLEDライトストリップ2全体の回路レイアウトまで届かせることができる。さらに、回路レイアウトが二層になっているため、各層の面積、ひいてはLEDライトストリップ2の幅を削減することができ、生産ラインにより多くのLEDライトストリップ2を投入して生産性を上げることができる。
さらに、いくつかの実施形態において、ランプ管1の端部を超えて延びる、光源202が配置されないLEDライトストリップ2の端部領域における第1配線層2aと第2配線層2cを用いて、電源モジュールをLEDライトストリップ2の屈曲性回路シート上に直接配置できるような電源モジュールの回路レイアウトを構築することができる。
LEDライトストリップ2の両端がランプ管1の内表面から離れており、かつLEDライトストリップ2がワイヤボンディングを介して電源5に接続されている場合、その後の輸送の際に何らかの動きが生じて、接着したワイヤが破断する可能性がある。従って、LEDライトストリップ2と電源5との望ましい接続方法は、(図1に示されるように)はんだ付けであろう。具体的には、図1を参照すると、屈曲性回路シートを含むLEDライトストリップ2の両端は、ランプ管の強化された渡り部を通り抜けて、電源5の出力端子に直接はんだ付けされるよう配置されている。これにより、ワイヤおよび/またはワイヤボンディングを使わずに製品の品質を高めることができる。本明細書中において述べたように、ランプ管の渡り部は、ランプ管の中央部より外側でランプ管の末端部よりは内側の領域を指す。例えば、ランプ管の中央部の直径は一定で、ランプ管の中央部と末端部の間にある各渡り部の直径は変化してもよい(例えば、渡り部の少なくとも一部は、ランプ管の中央部から末端部に向かうにつれ狭くなってもよい)。
図3を参照すると、電源5のプリント回路基板の出力端子は、(図1にも示されるように)はんだジョイント「g」(またははんだボール「g」)を後で形成するのに十分な厚さの量のはんだ(例えば錫はんだ)を備えたはんだ付けパッド「a」を有していてもよい。それに応じて、LEDライトストリップ2の両端は、(図1にも示されるように)はんだ付けパッド「b」を有していてもよい。電源5のプリント回路基板の出力端子上のはんだ付けパッド「a」は、はんだ付けパッド「a」上の錫はんだを介してLEDライトストリップ2上のはんだ付けパッド「b」にはんだ付けされている。電源5のプリント回路基板とLEDライトストリップ2との接続が最も強固になるよう、はんだ付けパッド「a」とはんだ付けパッド「b」とをはんだ付けの際に対面させてもよい。しかしながら、この種のはんだ付けは通常、LEDライトストリップ2の裏側に熱圧着ヘッドを押し付けることによって錫はんだを加熱する、つまり、LEDライトストリップ2が熱圧着ヘッドと錫はんだとの間に挟まれるため、信頼性の問題を引き起こす可能性がある。いくつかの実施形態において、LEDライトストリップ2上の各はんだ付けパッド「b」に貫通孔を形成することにより、はんだ付けパッド「b」がはんだ付けパッド「a」と対面することなく重なるように(例えば、はんだ付けパッド「a」とはんだ付けパッド「b」の両方が同じ方向を向いた露出面を有することができるように)してもよく、はんだ付けパッド「a」とはんだ付けパッド「b」とを上下に並べると、電源5のプリント回路基板の表面上のはんだ付けパッド「a」の錫はんだを熱圧着ヘッドが直接押圧することになる。この例では、製造工程が簡単になる。
再び図3を参照すると、(図7に示されるように)ランプ管1の内表面から離れたLEDライトストリップ2の両端は、(図1および7にも示されるように)自由延出端部21として形成されているが、LEDライトストリップ2の大半の部分はランプ管の内表面に取り付け、固定されている。一方の自由延出端部21は上記のはんだ付けパッド「b」を有している。LED直管ランプの組み立ての際、電源5のプリント回路基板のはんだ付けによる接続と同時に、図1に示されるように、自由延出端部21がランプ管内に適宜収まるように渦巻状に巻いたり、上方にカールさせたり、変形させたりする。図7に示されるように、LEDライトストリップ2の屈曲性回路シートが第1配線層2aと誘電体層2bと第2配線層2cとを順に備える場合、光源202が配置されていない、ランプ管を超えて延びるLEDライトストリップ2の端部領域である自由延出端部21を用いて、第1配線層2aと第2配線層2cとの接続を実現し、電源5の回路レイアウトを整えることができる。上述したように、LEDライトストリップ2の固定部はランプ管の内表面の形状に合わせて固定できるが、自由延出端部21の形状はランプ管の形状に合致しないという点で、自由延出端部21は固定部と異なっていてもよい。図1に示されるように、自由延出端部21はランプ管から離れるように曲げられてもよい。例えば、ランプ管の内表面と自由延出端部21との間にスペースがあってもよい。
図5および6を参照すると、別の実施形態において、LEDライトストリップと電源とは、上述したはんだ接合ではなく、電源モジュール250を備えて構成された回路基板アセンブリ25を利用して接続されてもよい。回路基板アセンブリ25は、互いに貼り合わせた長尺回路シート251と短尺回路基板253とを有しており、短尺回路基板252が長尺回路シート251の側端に隣接している。短尺回路基板253は、電源モジュール250を備えて電源を形成してもよい。短尺回路基板253は、電源モジュール250を支持できるように長尺回路シート251より硬く強固である。
長尺回路シート251は、図2に示されるように配線層2aを含むLEDライトストリップ2の屈曲性回路シートであってもよい。LEDライトストリップ2の配線層2aと電源モジュール250とは実際の需要に応じて様々な形態で電気的に接続されてもよい。図5に示されるように、電源モジュール250と表面に配線層2aを有する長尺回路シート251とは、短尺回路基板253の同じ側にあって、電源モジュール250が長尺回路シート251に直接接続されるようになっている。あるいは、図6に示されるように、電源モジュール250と表面に配線層2aを備える長尺回路シート251とは、短尺回路基板253の両側にあって、電源モジュール250が短尺回路基板253に直接接続されるとともに、短尺回路基板253を介してLEDライトストリップ2の配線層2aに間接的に接続されるようになっている。
上述した電源モジュール250と電源5とはLEDライトストリップ2に電力を供給するための様々な要素を備えてもよい。例えば、LEDライトストリップ2に電力を付与するための電力変換器、その他回路素子を備えてもよい。
図4Aは、互いにはんだ付けされた例示的な屈曲性回路シート200と電源400のプリント回路基板420との斜視図である。図4B〜図4Dは、屈曲性回路シート200と電源400のプリント回路基板420との例示的なはんだ付け工程を示す図である。一実施形態において、屈曲性回路シート200と自由延出端部とは同じ構造を有している。自由延出端部は屈曲性回路シート200の相対する2つの端部であり、プリント回路基板420への接続に利用される。屈曲可能シート200と電源400とは互いにはんだ付けによって電気的に接続されている。屈曲性回路シート200は、回路層200aと回路層200aの一面を覆う回路保護層200cとを備える。さらに、屈曲性回路シート200は、第1表面2001と第2表面2002という向かい合う2つの表面を備える。第1表面2001は、回路層200a上であって回路保護層200cから離れた位置にある面である。第2表面2002は、回路保護層200c上であって回路層200aから離れた位置にある面である。第1表面2001にはいくつかのLED光源202が配置されており、回路層200aの回路に電気的に接続されている。回路保護層200cは、例えば、熱伝導性は低いが回路の保護に有用なポリイミド(PI)によってできている。屈曲性回路シート200の第1表面2001は、はんだ付けパッド「b」(または第1はんだ付けパッドという)を備える。はんだ材「g」は、はんだ付けパッド「b」上に置くことができる。一実施形態において、屈曲性回路シート200はさらに切り込み「f」を備える。切り込み「f」は、電源400のプリント回路基板420にはんだ付けされた屈曲性回路シート200の端部の縁に配置されている。いくつかの実施形態においては、切り込みの代わりに、屈曲性回路シート200の端部の縁近くに設けた孔を用いてもよい。孔を設けることにより、プリント回路基板420と屈曲性回路シート200との間にさらに接点材料を設けることになるため、より強固な接続となる。プリント回路基板420は電源回路層420aとはんだ付けパッド「a」とを備える。さらに、プリント回路基板420は、第1表面(または上面)421と第2表面(または底面)422という向かい合う2つの表面を備える。第2表面422は電源回路層420a上の層である。はんだ付けパッド「a」はそれぞれ、第1表面421(第1表面421上のはんだ付けパッド「a」を第2はんだ付けパッドと称してもよい)と第2表面422(第2表面422上のはんだ付けパッド「a」を第3はんだ付けパッドと称してもよい)上に配置されている。第1表面421上のはんだ付けパッド「a」は第2表面422上のはんだ付けパッド「a」に対応している。はんだ材「g」ははんだ付けパッド「a」上に置くことができる。一実施形態において、はんだ付けの安定性と自動工程の最適化とを考慮して、屈曲性回路シート200はプリント回路基板420の下に配置されている(配置の方向は図4Bを参照)。例えば、屈曲性回路シート200の第1表面2001は、プリント回路基板420の第2表面422につながっている。また、図示されるように、はんだ材「g」は、屈曲性回路シート200の上面(例えば第1表面2001)、はんだ付けパッド「a」と、はんだ付けパッド「b」と、プリント回路基板420の縁に形成された電源回路層420aそれぞれの端部の側面、およびプリント回路基板420の上面421のはんだ付けパッド「a」の上面それぞれに接触し、覆い、はんだ付けすることができる。加えて、はんだ材「g」は、はんだ付けパッド「a」と、はんだ付けパッド「b」と、プリント回路基板420の孔に形成された電源回路層420aの側面、および/または屈曲性回路シート200の孔もしくは切り込みに接触することができる。従って、はんだ材は、屈曲性回路シート200とプリント回路基板420の一部を覆うこぶ状部と、プリント回路基板420と屈曲性回路シート200の孔もしくは切り込みを貫通する棒状部とを形成してもよい。これら2つの部分(例えば、こぶ状部と棒状部)とは、屈曲性回路シート200とプリント回路基板420との強固な接続を維持するためのリベットとして機能してもよい。
図4Cおよび図4Dに示されるように、屈曲性回路シート200とプリント回路基板420との例示的なはんだ付け工程において、屈曲性回路シート200の回路保護層200cは、はんだ付けの前に支持テーブル42上に置かれる(すなわち、屈曲性回路シート200の第2表面2002が支持テーブル42に接触する)。プリント回路基板420の第2表面422上のはんだ付けパッド「a」は、屈曲性回路シート200の第1表面2001上のはんだ付けパッド「b」と接触する。次に、はんだ材「g」の一部を加熱ヘッド41が押圧すると、そこで屈曲性回路シート200とプリント回路基板420とが互いにはんだ付けされる。はんだ付けの際、屈曲性回路シート200の第1表面2001上のはんだ付けパッド「b」は、プリント回路基板420の第2表面422上のはんだ付けパッド「a」と接触し、プリント回路基板420の第1表面421上のはんだ付けパッド「a」は、加熱ヘッド41により押圧されるはんだ材「g」に接触する。このような状態で、加熱ヘッド41からの熱を、プリント回路基板420の第1表面421上のはんだ付けパッド「a」とプリント回路基板420の第2表面422上のはんだ付けパッド「a」とを通じて、屈曲性回路シート200の第1表面2001上のはんだ付けパッド「b」に伝達することができる。比較的熱伝導性の低い回路保護層200cが加熱ヘッド41と回路層200aとの間にないため、加熱ヘッド41とはんだ付けパッド「a」および「b」との間の熱の伝達は、回路保護層200cの影響を受けない。その結果、プリント回路基板420と屈曲性回路シート200のはんだ付けパッド「a」および「b」の接続およびはんだ付け工程に関する効率と安定性を向上させることができる。
図4Cの例示的な実施形態に示されるように、プリント回路基板420と屈曲性回路シート200とははんだ材「g」によって互いに強固に接続されている。図4Cにおいて上から下に引かれた仮想線Mと仮想線Nとの間にある構成部品は、プリント回路基板420の第1表面421上のはんだ付けパッド「a」と、電源回路層420aと、プリント回路基板420の第2表面422上のはんだ付けパッド「a」と、屈曲性回路シート200の第1表面2001上のはんだ付けパッド「b」と、屈曲性回路シート200の回路層200aと、屈曲性回路シート200の回路保護層200cである。プリント回路基板420と屈曲性回路シート200との接続は強固で安定している。はんだ材「g」は、上述したように、プリント回路基板420の第1表面421上のはんだ付けパッド「a」より高く盛り上がってもよく、また、他のスペースを埋めてもよい。
他の実施形態において、さらに別の回路保護層(例えばPI層)を回路層200aの第1表面2001を覆うように配置することができる。例えば、回路層200aは2つの回路保護層に挟まれていてもよく、回路層200aの第1表面2001を回路保護層で保護することができる。回路層200aの一部(はんだ付けパッド「b」を有する部分)は、プリント回路基板420のはんだ付けパッド「a」に接続されるよう露出している。回路層200aの他の部分は、上記の別の回路保護層から露出して、LED光源202に接続できるようになっている。このような状態で、各LED光源202の底の一部は回路層200aの第1表面2001上の回路保護層に接触し、LED光源202の底の他の一部は回路層200aに接触している。
図4A〜図4Dに示された例示的な実施形態によれば、プリント回路基板420ははんだ付けパッド「a」を貫通する貫通孔「h」を備える。自動はんだ付け工程において、加熱ヘッド41が自動的にプリント回路基板420を押圧するのに伴って、加熱ヘッド41によってはんだ付けパッド「a」上のはんだ材「g」を貫通孔「h」に押し込むことができる。その結果、図4Cおよび4Dに示されるようにはんだ接続が形成される。
図8Aは、ある特定の実施形態に係る電源モジュールを含むLED直管ランプを備えるシステムのブロック図である。図8Aを参照すると、交流電源508は交流供給信号を供給するのに用いられ、例えば定格電圧100−277V、定格周波数50Hzまたは60Hzの交流送電線であってもよい。ランプ駆動回路505は交流電源508から交流供給信号を受信すると、それを交流駆動信号に変換する。上述した電源モジュールと電源508とはLEDライトストリップ2に電力を提供するための様々な要素を備えてもよい。例えば、LEDライトストリップ2に電力を提供する電力変換器、その他の回路素子を備えてもよい。いくつかの実施形態において、電源508とランプ駆動回路505はLED直管ランプの外側にある。例えば、ランプ駆動回路505は、中にLED直管ランプを挿入するランプソケットもしくはランプホルダの一部であってもよい。ランプ駆動回路505を電子安定器とすることもでき、商用電力の信号を高周波、高電圧の交流駆動信号に変換するのに用いられてもよい。瞬時起動電子安定器、プログラム起動電子安定器、急速起動電子安定器といった一般的な種類の電子安定器をLED直管ランプに適用することができる。いくつかの実施形態において、交流駆動信号の電圧は300Vより高く、いくつかの実施形態においては周波数10kHz超で400〜700V、またいくつかの実施形態では周波数20〜50kHzで400〜700Vである。LED直管ランプ500はランプ駆動回路505から交流駆動信号を受信すると、駆動されて発光する。本実施形態においては、LED直管ランプ500は、交流駆動信号を受信するのに用いられる2つの導体ピン501と502を有する一方のエンドキャップで電力の供給を受けるといった駆動環境にある。2つの導体ピン501と502とは、ランプ駆動回路505に、直接または間接的に連結される。
いくつかの実施形態において、ランプ駆動回路505は省略してもよいため、点線で描かれている。ある特定の実施形態において、ランプ駆動回路505が省略されている場合、交流電源508はピン501と502に直接連結されるため、これらピンは交流供給信号を交流駆動信号として受信する。
いくつかの実施形態において、LED直管ランプは、2つの導体ピンをそれぞれ有する両側のエンドキャップで電力の供給を受けてもよい。これらの導体ピンは、交流駆動信号を同時に受信するようランプ駆動回路に連結されている。しかしながら、ある特定の実施形態において、図8Bを参照すると、LED直管ランプ500の各エンドキャップは、交流駆動信号を受信するための導体ピンを1つだけ有する場合もある。例えば、LED直管ランプの両端に電気を通すためには、各エンドキャップにおいて2つの導体ピンを有する必要はない。図8Aと比較すると、図8Bの導体ピン501と502は、LED直管ランプ500の両エンドキャップにおいて対応するように構成されており、交流電源508とランプ駆動回路505は上述したものと同じである。
図8Cは、一実施形態に係るLEDランプのブロック図である。図8Cを参照すると、LEDランプの電源モジュールは、整流回路510と、フィルタ回路520とを備え、さらにLED照明モジュール530のいくつかの部分を備えてもよい。整流回路510は2つのピン501と502に連結されて、外部からの駆動信号を受信し、整流することにより、2つの整流出力端子511と512から整流信号を出力する。いくつかの実施形態において、外部駆動信号は、図8Aおよび8Bを参照して説明した交流駆動信号または交流供給信号であってもよい。いくつかの実施形態において、外部駆動信号は直流信号であってもよく、その場合もLED直管ランプは変更しなくてもよい。フィルタ回路520は、整流信号をフィルタリングしてフィルタ信号を生成するために整流回路に連結されている。例として、フィルタ回路520は整流回路出力端子511と512に連結されて整流信号を受信し、フィルタにかけることにより、2つの出力端子521と522からフィルタ信号を出力する。LED照明モジュール530はフィルタ回路520に連結されて、光を発するためのフィルタ信号を受信する。例として、LED照明モジュール530は、フィルタ信号を受信することによりLED照明モジュール530内の(図示されない)LEDユニットを駆動して発光させるために、フィルタ出力端子521と522に連結された回路を備えてもよい。これら動作の詳細については、ある特定の実施形態に基づいて以下に説明する。
これら図面の実施形態においては、2つの整流出力端子511および512と、2つのフィルタ出力端子521および522とがあるが、実際には、整流回路510、フィルタ回路520、およびLED照明モジュール530間を連結するポートまたは端子の数は、回路または装置間の信号送信の必要性に応じて1つでも複数でもよい。
加えて、図8Cで述べたLEDランプの電源モジュールと、以下に述べるLEDランプの電源モジュールの実施形態とはそれぞれ図8Aおよび8BのLED直管ランプ500で用いられてもよいし、代わりに、電力を伝えるために用いられる2つの導体ピンを有する他のあらゆる種類のLED照明構造、例えば電球形LED照明、パーソナルエリア照明(personal area lights(PAL))、(PL−S、PL−D、PL−T、PL−L等の)基部の種類が異なる差込み式LEDランプなどで用いてもよい。さらに、本発明を国際公開第2016/045631号に開示された構造と組み合わせて電球形LED照明に対して実施することにより、感電保護効果が高まるかもしれない。
図9は、一実施形態に係る整流回路の模式図である。図9を参照すると、整流回路610、すなわちブリッジ整流器は、受信した信号を全波整流するよう構成された4つの整流ダイオード611、612、613、614を備える。ダイオード611は、出力端子512に接続されたアノードとピン502に接続されたカソードとを有する。ダイオード612は、出力端子512に接続されたアノードとピン501に接続されたカソードとを有する。ダイオード613は、ピン502に接続されたアノードと出力端子511に接続されたカソードとを有する。ダイオード614は、ピン501に接続されたアノードと出力端子511に接続されたカソードとを有する。
ピン501と502が交流信号を受信すると、整流回路610は以下の動作をおこなう。接続された交流信号の正の半周期中、交流信号がピン501、ダイオード614、出力端子511に順に入力された後、出力端子512、ダイオード611、ピン502を順に通過して出力される。接続された交流信号の負の半周期中、交流信号がピン502、ダイオード613、出力端子511に順に入力された後、出力端子512、ダイオード612、ピン501を順に通過して出力される。従って、接続された交流信号の全周期中、整流回路610によって生成された整流信号の正極は出力端子511に、整流信号の負極は出力端子512にある状態が続く。従って、整流回路610により生成または出力された整流信号は全波整流信号である。
ピン501と502が直流電源に連結されて直流信号を受信する場合は、整流回路610は以下の動作をおこなう。ピン501が直流電源の正極端へ、ピン502が直流電源の負極端へ連結されると、直流信号がピン501、ダイオード614、出力端子511に順に入力された後、出力端子512、ダイオード611、ピン502を順に通過して出力される。ピン501が直流電源の負極端へ、ピン502が直流電源の正極端へ連結されると、直流信号がピン502、ダイオード613、出力端子511に順に入力された後、出力端子512、ダイオード612、ピン501を順に通過して出力される。従って、たとえ直流信号の電気的極性がピン501と502との間で変わろうと、整流回路610によって生成された整流信号の正極は出力端子511のままで、整流信号の負極は出力端子512のままである。
従って、本実施形態における整流回路610は、受信した入力信号が交流信号であるか直流信号であるかに関わらず、適切な整流信号を出力または生成することができる。
図10Aは、一実施形態に係るフィルタ回路のブロック図である。整流回路510が図10Aに示されているが、この図は整流回路と他の部品との接続を説明するためであって、フィルタ回路520が整流回路510を含むという意味ではない。図10Aを参照すると、フィルタ回路520は、2つの整流出力端子511、512に連結されて、整流回路510からの整流信号のリップルの入力を受け、かつ除去するフィルタユニット523を備える。従って、フィルタ後の信号の波形は整流信号の波形より滑らかである。フィルタ回路520はさらに、整流回路と対応するピンとの間、例えば、整流回路510とピン501、整流回路510とピン502、整流回路540とピン503、および/または整流回路540とピン504との間に連結された別のフィルタユニット524を備えてもよい。フィルタユニット524は、特定周波数のフィルタリング、例えば外部駆動信号の特定周波数の除去に用いられる。本実施形態において、フィルタユニット524は整流回路510とピン501との間に連結されている。フィルタ回路520はさらに、電磁妨害(electromagnetic interference(EMI))を削減または除去するために、ピン501および502のいずれかと整流回路510のダイオードのいずれかとの間、またはピン503および504のいずれかと整流回路540のダイオードのいずれかとの間に連結された別のフィルタユニット525を備えてもよい。本実施形態において、フィルタユニット525はピン501と整流回路510のダイオードの1つ(図10Aには図示せず)との間に連結されている。フィルタユニット524、525は実際の使用状況によって存在してもよいし、省略してもよいため、図10Aにおいては点線で描かれている。
図10Bは、一実施形態に係るフィルタユニットの模式図である。図10Bを参照すると、フィルタユニット623は、出力端子511およびフィルタ出力端子521に連結された一端と、出力端子512およびフィルタ出力端子522に連結された他端とを有するコンデンサ625を備え、出力端子511、512からの整流信号を低域フィルタリングするよう構成されており、それにより整流信号の高周波成分を除去して、フィルタ出力端子521、522からフィルタ信号を出力する。
図10Cは、一実施形態に係るフィルタユニットの模式図である。図10Cを参照すると、フィルタユニット723は、コンデンサ725、インダクタ726、およびコンデンサ727を含むpi型フィルタ回路を備える。周知のとおり、pi型フィルタ回路はその形状や構造が記号「π」に似ている。コンデンサ725は、出力端子511に接続され、かつインダクタ726を介してフィルタ出力端子521に連結された一端を有するとともに、出力端子512およびフィルタ出力端子522に接続された他端を有している。インダクタ726は、出力端子511とフィルタ出力端子521との間に連結されている。コンデンサ727は、フィルタ出力端子521に接続され、かつインダクタ726を介して出力端子511に連結された一端を有するとともに、出力端子512およびフィルタ出力端子522に接続された他端を有している。
出力端子511と512との間およびフィルタ出力端子521と522との間に見られるように、図10Bのフィルタユニット623と比べて、フィルタユニット723はさらにインダクタ726とコンデンサ727とを有しており、これらはコンデンサ725と同様の低域通過フィルタリングの機能を実行する。従って、図10Bのフィルタユニット623と比べて、本実施形態のフィルタユニット723は、高周波成分を除去してより滑らかな波形のフィルタ信号を出力する能力が高い。
上記の実施形態のインダクタ726のインダクタンス値は、例えばいくつかの実施形態においては、およそ10nH〜10mHの範囲の値が選択される。上記の実施形態のコンデンサ625、725、727の容量値は、例えばいくつかの実施形態においては、およそ100pF〜1uFの範囲の値が選択される。
図11Aは、一実施形態に係るLEDモジュールの模式図である。図11Aを参照すると、LEDモジュール630は、フィルタ出力端子521に接続されたアノードとフィルタ出力端子522に接続されたカソードとを有し、上記の光源のようなLEDユニット632を少なくとも1つ備えている。2つ以上のLEDユニットを備える場合は、並列に接続される。各LEDユニット632のアノードはLEDモジュール630のアノードに接続されてフィルタ出力端子521と連結し、各LEDユニット632のカソードはLEDモジュール630のカソードに接続されてフィルタ出力端子522と連結する。各LEDユニット632は少なくとも1つのLED631を備える。LEDユニット632が複数のLED631を備えている場合、複数のLED631は直列に接続され、第1LED631のアノードはこのLEDユニット632のアノードに接続され、第1LED631のカソードはその隣又は第2LED631に接続される。そして、このLEDユニット632の最後のLED631のアノードは、一つ前のLED631のカソードと接続され、最後のLED631のカソードは、このLEDユニット632のカソードに接続される。
いくつかの実施形態において、LEDモジュール630は、LEDモジュール630を流れる電流の大きさを表す、LEDモジュール630の制御または検出に用いられる電流検出信号S531を生成してもよい。
図11Bは、例示的な実施形態に係るLEDモジュールの模式図である。図11Bを参照すると、LEDモジュール630は、フィルタ出力端子521に接続されたアノードとフィルタ出力端子522に接続されたカソードとを有するとともに、少なくとも2つのLEDユニット732を備え、各LEDユニット732のアノードはLEDモジュール630のアノードに接続され、各LEDユニット732のカソードはLEDモジュール630のカソードに接続されている。各LEDユニット732は、図11Aに記載されたものと同様に接続された少なくとも2つのLED731を備えている。例えば、LEDユニット732の第1LED731のアノードは、このLEDユニット732のアノードに接続され、第1LED731のカソードは、次のまたは第2LED731のアノードに接続され、最後のLED731のカソードはこのLEDユニット732のカソードに接続される。さらに、本実施形態において、LEDモジュール630内の複数のLEDユニット732は互いに接続されている。nが正の整数とすると、例えば図11Bに示される(がこれに限定されない)ように、これら複数のLEDユニット732間において、各ユニット内のn番目のLEDのアノード同士およびカソード同士が接続されることにより、すべてのn番目のLEDが接続されている。このように、本実施形態のLEDモジュール630のLEDはメッシュ状に接続されている。
いくつかの実施形態において、上記実施形態におけるLED照明モジュール530はLEDモジュール630を備えるが、LEDモジュール630用の駆動回路は備えていない。
また、本実施形態のLEDモジュール630は、LEDモジュール630を流れる電流の大きさを表す、LEDモジュール630の制御または検出に用いられる電流検出信号S531を生成してもよい。
いくつかの実施形態において、LEDユニット732に備えられるLEDの数は15〜25の範囲で、また実施形態によっては18〜22の範囲でもよい。
図11Cは、一実施形態に係るLEDモジュールの回路レイアウトの平面図である。図11Cを参照すると、本実施形態において、複数のLED831が図11Bの記載と同様に接続され、3つのLEDユニットがLEDモジュール630内にあると想定して、以下の通り説明する。正極導電線834と負極導電線835は、LED831に電力を供給するための駆動信号を受信するものである。例えば、正極導電線834は上記のフィルタ回路520のフィルタ出力端子521に連結され、負極導電線835はフィルタ回路520のフィルタ出力端子522に連結されてフィルタ信号を受信してもよい。説明の便宜上、図11Cにおいて、3つの関連LEDユニットそれぞれのn番目のLED831同士をグループにしてLEDセット833とする。
正極導電線834は、図11Cの左端のLEDセット833に示されるように、左端の3つの関連LEDユニットの3つの第1LED831を接続する、すなわち、3つの第1LED831の左側のアノードを接続する。負極導電線835は、図11Cの右端のLEDセット833に示されるように、対応する右端の3つのLEDユニットの3つの最終LED831を接続する、すなわち、3つの最終LED831の右側のカソードを接続する。3つの第1LED831のカソード、3つの最終LED831のアノード、およびその他すべてのLED831のアノードとカソードが導電線または導電部839によって接続される。
例えば、左端のLEDセット833内の3つのLED831のアノードは正極導電線834によりまとめて接続され、カソードは左端の導電部839によりまとめて接続されてもよい。左端から2番目のLEDセット833内の3つのLED831のアノードも左端の導電部839によりまとめて接続され、カソードは左端から2番目の導電部839によりまとめて接続される。左端のLEDセット833の3つのLED831のカソードと左端から2番目のLEDセット833の3つのLED831のアノードは同じ左端の導電部839によりまとめて接続されているため、3つのLEDユニットそれぞれの第1LED831のカソードは次の第2LED831のアノードに接続される。その他のLED831も同様に接続される。従って、3つのLEDユニットのすべてのLED831が、図11Bに示されるようにメッシュ状に接続されている。
本実施形態において、各導電部839のうちLED831のアノードに接続された部分の長さ836は、各導電部839の別の部分であるLED831のカソードに接続された部分の長さ837より短い。これにより、カソードに接続された部分の面積は、アノードに接続された部分の面積よりも大きくなる。さらに、長さ837は、あるLEDセット833にある1つのLED831のカソードと、その隣りのLEDセット833にある次のLED831のアノードとを接続する各導電部839の部分の長さ838より短い。これにより、各導電部839のうちカソードとアノードとを接続する部分の面積は、各導電部839のそれ以外の部分で、LED831のカソードまたはアノードだけに接続された部分の面積より大きくなる。このような長さの違いと面積の違いにより、このレイアウト構造はLED831の放熱性を向上させる。
いくつかの実施形態において、正極導電線834は長手部834aを備え、負極導電線835は長手部835aを備える。これらの長手部は導電性のため、図11Cに示されるように、LEDモジュールの両端それぞれに正の(+)接続部と負の(−)の接続部とを持たせることになる。このようなレイアウト構造により、例えば、フィルタ回路520、整流回路510、540、といったLEDランプの電源モジュールが備える他のあらゆる回路を、LEDランプの両端のそれぞれの正の接続部および/または負の接続部を介してLEDモジュールに連結することが可能になる。よって、このレイアウト構造により、実際にLEDランプに回路を配置する際の自由度が高まる。
図11Dは、別の実施形態に係るLEDモジュールの回路レイアウトの平面図である。図11Dを参照すると、本実施形態において、複数のLED931が図11Aの記載と同様に接続され、それぞれ7つのLED931を備える3つのLEDユニットがLEDモジュール630内にあるものとして、例示のために以下の通り説明する。正極導電線934と負極導電線935は、LED931に電力を供給するための駆動信号を受信するものである。例えば、正極導電線934は上記のフィルタ回路520のフィルタ出力端子521に連結されてもよく、負極導電線935はフィルタ回路520のフィルタ出力端子522に連結されてフィルタ信号を受信する。例示の便宜上、図11Dにおいて、3つのLEDユニットそれぞれの7つのLED931すべてをまとめてLEDセット932とする。よって、3つのLEDユニットに対応する3つのLEDセット932がある。
正極導電線934は、3つのLEDセット932それぞれの第1または左端のLED931の左側のアノード同士を接続する。負極導電線935は、3つのLEDセット932それぞれの最後または右端のLED931の右側のアノード同士を接続する。各LEDセット932において、隣接する2つのLED931のうち左側のLED931は、導電部939によって右側のLED931のアノードに接続されたカソードを有している。このようなレイアウトによって、各LEDセット932のLED931が直列に接続されている。
いくつかの実施形態において、2つの連続するLED931のアノードとカソードをそれぞれ接続するのに導電部939を用いてもよい。負極導電線935は、3つのLEDセット932それぞれの最後または右端のLED931のカソード同士を接続する。そして、正極導電線934は、3つのLEDセット932それぞれの第1または左端のLED931のアノード同士を接続する。従って、図11Dに示されるように、導電部939の長さは、負極導電線935のうちカソードに接続された部分の長さよりも長く、カソードに接続された部分の長さは、正極導電線934のうちアノードに接続された部分の長さよりも長い。例えば、導電部939の長さ938は、負極導電線935のうちLED931のカソードに接続された部分の長さ937よりも長く、カソードに接続された部分の長さ937は、正極導電線934のうちLED931のアノードに接続された部分の長さ936よりも長い。このようなレイアウト構造により、LEDモジュール630のLED931の放熱性が向上する。
正極導電線934は長手部934aを備え、負極導電線935は長手部935aを備え、これらの長手部は導電性のため、図11Dに示されるように、LEDモジュールの両端のそれぞれに正の(+)接続部と負の(−)の接続部とを持たせることになる。このようなレイアウト構造により、例えば、フィルタ回路520、整流回路510、540、といったLEDランプの電源モジュールが備える他のあらゆる回路を、LEDランプの両端それぞれの正の接続部および/または負の接続部を介してLEDモジュールに連結することが可能になる。よって、このレイアウト構造により、実際にLEDランプに回路を配置する際の自由度が高まる。
さらに、図11Cおよび11Dに示されるような回路レイアウトは、屈曲性回路シートもしくは基板を使って実施してもよく、その具体的な定義によっては、フレキシブル回路基板とさえ呼んでもよい。例えば、屈曲性回路シートは、図11Cに示された正極導電線834、正極長手部834a、負極導電線835、負極長手部835a、および導電部839、図11Dに示された正極導電線934、正極長手部934a、負極導電線935、負極長手部935a、および導電部939がエッチング法により形成された一つの導電層を備えてもよい。
図11Eは、別の実施形態に係るLEDモジュールの回路レイアウトの平面図である。図11Eおよび11CのLEDモジュールのレイアウト構造は、図11Bに示されたLED831の接続方法と同様の接続方法に対応しているが、図11Cに示された回路レイアウトの形成には導電層を1つだけ使うのに対し、図11Eのレイアウト構造では、2つの導電層を備えている。図11Eを参照すると、図11Cのレイアウトとの主な違いは、正極導電線834と負極導電線835がそれぞれ第2導電層に形成された長手部834aと長手部835aを有している点である。この違いについて以下に詳しく述べる。
ある特定の実施形態において、同時に図7を再び参照すると、LEDモジュールの屈曲性回路シートは、誘電体層2bによって互いに電気的に絶縁された第1導電層2aおよび第2導電層2cを備えている。2つの導電層のうち、図11Eの正極導電線834、負極導電線835、および導電部839は、複数のLED部品831を電気的に接続するために、エッチング法により、例えばメッシュ状に第1導電層2aに形成されている。一方、正極長手部834aおよび負極長手部835aは、フィルタ回路(のフィルタ出力端子)を電気的に接続するために、エッチングにより第2導電層2cに形成されている。さらに、第2導電層2cへの接続のために、第1導電層2aの正極導電線834は複数のビアポイント834b、第1導電層2aの負極導電線835は複数のビアポイント835bを有している。そして、第2導電層2cの正極長手部834aは複数のビアポイント834c、第2導電層2cの負極長手部835aは複数のビアポイント835cを有している。ビアポイント834bは、正極導電線834と正極長手部834aとを接続するために、ビアポイント834cに対応する位置に設けられている。ビアポイント835bは、負極導電線835と負極長手部835aとを接続するために、ビアポイント835cに対応する位置に設けられている。これら2つの導電層2aと2cとを接続する例示的な望ましい方法は、各ビアポイント834bと対応するビアポイント834cとをつなぐ孔、および各ビアポイント835bと対応するビアポイント835cとをつなぐ孔を、2つの導電層2aおよび2cとその間に介在する誘電体層2bとを貫いて延びるように形成することである。そして、正極導電線834と正極長手部834aとは、この1つ以上の接続孔の中に金属部品を溶接することにより電気的に接続することができ、負極導電線835と負極長手部835aとは、この1つ以上の接続孔の中に金属部品を溶接することにより電気的に接続することができる。
同様に、図11DのLEDモジュールのレイアウト構造では、上記に代えて、正極長手部934aと負極長手部935aとが第2導電層に配置されて二層レイアウト構造を構成してもよい。
正極導電線(834または934)は、その両端に設けられた2つの端子と、両端のこれらの端子の間に設けられて、LED(例えばLEDのアノード)と接触および/またはLEDに電力を供給するための複数のパッドと、LEDライトストリップの長手に沿って延びる長尺の導電線であって、両端の端子を複数のパッドに電気的に接続するワイヤ部とを備えることを特徴としてもよい。同様に、負極導電線(835または935)は、その両端に設けられた2つの端子と、両端のこれらの端子の間に設けられ、LED(例えばLEDのカソード)と接触および/またはLEDに電力を供給するための複数のパッドと、LEDライトストリップの長手に沿って延びる長尺の導電線であって、両端の端子を複数のパッドに電気的に接続するワイヤ部とを備えることを特徴としてもよい。
このような回路レイアウトは上述した例示的なLEDライトストリップのいずれかに対して実施されて、LED光源が配置されるLEDライトストリップ用の回路基板やシートとして機能させてもよい。
本明細書中での記載において、LEDユニットとは、直列に配列された複数のLEDからなる1本のLED列を指し、LEDモジュールとは、単一のLEDユニット、または(例えば並列に配置された)同一の2つのノードに接続された複数のLEDユニットを指す。例えば、上記のLEDライトストリップ2はLEDモジュールおよび/またはLEDユニットでもよい。
いくつかの実施形態において、第2導電層に配置された正極長手部と負極長手部それぞれに沿った電圧降下もしくは損失を減らすため、二層構造の屈曲性回路シートの第2導電層の厚みは、いくつかの実施形態において、第1導電層の厚みより大きくなっている。一層の屈曲性回路シートと比較して、正極長手部と負極長手部とは二層の屈曲性回路シート内の第2導電層に配置されているため、二層の屈曲性回路シートの(2つの長手方向の側面間の)幅が削減されている、または削減することができる。生産工程において同じ取付具またはプレート上であれば、幅の狭い屈曲性回路シートをまとめて置ける最大数は、幅の広い屈曲性回路シートをまとめて置ける最大数よりも多い。よって、幅の狭い屈曲性回路シートを採用することにより、LEDモジュールの生産効率を上げることができる。そして、二層の屈曲性回路シートはその形状保持性がより高いため、LED部品に(材料を)溶接する際の溶接位置の精度といった生産工程における信頼性も向上させることができる。
上記実施形態の変形例として、電源モジュールの電子部品のうちの少なくともいくつかをLED直管ランプのライトストリップ上に配置したある種の例示的なLED直管ランプが提供される。例えば、電子部品のうち少なくともいくつかを、(例えば、LEDライトストリップに接続された個別の回路基板であるのとは対照的に)プリント電子回路(PEC)技術を用いて、LEDライトストリップ上に印刷、挿入、または埋め込むことができる。
一実施形態において、電源モジュールの電子部品はすべてライトストリップ上に配置されている。この生産工程は以下のステップを含む、または以下のステップに沿って進む。すなわち、回路基板の準備(例えば、フレキシブルプリント回路基板の準備)ステップ、金属ナノインクのインクジェット印刷ステップ、(電源モジュールに関する)能動部品および受動部品のインクジェット印刷ステップ、乾燥/焼結ステップ、層間バンプのインクジェット印刷ステップ、絶縁インクの噴射ステップ、金属ナノインクのインクジェット印刷ステップ、(含まれる層を順次形成するための)能動部品および受動部品のインクジェット印刷ステップ、(1つ以上の)表面接合パッドの噴射ステップ、およびLED部品に対するソルダレジストの噴射ステップである。しかしながら、生産工程は違っていてもよく、結果的に、電源モジュールの全電子部品または一部がLEDライトストリップ上に直接配置されてもよい。
ある特定の実施形態において、電源モジュールの全電子部品がLEDライトストリップ上に配置された場合、LED直管ランプの端子ピンを、ライトストリップの両端に溶接された導電線に接続することにより、端子ピンとライトストリップとの間の電気接続を達成してもよい。この場合、電源モジュールを支持するための別の基板は必要ないため、LED直管ランプの(片方または両方の)エンドキャップの設計や配置に改善の余地を与える。いくつかの実施形態において、電源モジュールの動作によって発生する熱がLED部品に及ぼす影響を大幅に削減するために、電源モジュール(の部品)はライトストリップの両端に配置される。この場合、電源モジュールの支持にライトストリップ以外の基板を用いないですむので、溶接またははんだ付けの全体量を大幅に削減し、電源モジュールの全体的な信頼性を向上させることができる。
別のケースとして、抵抗および/または小型コンデンサといった電源モジュールの全電子部品のうちいくつかはライトストリップ上に印刷され、インダクタおよび/または電解コンデンサといったより大型の部品は(1つ以上の)エンドキャップに配置される。この場合のライトストリップの生産工程は、上述したものと同じでもよい。また、この場合、全電子部品のうちのいくつかをライトストリップ上に配置することは、LED直管内に電源モジュールを合理的にレイアウトすることにつながるので、エンドキャップの設計の向上にもなるかもしれない。
上記実施形態の変形例として、例えば、電源モジュールの電子部品を屈曲性または柔軟性ライトストリップ上に埋め込むなど、埋め込みまたは挿入により、部品をLEDライトストリップ上に配置してもよい。いくつかの実施形態において、この埋め込み法は、受動部品を埋め込むために、抵抗やコンデンサを形成するための銅箔積層板(copper−clad laminates(CCL))を用いた方法、シルクスクリーン印刷関連のインクを用いた方法、または、インクジェットプリンタを用いてインクを直接印刷して受動素子と関連機能とをライトストリップ上の意図した位置に構築するインクジェット印刷により実現してもよい。その後、紫外光(UV)または乾燥/焼結による処理を経て、受動部品が埋め込まれたライトストリップが形成される。ライトストリップ上に埋め込まれた電子部品は、例えば、抵抗、コンデンサ、インダクタなどを含む。他の実施形態において、能動部品も埋め込んでもよい。いくつかの部品をライトストリップ上に埋め込むことにより、電源モジュールの部品を支えるのに用いるプリント回路基板の表面面積が削減されるか小さくなり、その結果、電源モジュールの部品を運ぶためのプリント回路基板の大きさ、重さ、厚みも小さくなるか削減されるため、電源モジュールの合理的なレイアウトが可能になり、エンドキャップの設計の向上につながる。また、この状況において、もし抵抗および/またはコンデンサを溶接するためのプリント回路基板上の溶接ポイントがライトストリップ上に配置されないのであれば、当然そのような溶接ポイントは使われなくなるため、溶接ポイントが欠陥、動作不良、故障などを(引き起こしたり招いたり)する可能性が高いことから考えて、電源モジュールの信頼性が向上することになる。さらに、部品をプリント回路基板に接続するのに必要な導電線の長さも削減されることになるため、プリント回路基板上の部品のレイアウトをよりコンパクトにすることができ、これら部品の機能性を高めることができる。
次に、埋め込みコンデンサおよび抵抗の製造方法について以下に述べる。
通常、埋め込みコンデンサの製造方法では、分布容量または平面容量の概念が用いられたり必要であったりする。その製造工程は、以下のステップを含む。銅層からなる基板上に、極薄の絶縁層を貼り付けるか押し付けた後、一般に電源導体層と接地層からなる2層の間に配置される。極薄の絶縁層により、電源導体層と接地層との距離は非常に短くなる。このような構造により得られる容量は、従来のめっき貫通孔の技術によっても実現することができる。基本的には、回路基板上に大きな平行板コンデンサを備えるこの構造を作るのにこのステップが用いられる。
電気容量の高い製品の中でも、分布容量を用いる製品もあれば、個別の埋め込み容量を用いる製品もある。チタン酸バリウムのような高誘電率材を絶縁層に塗布したり加えたりすることで、高電気容量が達成される。
通常の埋め込み抵抗の製造方法では、導電性または電気抵抗性接着剤を用いる。このような接着材としては、例えば、接着剤もしくは充填剤として用いることもできる導電性カーボンもしくはグラファイトを加えた樹脂が挙げられる。添加された樹脂は対象箇所にシルクスクリーン印刷され、処理後、回路基板内にラミネートされる。こうしてできた抵抗は、めっき貫通孔もしくはマイクロビアを介して別の電子部品に接続される。別の方法はオメガプライと呼ばれるもので、銅層とニッケル合金の薄層からなる二層金属層構造により、基板に対して層状の抵抗を構築する。次に、銅層とニッケル合金層をエッチングすることにより、銅製の端子を有する別のタイプのニッケル合金抵抗を形成することができる。これらのタイプの抵抗がそれぞれ回路基板内にラミネートされる。
一実施形態において、ガラス製のLED直管ランプの内表面上の線形レイアウトに導電(配)線が直接印刷され、LED部品が内表面上に直接貼り付けられ、導電線により電気的に接続される。いくつかの実施形態において、チップ形状のLED部品は内表面上の導電線に重なるように直接貼り付けられ、LED部品と電源モジュールとを接続する配線の末端部に接続点が置かれる。貼り付けの後、LED直管ランプを動作させることにより白または別の色の光を生成するために、LEDチップに蛍光粉末を塗布したり滴下したりしてもよい。
いくつかの実施形態において、LEDまたはLED部品の発光効率は80lm/W以上であり、実施形態によっては、120lm/W以上でもよい。より最適な特定の実施形態では、発光効率が160lm/W以上のLEDまたはLED部品を備えてもよい。本発明において、LED部品により発せられる白色光は、単色のLEDチップにより発せられる単色光と蛍光粉末とを混ぜることにより生成してもよい。この白色光のスペクトルにおける主波長は、430〜460nmおよび550〜560nmの範囲、または430〜460nm、540〜560nm、および620〜640nmの範囲である。
図12Aは、一実施形態に係るLEDランプの電源モジュールのブロック図である。図12Aに示されるように、LEDランプの電源モジュールは、整流回路510と、フィルタ回路520とを備え、さらにLED照明モジュール530のいくつかの部分を備えてもよい。本実施形態におけるLED照明モジュール530は、駆動回路1530とLEDモジュール630とを備える。駆動回路1530はDC−DCコンバータ回路を備え、フィルタ出力端子521および522に連結されてフィルタ信号を受信した後、駆動出力端子1521および1522でフィルタ信号を駆動信号に変換するための電力変換を行う。LED照明モジュール630は駆動出力端子1521および1522に連結されて、発光のための駆動信号を受信する。いくつかの実施形態において、LEDモジュール630の電流は、目標電流値で安定している。このLEDモジュール630の説明は、図11A〜11Eを参照してなされた説明と同じである。
いくつかの実施形態において、図8Cに示されたLED照明モジュール530は、図12Aに示されるような駆動回路1530とLEDモジュール630とを備えてもよい。よって、本実施形態におけるLEDランプ用電源モジュールは、電球形LED照明、パーソナルエリア照明(PAL)といったシングルエンド電源構造に適用することができる。
図12Bは、一実施形態に係る駆動回路のブロック図である。図12Bを参照すると、駆動回路は、コントローラ1531と、LEDモジュールを駆動して発光させるための、電流源に基づく電力変換用の変換回路1532とを備える。変換回路1532は、スイッチ回路1535とエネルギー蓄積回路1538とを備える。そして、変換回路1532は、フィルタ出力端子521および522に連結されてフィルタ信号を受信し、コントローラ1531の制御下で、LEDモジュールを駆動するために、駆動出力端子1521および1522においてフィルタ信号を駆動信号に変換する。コントローラ1531の制御下で、変換回路1532に出力された駆動信号が安定した電力を提供することにより、LEDモジュールは安定した光を発することができる。
図12Cは、一実施形態に係る駆動回路の模式図である。図12Cを参照すると、本実施形態における駆動回路1630は、コントローラ1631とコンバータ回路とを有する降圧DC−DCコンバータ回路を備える。このコンバータ回路は、インダクタ1632、電流の「フリーホイーリング(freewheeling)」用のダイオード1633、コンデンサ1634、およびスイッチ1635を備える。駆動回路1630は、フィルタ出力端子521と522に連結されてフィルタ信号を受信し、駆動出力端子1521と1522との間に接続されたLEDモジュールを駆動するための駆動信号に変換する。
本実施形態において、スイッチ1635は、金属酸化物半導体電界効果トランジスタ(MOSFET)を備え、フリーホイーリングダイオード1633のアノードに連結された第1端子と、フィルタ出力端子522に連結された第2端子と、スイッチ1635の第1端子と第2端子との間の電流伝導または電流遮断の制御に用いられるコントローラ1631に連結された制御端子とを有する。駆動出力端子1521はフィルタ出力端子521に接続され、駆動出力端子1522はインダクタ1632の一端に接続され、インダクタ1632の他端は、スイッチ1635の第1端子に接続される。コンデンサ1634は駆動出力端子1521と1522との間に連結されて、駆動出力端子1521と1522との間の電圧を安定させる。フリーホイーリングダイオード1633は、駆動出力端子1521に接続されたカソードを有する。
次に、駆動回路1630の例示的な動作について述べる。
コントローラ1631は、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1635をオン(導通状態)またはオフ(遮断状態)にするタイミングを決定するよう構成されている。例えば、いくつかの実施形態において、コントローラ1635は、駆動信号の大きさ(size or magnitude)を調整するために、スイッチ1635のオンとオフとのデューティ比を制御するよう構成されている。電流検出信号S535は、スイッチ1635を流れる電流の大きさを表す。電流検出信号S531は、駆動出力端子1521と1522の間に連結されたLEDモジュールを流れる電流の大きさを表す。コントローラ1631は、例えば、電流検出信号S531またはS535に基づいて検出された電流の大きさに基づき、スイッチ1635のオンとオフとのデューティ比を制御してもよい。このように、電流の大きさが閾値より大きい場合、スイッチをより長い時間オフ(遮断状態)にしてもよく、電流の大きさが閾値未満の場合、スイッチをより長い時間オン(導通状態)にしてもよい。電流検出信号S535および電流検出信号S531のいずれかに従い、コントローラ1631は、コンバータ回路により変換された電力の大きさに関する情報を得ることができる。スイッチ1635がオンに切り替わると、フィルタ信号の電流がフィルタ出力端子521を通じて入力され、コンデンサ1634、駆動出力端子1521、LEDモジュール、インダクタ1632、スイッチ1635を流れた後、フィルタ出力端子522から出力される。このように電流が流れている間、コンデンサ1634とインダクタ1632はエネルギーの蓄積をおこなう。一方、スイッチ1635がオフに切り替わると、フリーホイーリングダイオード1633から駆動出力端子1521に電流が流れ、LEDモジュールを発光させ続けることによって、コンデンサ1634とインダクタ1632は、蓄積されたエネルギーの放出をおこなう。
いくつかの実施形態において、コンデンサ1634は任意の要素であり、省略してもよいため、図12Cにおいて点線で描かれている。いくつかの適用環境において、インダクタを流れる電流の瞬間的な変化に抵抗するインダクタ生来の特性を利用して、LEDモジュールを流れる電流を安定化させ、コンデンサ1634を省略するという効果を達成してもよい。
上述したように、駆動回路1630は、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1635をオン(導通状態)またはオフ(遮断状態)にするタイミングを決定するよう構成されているため、駆動回路1630はLEDモジュールの安定的な電流を維持することができる。従って、白、赤、青、緑といったLEDモジュールについて、色温度が電流とともに変化しない。例えば、LEDは様々な照明条件下でも同じ色温度を保持することができる。いくつかの実施形態において、エネルギー蓄積回路の役割を果たすインダクタ1632は、スイッチ1635が遮断されると蓄積した電力を放出するため、LEDモジュールが同じ色温度を保ちながら発光を続けることができるよう、LEDモジュールを流れる電圧/電流は所定の電圧/電流レベルより高く維持される。このように、スイッチ1635が再び導通したとき、LEDモジュールを流れる電圧/電流が最小値から最大値になるよう調節する必要がなくなる。従って、LEDモジュールのちらつきを回避し、照明全体を向上させ、最低導通期間をさらに短くし、駆動周波数をさらに高くすることができる。
図12Dは、一実施形態に係る駆動回路の模式図である。図12Dを参照すると、本実施形態における駆動回路1730は、コントローラ1731とコンバータ回路とを有する昇圧DC−DCコンバータ回路を備える。コンバータ回路は、インダクタ1732、電流の「フリーホイーリング」用のダイオード1733、コンデンサ1734、およびスイッチ1735を備える。駆動回路1730は、フィルタ出力端子521と522からフィルタ信号を受信し、駆動出力端子1521と1522との間に連結されたLEDモジュールを駆動するための駆動信号に変換するよう構成されている。
インダクタ1732は、フィルタ出力端子521に接続された一端と、フリーホイーリングダイオード1733のアノードおよびスイッチ1735の第1端子に接続された他端とを有しており、スイッチ1735は、フィルタ出力端子522と駆動出力端子1522とに接続された第2端子を有している。フリーホイーリングダイオード1733は、駆動出力端子1521に接続されたカソードを有している。また、コンデンサ1734は、駆動出力端子1521と1522との間に連結されている。
コントローラ1731は、スイッチ1735の制御端子に連結され、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1735をオン(導通状態)またはオフ(遮断状態)にするタイミングを決定するよう構成されている。スイッチ1735がオンに切り替わると、フィルタ信号の電流がフィルタ出力端子521を通じて入力され、インダクタ1732およびスイッチ1735を流れた後、フィルタ出力端子522から出力される。このように電流が流れている間、インダクタ1732を流れる電流は時間とともに増加し、インダクタ1732はエネルギー蓄積状態になり、一方コンデンサ1734はエネルギー放出状態に入り、LEDモジュールは発光を続けることができる。一方、スイッチ1735がオフになると、インダクタ1732を流れる電流が時間とともに減少するのに伴い、インダクタ1732はエネルギー放出状態に入る。この状態で、インダクタ1732を流れる電流は、次にフリーホイーリングダイオード1733、コンデンサ1734、LEDモジュールを流れ、コンデンサ1734はエネルギー蓄積状態に入る。
いくつかの実施形態において、コンデンサ1734は任意の要素であり、省略してもよいため、図12Dにおいて点線で描かれている。コンデンサ1734が省略され、スイッチ1735がオンのとき、インダクタ1732の電流はLEDモジュールを流れず、LEDモジュールを発光させない。しかしスイッチ1735がオフに切り替えられると、インダクタ1732の電流はフリーホイーリングダイオード1733を流れてLEDモジュールに到達し、LEDモジュールを発光させる。従って、LEDモジュールが発光するタイミングとLEDモジュールを流れる電流の大きさを制御することにより、LEDモジュールの平均輝度を規定値より高い状態で安定させることができるため、安定した光を発する効果を達成することができる。
上述したように、駆動回路1730に含まれるコントローラ1731は、スイッチ1735の制御端子に連結され、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1735をオン(導通状態)またはオフ(遮断状態)にするタイミングを決定するよう構成されているため、駆動回路1730はLEDモジュール内の安定的な電流を維持することができる。従って、白、赤、青、緑といったLEDモジュールについて、色温度が電流とともに変化しない。例えば、LEDは様々な照明条件下でも同じ色温度を保持することができる。いくつかの実施形態において、エネルギー蓄積回路の役割を果たすインダクタ1732は、スイッチ1735が遮断されると、蓄積した電力を放出するため、LEDモジュールが同じ色温度を保ちながら発光を続けることができるよう、LEDモジュールを流れる電圧/電流は所定の電圧/電流レベルより高く維持される。このように、スイッチ1735が再び導通したとき、LEDモジュールを流れる電圧/電流が最小値から最大値になるよう調節する必要がなくなる。従って、LEDモジュールのちらつきを回避し、照明全体を向上させ、最低導通期間をさらに短くし、駆動周波数をさらに高くすることができる。
図12Eは、例示的な実施形態に係る駆動回路の模式図である。図12Eを参照すると、本実施形態における駆動回路1830は、コントローラ1831とコンバータ回路とを有する降圧DC−DCコンバータ回路を備える。コンバータ回路は、インダクタ1832、電流の「フリーホイーリング」用のダイオード1833、コンデンサ1834、およびスイッチ1835を備える。駆動回路1830は、フィルタ出力端子521と522に連結されてフィルタ信号を受信し、駆動出力端子1521と1522との間に接続されたLEDモジュールを駆動するための駆動信号に変換する。
スイッチ1835は、フィルタ出力端子521に連結された第1端子と、フリーホイーリングダイオード1833のカソードに連結された第2端子と、コントローラ1831に連結された制御端子とを有し、スイッチ1835の第1端子と第2端子との間の電流伝導または電流遮断を制御するためのコントローラ1831から制御信号を受信する。フリーホイーリングダイオード1833のアノードは、フィルタ出力端子522と駆動出力端子1522とに接続されている。インダクタ1832は、スイッチ1835の第2端子に接続された一端と、駆動出力端子1521に接続された他端とを有する。コンデンサ1834は駆動出力端子1521と1522との間に連結されて、駆動出力端子1521と1522との間の電圧を安定させる。
コントローラ1831は、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1835をオン(導通状態)またはオフ(遮断状態)にするタイミングを制御するよう構成されている。スイッチ1835がオンに切り替わると、フィルタ信号の電流がフィルタ出力端子521を通じて入力され、スイッチ1835、インダクタ1832、駆動出力端子1521および1522を流れた後、フィルタ出力端子522から出力される。このように電流が流れている間、インダクタ1832を流れる電流とコンデンサ1834の電圧の両方が時間とともに上昇するため、インダクタ1832とコンデンサ1834はエネルギー蓄積状態になる。一方、スイッチ1835がオフに切り替えられると、インダクタ1832はエネルギー放出状態になるため、インダクタ1832を流れる電流は時間とともに低下する。この場合、インダクタ1832を流れる電流は、駆動出力端子1521および1522ならびにフリーホイーリングダイオード1833を循環してインダクタ1832に戻る。
いくつかの実施形態において、コンデンサ1834は任意の要素であり、省略してもよいため、図12Eにおいて点線で描かれている。コンデンサ1834が省略されるとき、スイッチ1835がオンであろうとオフであろうと、インダクタ1832を流れる電流は駆動出力端子1521および1522を流れてLEDモジュールを駆動して発光を継続させる。
上述したように、駆動回路1830に含まれるコントローラ1831は、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1835をオン(導通状態)またはオフ(遮断状態)にするタイミングを制御するよう構成されているため、駆動回路1730はLEDモジュール内の安定的な電流を維持することができる。従って、白、赤、青、緑といったLEDモジュールについて、色温度が電流とともに変化しない。例えば、LEDは様々な照明条件下でも同じ色温度を保持することができる。いくつかの実施形態において、エネルギー蓄積回路の役割を果たすインダクタ1832は、スイッチ1835が遮断されると、蓄積した電力を放出するため、LEDモジュールが同じ色温度を保ちながら発光を続けることができるよう、LEDモジュールを流れる電圧/電流は所定の電圧/電流レベルより高く維持される。このように、スイッチ1835が再び導通したとき、LEDモジュールを流れる電圧/電流が最小値から最大値になるよう調節する必要がなくなる。従って、LEDモジュールのちらつきを回避し、照明全体を向上させ、最低導通期間をさらに短くし、駆動周波数をさらに高くすることができる。
図12Fは、例示的な実施形態に係る駆動回路の模式図である。図12Fを参照すると、本実施形態における駆動回路1930は、コントローラ1931とコンバータ回路とを有する降圧DC−DCコンバータ回路を備える。コンバータ回路は、インダクタ1932、電流の「フリーホイーリング」用のダイオード1933、コンデンサ1934、およびスイッチ1935を備える。駆動回路1930は、フィルタ出力端子521と522に連結されてフィルタ信号を受信し、駆動出力端子1521と1522との間に接続されたLEDモジュールを駆動するための駆動信号に変換する。
インダクタ1932は、フィルタ出力端子521および駆動出力端子1522に接続された一端と、スイッチ1935の第1端部に接続された他端とを有している。スイッチ1935は、フィルタ出力端子522に接続された第2端部と、コントローラ1931に接続された制御端子とを有し、スイッチ1935の電流伝導または電流遮断を制御するためのコントローラ1931から制御信号を受信する。フリーホイールダイオード1933は、インダクタ1932とスイッチ1935とを接続するノードに連結されたアノードと、駆動出力端子1521に連結されたカソードとを有する。コンデンサ1934は、駆動出力端子1521と1522とに連結されて、駆動出力端子1521と1522との間に連結されたLEDモジュールの駆動を安定させる。
コントローラ1931は、電流検出信号S531および/または電流検出信号S535に従い、スイッチ1935をオン(導通状態)またはオフ(遮断状態)にするタイミングを制御するよう構成されている。スイッチ1935がオンに切り替わると、電流がフィルタ出力端子521を通じて入力され、インダクタ1932およびスイッチ1935を流れた後、フィルタ出力端子522から出力される。このように電流が流れている間、インダクタ1932を流れる電流は時間とともに増加するため、インダクタ1932はエネルギー蓄積状態になる。しかし、コンデンサ1934の電圧は時間とともに低下するため、コンデンサ1934はエネルギー放出状態になり、LEDモジュールの発光を継続させる。一方、スイッチ1935がオフに切り替わると、インダクタ1932はエネルギー放出状態になり、その電流は時間とともに低下する。この場合、インダクタ1932を流れる電流は、フリーホイーリングダイオード1933、ならびに駆動出力端子1521および1522を循環してインダクタ1932に戻る。この循環の間、コンデンサ1934はエネルギー蓄積状態になり、その電圧は時間とともに上昇する。
いくつかの実施形態において、コンデンサ1934は任意の要素であり、省略してもよいため、図12Fにおいて点線で描かれている。コンデンサ1934が省略され、スイッチ1935がオンに切り替わると、インダクタ1932を流れる電流は駆動出力端子1521および1522を流れないため、LEDモジュールを発光させることはない。一方、スイッチ1935がオフに切り替わると、インダクタ1932を流れる電流は、フリーホイーリングダイオード1933の後LEDモジュールを流れ、LEDモジュールを発光させる。従って、LEDモジュールが発光するタイミングとLEDモジュールを流れる電流の大きさを制御することにより、LEDモジュールの平均輝度を規定値より高い状態に安定させることができるため、安定した光を発する効果を達成することができる。
上述したように、駆動回路1930に含まれるコントローラ1931は、電流検出信号S535および/または電流検出信号S531に従い、スイッチ1935をオン(導通状態)またはオフ(遮断状態)にするタイミングを制御するよう構成されているため、駆動回路1930はLEDモジュール内の安定的な電流を維持することができる。従って、白、赤、青、緑といったLEDモジュールについて、色温度が電流とともに変化しない。例えば、LEDは様々な照明条件下でも同じ色温度を保持することができる。いくつかの実施形態において、エネルギー蓄積回路の役割を果たすインダクタ1932は、スイッチ1935が遮断されると、蓄積した電力を放出するため、LEDモジュールが同じ色温度を保ちながら発光を続けることができるよう、LEDモジュールを流れる電圧/電流は所定の電圧/電流レベルより高く維持される。このように、スイッチ1935が再び導通したとき、LEDモジュールを流れる電圧/電流が最小値から最大値になるよう調節する必要がなくなる。従って、LEDモジュールのちらつきを回避し、照明全体を向上させ、最低導通期間をさらに短くし、駆動周波数をさらに高くすることができる。
図5および6を参照すると、短尺回路基板253は、それぞれ長尺回路シート251の2つの末端部に接続された第1短尺回路基板と第2短尺回路基板とを備え、電源モジュールの電子部品はそれぞれ第1短尺回路基板と第2短尺回路基板とに配置される。第1短尺回路基板と第2短尺回路基板とは、ほぼ同じ長さでもよいし、長さが違っていてもよい。一般に、第1短尺回路基板(すなわち、図5の短尺回路基板253の右側の回路基板、図6の短尺回路基板253の左側の回路基板)の長さは、第2短尺回路基板(すなわち、図5の短尺回路基板253の左側の回路基板、図6の短尺回路基板253の右側の回路基板)の長さのおよそ30%〜80%である。いくつかの実施形態において、第1短尺回路基板の長さは、第2短尺回路基板の長さのおよそ3分の1〜3分の2である。例えば、一実施形態において、第1短尺回路基板の長さは第2短尺回路基板の長さのおよそ半分でもよい。第2短尺回路基板の長さは、実際の適用状況にもよるが、例えば、およそ15mm〜およそ65mmの範囲であってもよい。いくつかの実施形態において、第1短尺回路基板はLED直管ランプの一端のエンドキャップに配置され、第2短尺回路基板はLED直管ランプの他端のエンドキャップに配置される。
例えば、実用上、図12C〜12Fのコンデンサ1634、1734、1834、1934といった駆動回路のコンデンサは、並列接続された2つ以上のコンデンサを備えてもよい。電源モジュールの駆動回路のコンデンサの一部または全部が、短尺回路基板253の第1短尺回路基板上に配列されてもよく、一方、駆動回路の整流回路、フィルタ回路、(1つ以上の)インダクタ、(1つ以上の)コントローラ、(1つ以上の)スイッチ、複数のダイオードといったその他の部品は、短尺回路基板253の第2短尺回路基板上に配列されている。インダクタ、コントローラ、スイッチなどは高温になる電子部品であるため、コンデンサの一部または全部を高温部品の回路基板から離れた回路基板上に配列することにより、高温部品がコンデンサ(特に電解コンデンサ)の耐用年数に悪影響を及ぼすのを防止することに役立ち、コンデンサの信頼性を向上させることとなる。さらに、コンデンサと整流回路との間、およびコンデンサとフィルタ回路との間を物理的に離すことにより、電磁波障害(EMI)の問題を軽減することにもなる。
ある特定の例示的な実施形態において、駆動回路の変換効率は80%を超える。いくつかの実施形態において、駆動回路の変換効率は90%を超える。さらに他の実施形態において、駆動回路の変換効率は92%を超える。LEDランプの照明効率は120lm/Wを超える。いくつかの実施形態において、LEDランプの照明効率は160lm/Wを超える。駆動回路とLEDモジュールとの組み合わせを含む照明効率は120lm/W*90%=108lm/Wを超える。いくつかの実施形態において、駆動回路とLEDモジュールとの組み合わせを含む照明効率は160lm/W*92%=147.21lm/Wを超える。
いくつかの実施形態において、LED直管ランプの中の拡散フィルムの透過率は85%を超える。その結果、いくつかの実施形態において、LEDランプの照明効率は108lm/W*85%=91.8lm/Wを超える。いくつかの実施形態において、LEDランプの照明効率は147.21lm/W*85%=125.12lm/Wを超える。
図13Aは、例示的な一実施形態に係るLED直管ランプの電源モジュールのブロック図である。図8Cと比較して、本実施形態は、整流回路510、フィルタ回路520、および駆動回路1530を備え、さらに過電圧保護(over voltage protection(OVP))回路1570を備える。本実施形態において、駆動回路1530およびLEDモジュール630がLED照明モジュール530を構成している。OVP回路1570はフィルタ信号を検出するためのフィルタ出力端子521および522に連結されている。OVP回路1570は、フィルタ信号の論理レベルが規定のOVP値より高いと判定すると、そのフィルタ信号の論理レベルをクランプする。よって、OVP回路1570はOVP状態によるダメージからLED照明モジュール530を保護する。
図13Bは、例示的な実施形態に係る過電圧保護(OVP)回路の模式図である。OVP回路1670は、フィルタ出力端子521および522に連結された、ツェナー・ダイオードといった電圧クランプダイオード1671を備える。フィルタ出力端子521と522との電圧差(すなわち、フィルタ信号の論理レベル)が降伏電圧に達すると、電圧クランプダイオードは、導通してその電圧差を降伏電圧にクランプする。いくつかの実施形態において、降伏電圧は、およそ40V〜およそ100Vの範囲であってもよい。ある特定の実施形態において、降伏電圧は、およそ55V〜およそ75Vの範囲であってもよい。
図14Aは、例示的な一実施形態に係るLED直管ランプの電源モジュールのブロック図である。図8Cに示すものと比較して、本実施形態は、整流回路510、フィルタ回路520、駆動回路1530に加えさらに補助電源モジュール2510を備える。補助電源モジュール2510は、フィルタ出力端子521と522との間に連結される。補助電源モジュール2510は、フィルタ出力端子521と522のフィルタ信号を検出し、検出結果に基づき、フィルタ出力端子521と522に補助電力を供給するかどうか決定する。フィルタ信号の供給が止まっている、またはその論理レベルが不十分であるとき、すなわち、LEDモジュールの駆動電圧が規定電圧より低いとき、補助電源モジュールは、補助電力を供給して、LED照明モジュール530の発光を継続させる。規定電圧は、補助電源モジュール2510の補助電圧に従って決定される。
図14Bは、例示的な一実施形態に係るLED直管ランプの電源モジュールのブロック図である。図14Aに示すものと比較して、本実施形態は、整流回路510およびフィルタ回路520を備え、さらにLED照明モジュール530のいくつかの部分と補助電源モジュール2510を備えてもよく、LED照明モジュール530はさらに、駆動回路1530とLEDモジュール630を備える。補助電源モジュール2510は、駆動出力端子1521と1522の間に連結される。補助電源モジュール2510は、駆動出力端子1521と1522の駆動信号を検出し、検出結果に基づき、駆動出力端子1521と1522に補助電力を供給するかどうか判定する。駆動信号がもはや供給されていない、またはその論理レベルが不十分なとき、補助電源モジュール2510は、補助電力を供給して、LED照明モジュール630を継続的に点灯させる。
図14Cは、一実施形態に係る補助電源モジュールの模式図である。補助電源モジュール2610はエネルギー蓄積ユニット2613および電圧検出回路2614を備える。補助電源モジュールは、フィルタ出力端子521および522または駆動出力端子1521および1522にそれぞれ連結される、補助電源正極端子2611および補助電源負極端子2612をさらに含む。電圧検出回路2614は、補助電源正極端子2611および補助電源負極端子2612の信号の論理レベルを検出して、補助電源正極端子2611および補助電源負極端子2612を介してエネルギー蓄積ユニット2613の電力を外部に放出するかどうかを決定する。
いくつかの実施形態において、エネルギー蓄積ユニット2613はバッテリーまたはスーパーコンデンサである。補助電源正極端子2611および補助電源負極端子2612の電圧差(LEDモジュールの駆動電圧)がエネルギー蓄積ユニット2613の補助電圧より高い場合、電圧検出回路2614は、補助電源正極端子2611および補助電源負極端子2612の信号によってエネルギー蓄積ユニット2613を充電する。駆動電圧が補助電圧より低い場合、エネルギー蓄積ユニット2613は、補助電源正極端子2611および補助電源負極端子2612を介して蓄積されたエネルギーを外部に放出する。
電圧検出回路2614はダイオード2615、バイポーラ接合トランジスタ(BJT)2616、および抵抗2617を備える。ダイオード2615の正端はエネルギー蓄積ユニット2613の正端に連結され、ダイオード2615の負端は補助電源正極端子2611に連結される。エネルギー蓄積ユニット2613の負端は補助電源負極端子2612に連結される。BJT2616のコレクタは補助電源正極端子2611に連結され、そのエミッタはエネルギー蓄積ユニット2613の正端に連結される。抵抗2617の一端は補助電源正極端子2611に連結され、他端はBJT2616のベースに連結される。BJT2616のコレクタがエミッタより高いカットイン電圧であるとき、抵抗2617はBJT2616を導通状態にする。通常、LED直管ランプに電源から電力が供給されると、BJT2616のコレクタ−エミッタ間電圧がカットイン電圧以下になるまで、フィルタ出力端子521および522ならびに導通状態になったBJT2616を介してフィルタ信号により、または駆動出力端子1521および1522ならびに導通状態になったBJT2616を介して駆動信号により、エネルギー蓄積ユニット2613が充電される。フィルタ信号または駆動信号がもはや供給されていない、またはその論理レベルが不十分なとき、エネルギー蓄積ユニット2613は、ダイオード2615を介して電力を供給して、LED照明モジュール530またはLEDモジュール630を継続的に点灯させる。
いくつかの実施形態において、充電済のエネルギー蓄積ユニット2613の最大電圧は、補助電源正極端子2611と補助電源負極端子2612との間にかかる電圧差より低い、BJT2616の少なくとも1つのカットイン電圧である。補助電源正極端子2611と補助電源負極端子2612との間にかかる電圧差は、エネルギー蓄積ユニット2613の電圧より低いターンオン電圧である。よって、補助電源モジュール2610が電力を供給するとき、LEDモジュール630に印加される電圧はより低くなる(およそ、BJT2616のカットイン電圧とダイオード2615のターンオン電圧の和になる)。図14Bに示される実施形態において、補助電源モジュールがLEDモジュール630へ電力を供給すると、LEDモジュール630の輝度が下がる。よって、補助電源モジュールが非常照明システムまたは常時照明システムに適用された場合、ユーザは、商用電源などの主電源が異常であると認識し、必要な対策を講じることになる。
図15Aを参照しながら、ある特定の実施形態に係る電源モジュールを備えるLED直管ランプのブロック図について説明する。図8Cに示されるLEDランプと比較すると、図15AのLED直管ランプは、整流回路510、フィルタ回路520、およびLED照明モジュール530を備え、さらに取付検出モジュール2520を備える。取付検出モジュール2520は取付検出端子2521経由で整流回路510に連結され、取付検出端子2522経由でフィルタ回路520に連結される。取付検出モジュール2520は、取付検出端子2521および2522を通過する信号を検出し、検出結果に基づき、LED直管ランプを通過するLED駆動信号(例えば外部からの駆動信号)を遮断するかどうか決定する。取付検出モジュール2520は、取付検出端子2521および2522を通過する信号を検出するステップおよびLED駆動信号を遮断すべきかどうか判定するステップを行うよう構成された回路を備えているため、取付検出回路、またはより一般的に検出回路もしくは遮断回路と呼んでもよい。LED直管ランプがランプソケットまたはホルダにまだ取付けられていないとき、または適切に取付けられていないか、部分的にしか取付けられていない(例えば、片方はランプソケットに接続されているが、もう一方はまだ接続されていない)といった場合、取付検出モジュール2520は、所定の電流より小さい電流(または電流値)を検出して、高インピーダンスの取付検出端子2521および2522を信号が通過していると判定する。この場合、ある特定の実施形態において、取付検出回路2520は遮断状態になって、LED直管ランプの動作を停止させる。さもなければ、取付検出モジュール2520は、LED直管ランプがすでにランプソケットまたはホルダに取付けられていると判定し(例えば、取付検出モジュール2520が所定の電流以上の電流を検出し、低インピーダンスの取付検出端子2521および2522を信号が通過していると判定し)、導通状態を維持して、LED直管ランプを正常に動作させる。
例えば、いくつかの実施形態において、取付検出端子2521および2522を通過する電流が特定の規定取付時電流(または電流値)以上であるとき、つまりLED照明モジュール530に供給される電流が特定の規定動作電流以上であることを示すとき、取付検出モジュール2520は導通状態となり、LED直管ランプを導通状態で動作させる。例えば、特定の電流値以上の電流は、LED直管ランプがランプソケットまたはホルダに正しく取付けられていることを示してもよい。取付検出端子2521および2522を通過する電流が特定の規定取付時電流(または電流値)未満のとき、つまりLED照明モジュール530に供給される電流が特定の規定動作電流未満であることを示すとき、LED直管ランプがランプソケットもしくはホルダに取付けられていない、または適切に接続されていないとの判定に基づいて、取付検出モジュール2520は電流を遮断して、LED直管ランプを非導通状態にする。ある特定の実施形態において、取付検出モジュール2520は、インピーダンスの検出に基づいて導通か遮断かを決定し、LED直管ランプを導通状態で動作させるか非導通状態にする。導通状態で動作するLED直管ランプとは、LED光源を発光させるのに十分な電流がLEDモジュールを流れているLED直管ランプのことを指してもよい。遮断状態で動作するLED直管ランプとは、LED光源が発光するほど十分な電流がLEDモジュールを流れていない、または全く電流が流れていないLED直管ランプのことを指してもよい。従って、ランプソケットもしくはホルダに正しく取付けられていないLED直管ランプの導電部分に触れることによって起こる感電の発生を効率的に回避することができる。
図15Bを参照して、ある特定の実施形態に係る取付検出モジュールのブロック図について説明する。取付検出モジュールは、スイッチ回路2580、検出パルス生成モジュール2540、検出結果ラッチ回路2560、および検出判定回路2570を含んでいる。これらの回路またはモジュールのうちいくつかは、互いに区別するため、命名規則として、第1、第2、第3回路等と呼んでもよい。
検出判定回路2570は、取付検出端子2522および(スイッチ回路連結端子2581およびスイッチ回路2580を介して)取付検出端子2521に連結され、取付検出端子2521と2522との間の信号を検出する。検出判定回路2570は検出結果端子2571を介して検出結果ラッチ回路2560にも連結されて、検出結果ラッチ回路2560に検出結果信号を送信する。検出判定回路2570は、端子2521および2522を流れる電流を検出するよう(例えば、電流が特定の電流値より大きいか小さいかを検出するよう)構成されてもよい。
検出パルス生成モジュール2540は、パルス信号出力端子2541を介して検出結果ラッチ回路2560に連結されて、パルス信号を生成し、検出結果ラッチ回路2560に検出結果をラッチ(保持)するタイミングを伝える。例えば、検出パルス生成モジュール2540は、検出結果ラッチ回路2560等のラッチ回路を、LED直管ランプの導通状態か遮断状態のいずれかに対応する状態にして維持する信号を生成するよう構成された回路でもよい。検出結果ラッチ回路2560は、検出結果信号(または検出結果信号およびパルス信号)に従い検出結果を保持し、検出結果ラッチ端子2561を介して検出結果ラッチ回路2560に連結されたスイッチ回路2580に、検出結果を送信または提供する。スイッチ回路2580は、その検出結果に従い、取付検出端子2521と2522との間の導通または遮断状態を制御する。
いくつかの実施形態において、検出パルス生成モジュール2540は第1回路2540と呼んでもよく、検出結果ラッチ回路2560は第2回路2560と呼んでもよく、スイッチ回路2580は第3回路2580と呼んでもよく、検出判定回路2570は第4回路2570と呼んでもよく、スイッチ回路連結端子2581は第1端子2581と呼んでもよく、検出結果端子2571は第2端子2571と呼んでもよく、パルス信号出力端子2541は第3端子2541と呼んでもよく、検出結果ラッチ端子2561は第4端子2561と呼んでもよく、取付検出端子2521は第1取付検出端子2521と呼んでもよく、取付検出端子2522は第2取付検出端子2522と呼んでもよい。この例示的な実施形態において、第4回路2570は、第1端子2581および第2端子2571それぞれを介して第3回路2580および第2回路2560に連結され、第2回路2560は、第3端子2541および第4端子2561それぞれを介して第1回路2540および第3回路2580に連結される。
いくつかの実施形態において、第4回路2570は、第1端子2581および第3回路2580を介して第1取付検出端子2521と第2取付検出端子2522との間の信号を検出するよう構成されている。例えば、上記構成により、第4回路2570は、第1取付検出端子2521および第2取付検出端子2522を流れる電流が所定の電流値より小さいか大きいかを検出および判定して、第2端子2571を介して検出結果信号を第2回路2560へ送信または提供することができる。
いくつかの実施形態において、第1回路2540は第2回路2560を介してパルス信号を生成し、パルス信号期間中、第3回路2580を導通状態で作動させる。一方、その結果、取付検出端子2521と2522との間のLED直管ランプの電源ループも同様に導通状態となる。第4回路2570は、電源ループ上のサンプリング信号を検出して、検出結果に基づき信号を生成して、第2回路2560が第4回路2570から受信した検出結果をラッチ(または保持)するタイミングを第2回路2560に伝える。例えば、第4回路2570は、第2回路2560等のラッチ回路を、LED直管ランプの導通状態か遮断状態のいずれかに対応する状態にして維持する信号を生成するよう構成された回路でもよい。第2回路2560は、検出結果信号(または検出結果信号およびパルス信号)に従い検出結果を保存し、その検出結果を、第2回路2560に連結された第3回路2580に第4端子2561を介して送信または提供する。第3回路2580は、第2回路2560から送信された検出結果を受信し、検出結果に従い、取付検出端子2521と2522との間の導通または遮断状態を制御する。なお、これら実施形態に関連して述べた「第1」、「第2」、「第3」といったラベルは交換可能であり、本明細書中においては、異なる回路、ノード、その他部品を互いにより簡単に区別するために使われているにすぎない。
図15Cを参照して、ある特定の実施形態に係る検出パルス生成モジュールのブロック図について説明する。検出パルス生成モジュール2640は、複数のコンデンサ2642、2645、2646、複数の抵抗2643、2647、2648、2つのバッファ2644、2651、インバータ2650、ダイオード2649、およびORゲート2652を備える回路でもよい。コンデンサ2642は第1コンデンサ2642と呼んでもよく、コンデンサ2645は第2コンデンサ2645と呼んでもよく、コンデンサ2646は第3コンデンサ2646と呼んでもよい。抵抗2643は第1抵抗2643と呼んでもよく、抵抗2647は第2抵抗2647と呼んでもよく、抵抗2648は第3抵抗2648と呼んでもよい。バッファ2644は第1バッファ2644と呼んでもよく、バッファ2651は第2バッファ2651と呼んでもよい。ダイオード2649は第1ダイオー2649と呼んでもよく、ORゲート2652は第1ORゲート2652と呼んでもよい。使用または動作時には、コンデンサ2642と抵抗2643とは、本実施形態において、一般に高論理レベル電圧と定義されるVCC等の駆動電圧(例えば駆動電圧源であって、電源のノードでもよい)と、接地電位等の基準電圧(または電位)との間で直列接続される。コンデンサ2642と抵抗2643との接続ノードは、バッファ2644の入力端子に連結される。例示的な本実施形態において、バッファ2644は、バッファ2644の入力端子と出力端子との間に直列接続された2つのインバータを備える。抵抗2647は、例えばVCC等の駆動電圧とインバータ2650の入力端子との間に連結される。本実施形態において、抵抗2648は、バッファ2651の入力端子と接地電位等の基準電圧との間に連結される。ダイオード2649のアノードは接地され、ダイオード2649のカソードはバッファ2651の入力端子に連結される。コンデンサ2645および2646の第1端部はまとめてバッファ2644の出力端子に連結され、コンデンサ2645および2646の反対側の第2端部はそれぞれ、インバータ2650の入力端子およびバッファ2651の入力端子に連結される。例示的な本実施形態において、バッファ2651は、バッファ2651の入力端子と出力端子との間に直列接続された2つのインバータを備える。インバータ2650の出力端子とバッファ2651の出力端子は、ORゲート2652の2つの入力端子に連結される。ある特定の実施形態によれば、本明細書中で言及した「高論理レベル」や「低論理レベル」の電圧(または電位)というのはすべて、回路中の別の電圧(電位)または特定の基準電圧(または電位)を基準としており、「ロジックハイの論理レベル」や「ロジックローの論理レベル」と言ってもよい。
LED直管ランプの一方のエンドキャップをランプソケットに挿入し、他方のエンドキャップを人体に電気的に連結したとき、またはLED直管ランプの両方のエンドキャップをランプソケットに挿入したとき、LED直管ランプは導通状態となる。このとき、取付検出モジュール(例えば、図15Aに示された取付検出モジュール2520)は検出段階に入る。コンデンサ2642と抵抗2643の接続ノード上の電圧は、最初は高く(駆動電圧VCCに等しい)、時間とともに減少して最後にはゼロになる。バッファ2644の入力端子は、コンデンサ2642と抵抗2643の接続ノードに連結されるため、最初バッファ2644は高論理レベル信号を出力し、コンデンサ2642と抵抗2643との接続ノード上の電圧が低論理トリガー論理レベルまで低下すると、低論理レベル信号の出力に転じる。その結果、バッファ2644は、入力パルス信号を生成した後、低論理レベルのままでいる(入力パルス信号の出力を停止する)よう構成される。入力パルス信号の幅は、コンデンサ2642の容量値と抵抗2643の抵抗値により定められる1つの(初期設定)期間としてもよい。
次に、バッファ2644が初期設定期間パルス信号を生成する動作について以下に述べる。コンデンサ2645の第1端部の電圧と抵抗2647の第1端部の電圧とは、駆動電圧VCCに等しいため、コンデンサ2645と抵抗2647との接続ノード上の電圧も高論理レベルである。抵抗2648の第1端部は接地され、コンデンサ2646の第1端部はバッファ2644からの入力パルス信号を受信するため、コンデンサ2646およびレジスタ2648の接続ノードは、最初は高論理レベル電圧を有しているが、時間とともにこの電圧はゼロまで低下する(その間、コンデンサが保持する電圧は駆動電圧VCCと等しいか、駆動電圧VCCに近づく)。従って、最初インバータ2650は低論理レベル信号を出力し、バッファ2651は高論理レベル信号を出力し、よってORゲート2652は、パルス信号出力端子2541から高論理レベル信号(第1パルス信号)を出力する。このとき、(図15Bに示された)検出結果ラッチ回路2560は、(図15Bに示された)検出判定回路2570から受信した検出結果信号とパルス信号出力端子2541で生成されたパルス信号とに従って、第1時間の間、検出結果を保持する。この初期パルス期間中、図15Bに示されるように、検出パルス生成モジュール2540は高論理レベル信号を出力し、その結果、検出結果ラッチ回路2560はその高論理レベル信号の結果を出力する。
コンデンサ2646と抵抗2648との接続ノードの電圧が低論理トリガー論理レベルまで低下すると、バッファ2651は、低論理レベル信号の出力に切り替え、ORゲート2652にパルス信号出力端子2541から低論理レベル信号を出力させる(つまり、第1パルス信号の出力を停止する)。ORゲート2652から出力される第1パルス信号の幅は、コンデンサ2646の容量値と抵抗2648の抵抗値によって決まる。
バッファ2644がパルス信号の出力を停止した後の動作について以下に述べる。例えば、この動作は、動作段階から始まってもよい。コンデンサ2646は駆動電圧VCCとほぼ同等の電圧を保持するため、バッファ2644がその出力を高論理レベル信号から低論理レベル信号へと瞬時に変更したとき、コンデンサ2642と抵抗2648との接続ノード上の電圧はゼロ未満であるが、ダイオード2649が速やかにコンデンサ2646を充電することによりゼロまで引き上げられる。従って、バッファ2651は引き続き低論理レベル信号を出力する。
いくつかの実施形態において、バッファ2644がその出力を瞬時に高論理レベル信号から低論理信号へと変更したとき、コンデンサ2645の一端の電圧も駆動電圧VCCからゼロへと即座に変化する。これにより、コンデンサ2645と抵抗2647との接続ノードは低論理レベル信号を有することになる。このとき、インバータ2650の出力は高論理レベル信号へと変化して、ORゲートに、パルス信号出力端子2541から高論理レベル信号(第2パルス信号)を出力させる。図15Bに示された検出結果ラッチ回路2560は、(図15Bに示された)検出判定回路2570から受信した検出結果信号とパルス信号出力端子2541で生成されたパルス信号とに従って、第2時間の間、検出結果を保持する。次に、駆動電圧VCCは、抵抗2647を経由してコンデンサ2645を充電して、コンデンサ2645と抵抗2647との接続ノード上の電圧を時間とともに駆動電圧VCCまで上昇させる。コンデンサ2645と抵抗2647との接続ノード上の電圧が高論理トリガー論理レベルに達するまで上昇すると、インバータ2650は再び低論理レベル信号を出力して、ORゲート2652に第2パルス信号の出力を停止させる。第2パルス信号の幅は、コンデンサ2645の容量値と抵抗2647の抵抗値により決まる。
上述したように、ある特定の実施形態において、検出パルス生成モジュール2640は、検出段階において、第1パルス信号、第2パルス信号という2つの高論理レベルパルス信号を生成する。これらのパルス信号はパルス信号出力端子2541から出力される。さらに、第1パルス信号と第2パルス信号との間には規定の時間の間隔(例えば、これらパルス信号が高論理レベルならば低論理レベルとなる逆の論理信号)があり、この規定の時間は、コンデンサ2642の容量値と抵抗2643の抵抗値とにより決まる。
検出段階から動作段階に入ると、検出パルス生成モジュール2640はもはやパルス信号を生成せず、パルス信号出力端子2541を低論理レベル電位に保つ。上述したように、動作段階は検出段階に続く段階(すなわち、第2パルス信号が終了した後の時間)である。LED直管ランプが、例えばランプソケットに設けられた電源に少なくとも部分的に接続されると、動作段階が発生する。例えば、LED直管ランプの片側だけなどLED直管ランプの一部が片方のランプソケットに適切に接続されたときや、LED直管ランプの一部が人間のような高インピーダンスに接続されたとき、および/またはLED直管ランプの一部が反対側のランプソケットに適切に接続されなかったとき(例えば、位置ずれによりソケット内の金属接点がLED直管ランプの金属接点と接触しない場合)に、動作段階が発生してもよい。LED直管ランプ全体がランプソケットに適切に接続された場合にも動作段階が発生してもよい。
図15Dを参照して、ある特定の実施形態に係る検出判定回路について説明する。例示的な検出判定回路2670はコンパレータ2671と抵抗2672とを備える。コンパレータ2671は第1コンパレータ2671と呼んでもよく、抵抗2672は第5抵抗2672と呼んでもよい。コンパレータ2671の負極入力端子は基準論理レベル信号(または基準電圧)Vrefを受信し、コンパレータ2671の正極入力端子は抵抗2672を介して接地され、スイッチ回路連結端子2581にも連結される。図15Bおよび15Dを参照すると、取付検出端子2521からスイッチ回路2580に流入する信号は、スイッチ回路連結端子2581から抵抗2672へと出力される。抵抗2672を通過する信号の電流が一定レベル(例えば、取付用の規定電流(例えば2A)以上)に達し、これにより抵抗2672上の電圧が基準電圧Vrefより高くなると(2つのエンドキャップがランプソケットに挿入された場合を指す)、コンパレータ2671は高論理レベル検出結果信号を生成し、検出結果端子2571へと出力する。例えば、LED直管ランプが正しくランプソケットに取付けられると、コンパレータ2671は検出結果端子2571から高論理レベル検出結果信号を出力する。一方、抵抗2672を流れる電流が不十分で、抵抗2672上の電圧を基準電圧Vrefより高くすることができない場合(ランプソケットに一方のエンドキャップのみが挿入された場合を指す)、コンパレータ2671は低論理レベル検出結果信号を生成して検出結果端子2571に出力する。従って、いくつかの実施形態において、LED直管ランプがランプソケットに正しく取付けられていない場合、または一方のエンドキャップはランプソケットに挿入されているが、他方のエンドキャップは人体などの物体により接地されている場合、電流が小さすぎて、コンパレータ2671は高論理レベル検出結果信号を検出結果端子2571に出力できなくなる。
図15Eを参照して、本発明のいくつかの実施形態に係る模式的な検出結果ラッチ回路について説明する。検出結果ラッチ回路2660は、Dフリップフロップ2661、抵抗2662、およびORゲート2663を備える。Dフリップフロップ2661は第1Dフリップフロップ2661と呼んでもよく、抵抗2662は第4抵抗2662と呼んでもよく、ORゲート2663は第2ORゲート2663と呼んでもよい。Dフリップフロップ2661は、検出結果端子2571に連結したCLK入力端子と、駆動電圧VCCに連結したD入力端子とを有している。まず検出結果端子2571が低論理レベル検出結果信号を出力すると、最初Dフリップフロップ2661は低論理レベル信号をQ出力端子から出力するが、検出結果端子2571が高論理レベル検出結果信号を出力すると、Dフリップフロップ2661はQ出力端子から高論理レベル信号を出力する。抵抗2662は、Dフリップフロップ2661のQ出力端子と接地電位等の基準電圧との間に連結されている。ORゲート2663が第1または第2パルス信号をパルス信号出力端子2541から受信する、またはDフリップフロップ2661のQ出力端子から高論理レベル信号を受信すると、ORゲート2663は検出結果ラッチ端子2561から高論理レベル検出結果ラッチ信号を出力する。検出段階のときだけ検出パルス生成モジュール2640は第1、第2パルス信号を出力して、ORゲート2663に高論理レベル検出結果ラッチ信号を出力させ、これにより、Dフリップフロップ2661は、例えば検出段階後の動作段階を含む残りの時間、検出結果ラッチ信号を高論理レベルとするか低論理レベルとするか決める。従って、検出結果端子2571が高論理レベル検出結果信号を有していないとき、Dフリップフロップ2661はQ出力端子で低論理レベル信号を保持することにより、検出段階において検出結果ラッチ端子2561にも低論理レベル検出結果ラッチ信号を保持させる。一方、いったん検出結果端子2571が高論理レベル検出結果信号を有すると、Dフリップフロップ2661は、(例えばVCCに基づき)、Q出力端子から高論理レベル信号を出力し、保持する。このように、検出結果ラッチ端子2561は、動作段階においても同様に高論理レベル検出結果ラッチ信号を保持する。
図15Fを参照して、本発明のいくつかの実施形態に係る模式的なスイッチ回路について説明する。スイッチ回路2680は、高電流/高電力の処理能力があり、スイッチ回路に好適なパワートランジスタとして、バイポーラ接合トランジスタ(BJT)等のトランジスタを備える。BJT2681は第1トランジスタ2681と呼んでもよい。BJT2681は、取付検出端子2521に連結されたコレクタ、検出結果ラッチ端子2561に連結されたベース、およびスイッチ回路連結端子2581に連結されたエミッタを有している。検出パルス生成モジュール2640が第1、第2パルス信号を生成すると、BJT2681は過渡導通状態(transient conduction state)になる。これにより、検出判定回路2670は、検出結果ラッチ信号を高論理レベルとするか低論理レベルとするか決定するための検出をおこなうことができる。検出結果ラッチ回路2660が検出結果ラッチ端子2561から高論理レベル検出結果ラッチ信号を出力すると、BJT2681は導通状態になり、取付検出端子2521と2522とを導通状態にする。一方、検出結果ラッチ回路2660が低論理レベル検出結果ラッチ信号を検出結果ラッチ端子2561から出力し、検出パルス生成モジュール2640からの出力が低論理レベルの場合、BJT2681は遮断またはブロック状態になり、取付検出端子2521および2522を遮断またはブロック状態にする。
外部駆動信号は交流信号であるため、検出判定回路2670が検出するとき外部駆動信号の論理レベルがちょうどゼロ付近であることから起こる検出エラーを避けるために、検出パルス生成モジュール2640は第1、第2パルス信号を生成して、検出判定回路2670に検出を2回行わせる。これにより、1回の検出では外部駆動信号の論理レベルがちょうどゼロ付近になってしまう問題を回避できる。場合によっては、第1パルス信号と第2パルス信号の生成の時間差は、外部駆動信号の半周期の倍数ではない。例えば、この時間差は、外部駆動信号の180度の位相差の倍数に一致しない。このように、第1、第2パルス信号の一方が生成され、外部駆動信号があいにくゼロ付近であるとき、他方のパルス信号が生成されるときにも外部駆動信号が再びゼロ付近になることは回避できる。
第1パルス信号の生成と第2パルス信号の生成の時間差、例えば、両信号生成の規定時間間隔は、以下の式により表すことができる。
間隔=(X+Y)(T/2)
ここで、Tは外部駆動信号の周期を表し、Xは自然数であり、0<Y<1を満たし、いくつかの実施形態において、Yは0.05〜0.95の範囲であり、またいくつかの実施形態において、Yは0.15〜0.85の範囲である。
さらに、駆動電圧VCCの論理レベルが小さすぎるためにおこる、検出段階に入る取付検出モジュールの判定ミスを回避するために、駆動電圧VCCが規定の論理レベルに達する、または規定の論理レベルより高くなると、第1パルス信号が生成されるよう設定することができる。例えば、いくつかの実施形態において、論理レベルが不十分なために起こる取付検出モジュールの判断ミスを防止するため、駆動電圧VCCが十分に高い論理レベルに達してから検出判定回路2670が作動する。
上述した例によると、LED直管ランプの一方のエンドキャップをランプソケットに挿入し、他方のエンドキャップは宙にある、または人体もしくはその他接地物に電気的に連結したとき、高インピーダンスのため、検出判定回路は低論理レベル検出結果信号を出力する。検出結果ラッチ回路は、検出パルス生成モジュールのパルス信号に基づき低論理レベル検出結果信号を保持することにより、その信号を低論理レベル検出結果ラッチ信号として、その論理値を変えずに動作段階においても検出結果を保持する。このように、スイッチ回路は、継続的な導通ではなく遮断もしくはブロック状態を保持する。さらに、感電状態を防止することができるとともに、安全規格の要件も満たすことができる。一方で、LED直管ランプの2つのエンドキャップがランプソケットに正しく挿入されると、LED直管ランプ自体の回路のインピーダンスは小さいため、検出判定回路は、高論理レベル検出結果信号を出力する。検出結果ラッチ回路は、検出パルス生成モジュールのパルス信号に基づき高論理レベル検出結果信号を保持することにより、その信号を高論理レベル検出結果ラッチ信号として、動作段階においても検出結果を保持する。こうしてスイッチ回路は導通を維持して、動作段階においてLED直管ランプを正常に作動させる。
いくつかの実施形態において、LED直管ランプの一方のエンドキャップをランプソケットに挿入し、他方のエンドキャップは宙にある、または人体に電気的に連結したとき、検出判定回路は低論理レベル検出結果信号を検出結果ラッチ回路に出力し、その後、検出パルス生成モジュールは低論理レベル信号を検出結果ラッチ回路に出力して、検出結果ラッチ回路に低論理レベル検出結果ラッチ信号を出力させ、スイッチ回路を遮断またはブロック状態にする。このように、スイッチ回路のブロックにより、取付検出端子、例えば、第1および第2取付検出端子をブロック状態にする。その結果、LED直管ランプは非導通またはブロック状態になる。
しかしながら、いくつかの実施形態において、LED直管ランプの2つのエンドキャップがランプソケットに正しく挿入されると、検出判定回路は高論理レベル検出結果信号を検出結果ラッチ回路に出力して、検出結果ラッチ回路に高論理レベル検出結果ラッチ信号を出力させ、スイッチ回路を導通状態にする。このように、スイッチ回路の導通により、取付検出端子、例えば、第1および第2取付検出端子を導通状態にする。その結果、LED直管ランプは導通状態で動作する。
よって、取付検出モジュールの動作に従って、LED直管ランプの少なくとも一方の端部がランプソケットに接続すると、第1回路は、それぞれパルス幅を有する2つのパルスを、間隔をあけて生成、出力する。第1回路は、スイッチとして機能するトランジスタ(例えばBJTトランジスタ)のベースにパルスを出力するよう構成された上記の様々な要素を備えてもよい。LED直管ランプが適切にランプソケットに接続されているかどうか検出するための検出段階の間にパルスが発生する。パルス発生のタイミングは、高論理レベルから低論理レベル、または低論理レベルから高論理レベルへと変化する第1回路の様々な部分のタイミングに基づき制御してもよい。
パルスのタイミングは次のように決まる。すなわち、検出段階の間、LED直管ランプがランプソケットに適切に接続されていれば(例えば、LED直管ランプの両端がランプソケットの導電端子に正しく接続されていれば)、駆動信号からの交流電流が非ゼロレベルであるとき、少なくとも1つのパルス信号が発生する。例えば、交流信号の半周期とは異なる間隔でパルス信号が発生する場合がある。例えば、パルス信号のそれぞれの開始点同士もしくは中間点同士、または第1パルス信号の終わりから第2パルス信号の始まりまでの時間を、交流信号の半周期とは異なる時間量(例えば、交流信号の半周期の倍数の0.05%から0.95%の間でもよい)で隔ててもよい。交流信号が非ゼロレベルのときに発生するパルスの期間中、非ゼロレベルの交流信号を受信するスイッチをオンに切り替え、LED直管ランプがランプソケットに適切に接続されたままである限りスイッチもオン状態から変わらないように、ラッチ回路に状態を変化させる。例えば、スイッチは、第1回路から各パルスが出力されるとオンになるよう構成されてもよい。ラッチ回路は、スイッチがオンで、スイッチから出力された電流が閾値より大きい、つまり照明ソケットに適切に接続されていることを示すときのみ状態を変化させるよう構成されてもよい。その結果、LED直管ランプは導通状態で動作する。
一方、LED直管ランプの駆動信号がゼロに近い電流レベル、または特定の閾値より低いレベルのときに両パルスが発生すると、ラッチ回路の状態は変化せず、スイッチは2つのパルスの期間中のみオンであり、両パルス終了後かつ検出モード終了後はオフのままで変わらない。例えば、スイッチから出力される電流が閾値より小さければ、ラッチ回路は現在の状態を維持するよう構成され得る。このように、LED直管ランプは非導通状態を維持することにより、LED直管の一部が電源に接続されていたとしても、感電を防止する。
なお、ある特定の実施形態によれば、検出パルス生成モジュールにより生成されるパルス信号の幅は、10μs〜1msであり、LED直管ランプが瞬間的に導通したとき、スイッチ回路を短時間導通状態にするのに用いられる。いくつかの実施形態において、パルス電流は、検出および判定のための検出判定回路を通過するよう生成される。このパルスは短時間であって長時間ではないため、感電状態は発生しない。さらに、動作段階(例えば、動作段階は、検出段階の後の期間であって、LED直管ランプの一部がまだ電源に接続されている期間である)の間、検出結果ラッチ回路も検出結果を保持しているため、回路状態の変化に合わせて事前に保存してあった検出結果を変化させることはない。こうして、検出結果の変化により生じる事態を回避することができる。いくつかの実施形態において、スイッチ回路等の取付検出モジュール、検出パルス生成モジュール、検出結果ラッチ回路、および検出判定回路は、回路コストおよびレイアウト空間の削減のため、チップに組み込んでから回路内に埋め込むことも可能である。
上記例において述べたように、いくつかの実施形態において、LED直管ランプは、2つのパルス信号、すなわち、第1時間に出力される第1パルス信号と、第1時間の後の第2時間に出力される第2パルス信号とを出力するよう構成された第1回路と、LED駆動信号を受信し、スイッチのオンとオフとを制御する上記2つのパルス信号を受信するよう構成されたスイッチとを含む取付検出回路を備える。取付検出回路は、検出段階の間、2つのパルス信号それぞれの期間中、LED直管ランプがランプソケットに適切に接続されているかどうか検出するよう構成されていてもよい。2つのパルス信号いずれかの期間中に、LED直管ランプがランプソケットに適切に接続されていることが検出されなければ、スイッチは検出段階後もオフ状態のままでもよい。2つのパルス信号の少なくとも一方の期間中に、LED直管ランプがランプソケットに適切に接続されていることが検出されれば、スイッチは検出段階後もオン状態のままでもよい。2つのパルス信号は、LED駆動信号の半周期の倍数とは異なる時間を隔てるように、かつ少なくとも一方のパルス信号はLED駆動信号が実質的にゼロの電流値を有する時に発生しないように、発生させてもよい。なお、2つのパルス信号を生成するための回路について述べたが、本開示はそのような回路に限定されるものではない。例えば、回路は、複数のパルス信号が発生し、そのうちの少なくとも2つの信号がLED駆動信号の半周期の倍数とは異なる時間を隔てて発生するように、かつ複数のパルス信号の少なくとも1つはLED駆動信号が実質的にゼロの電流値を有する時に発生しないように実施されてもよい。
図15Gを参照して、例示的な一実施形態に係る取付検出モジュールについて説明する。取付検出モジュールは、検出パルス生成モジュール2740(検出パルス生成回路または第1回路と呼んでもよい)、検出結果ラッチ回路2760(第2回路と呼んでもよい)、スイッチ回路2780(第3回路と呼んでもよい)、および検出判定回路2770(第4回路と呼んでもよい)を備える。検出パルス生成モジュール2740は、パス2741を介して検出結果ラッチ回路2760に連結(例えば、電気的に接続)され、少なくとも1つのパルス信号を生成するよう構成されている。本明細書中でいうパスは、2つの部品、回路、もしくはモジュールを接続する導電線を含んでもよいし、またはそれぞれの部品、回路、もしくはモジュールに接続された導電線の両端部を含んでもよい。検出結果ラッチ回路2760は、パス2761を介してスイッチ回路2780に連結(例えば、電気的に接続)され、検出パルス生成モジュール2740からの(1つ以上の)パルス信号を受信および出力するよう構成されている。スイッチ回路2780は、LED直管ランプの電源ループの一端(例えば第1取付検出端子2521)および検出判定回路2770に連結(例えば、電気的に接続)され、検出結果ラッチ回路2760から出力された(1つ以上の)パルス信号を受信するよう構成され、そのパルス信号を受信している間導通する(またはオンになる)ことにより、LED直管ランプの電源ループを導通状態にするよう構成されている。検出判定回路2770はスイッチ回路2780、LED直管の電源ループの他端(例えば第2取付検出端子2522)、および検出結果ラッチ回路2760に連結(例えば、電気的に接続)され、スイッチ回路2780と電源ループが導通状態のとき電源ループ上の少なくとも1つのサンプリング信号を検出することにより、LED直管ランプとランプソケットとの取付状態を判定するよう構成されている。さらに検出判定回路2770は、次の制御のために、(1つ以上の)検出結果を検出結果ラッチ回路2760に送信するよう構成されている。いくつかの実施形態において、検出パルス生成モジュール2740はさらに、検出結果ラッチ回路2760の出力に連結(例えば、電気的に接続)されて、(1つまたは複数の)パルス信号の時間を制御する。
いくつかの実施形態において、第1パス2781の一端は、検出判定回路2770の第1ノードに連結され、第1パス2781の他端は、スイッチ回路2780の第1ノードに連結される。いくつかの実施形態において、検出判定回路2770の第2ノードは、電源ループの第2取付検出端子2522に連結され、スイッチ回路2780の第2ノードは、電源ループの第1取付検出端子2521に連結される。いくつかの実施形態において、第2パス2771の一端は、検出判定回路2770の第3ノードに連結され、第2パス2771の他端は、検出結果ラッチ回路2760の第1ノードに連結され、第3パス2741の一端は、検出結果ラッチ回路2760の第2ノードに連結され、第3パス2741の他端は、検出パルス生成回路2740の第1ノードに連結されている。いくつかの実施形態において、第4パス2761の一端は、スイッチ回路2780の第3ノードに連結され、第4パス2761の他端は、検出結果ラッチ回路2760の第3ノードに連結されている。いくつかの実施形態において、第4パス2761は、検出パルス生成回路2740の第2ノードにも連結されている。
いくつかの実施形態において、検出判定回路2770は、第1パス2781およびスイッチ回路2780を経由して第1取付検出端子2521と第2取付検出端子2522との間の信号を検出するよう構成されている。例えば、上記構成により、検出判定回路2770は、第1取付検出端子2521および第2取付検出端子2522を流れる電流が所定の電流値より小さいか大きいかを検出および判定して、第2パス2771を介して検出結果信号を検出結果ラッチ回路2760に送信または提供することができる。
いくつかの実施形態において、検出パルス生成回路2740は、検出結果ラッチ回路2760を経由してパルス信号を生成することにより、パルス信号期間中、スイッチ回路2780を導通状態で作動させる。一方、その結果、取付検出端子2521と2522との間のLED直管ランプの電源ループも同様に導通状態となる。検出判定回路2770は、電源ループ上のサンプリング信号を検出して、検出結果に基づき信号を生成して、検出結果ラッチ回路2760が検出判定回路2770から受信した検出結果をラッチするタイミングを検出結果ラッチ回路2760に伝える。例えば、検出判定回路2770は、検出結果ラッチ回路2760等のラッチ回路を、LED直管ランプのために、導通状態か遮断状態のいずれかに対応する状態にして維持させる信号を生成するよう構成された回路でもよい。検知結果ラッチ回路2760は、検出結果信号(または検出結果信号およびパルス信号)に従い検出結果を保持し、第4パス2761を介して検出結果ラッチ回路2760の第3ノードに連結されたスイッチ回路2780に、検出結果を送信または提供する。スイッチ回路2780は、スイッチ回路2780の第3ノードを介して検出結果ラッチ回路から送信された検出結果を受信し、検出結果に従い、取付検出端子2521および2522間の導通または遮断状態を制御する。
検出パルス生成モジュール2740(または回路)、検出結果ラッチ回路2760、スイッチ回路2780、および検出判定回路2770の詳細な回路構成と全体的な動作について以下に述べる。
図15Hを参照して、例示的な一実施形態に係る検出パルス生成モジュールについて説明する。検出パルス生成モジュール2740は、抵抗2742(第6抵抗と呼んでもよい)と、コンデンサ2743(第4コンデンサと呼んでもよい)と、シュミット・トリガー2744と、抵抗2745(第7抵抗と呼んでもよい)と、トランジスタ2746(第2トランジスタと呼んでもよい)と、抵抗2747(第8抵抗と呼んでもよい)とを備える。
いくつかの実施形態において、抵抗2742の一端は駆動信号、例えばVCCに接続され、抵抗2742の他端はコンデンサ2743の一端に接続される。コンデンサ2743の他端は接地ノードに接続される。いくつかの実施形態において、シュミット・トリガー2744は、入力端と出力端とを有し、入力端は抵抗2742とコンデンサ2743との接続ノードに接続され、出力端は第3パス2741を介して検出結果ラッチ回路2760に接続されている(図15G)。いくつかの実施形態において、抵抗2745の一端は抵抗2742とコンデンサ2743との接続ノードに接続され、抵抗2745の他端はトランジスタ2746のコレクタに接続される。トランジスタ2746のエミッタは接地ノードに接続される。いくつかの実施形態において、抵抗2747の一端はトランジスタ2746のベースに接続され、抵抗2747の他端は第4パス2761を介して検出結果ラッチ回路2760(図15G)およびスイッチ回路2780(図15G)に接続される。ある特定の実施形態において、検出パルス生成モジュール2740はさらに、アノードとカソードとを有するツェナー・ダイオード2748を備え、アノードはコンデンサ2743の接地されている他端に接続され、カソードはコンデンサ2743の端部(抵抗2742とコンデンサ2743との接続ノード)に接続されている。
図15Iを参照して、例示的な一実施形態に係る検出結果ラッチ回路について説明する。検出結果ラッチ回路2760は、データ入力端D、クロック入力端CLK、および出力端Qを有し、データ入力端Dが上記の駆動信号(例えばVcc)に接続され、クロック入力端CLKが検出判定回路2770(図15G)に接続されたDフリップフロップ2762(第2Dフリップフロップと呼んでもよい)と、第1入力端、第2入力端、および出力端を有し、第1入力端がシュミット・トリガー2744(図15H)の出力端に接続され、第2入力端がDフリップフロップ2762の出力端Qに接続され、出力端が抵抗2747(図15H)の他端とスイッチ回路2780(図15G)に接続されたORゲート2763(第3ORゲートと呼んでもよい)とを備える。
図15Jを参照して、例示的な一実施形態に係るスイッチ回路について説明する。スイッチ回路2780は、ベースと、コレクタと、エミッタとを有し、ベースは第4パス2761(図15I)を介してORゲート2763の出力に接続され、コレクタは第1取付検出端子2521等の電源ループの一端に接続され、エミッタは検出判定回路2770(図15G)に接続されたトランジスタ2782(第3トランジスタと呼んでもよい)を備える。いくつかの実施形態において、トランジスタ2782は、例えばMOSFETのような他の同等の電子部品と入れ替えてもよい。
図15Kを参照して、例示的な一実施形態に係る検出判定回路について説明する。検出判定回路2770は、一端がトランジスタ2782(図15J)のエミッタに接続され、他端が第2取付検出端子2522等の電源ループの他端に接続された抵抗2774(第9抵抗と呼んでもよい)と、アノードおよびカソードを有し、アノードは抵抗2744の接地ノードに接続されていない一端に接続されたダイオード2775(第2ダイオードと呼んでもよい)と、第1入力端、第2入力端、および出力端を有するコンパレータ2772(第2コンパレータと呼んでもよい)と、第1入力端と、第2入力端と、出力端とを有するコンパレータ2773(第3コンパレータと呼んでもよい)と、抵抗2776(第10抵抗と呼んでもよい)と、抵抗2777(第11抵抗と呼んでもよい)と、コンデンサ2778(第5コンデンサと呼んでもよい)とを備える。
いくつかの実施形態において、第4回路2570は、第1端子2581および第3回路2580を介して第1取付検出端子2521と第2取付検出端子2522との間の信号を検出するよう構成されている。例えば、上記構成により、第4回路2570は、第1取付検出端子2521および第2取付検出端子2522を流れる電流が所定の電流値より小さいか大きいかを検出および判定して、第2端子2571を介して検出結果信号を第2回路2560へ送信または提供することができる。
いくつかの実施形態において、回路レイアウトスペースの削減と、それによる回路製造コストの削減のために、取付検出モジュールのいくつかの部分を集積回路(IC)に組み込んでもよい。例えば、検出パルス生成モジュール2740のシュミット・トリガー2744、検出結果ラッチ回路2760、ならびに検出判定回路2770の2つのコンパレータ2772および2773をICに組み込んでもよいが、本開示はそれに限定されない。
いくつかの例示的な実施形態に従い、取付検出モジュールの動作についてさらに詳しく述べる。例示的な一実施形態において、コンデンサ電圧は変化せず、LED直管ランプの電源ループが導通状態になる前の電源ループ内のコンデンサの電圧はゼロで、コンデンサの過渡応答は短絡状態を有しているように見えてもよく、LED直管ランプがランプソケットに正しく取付けられているとき、過渡応答においてLED直管ランプの電源ループはより小さな限流抵抗およびより大きなピーク電流を有してもよく、LED直管ランプがランプソケットに正しく取付けられていないとき、過渡応答においてLED直管ランプの電源ループはより大きな限流抵抗およびより小さなピーク電流を有してもよい。本実施形態においては、UL規格を満たして、LED直管ランプの漏れ電流が5MIU未満となるようにしてもよい。以下の表は、LED直管ランプが正常に作動している場合(例えば、LED直管ランプの2つのエンドキャップが正しくランプソケットに取付けられているとき)と、LED直管ランプがランプソケットに正しく取付けられていないとき(例えば、LED直管ランプの一方のエンドキャップはランプソケットに取付けられているが、他方のエンドキャップは人体に触れているとき)との電流の比較を示している。
上記表に示された分母部分において、RfuseはLED直管ランプのヒューズの抵抗を表している。例えば、10ohmを用いてもよいが、最小過渡電流ipk_minの計算におけるRfuseの抵抗値として、本開示はこれに限定されず、最大過渡電流ipk_maxの計算におけるRfuseの抵抗値として510ohmを用いてもよい(過渡応答における人体の導通抵抗をエミュレートするため500ohmを可算するものである)。分子部分において、二乗平均平方根電圧から得た最大電圧(Vmax=Vrms*1.414=305*1.414)は最大過渡電流ipk_maxの計算に用いられ、最小電圧差、例えば50V(ただし本開示はこれに限定されない)は、最小過渡電流ipk_minの計算に用いられる。従って、LED直管ランプがランプソケットに正しく取付けられ(例えば、LED直管ランプの2つのエンドキャップがランプソケットに正しく取付けられ)、正常に作動するとき、最小過渡電流は5Aである。しかし、LED直管ランプがランプソケットに正しく取付けられていないとき(例えば、一方のエンドキャップはランプソケットに取付けられているが、他方は人体に触れているとき)、最大過渡電流は845mAにすぎない。従って、開示された実施形態のある特定の例においては、過渡応答を経てフィルタ回路のコンデンサ等のLED電源ループ内のコンデンサを流れる電流を用いて、LED直管ランプとランプソケットとの取付状態を検出、判定する。例えば、このような実施形態では、LED直管ランプがランプソケットに正しく取付けられているかどうか検出してもよい。開示された実施形態のある特定の例はさらに、ランプソケットに正しく取付けられていないLED直管ランプの導電部分に触れたユーザを感電から守るためのメカニズムを提供する。上記の実施形態を用いて、開示された発明のある特定の態様について説明したが、本開示はこれら実施形態に限定されない。
さらに、再び図15Gを参照すると、いくつかの実施形態において、ある期間(例えば、パルス信号の周期を判定するのに利用される期間)後にLED直管ランプをランプソケットに取付けようとすると、検出パルス生成モジュール2740は、第1低レベル電圧から上昇した第1高レベル電圧を、パス2741(第3パスともいう)を通じて検出結果ラッチ回路2760に出力する。検出結果ラッチ回路2760は第1高レベル電圧を受信した後、パス2761(第4パスともいう)を通じて、スイッチ回路2780と検出パルス生成モジュール2740とに第2高レベル電圧を同時に出力する。いくつかの実施形態において、スイッチ回路2780が第2高レベル電圧を受信すると、スイッチ回路2780は導通することによりLED直管ランプの電源ループも導通状態にする。例示的な本実施形態において、電源ループは少なくとも第1取付検出端子2521と、スイッチ回路2780と、パス2781(第5パスともいう)と、検出判定回路2770と、第2取付検出端子2522とを含む。一方、検出パルス生成モジュール2740は検出結果ラッチ回路2760から第2高レベル電圧を受信し、ある期間(例えば、パルス信号の幅(もしくは期間)を判定するのに利用される期間)後、第1高レベル電圧からの出力は第1低レベル電圧まで下がる(第1低レベル電圧の第1時間、第1高レベル電圧、および第1低レベル電圧の第2時間が第1パルス信号を形成する)。いくつかの実施形態において、LED直管ランプの電源ループが導通状態のとき、検出判定回路2770は、電源ループ上の電圧信号等の第1サンプリング信号を検出する。第1サンプリング信号が基準電圧等の規定の信号より大きいか又は等しいとき、取付検出モジュールは、上述した開示された実施形態の適用原理に従い、LED直管ランプがランプソケットに正しく取付けられていると判定する。従って、取付検出モジュールに含まれる検出判定回路2770は、パス2771(第2パスともいう)を通じて検出結果ラッチ回路2760に第3高レベル電圧(第1高レベル信号ともいう)を出力する。検出結果ラッチ回路2760は第3高レベル電圧(第1高レベル信号ともいう)を受信し、スイッチ回路2780へ第2高レベル電圧(第2高レベル信号ともいう)を出力し続ける。スイッチ回路2780は第2高レベル電圧(第2高レベル信号ともいう)を受信し、導通状態を維持することにより電源ループを導電状態のままにする。電源ループが導通状態のままの間は、検出パルス生成モジュール2740はパルス信号を全く生成しない。
しかしながら、いくつかの実施形態において、前記第1サンプリング信号が規定の信号より小さいとき、上述のある特定の例示的な実施形態によると、取付検出モジュールは、LED直管ランプがランプソケットに正しく取付けられていないと判定する。従って、検出判定回路2770は、第3低レベル電圧(第1低レベル信号ともいう)を検出結果ラッチ回路2760に出力する。検出結果ラッチ回路2760は第3低レベル電圧(第1低レベル信号ともいう)を受信し、スイッチ回路2780へ第2低レベル(第2低レベル信号ともいう)を出力し続ける。スイッチ回路2780は第2低レベル電圧(第2低レベル信号ともいう)を受信し、ブロック状態を維持することにより電源ループを開状態のままにする。従って、ランプソケットに正しく取付けられていないLED直管ランプの導電部分に触れることによって起こる感電を十分回避することができる。
いくつかの実施形態において、LED直管ランプの電源ループはある期間(パルス信号の周期を表す期間)開状態のままのとき、検出パルス生成モジュール2740は、第1低レベル電圧から上昇した第1高レベル電圧を、パス2741を通じて検出結果ラッチ回路2760に再度出力する。検出結果ラッチ回路2760は第1高レベル電圧を受信した後、第2高レベル電圧をスイッチ回路2780と検出パルス生成モジュール2740とに同時に出力する。いくつかの実施形態において、スイッチ回路2780が第2高レベル電圧を受信すると、スイッチ回路2780は再び導通して、LED直管ランプの電源ループも導通状態にする(例示的な本実施形態において、電源ループは少なくとも、第1取付検出端子2521と、スイッチ回路2780と、パス2781と、検出判定回路2770と、第2取付検出端子2522とを含む)。一方、検出パルス生成モジュール2740は検出結果ラッチ回路2760から第2高レベル電圧を受信し、ある期間(例えば、パルス信号の幅(もしくは期間)を判定するのに利用される期間)後、第1高レベル電圧からの出力は第1低レベル電圧まで低下する(第1低レベル電圧の第3時間、第1高レベル電圧の第2時間、および第1低レベル電圧の第4時間が第2パルス信号を形成する)。いくつかの実施形態において、LED直管ランプの電源ループが再び導通状態になると、検出判定回路2770も、電源ループ上の電圧信号等の第2サンプリング信号を再び検出する。前記第2サンプリング信号が規定の信号と同じかまたはより大きいとき、上述のある特定の例示的な実施形態により、取付検出モジュールは、LED直管ランプがランプソケットに正しく取付けられていると判定する。従って、検出判定回路2770は、第3高レベル電圧(第1高レベル信号ともいう)を、パス2771を通じて検出結果ラッチ回路2760に出力する。検出結果ラッチ回路2760は第3高レベル電圧(第1高レベル信号ともいう)を受信し、スイッチ回路2780へ第2高レベル電圧(第2高レベル信号ともいう)を出力し続ける。スイッチ回路2780は第2高レベル電圧(第2高レベル信号ともいう)を受信し、導通状態を維持することにより電源ループを導通状態のままにする。電源ループが導通状態のままの間、検出パルス生成モジュール2740はパルス信号を全く生成しない。
いくつかの実施形態において、前記第2サンプリング信号が規定の信号より小さいとき、上述のある特定の例示的な実施形態により、取付検出モジュールは、LED直管ランプがランプソケットに正しく取付けられていないと判定する。従って、検出判定回路2770は、第3低レベル電圧(第1低レベル信号ともいう)を検出結果ラッチ回路2760に出力する。検出結果ラッチ回路2760は第3低レベル電圧(第1低レベル信号ともいう)を受信し、スイッチ回路2780へ第2低レベル電圧(第2低レベル信号ともいう)を出力し続ける。スイッチ回路2780は第2低レベル電圧(第2低レベル信号ともいう)を受信し、ブロック状態を維持することにより電源ループを開状態のままにする。
次に、図15H〜図15Kを同時に参照すると、いくつかの実施形態において、LED直管ランプをランプソケットに取付けようとすると、コンデンサ2743は、抵抗2742を通じて、駆動信号、例えばVccにより充電される。そして、コンデンサ2743の電圧がシュミット・トリガー2744を起動するのに十分なレベルまで上昇すると、シュミット・トリガー2744は、初期状態における第1低レベル電圧から上昇した第1高レベル電圧をORゲート2763の入力端に出力する。ORゲート2763がシュミット・トリガー2744から第1高レベル電圧を受信すると、ORゲート2763は、トランジスタ2782のベースと抵抗2747に第2高レベル電圧を出力する。トランジスタ2782のベースがORゲート2763から第2高レベル電圧を受信すると、トランジスタ2782のコレクタとエミッタが導通状態になり、さらにLED直管ランプの電源ループ(例示的な本実施形態において、電源ループは少なくとも第1取付検出端子2521と、トランジスタ2782と、抵抗2744と、第2取付検出端子2522とを備える)も同様に導通状態にする。一方、トランジスタ2746のベースが抵抗2747を通じてORゲート2763から第2高レベル電圧を受信すると、トランジスタ2746のコレクタとエミッタが導通状態になって接地され、抵抗2745を通じてコンデンサ2743の電圧を放電して接地させる。いくつかの実施形態において、コンデンサ2743の電圧がシュミット・トリガー2744を起動するのに十分なレベルではないとき、シュミット・トリガー2744は、第1高レベル電圧から低下した第1低レベル電圧を出力する(第1時間における第1低レベル電圧の第1インスタンス、それに続く第1高レベル電圧、それに続く第2時間における第1低レベル電圧の第2インスタンスが第1パルス信号を形成する)。LED直管ランプの電源ループが導通状態のとき、過渡応答により、フィルタ回路のコンデンサ等、電源ループのコンデンサを通過する電流が、トランジスタ2782および抵抗2774を流れ、抵抗2774の電圧信号を形成する。電圧信号は、コンパレータ2772によって基準電圧と比較される。基準電圧は、例えば1.3Vであるが、それに限定されない。電圧信号が基準電圧以上のとき、コンパレータ2772は、第3高レベル電圧をDフリップフロップ2762のクロック入力端CLKに出力する。一方、Dフリップフロップ2762のデータ入力端Dは駆動信号に接続されているため、Dフリップフロップ2762は(出力端Qより)高レベル電圧をORゲート2763のもう一方の入力端に出力する。これにより、ORゲート2763は、第2高レベル電圧をトランジスタ2787のベースに出力し続けることになり、結果として、トランジスタ2782とLED直管ランプの電源ループとは導通状態のままとなる。そのうえ、ORゲート2763が第2高レベル電圧を出力し続けることにより、トランジスタ2746が導通して接地されるため、コンデンサ2743はシュミット・トリガー2744を起動させるのに十分な電圧まで達することができない。
しかしながら、抵抗2774の電圧信号が基準電圧未満のとき、コンパレータ2772は、第3高レベル電圧をDフリップフロップ2762のクロック入力端CLKに出力する。一方、Dフリップフロップ2762の初期出力は低レベル電圧(例えばゼロ電圧)であるため、Dフリップフロップ2762は(出力端Qから)低レベル電圧をORゲート2763の他方の入力端に出力する。さらに、ORゲート2763の入力端によって接続されたシュミット・トリガー2744も第1低レベル電圧の出力を取り戻し、こうしてORゲート2763はトランジスタ2782のベースへの第2低レベル電圧の出力を続けることになり、結果として、トランジスタ2782はブロック状態(またはオフ状態)のままに、LED直管ランプの電源ループは開状態のままになる。さらに、ORゲート2763が第2低レベル電圧を出力し続けることにより、トランジスタ2746はブロック状態(またはオフ状態)のままになるため、次の(パルス信号)検出のために、コンデンサ2743は抵抗2742を通じて駆動信号により再び充電される。
いくつかの実施形態において、パルス信号の周期(または間隔)は、抵抗2742とコンデンサ2743の値により決まる。場合によっては、パルス信号の周期は、約3ミリ秒から約500ミリ秒の範囲の値を含んでもよく、約20ミリ秒から約50ミリ秒の範囲でもよい。いくつかの実施形態において、パルス信号の幅(または期間)は、抵抗2745とコンデンサ2743の値により決まる。場合によっては、パルス信号の幅は、約1マイクロ秒から約100マイクロ秒の範囲の値を含んでもよく、約10マイクロ秒から約20マイクロ秒の範囲でもよい。ツェナー・ダイオード2748は保護機能を提供するが、場合によっては省略してもよい。場合によっては、電力消費を考慮して、抵抗2744は並列接続された2つの抵抗を備えてもよく、その等価抵抗は、約0.1ohmから約5ohmの範囲の値を含んでもよい。抵抗2776と2777は分圧機能を提供するため、コンパレータ2773の入力は基準電圧より大きくなる。基準電圧の値は例えば0.3Vだが、これに限定されない。コンデンサ2778は調整およびフィルタリング機能を提供する。ダイオード2775は信号の送信を一方方向に制限する。さらに、例示的な実施形態により開示された取付検出モジュールは、デュアルエンド電源を備えた別のタイプのLED照明器具、例えば、外部駆動信号として商用電源を直接使用するLEDランプ、外部駆動信号として安定器から出力された信号を使用するLEDランプなどに適合させてもよい。しかしながら、本発明は上記の例示的な実施形態に限定されない。
いくつかの実施形態によれば、本発明はさらにLED(発光素子)直管ランプをランプソケットに取付ける際にユーザの感電を防止するために前記LED直管ランプにより採用される検出方法を提供する。この検出方法は、前記LED直管ランプ内に構成された検出パルス生成モジュールにより第1パルス信号を生成するステップと、前記LED直管ランプの電源ループ上にあるスイッチ回路により、検出結果ラッチ回路を通じて前記第1パルス信号を受信し、前記第1パルス信号の期間中、前記スイッチ回路の導通状態を維持することにより前記電源ループを導通状態にするステップと、前記電源ループが導通状態にあるとき、検出判定回路により前記電源ループ上の第1サンプリング信号を検出し、前記第1サンプリング信号を規定の信号と比較するステップとを含み、前記第1サンプリング信号が前記規定の信号より大きいか又は等しいとき、前記検出方法はさらに、前記検出判定回路により第1高レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1高レベル信号を受信し、第2高レベル信号を出力するステップと、前記スイッチ回路により前記第2高レベル信号を受信し、導通することにより前記電源ループを導通状態のままにするステップとを含む。
いくつかの実施形態において、前記第1サンプリング信号が前記規定の信号より小さいとき、前記検出方法はさらに、前記検出判定回路により第1低レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1低レベル信号を受信し、第2低レベル信号を出力するステップと、前記スイッチ回路により前記第2低レベル信号を受信し、前記スイッチ回路のオフ状態を維持することにより前記電源ループを開状態のままにするステップとを含む。
いくつかの実施形態において、前記電源ループが開状態のままであるとき、前記検出方法はさらに、前記検出パルス生成モジュールにより第2パルス信号を生成するステップと、前記スイッチ回路により前記検出結果ラッチ回路を通じて前記第2パルス信号を受信し、前記第2パルス信号の期間中、前記スイッチ回路のオフ状態を再び導通状態に変更することにより前記電源ループを再度導通状態にするステップと、前記電源ループが再度導通状態になったとき、前記検出判定回路により前記電源ループ上の第2サンプリング信号を検出し、前記第2サンプリング信号を前記規定の信号と比較するステップとを含み、前記第2サンプリング信号が前記規定の信号より大きいか又は等しいとき、前記検出方法はさらに、前記検出判定回路により前記第1高レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1高レベル信号を受信し、前記第2高レベル信号を出力するステップと、前記スイッチ回路により前記第2高レベル信号を受信し、前記スイッチ回路の導通状態を維持することにより前記電源ループを導通状態のままにするステップとを含む。
いくつかの実施形態において、前記第2サンプリング信号が前記規定の信号より小さいとき、前記検出方法はさらに、前記検出判定回路により前記第1低レベル信号を出力するステップと、前記検出結果ラッチ回路により前記第1低レベル信号を受信し、前記第2低レベル信号を出力するステップと、前記スイッチ回路により前記第2低レベル信号を受信し、前記スイッチ回路のオフ状態を維持することにより前記電源ループを開状態のままにするステップとを含む。
いくつかの実施形態において、前記第1パルス信号の期間(または幅)は10マイクロ秒から1ミリ秒の間で、前記第2パルス信号の期間(または幅)は10マイクロ秒から1ミリ秒の間である。
いくつかの実施形態において、Tを前記駆動信号の周期、Xをゼロ以上の整数とし、0<Y<1を満たすとき、前記第1パルス信号から前記第2パルス信号までの時間間隔は(X+Y)(T/2)である。
いくつかの実施形態において、前記第1パルス信号の期間(または幅)は1マイクロ秒から100マイクロ秒の間で、前記第2パルス信号の期間(または幅)は1マイクロ秒から100マイクロ秒の間である。
いくつかの実施形態において、前記第1パルス信号から前記第2パルス信号までの時間間隔(または前記パルス信号の周期)は3ミリ秒から500ミリ秒の間である。
いくつかの実施形態において、少なくとも2つの保護部品、例えば2つのヒューズがそれぞれ、LED直管ランプの電源ループ上にある、LED直管ランプの内部回路とLED直管ランプの導体ピンとの間に接続される。いくつかの実施形態において、4つのヒューズが、それぞれ2つずつ導体ピンを有する両端のエンドキャップで電力供給を受けるLED直管ランプに用いられる。この場合、例えば、2つのヒューズがそれぞれ、一方のエンドキャップの2つの導体ピンの間、およびこのエンドキャップの2つの導体ピンの一方とLED直管ランプの内部回路との間に接続され、残りの2つのヒューズがそれぞれ、他方のエンドキャップの2つの導体ピンの間、およびこのエンドキャップの2つの導体ピンの一方とLED直管ランプの内部回路との間に接続される。いくつかの実施形態において、電源(または外部駆動源)とLED直管ランプの整流回路との間の容量は、0〜約100pFの範囲にあってもよい。いくつかの実施形態において、上記の取付検出モジュールは、外部電源を使用するよう構成されてもよい。
電源モジュールの設計によれば、外部駆動信号は、デュアルエンド電源の駆動構造を通じてLED直管ランプに入力される、低周波交流信号(例えば商用電源)、高周波交流信号(例えば電子安定器により供給される信号)、または直流信号(例えばバッテリーや外部に構成された駆動源により供給される信号)であってもよい。デュアルエンド電源の駆動構造においても、シングルエンド電源として、その一端のみを使用して外部駆動信号を入力してもよい。
外部駆動信号が直流信号の場合、電源モジュール内の整流回路を省略してもよい。
電源モジュール内の整流回路の設計によれば、デュアル整流回路があってもよい。デュアル整流回路の第1、第2整流回路はそれぞれ、LED直管ランプの両端に配置された2つのエンドキャップに連結される。デュアル整流回路は、デュアルエンド電源の駆動構造に適用可能である。さらに、少なくとも1つの整流回路を有するLED直管ランプは、低周波交流信号、高周波交流信号、または直流信号の駆動構造に適用可能である。
デュアル整流回路は、例えば、2つの半波整流回路、2つの全波ブリッジ整流回路、または1つの半波整流回路と1つの全波ブリッジ整流回路を備えてもよい。
LED直管ランプ内のピンの設計によれば、一端に2つのピン(他端にはピンなし)、両端の対応する端部に2つのピン、または両端の対応する端部に4つのピンがあってもよい。一端に2つのピン、および両端の対応する端部に2つのピンの設計は、整流回路のシングル整流回路設計に適用可能である。両端の対応する端部に4つのピンの設計は、整流回路のデュアル整流回路設計に適用可能であり、外部駆動信号は、1つの端部の2つのピン、または2つの端部それぞれのいずれかのピンにより受信することが可能である。
電源モジュールのフィルタ回路の設計によれば、1つのコンデンサ、またはπフィルタ回路があってもよい。フィルタ回路は、低リップル電圧の直流信号をフィルタ信号として提供するため、整流信号の高周波成分をフィルタリングにより除去する。フィルタ回路はさらに、UL規格の特定周波数での電流制限に適合させるため、特定周波数に対して高インピーダンスを有するLCフィルタ回路を備える。さらに、いくつかの実施形態に係るフィルタ回路は、LED直管ランプの(1つまたは複数の)回路に起因する電磁波障害(EMI)を低減するために、整流回路と(1つまたは複数の)ピンとの間に連結されたフィルタユニットを備える。LED直管ランプは、外部駆動信号が直流信号の場合、電源モジュール内のフィルタ回路を省略してもよい。
いくつかの実施形態におけるLED照明モジュールの設計によれば、LED照明モジュールは、LEDモジュールと駆動回路、またはLEDモジュールだけを備える。LEDモジュールの過電圧を防止するため、LEDモジュールは電圧安定回路と並列に接続されてもよい。電圧安定回路は、ツェナー・ダイオード、DIACなどの電圧クランプ回路であってもよい。整流回路が容量性回路を有している場合、いくつかの実施形態において、2つのコンデンサがそれぞれ2つのエンドキャップの対応する2つのピンの間に連結され、これら2つのコンデンサと、電圧安定化回路としての容量性回路とは、容量分圧器として機能する。
LED照明モジュール内にLEDモジュールだけしかなく、外部駆動信号が高周波交流信号の場合、コンデンサは高周波信号用抵抗と同等とみなせるため、容量性回路(例えば、少なくとも1つのコンデンサを含む)が少なくとも1つの整流回路内にあり、その容量性回路が整流回路の半波整流回路または全波ブリッジ整流回路と直列接続されて、電流変調回路(または電流調整器)として機能することにより、LEDモジュールの電流を変調または調整する。よって、たとえ異なる安定器が、異なる電圧論理レベルの高周波信号を提供するとしても、過電流を防止するため、LEDモジュールの電流を所定の電流範囲に変調することができる。加えて、エネルギー放出回路はLEDモジュールと並列に接続されている。外部駆動信号がもはや供給されなくなると、エネルギー放出回路は、フィルタ回路に蓄積したエネルギーを放出して、フィルタ回路およびその他の回路の共鳴効果を低減してLEDモジュールのちらつきを抑制する。いくつかの実施形態において、LED照明モジュール内にLEDモジュールと駆動回路がある場合、駆動回路は降圧コンバータ、昇圧コンバータ、または昇降圧コンバータでもよい。駆動回路は、LEDモジュールの電流を規定の電流値に安定化するが、規定の電流値は、外部駆動信号に基づき変調してもよい。例えば、規定の電流値は、外部駆動信号の論理レベルの上昇に伴って上げてもよいし、外部駆動信号の論理レベルの低下に伴って下げてもよい。さらに、フィルタ回路からの電流を直接または駆動回路を通じてLEDモジュールへの入力に切り替えるために、LEDモジュールと駆動回路との間にモード切り替え回路を追加してもよい。
LEDモジュールを保護するため、さらに保護回路を追加してもよい。保護回路は、LEDモジュールの電流および/または電圧を検出して、対応する過電流および/または過電圧保護が可能かどうか判定する。
電源モジュールの補助電源モジュールの設計によれば、エネルギー蓄積ユニットは、LEDモジュールに並列接続されたバッテリーまたはスーパーコンデンサでもよい。補助電源モジュールは、駆動回路を有するLED照明モジュールに適用可能である。
電源モジュールのLEDモジュールの設計によれば、LEDモジュールは、複数のLEDをそれぞれ含む、互いに並列に接続された複数の列を備え、各LEDは、単一のLEDチップまたは異なるスペクトルを発する複数のLEDチップを有してもよい。異なるLED列の各LEDは互いに接続されてメッシュ接続を形成してもよい。
つまり、上記の様々な特徴は、LED直管ランプの改良のために任意に組み合わせて実施することができる。
上述した本発明の例示的な特徴は、LED直管ランプの改良のために任意に組み合わせて達成することができるが、上記実施形態は例として述べたに過ぎない。本発明は本明細書中の記載に限定されず、本発明の精神並びに別記の請求項で定義された範囲を逸脱しない範囲で様々な変形が可能である。

Claims (10)

  1. ランプ管と、
    外部駆動信号が入力されるように構成された外部接続端子をそれぞれ有し、前記ランプ管の各端にそれぞれ結合される2つのエンドキャップと、
    アノードと、前記外部接続端子の一方に電気接続されたカソードとを有する第1ダイオードと、
    前記第1ダイオードのアノードに電気接続されたアノードと、前記外部接続端子の他方に電気接続されたカソードとを有する第2ダイオードと、
    前記第1ダイオードのカソードに電気接続されたアノードと、カソードとを有する第3ダイオードと、
    前記第2ダイオードのカソードに電気接続されたアノードと、前記第3ダイオードのカソードに電気接続されたカソードとを有する第4ダイオードと、
    前記第3ダイオードおよび前記第4ダイオードのカソードに電気接続された第1端と、第2端とを有する第1コンデンサと、
    前記第1ダイオードおよび前記第2ダイオードのアノードと、前記第1コンデンサの第2端との間に電気接続されたスイッチ回路と、
    前記第1コンデンサに電気接続され、駆動信号を出力するように構成された駆動回路と、
    前記駆動信号を受信して発光するために、前記駆動回路に電気接続されたLEDモジュールとを備え、
    一方の前記エンドキャップの外部接続端子に前記外部駆動信号が入力され、かつ、人体が他方の前記エンドキャップの外部接続端子に触れた場合、前記スイッチ回路は、周期的に1ミリ秒未満の間オンになる
    LED(発光素子)直管ランプ。
  2. 前記スイッチ回路がオンの間に発生する最大過渡電流は、845mA未満である
    請求項1に記載のLED直管ランプ。
  3. 人体が両方の前記エンドキャップの外部接続端子に触れていない状態で当該外部接続端子に前記外部駆動信号が入力される場合、前記スイッチ回路は、継続的にオンになる
    請求項1に記載のLED直管ランプ。
  4. 前記スイッチ回路がオンの期間は、10マイクロ秒より長い
    請求項1に記載のLED直管ランプ。
  5. 前記第1ダイオード、前記第2ダイオード、前記第3ダイオードおよび前記第4ダイオードは、整流回路を形成する
    請求項1に記載のLED直管ランプ。
  6. さらに、
    前記第1コンデンサの第1端に電気接続された第1端と、第2端とを有するインダクタと、
    前記インダクタの第2端に電気接続された第1端と、前記第1コンデンサの第2端に電気接続された第2端とを有する第2コンデンサとを備える
    請求項1に記載のLED直管ランプ。
  7. 前記第1コンデンサと、前記第2コンデンサと、前記インダクタとは、フィルタリング回路を形成する
    請求項6に記載のLED直管ランプ。
  8. 前記スイッチ回路は、ORゲートから出力された信号によって制御される
    請求項1に記載のLED直管ランプ。
  9. 前記ORゲートは、パルス信号が入力される第1入力端子と、一方の前記外部接続端子に前記外部駆動信号が入力される時に人体が他方の前記外部接続端子に触れているか否かを示す信号が入力される第2入力端子とを有する
    請求項8に記載のLED直管ランプ。
  10. 一方の前記外部接続端子に前記外部駆動信号が入力される時に人体が他方の前記外部接続端子に触れているか否かを示す前記信号は、ラッチ回路から提供される
    請求項9に記載のLED直管ランプ。
JP2018241047A 2015-07-20 2018-12-25 Led直管ランプ Pending JP2019067771A (ja)

Applications Claiming Priority (58)

Application Number Priority Date Filing Date Title
CN201510428680.1 2015-07-20
CN201510428680 2015-07-20
CN201510482944 2015-08-07
CN201510482944.1 2015-08-07
CN201510486115 2015-08-08
CN201510483475.5 2015-08-08
CN201510483475 2015-08-08
CN201510486115.0 2015-08-08
CN201510499512.1 2015-08-14
CN201510499512 2015-08-14
CN201510530110 2015-08-26
CN201510530110.3 2015-08-26
CN201510555543 2015-09-02
CN201510555543.4 2015-09-02
CN201510557717.0 2015-09-06
CN201510557717 2015-09-06
CN201510595173 2015-09-18
CN201510595173.7 2015-09-18
CN201510617370 2015-09-25
CN201510617370.4 2015-09-25
CN201510645134 2015-10-08
CN201510645134.3 2015-10-08
CN201510705222 2015-10-27
CN201510705222.8 2015-10-27
CN201510716899 2015-10-29
CN201510716899.1 2015-10-29
CN201510726484 2015-10-30
CN201510726365.7 2015-10-30
CN201510726484.2 2015-10-30
CN201510726365 2015-10-30
CN201510848766 2015-11-27
CN201510848766.X 2015-11-27
CN201510868263 2015-12-02
CN201510868263.9 2015-12-02
CN201510903680 2015-12-09
CN201510903680.2 2015-12-09
CN201610044148.4 2016-01-22
CN201610044148 2016-01-22
CN201610050944.9 2016-01-26
CN201610051691.7 2016-01-26
CN201610050944 2016-01-26
CN201610051691 2016-01-26
CN201610085895.2 2016-02-15
CN201610085895 2016-02-15
CN201610087627 2016-02-16
CN201610087627.4 2016-02-16
CN201610098424 2016-02-23
CN201610098424.5 2016-02-23
CN201610120993 2016-03-03
CN201610120993.5 2016-03-03
CN201610132513.7 2016-03-09
CN201610132513 2016-03-09
CN201610142140 2016-03-14
CN201610142140.1 2016-03-14
CN201610281812 2016-04-29
CN201610281812.7 2016-04-29
CN201610452437.8 2016-06-20
CN201610452437 2016-06-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017565082A Division JP6461379B2 (ja) 2015-07-20 2016-07-15 Led直管ランプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019002341U Continuation JP3222952U (ja) 2015-07-20 2019-06-27 Led直管ランプ

Publications (1)

Publication Number Publication Date
JP2019067771A true JP2019067771A (ja) 2019-04-25

Family

ID=57833695

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018241047A Pending JP2019067771A (ja) 2015-07-20 2018-12-25 Led直管ランプ
JP2019002341U Active JP3222952U (ja) 2015-07-20 2019-06-27 Led直管ランプ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019002341U Active JP3222952U (ja) 2015-07-20 2019-06-27 Led直管ランプ

Country Status (3)

Country Link
JP (2) JP2019067771A (ja)
CA (1) CA2987969C (ja)
WO (1) WO2017012514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535616A (ja) * 2019-07-26 2022-08-09 シグニファイ ホールディング ビー ヴィ Ledフィラメント構成

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497821B2 (en) 2005-08-08 2016-11-15 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US10021742B2 (en) 2014-09-28 2018-07-10 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US9939140B2 (en) 2014-09-28 2018-04-10 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10560989B2 (en) 2014-09-28 2020-02-11 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
CN117479382A (zh) 2014-09-28 2024-01-30 嘉兴山蒲照明电器有限公司 一种led直管灯
US10612731B2 (en) 2014-09-28 2020-04-07 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10502372B2 (en) 2015-03-10 2019-12-10 Jiaxing Super Lighting Electric Appliance Co., Ltd LED tube lamp
US9689536B2 (en) 2015-03-10 2017-06-27 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10054271B2 (en) 2015-03-10 2018-08-21 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9860959B2 (en) 2015-02-15 2018-01-02 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp compatible with different sources of external driving signal
US11754232B2 (en) 2015-03-10 2023-09-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED lamp and power source module thereof related applications
US10317017B2 (en) 2015-03-10 2019-06-11 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US11028973B2 (en) 2015-03-10 2021-06-08 Jiaxing Super Lighting Electric Appliance Co., Ltd. Led tube lamp
US9820341B2 (en) 2015-03-10 2017-11-14 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having mode switching circuit and auxiliary power module
US10197225B2 (en) 2015-03-10 2019-02-05 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US9897265B2 (en) 2015-03-10 2018-02-20 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp having LED light strip
US9801240B2 (en) 2015-03-10 2017-10-24 Jiaxing Super Lighting Electric Appliance Co., Ltd. Light emitting diode (LED) tube lamp
US9750096B2 (en) 2015-03-25 2017-08-29 Jiaxing Super Lighting Electric Appliance Co., Ltd. Dual-Mode LED tube lamp
US10070498B2 (en) 2015-04-14 2018-09-04 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp with improved compatibility with electrical ballasts
US9841174B2 (en) 2015-04-29 2017-12-12 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
GB2543380B (en) * 2015-11-27 2018-04-11 Jiaxing Super Lighting Electric Appliance Co Ltd LED tube lamp
US11035526B2 (en) 2015-12-09 2021-06-15 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
US10337676B2 (en) 2015-12-09 2019-07-02 Jiaxing Super Lighting Electric Appliance Co., Ltd. LED tube lamp
GB2551441B (en) * 2016-05-18 2023-04-26 Jiaxing Super Lighting Electric Appliance Co Ltd LED tube lamp
CN109595480B (zh) * 2017-09-29 2020-10-27 朗德万斯公司 具有一串光引擎的紧凑型荧光灯销
CN107995736B (zh) * 2017-12-15 2020-06-09 矽力杰半导体技术(杭州)有限公司 Led驱动电路、功率变换器和控制方法
KR102120877B1 (ko) * 2018-01-25 2020-06-09 주식회사 아비스 안정기 호환형 발광다이오드 램프
SI3809803T1 (sl) 2019-10-15 2023-06-30 Silicon Hill B. V. Elektronsko varnostno stikalo za led cev

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945512A (zh) * 2009-07-03 2011-01-12 观升绿能科技股份有限公司 光源体的种类判别及保护电路及其安定器
CN101737664B (zh) * 2010-02-03 2014-04-02 莱特尔科技(深圳)有限公司 安全led灯管
CN201827683U (zh) * 2010-08-12 2011-05-11 莱特尔科技(深圳)有限公司 一种防触电led灯管
US9288867B2 (en) * 2012-06-15 2016-03-15 Lightel Technologies, Inc. Linear solid-state lighting with a wide range of input voltage and frequency free of fire and shock hazards
CN105765301B (zh) * 2014-01-13 2017-07-07 飞利浦照明控股有限公司 用于在荧光灯管照明装置中进行改装的led灯管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535616A (ja) * 2019-07-26 2022-08-09 シグニファイ ホールディング ビー ヴィ Ledフィラメント構成
JP7249088B2 (ja) 2019-07-26 2023-03-30 シグニファイ ホールディング ビー ヴィ Ledフィラメント構成
US11739885B2 (en) 2019-07-26 2023-08-29 Signify Holding B.V. LED filament arrangement

Also Published As

Publication number Publication date
JP3222952U (ja) 2019-09-05
WO2017012514A1 (en) 2017-01-26
CA2987969C (en) 2023-01-03
CA2987969A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP3222952U (ja) Led直管ランプ
US10344921B2 (en) LED tube lamp and power supply module applicable thereto
US10281092B2 (en) LED tube lamp
US9841174B2 (en) LED tube lamp
US9587817B2 (en) LED tube lamp
US9939140B2 (en) LED tube lamp
US9521718B2 (en) LED tube lamp having mode switching circuit
US9750096B2 (en) Dual-Mode LED tube lamp
US10299333B2 (en) LED tube lamp
US10571081B2 (en) LED tube lamp and driving method therefor
GB2543380A (en) LED tube lamp
CA2987975C (en) Led tube lamp
US11499682B2 (en) LED tube lamp and a power supply module thereof
US20230020744A1 (en) Surge protection circuit, power supply device using same, and led illumination device
US20230090839A1 (en) LED Tube lamp and a power supply module thereof
JP6461379B2 (ja) Led直管ランプ
GB2551441A (en) LED Tube lamp