JP2019067687A - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP2019067687A
JP2019067687A JP2017194097A JP2017194097A JP2019067687A JP 2019067687 A JP2019067687 A JP 2019067687A JP 2017194097 A JP2017194097 A JP 2017194097A JP 2017194097 A JP2017194097 A JP 2017194097A JP 2019067687 A JP2019067687 A JP 2019067687A
Authority
JP
Japan
Prior art keywords
fuel cell
cell separator
polyphenylene sulfide
graphite
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017194097A
Other languages
Japanese (ja)
Other versions
JP6944330B2 (en
Inventor
昭紘 小泉
Akihiro Koizumi
昭紘 小泉
鈴木 勤
Tsutomu Suzuki
勤 鈴木
勝 米山
Masaru Yoneyama
勝 米山
岡田 晃
Akira Okada
晃 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2017194097A priority Critical patent/JP6944330B2/en
Publication of JP2019067687A publication Critical patent/JP2019067687A/en
Application granted granted Critical
Publication of JP6944330B2 publication Critical patent/JP6944330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a fuel cell separator capable of obtaining high thermal conductivity of 60[W/mK] or more, and contributing to use in a long term.SOLUTION: The fuel cell separator is provided that is formed by a molding material containing a thermoplastic resin and a conductive material, and includes a plurality of flow channels for a fuel and an oxidant. A thermoplastic resin of the molding material is a polyphenylene sulfide-based resin, and the conductive material is graphite, and the polyphenylene sulfide-based resin and the graphite are mixed at composite weight ratio of 100:950 to 1650. The thermal conductivity of the polyphenylene sulfide-based resin becomes 60[W/mK] or more by setting the melt flow rate of the polyphenylene sulfide-based resin to be 120[g/10 min] or more. By improvement of the thermal conductivity, heat of formation of water can be diffused and transferred to a whole of the fuel cell separator, and it can be expected that the fuel cell separator can be used for a long period.SELECTED DRAWING: None

Description

本発明は、次世代エネルギー技術の有力候補である燃料電池の燃料電池用セパレータに関するものである。   The present invention relates to a fuel cell separator for a fuel cell, which is a strong candidate for next-generation energy technology.

燃料電池は、必要なエネルギー量に応じて複数の単位セルが一列に積層され、各単位セルが燃料電池用セパレータや膜電極接合体(MEA)等から形成されており、水素と酸素の反応により、水を生成する過程で発電する発電装置である。この装置の部品の中で、燃料電池用セパレータは、燃料電池の大部分を占める重要な部品であり、高い物性、例えば低い電気抵抗値、優れたガス透過性・導電性・曲げ強度、薄肉化等が求められている(特許文献1、2、3、4参照)。   In the fuel cell, a plurality of unit cells are stacked in a row according to the required amount of energy, and each unit cell is formed of a fuel cell separator, a membrane electrode assembly (MEA), etc. , It is a power generator that generates electricity in the process of generating water. Among the parts of this device, the fuel cell separator is an important part that occupies most of the fuel cell, and has high physical properties such as low electrical resistance, excellent gas permeability, conductivity, bending strength, and thinning. Etc. are required (see Patent Documents 1, 2, 3 and 4).

このような燃料電池用セパレータを製造する場合には、熱可塑性樹脂と黒鉛とが所定量混合した成形材料で成形する方法が採用されている。熱可塑性樹脂としては、機械的強度・成形性・耐久性・耐薬品性等に優れるポリフェニレンスルフィド(PPS)樹脂等が採用されている。   In the case of producing such a fuel cell separator, a method of molding with a molding material in which a predetermined amount of a thermoplastic resin and graphite are mixed is employed. As a thermoplastic resin, polyphenylene sulfide (PPS) resin etc. which are excellent in mechanical strength, moldability, durability, chemical resistance, etc. are adopted.

特開2014‐022096号公報JP 2014-022096 A 特開2008‐078023号公報JP, 2008-078023, A 特開2001‐122677号公報JP 2001-1222677 A 特開2001‐126744号公報JP 2001-126744 A

従来における燃料電池用セパレータは、以上のように構成され、成形材料の熱可塑性樹脂と黒鉛とが単に配合・混合されるので、60[W/mK]以上の高い熱伝導率を得ることが困難であり、長期の使用に問題がある。   The conventional fuel cell separator is configured as described above, and the thermoplastic resin of the molding material and graphite are simply blended and mixed, so it is difficult to obtain a high thermal conductivity of 60 [W / mK] or more And have problems with long-term use.

係る問題について詳しく説明すると、燃料電池用セパレータは、多数枚(例えば、自動車用の場合、400枚)の積層が要求されるのに鑑み、薄肉化が図られているが、薄肉化のために熱可塑性樹脂の樹脂比率を増大させると、ガスリーク性が向上するものの、電気抵抗値が上昇するので、比例して熱伝導率が下がることとなる。例えば、従来における燃料電池用セパレータは、薄肉化の観点から、熱可塑性樹脂の樹脂比率を増大させている関係上、25〜42[W/mK]の熱伝導率を得ることはできるが、60[W/mK]以上の熱伝導率を得ることは非常に困難である。   The problem is explained in detail. In view of the fact that the fuel cell separator is required to be laminated in large numbers (for example, 400 sheets for automobiles), thinning has been achieved, but for thinning When the resin ratio of the thermoplastic resin is increased, although the gas leak property is improved, the electric resistance value is increased, so that the heat conductivity is reduced in proportion. For example, in the conventional fuel cell separator, a thermal conductivity of 25 to 42 [W / mK] can be obtained because the resin ratio of the thermoplastic resin is increased from the viewpoint of thinning. It is very difficult to obtain a thermal conductivity of [W / mK] or more.

しかしながら、近年の燃料電池は、運転中の熱コントロールが重視され、60[W/mK]以上の高い熱伝導率が切望されている。これは、熱伝導率が高ければ、水の生成熱等を燃料電池用セパレータの一部ではなく、全体に拡散・伝熱することができるので、燃料電池用セパレータの長期に亘る使用が期待できるからである。したがって、熱伝導率が25〜42[W/mK]という低い値では、水の生成熱等を燃料電池用セパレータの一部にしか伝熱できないおそれがあり、燃料電池用セパレータの長期使用に困難が生じる。   However, in recent fuel cells, thermal control during operation is important, and a high thermal conductivity of 60 [W / mK] or more is desired. This means that if the thermal conductivity is high, heat generated from water can be diffused and transferred to the whole of the fuel cell separator instead of to a part of the fuel cell separator, so long-term use of the fuel cell separator can be expected It is from. Therefore, if the thermal conductivity is as low as 25 to 42 [W / mK], there is a possibility that the heat of formation of water and the like can be transferred to only a part of the fuel cell separator, making it difficult to use the fuel cell separator for a long time Will occur.

本発明は上記に鑑みなされたもので、60[W/mK]以上の高い熱伝導率を得ることができ、長期の使用に資することのできる燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above, and it is an object of the present invention to provide a fuel cell separator capable of obtaining high thermal conductivity of 60 [W / mK] or more and contributing to long-term use.

本発明においては上記課題を解決するため、熱可塑性樹脂と導電材とを含有する成形材料により成形され、燃料と酸化剤用の流路を有するセパレータであり、
成形材料の熱可塑性樹脂がポリフェニレンスルフィド系樹脂とされるとともに、導電材が黒鉛とされ、ポリフェニレンスルフィド系樹脂のメルトフローレートが120[g/10min]以上に設定されることにより、熱伝導率が60[W/mK]以上とされることを特徴としている。
In the present invention, in order to solve the above problems, the separator is formed of a molding material containing a thermoplastic resin and a conductive material, and has a flow path for fuel and an oxidant.
The thermoplastic resin of the molding material is a polyphenylene sulfide resin, the conductive material is a graphite, and the melt flow rate of the polyphenylene sulfide resin is set to 120 [g / 10 min] or more, whereby the thermal conductivity is increased. It is characterized in that it is 60 [W / mK] or more.

なお、曲げ強度が30[MPa]以上であることが好ましい。
また、成形材料のポリフェニレンスルフィド系樹脂と黒鉛とが重量配合比100:950〜1650で混合されると良い。
In addition, it is preferable that bending strength is 30 [MPa] or more.
Moreover, it is good for polyphenylene sulfide-type resin of a molding material, and graphite to be mixed by weight compounding ratio 100: 950-1650.

また、黒鉛が、平均粒径の異なる少なくとも2種類以上の黒鉛粒子であると良い。
また、1種類の黒鉛粒子の平均粒径が100μm以上150μm以下とされ、他種類の黒鉛粒子の平均粒径が40μm以上60μm以下にされると良い。
また、ポリフェニレンスルフィド系樹脂のメルトフローレートが550[g/10min]以上4100[g/10min]以下に設定されると良い。
Further, it is preferable that the graphite be at least two or more types of graphite particles having different average particle sizes.
Further, it is preferable that the average particle diameter of one kind of graphite particles be 100 μm to 150 μm, and the average particle diameter of other kinds of graphite particles be 40 μm to 60 μm.
In addition, it is preferable that the melt flow rate of the polyphenylene sulfide resin is set to 550 [g / 10 min] or more and 4100 [g / 10 min] or less.

ここで、特許請求の範囲における黒鉛は、異方性でも良いし、等方性でも良い。また、鱗片状タイプ、鱗状タイプ、土状タイプ、人造タイプ、膨張タイプ等があるが、特に問うものではない。混合という用語には、混練が含まれる。さらに、本発明に係る燃料電池用セパレータは、家庭用、小型店舗用、自動車用、モバイル機器用等の燃料電池に利用することができる。   Here, the graphite in the claims may be anisotropic or isotropic. Further, there are scaly type, scaly type, earthy type, artificial type, expansion type and the like, but it is not particularly limited. The term mixing includes kneading. Furthermore, the fuel cell separator according to the present invention can be used as a fuel cell for home use, small store use, automobile use, mobile device use and the like.

本発明によれば、ポリフェニレンスルフィド系樹脂のメルトフローレートを120[g/10min]以上に設定するので、ポリフェニレンスルフィド系樹脂の流動性が向上し、成形材料中の複数の黒鉛が密接する。この複数の黒鉛の密接により、複数の黒鉛間の空隙が狭まって熱伝導路を形成し、燃料電池用セパレータの熱伝導率が60[W/mK]以上となる。   According to the present invention, since the melt flow rate of the polyphenylene sulfide-based resin is set to 120 [g / 10 min] or more, the flowability of the polyphenylene sulfide-based resin is improved, and a plurality of graphite in the molding material are in close contact. Due to the close contact of the plurality of graphites, the gaps between the plurality of graphites narrow to form a heat conduction path, and the thermal conductivity of the fuel cell separator becomes 60 [W / mK] or more.

本発明によれば、ポリフェニレンスルフィド系樹脂のメルトフローレートが120[g/10min]以上に設定されるので、60[W/mK]以上の高い熱伝導率を得ることができ、燃料電池用セパレータを長期に亘って使用することができるという効果がある。   According to the present invention, since the melt flow rate of the polyphenylene sulfide-based resin is set to 120 [g / 10 min] or more, a high thermal conductivity of 60 [W / mK] or more can be obtained, and a fuel cell separator Has the effect of being able to be used over a long period of time.

以下、本発明の好ましい実施の形態を説明すると、本実施形態における燃料電池用セパレータは、熱可塑性樹脂と導電材とを含有する成形材料により成形され、燃料と酸化剤用の流路を複数有する板形のセパレータであり、成形材料の熱可塑性樹脂がポリフェニレンスルフィド系樹脂とされ、導電材が黒鉛とされており、ポリフェニレンスルフィド系樹脂のメルトフローレートが120[g/10min]以上に調整され、ポリフェニレンスルフィド系樹脂の流動性が向上することにより、熱伝導率が60[W/mK]以上とされる。   Hereinafter, a preferred embodiment of the present invention will be described. The fuel cell separator in the present embodiment is formed of a molding material containing a thermoplastic resin and a conductive material, and has a plurality of channels for fuel and oxidant. It is a plate-shaped separator, the thermoplastic resin of the molding material is polyphenylene sulfide resin, the conductive material is graphite, and the melt flow rate of the polyphenylene sulfide resin is adjusted to 120 [g / 10 min] or more. By improving the flowability of the polyphenylene sulfide-based resin, the thermal conductivity is set to 60 [W / mK] or more.

燃料電池用セパレータは、図示しないが、平面略矩形の薄い板を備え、この板の略平坦な表裏両面の周縁部以外の中央部に、燃料用の流通路を区画する複数の流路が横一列に並んでそれぞれ平面略S字形に配列形成されており、電解質層、空気極、燃料極と共に積層されて燃料電池を構成する。板の周縁部には、複数の流路の端部に略連通する複数の貫通口が並べて穿孔され、各貫通口が略トラック形に形成される。また、各流路は、断面略U字の溝形に凹み形成される。   Although not shown, the fuel cell separator is provided with a thin plate having a flat and substantially rectangular shape, and a plurality of flow passages for dividing a flow passage for fuel are provided laterally at the central portion other than the peripheral portions on both front and back sides of the plate. The fuel cells are arranged in a row and arranged in a plane substantially S-shape, and are laminated together with the electrolyte layer, the air electrode and the fuel electrode to constitute a fuel cell. At the periphery of the plate, a plurality of through holes that substantially communicate with the ends of the plurality of flow paths are lined up and perforated, and the respective through holes are formed in a substantially track shape. In addition, each flow passage is formed in a recess having a substantially U-shaped cross section.

成形材料の熱可塑性樹脂は、機械的強度・成形性・耐久性・耐薬品性等に優れる粉末のポリフェニレンスルフィド系樹脂が使用される。このポリフェニレンスルフィド系樹脂は、ポリフェニレンスルフィド骨格を有していれば良く、ポリフェニレンスルフィドと同族ポリマー(例えば、ポリフェニレンスルフィドケトンPPSK,ポリフェニレンスルフィドスルホンPPSS,ポリビフェニレンスルフィドPBPS等)も含まれる。   As the thermoplastic resin of the molding material, a powdery polyphenylene sulfide resin excellent in mechanical strength, moldability, durability, chemical resistance and the like is used. The polyphenylene sulfide-based resin may have a polyphenylene sulfide skeleton, and includes polyphenylene sulfide and a homologous polymer (for example, polyphenylene sulfide ketone PPSK, polyphenylene sulfide sulfone PPSS, polybiphenylene sulfide PBPS, etc.).

ポリフェニレンスルフィド系樹脂は、部分的な架橋構造を有していても良く、逆に架橋構造を有していなくても良い。また、ポリフェニレンスルフィド系樹脂は、直鎖構造を有する直鎖型(通常、リニア型又はセミリニア型と称する)でも良いし、分岐構造を有する分岐型でも良いが、通常は直鎖型が好ましい。さらに、ポリフェニレンスルフィド系樹脂は、ベンゼン環に置換基を有していても良い。   The polyphenylene sulfide-based resin may have a partial cross-linked structure, or may not have a cross-linked structure. The polyphenylene sulfide resin may be a linear type having a linear structure (usually referred to as a linear type or a semilinear type) or a branched type having a branched structure, but a linear type is usually preferable. Furthermore, the polyphenylene sulfide-based resin may have a substituent on the benzene ring.

なお、ポリフェニレンスルフィド系樹脂は、溶出イオン防止の観点から、酸や水等により洗浄して使用されることが好ましい。これは、ポリフェニレンスルフィド系樹脂を洗浄して使用すれば、燃料電池の作動中に熱水中に溶出するイオンを低減し、燃料電池の劣化を防止することができるからである。   The polyphenylene sulfide resin is preferably used after being washed with an acid, water or the like from the viewpoint of preventing elution ions. This is because if the polyphenylene sulfide resin is washed and used, it is possible to reduce the ions eluted in the hot water during the operation of the fuel cell and to prevent the deterioration of the fuel cell.

黒鉛は、平均粒径の異なる少なくとも大小2種類の粉末の黒鉛粒子が用いられるのが好ましい。1種類の黒鉛粒子ではなく、2種類の黒鉛粒子が用いられるのは、黒鉛の空隙率を低減して燃料電池用セパレータの熱伝導率等を向上させるためである。これらの黒鉛粒子としては、球状の黒鉛粒子(例えば、球状化された天然黒鉛、人造黒鉛、フリュートコークス、ギルソナイトコークス等)、アスペクト比が2.0以下の黒鉛粉末(例えば、アスペクト比1〜2.0程度の天然黒鉛粉末や人造黒鉛粉末)等があげられる。   As the graphite, it is preferable to use graphite particles of at least two kinds of powders having different average particle sizes. The reason why two types of graphite particles are used instead of one type of graphite particles is to reduce the porosity of the graphite and improve the thermal conductivity and the like of the fuel cell separator. As these graphite particles, spherical graphite particles (for example, spheroidized natural graphite, artificial graphite, flut coke, gilsonite coke, etc.), graphite powder having an aspect ratio of 2.0 or less (for example, aspect ratio 1) Natural graphite powder and artificial graphite powder of about 2.0 or the like can be mentioned.

2種類の黒鉛粒子のうち、1種類の黒鉛粒子の平均粒径は、特に限定されるものではないが、取り扱いを容易にする観点から、100μm以上150μm以下、好ましくは115μm以上135μm以下、より好ましくは118μm以上122μm以下とされる。この1種類の黒鉛粒子の具体例としては、例えば8020SJ(オリエンタル産業株式会社製:製品名)等があげられる。   The average particle diameter of one kind of graphite particles is not particularly limited among the two kinds of graphite particles, but from the viewpoint of facilitating handling, it is 100 μm or more and 150 μm or less, preferably 115 μm or more and 135 μm or less, more preferably Is set to 118 μm or more and 122 μm or less. As a specific example of this one type of graphite particle, for example, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) and the like can be mentioned.

これに対し、他種類の黒鉛粒子の平均粒径は、特に限定されるものではないが、平均粒径の大きい黒鉛粒子間の空隙を埋めて最密充填を実現し、疲労強度を向上させる観点から、40μm以上60μm以下、好ましくは51μm以上54μm以下、より好ましくは52μm以上53μm以下とされる。この他種類の黒鉛粒子の具体例としては、例えば固定炭素98.5%以上・灰分5%以下・揮発分1.0%以下・真比重2.2のニードル系のAT‐No.5S(オリエンタル産業株式会社製:製品名)等があげられる。平均粒径が大きい1種類の黒鉛粒子と、平均粒径が小さい他種類の黒鉛粒子の重量配合比は、960:40〜1500:100の範囲で適宜設定される。   On the other hand, the average particle diameter of other types of graphite particles is not particularly limited, but it is possible to fill the voids between graphite particles having a large average particle diameter to realize close packing and improve fatigue strength. Therefore, the thickness is 40 μm to 60 μm, preferably 51 μm to 54 μm, and more preferably 52 μm to 53 μm. Specific examples of this other type of graphite particles include, for example, needle type AT-No. 4 of fixed carbon 98.5% or more, ash content 5% or less, volatile content 1.0% or less, and true specific gravity 2.2. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) and the like. The weight blending ratio of one type of graphite particles having a large average particle size to the other type of graphite particles having a small average particle size is appropriately set in the range of 960: 40 to 1,500: 100.

ポリフェニレンスルフィド系樹脂と黒鉛とは、電気抵抗値を低減し、熱伝導率を向上させる観点から、重量配合比100:950〜1650、好ましくは100:960〜1620、より好ましくは100:1000〜1600で攪拌・混合される。   From the viewpoint of reducing the electrical resistance value and improving the thermal conductivity, the weight ratio of 100 to 950 to 1650, preferably 100 to 960 to 1620, and more preferably 100 to 1000 to 1600, of the polyphenylene sulfide resin and the graphite. Stir and mix.

ポリフェニレンスルフィド系樹脂のメルトフローレート(Melt Flow Rate:MFR)は、溶融したポリフェニレンスルフィド系樹脂の流動性の大きさを数値で示す指標であり、120[g/10min]以上に設定される。具体的には、120[g/10min]以上4100[g/10min]以下、好ましくは550[g/10min]以上4050[g/10min]以下、より好ましくは600[g/10min]以上4000[g/10min]以下に設定される。   Melt flow rate (Mlt Flow Rate: MFR) of polyphenylene sulfide resin is an index indicating numerical value of fluidity of melted polyphenylene sulfide resin, and is set to 120 [g / 10 min] or more. Specifically, it is 120 [g / 10 min] or more and 4100 [g / 10 min] or less, preferably 550 [g / 10 min] or more and 4050 [g / 10 min or less], more preferably 600 [g / 10 min] or more and 4000 [g] [/ 10 min] or less.

メルトフローレートが120[g/10min]以上なのは、120[g/10min]以下の場合には、ポリフェニレンスルフィド系樹脂の流動性が悪化して燃料電池用セパレータの熱伝導率を悪化させ、熱伝導率が60[W/mK]未満となるからである。
メルトフローレートの測定は、材料の種類毎に決められる標準条件の温度及び載荷荷重の下、シリンダの底部に設置された規定口径のダイスから10分当たりに押し出される樹脂量を計測して得られる。また、ポリフェニレンスルフィド系樹脂のメルトフローレートの上限値は、下限値と異なり、特に限定されるものではないが、実用性を考慮すると、4100[g/10min]以下が良い。
If the melt flow rate is 120 g / 10 min or more, if the melt flow rate is 120 g / 10 min or less, the flowability of the polyphenylene sulfide resin is deteriorated to deteriorate the thermal conductivity of the fuel cell separator, and the thermal conductivity is reduced. This is because the rate is less than 60 [W / mK].
Melt flow rate measurement can be obtained by measuring the amount of resin extruded per 10 minutes from a die of a specified diameter installed at the bottom of the cylinder under the temperature and loading load under standard conditions determined for each type of material. . Further, the upper limit value of the melt flow rate of the polyphenylene sulfide resin is different from the lower limit value and is not particularly limited, but in consideration of practicality, 4100 [g / 10 min] or less is preferable.

熱伝導率は、水の生成熱や燃料電池運転温度からの熱を燃料電池用セパレータの全体に拡散・伝熱する観点から、60[W/mK]以上であれば良い。好ましくは62[W/mK]以上、より好ましくは64[W/mK]以上が良い。この熱伝導率は、定常比較法である円板熱流計法(ASTM E1530では保護熱流計法という)により測定される。   The thermal conductivity may be 60 [W / mK] or more from the viewpoint of heat transfer of heat generated from water and heat from the fuel cell operating temperature to the whole of the fuel cell separator. Preferably 62 [W / mK] or more, more preferably 64 [W / mK] or more. The thermal conductivity is measured by a disk heat flow method (referred to as protective heat flow method in ASTM E1530) which is a steady comparison method.

上記において、熱伝導率が60[W/mK]以上の燃料電池用セパレータを製造する場合には、粉末のポリフェニレンスルフィド系樹脂と、大小2種類の粉末の黒鉛粒子とを所定の重量配合比でタンブラーボトルやヘンシェルミキサ等に多数のジルコニアボールと共に加え、配合機により所定の時間、攪拌・混合し、燃料電池用セパレータの成形材料を調製する。この際、粉末のポリフェニレンスルフィド系樹脂が溶融しないよう、加熱することなく配合することが好ましい。   In the above, when manufacturing a fuel cell separator having a thermal conductivity of 60 [W / mK] or more, the powder polyphenylene sulfide resin and the large and small two kinds of powder graphite particles are mixed at a predetermined weight ratio. The mixture is added to a tumbler bottle, a Henschel mixer, etc. together with a large number of zirconia balls, and the mixture is stirred and mixed for a predetermined time by a compounder to prepare a molding material for a fuel cell separator. Under the present circumstances, it is preferable to mix | blend without heating so that powdery polyphenylene sulfide type resin may not fuse | melt.

こうして成形材料を調製したら、離型剤が予め塗布された燃料電池用セパレータの専用金型の下型に成形材料を充填し、この成形材料をスクレーバで平らにならし、下型をプッシャで軽く押圧してエアを外部に抜いた後、下型に専用金型の上型を嵌合してプレス機で本加熱加圧することにより、燃料電池用セパレータを圧縮成形する。成形材料の充填に際しては、専用金型の成形温度をポリフェニレンスルフィド系樹脂の融点よりも低くしておくことが好ましい。   After preparing the molding material in this way, the molding material is filled in the lower mold of the dedicated mold for the fuel cell separator to which the mold release agent has been previously applied, the molding material is smoothed with a scraper, and the lower mold is lightened with a pusher. After pressing and removing air to the outside, the upper mold of the dedicated mold is fitted to the lower mold, and the fuel cell separator is compression molded by main heating and pressing with a press. When the molding material is filled, it is preferable to set the molding temperature of the dedicated mold lower than the melting point of the polyphenylene sulfide resin.

成形材料を充填する場合には、燃料電池用セパレータの板と複数の流路とで成形材料の成形量が相違し、しかも、粉末の黒鉛粒子の流動性が低いので、これを考慮して充填する。具体的な充填方法としては、(1)専用金型の下型に計量した成形材料を充填してスクレーバ等により均一に広げてならし、複数の流路を成形する専用金型の成形部の成形材料をスクレーバ等によりかき取り、成形材料をバランス良く充填する方法、(2)燃料電池用セパレータの形状を考慮し、専用金型の下型に成形材料をディスペンサーにより増減させながら充填する方法のいずれかが選択して採用される。   When the molding material is filled, the molding amount of the molding material is different between the plate of the fuel cell separator and the plurality of flow paths, and the flowability of the powdery graphite particles is low. Do. As a specific filling method, (1) the molding material measured in the lower mold of the special mold is filled, spread uniformly with a scraper or the like and smoothed, and a molding portion of the special mold for molding a plurality of flow paths A method of scraping the molding material with a scraper or the like to fill the molding material with good balance, (2) a method of filling the lower mold of a dedicated mold while increasing or decreasing the molding material with a dispenser in consideration of the shape of the fuel cell separator. One of them is selected and adopted.

エアを外部に抜いた場合には、プレス機で直ちに本加熱加圧しても良いが、本加熱加圧の前段階で予備加熱加圧すれば、燃料電池用セパレータの低温割れの防止、硬化組織の生成防止、延性・じん性等の機械的性質の向上、変形・残留応力の低減を図ることができる。専用金型の加熱加圧に際しては、成形材料の充填された専用金型を成形機の所定温度まで加熱した一対の熱板間にセットして加熱加圧する。また、専用金型の加熱温度はポリフェニレンスルフィド系樹脂の融点+100℃〜+150℃程度が好ましく、専用金型の加圧圧力は300kg/cm以上が必要である。 When air is removed to the outside, the main heating and pressing may be performed immediately with a press, but if preheating and pressing is performed in the stage before the main heating and pressing, prevention of low temperature cracking of the fuel cell separator, hardened structure Can be prevented, mechanical properties such as ductility and toughness can be improved, and deformation and residual stress can be reduced. When heating and pressing the special mold, the special mold filled with the molding material is set between the pair of heat plates heated to a predetermined temperature of the molding machine and heated and pressed. The heating temperature of the dedicated mold is preferably about + 100 ° C. to + 150 ° C. of the melting point of the polyphenylene sulfide resin, and the pressure applied to the dedicated mold needs to be 300 kg / cm 2 or more.

専用金型が加熱加圧されると、成形材料の加圧に伴い、大きさの異なる大小2種類の黒鉛粒子が密接してその間にポリフェニレンスルフィド系樹脂の流入する空隙が形成され、ポリフェニレンスルフィド系樹脂の融点を越えた温度域でポリフェニレンスルフィド系樹脂が流動し始め、複数の黒鉛粒子の周囲やその間にポリフェニレンスルフィド系樹脂が流動・流入することとなる。専用金型の加熱加圧時間としては、複数の黒鉛粒子の間にポリフェニレンスルフィド系樹脂が流入するのに要する時間であれば良い。   When the dedicated mold is heated and pressurized, with the pressurization of the molding material, two large and small types of graphite particles of different sizes come into close contact to form a space into which the polyphenylene sulfide-based resin flows, thereby forming the polyphenylene sulfide-based The polyphenylene sulfide-based resin begins to flow in a temperature range exceeding the melting point of the resin, and the polyphenylene sulfide-based resin flows and flows around and between the plurality of graphite particles. The heating and pressing time of the dedicated mold may be any time required for the polyphenylene sulfide resin to flow in between the plurality of graphite particles.

燃料電池用セパレータを圧縮成形したら、専用金型を所定の時間冷却し、専用金型から燃料電池用セパレータを脱型すれば、表裏両面にサーペイン型の流路を複数備えた薄い燃料電池用セパレータを製造することができる。専用金型を冷却する方法としては、(1)専用金型を取り外して冷却された別の成形機の一対の熱板間にセットし、加圧冷却する方法、(2)専用金型を成形機の一対の熱板間にセットしたままで加圧冷却する方法等があげられる。   After compression molding of the fuel cell separator, the special mold is cooled for a predetermined time, and the fuel cell separator is removed from the special mold. A thin fuel cell separator having a plurality of serpaine-type flow paths on both front and back sides. Can be manufactured. As a method of cooling a dedicated mold, (1) a method of removing the dedicated mold and setting it between a pair of hot plates of another molding machine cooled and pressure-cooling it; (2) molding the dedicated mold The method of pressure-cooling etc. is mention | raise | lifted with the pair of hot plates of a machine set.

専用金型は、ポリフェニレンスルフィド系樹脂の融点以下、好ましくはポリフェニレンスルフィド系樹脂の融点−100℃以下、より好ましくはポリフェニレンスルフィド樹脂のガラス転移点以下まで冷却する。これは、係る温度まで専用金型を冷却すれば、燃料電池用セパレータの導電性が向上し、燃料電池用セパレータの反りや曲がりの低減に資するからである。   The dedicated mold is cooled to the melting point of the polyphenylene sulfide resin or less, preferably to 100 ° C. or less of the melting point of the polyphenylene sulfide resin, and more preferably to the glass transition point of the polyphenylene sulfide resin. This is because if the dedicated mold is cooled to such a temperature, the conductivity of the fuel cell separator is improved, which contributes to the reduction of warpage and bending of the fuel cell separator.

但し、冷却温度の低下に伴い生産性が悪化するので、導電性を満足する範囲の高温で燃料電池用セパレータを脱型し、ガラス転移点以上の温度でアニーリングして燃料電池用セパレータの反りや曲がりを矯正しても良い。アニーリングは、燃料電池用セパレータを積層して0.05kg/cmの錘を載せることにより、実施することが好ましい。 However, since the productivity is deteriorated as the cooling temperature is lowered, the fuel cell separator is removed at a high temperature which satisfies the conductivity, and the fuel cell separator is warped or annealed at a temperature higher than the glass transition temperature. You may correct a curve. Annealing is preferably performed by stacking the fuel cell separators and mounting a weight of 0.05 kg / cm 2 .

製造された燃料電池用セパレータの曲げ強度は、機械的強度を確保するため、30[MPa]以上、好ましくは30.1[MPa]以上が良い。また、燃料電池用セパレータの曲げ弾性率は、優れた機械的特性を得る観点から、10[GPa]以上、好ましくは11[GPa]以上、より好ましくは12[GPa]以上が良い。燃料電池用セパレータの面方向抵抗値は、電力損失抑制の観点から、4.00[mΩ・cm]未満、好ましくは3.98[mΩ・cm]未満、より好ましくは3.96[mΩ・cm]未満が良い。   The flexural strength of the manufactured fuel cell separator is preferably 30 [MPa] or more, preferably 30.1 [MPa] or more, in order to secure mechanical strength. The flexural modulus of the fuel cell separator is preferably 10 [GPa] or more, preferably 11 [GPa] or more, more preferably 12 [GPa] or more, from the viewpoint of obtaining excellent mechanical properties. The surface direction resistance value of the fuel cell separator is less than 4.00 mΩ · cm, preferably less than 3.98 mΩ · cm, and more preferably 3.96 mΩ · cm from the viewpoint of suppressing power loss. ] Less than good.

上記によれば、成形材料のポリフェニレンスルフィド系樹脂のメルトフローレートを120[g/10min]以上に設定するので、ポリフェニレンスルフィド系樹脂の流動性が向上し、平均粒径の異なる2種類の黒鉛粒子が密接するとともに、この2種類の黒鉛粒子間の空隙が狭まって熱伝導路を形成し、燃料電池用セパレータの熱伝導率が60[W/mK]以上となる。この熱伝導率の向上により、水の生成熱を燃料電池用セパレータの全体に拡散・伝熱することができ、薄肉化を図りながら燃料電池用セパレータの長期に亘る使用が大いに期待できる。また、大きさの異なる2種類の黒鉛粒子の密接により、電気抵抗値を低下させ、電気伝導性を向上させることができる。   According to the above, since the melt flow rate of the polyphenylene sulfide-based resin of the molding material is set to 120 [g / 10 min] or more, the flowability of the polyphenylene sulfide-based resin is improved, and two types of graphite particles having different average particle diameters are obtained. And the gaps between the two types of graphite particles narrow to form a heat conduction path, and the thermal conductivity of the fuel cell separator becomes 60 [W / mK] or more. By the improvement of the thermal conductivity, heat generated from water can be diffused and transferred to the whole of the fuel cell separator, and long-term use of the fuel cell separator can be greatly expected while achieving thinning. Further, the intimate contact between two types of graphite particles having different sizes can reduce the electrical resistance value and improve the electrical conductivity.

なお、上記実施形態では黒鉛として、平均粒径の異なる2種類の粉末の黒鉛粒子を用いたが、何らこれに限定されるものではない。例えば、平均粒径の異なる大小3種類の粉末の黒鉛粒子を用いても良い。   In addition, although the graphite particle of two types of powder from which an average particle diameter differs is used as graphite in the said embodiment, it is not limited to this at all. For example, graphite particles of three or more types of powders having different average particle sizes may be used.

以下、本発明に係る燃料電池用セパレータの実施例を比較例と共に説明する。
〔実施例1〕
熱伝導率が60[W/mK]以上、かつ曲げ強度が30[MPa]以上の燃料電池用セパレータを製造するため、先ず、粉末のポリフェニレンスルフィド(PPS)樹脂と、平均粒径の異なる大小2種類の粉末の黒鉛粒子とを用意した。
Hereinafter, examples of the fuel cell separator according to the present invention will be described together with comparative examples.
Example 1
In order to produce a fuel cell separator having a thermal conductivity of 60 [W / mK] or more and a flexural strength of 30 [MPa] or more, first, powder polyphenylene sulfide (PPS) resin and different average particle sizes are different 2 Types of powdery graphite particles were prepared.

ポリフェニレンスルフィド樹脂としては、メルトフローレート値が600[g/10min]のM2888(東レ株式会社製:製品名)を用いた。また、平均粒径の大きい黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用い、平均粒径の小さい黒鉛粒子として、平均粒径52μmのAT‐No.5S(オリエンタル産業株式会社製:製品名)を採用した。これらの重量配合比は、100:960:40に調整した。   As polyphenylene sulfide resin, M2888 (made by Toray Industries, Inc .: product name) having a melt flow rate value of 600 [g / 10 min] was used. In addition, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm is used as graphite particles having a large average particle diameter, and AT-No. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) was adopted. The weight blending ratio of these was adjusted to 100: 960: 40.

次いで、ポリフェニレンスルフィド樹脂と、2種類の黒鉛粒子とを60Lタンブラーボトル〔株式会社セイワ技研製〕に多数のジルコニアボール〔株式会社ニッカトー製〕と共に加え、配合機〔株式会社セイワ技研製:製品名TM‐60P〕により回転数30rpm(40Hz)、60分の条件で攪拌・混合し、燃料電池用セパレータの成形材料を調製した。ジルコニアボールは、φ9mmサイズとφ5mmサイズとをそれぞれ9kg、合計18kg用いた。   Next, a polyphenylene sulfide resin and two types of graphite particles are added to a 60 L tumbler bottle (manufactured by Seiwa Giken Co., Ltd.) together with a large number of zirconia balls (manufactured by Nikkato Co., Ltd.), and a compounding machine (manufactured by Seiwa Giken Co., Ltd .: product name TM) The mixture was stirred and mixed at a rotational speed of 30 rpm (40 Hz) for 60 minutes according to −60 P] to prepare a molding material for a fuel cell separator. The zirconia balls used were 9 kg in diameter and 9 mm in diameter, respectively, for a total of 18 kg.

こうして成形材料を調製したら、離型剤〔ダイキン工業株式会社製:製品名GA‐7500〕が予め噴霧・塗布された燃料電池用セパレータの専用金型の下型に成形材料を充填し、この成形材料をスクレーバで平らに広げてならし、下型をプッシャで軽く押圧してエアを外部に抜いた後、下型に専用金型の上型を嵌合して300tのプレス機で本加熱加圧することにより、燃料電池用セパレータを圧縮成形した。   Once the molding material is prepared in this way, the molding material is filled in the lower mold of a dedicated mold for a fuel cell separator which has been previously sprayed and coated with a mold release agent (product name: GA-7500, manufactured by Daikin Industries, Ltd.). The material is spread evenly with a scraper, and after the lower mold is lightly pressed by a pusher to extract air to the outside, the upper mold of the special mold is fitted to the lower mold and this heating is applied by a 300t press machine. The fuel cell separator was compression molded by pressure.

専用金型は、S45C材により構成した。また、プレス機は、その上熱板を380℃、下熱板を440℃に設定した。本加熱加圧は、面圧481kg/cm、7分間の条件で実施した。 The dedicated mold was made of S45C material. In the press, the upper heating plate was set to 380 ° C., and the lower heating plate was set to 440 ° C. The main heating and pressing was performed under the conditions of a surface pressure of 481 kg / cm 2 for 7 minutes.

燃料電池用セパレータを圧縮成形したら、専用金型を所定の時間冷却し、専用金型から燃料電池用セパレータを脱型して燃料電池用セパレータを製造した。専用金型の冷却は、面圧481kg/cm、22分間の条件で実施した。脱型した燃料電池用セパレータは、測定したところ、297×210×4tmmの大きさであった。 After compression molding of the fuel cell separator, the special mold was cooled for a predetermined time, and the fuel cell separator was removed from the special mold to produce a fuel cell separator. Cooling of the dedicated mold was performed under the conditions of 481 kg / cm 2 of surface pressure for 22 minutes. When the fuel cell separator from which the mold was removed was measured, it had a size of 297 × 210 × 4 tmm.

燃料電池用セパレータを製造したら、この燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。燃料電池用セパレータの熱伝導率は、ASTM E1530の円板熱流計法により測定した。また、燃料電池用セパレータの曲げ強度と曲げ弾性率、面方向抵抗値は、JIS K7171に準拠した曲げ試験(n=5)により測定した。   After the fuel cell separator was manufactured, the thermal conductivity, the bending strength, the flexural modulus, and the surface direction resistance value of the fuel cell separator were each measured and summarized in Table 1. The thermal conductivity of the fuel cell separator was measured by the disk heat flow meter method of ASTM E1530. Further, the flexural strength, flexural modulus and surface direction resistance value of the fuel cell separator were measured by a flexural test (n = 5) in accordance with JIS K7171.

〔実施例2〕
粉末のポリフェニレンスルフィド樹脂として、メルトフローレート値が4000[g/10min]のL4031(東レ株式会社製:製品名)を用いた。また、平均粒径の大きい黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用い、平均粒径の小さい黒鉛粒子として、平均粒径52μmのAT‐No.5S(オリエンタル産業株式会社製:製品名)を採用した。これらの重量配合比は、100:960:40に調整した。
Example 2
As a powdery polyphenylene sulfide resin, L4031 (manufactured by Toray Industries, Inc .: product name) having a melt flow rate value of 4000 [g / 10 min] was used. In addition, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm is used as graphite particles having a large average particle diameter, and AT-No. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) was adopted. The weight blending ratio of these was adjusted to 100: 960: 40.

その他は実施例1と同様にして燃料電池用セパレータを製造し、製造した燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。   The fuel cell separator was manufactured in the same manner as in Example 1 and the thermal conductivity, flexural strength, flexural modulus and surface resistance of the manufactured fuel cell separator were measured in the same manner as in Example 1. The results are summarized in Table 1 did.

〔実施例3〕
粉末のポリフェニレンスルフィド樹脂として、メルトフローレート値が4000[g/10min]のL4031(東レ株式会社製:製品名)を用いた。また、平均粒径の大きい黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用い、平均粒径の小さい黒鉛粒子として、平均粒径52μmのAT‐No.5S(オリエンタル産業株式会社製:製品名)を採用した。これらの重量配合比は、100:1153:47に変更した。
[Example 3]
As a powdery polyphenylene sulfide resin, L4031 (manufactured by Toray Industries, Inc .: product name) having a melt flow rate value of 4000 [g / 10 min] was used. In addition, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm is used as graphite particles having a large average particle diameter, and AT-No. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) was adopted. The weight blending ratio of these was changed to 100: 1153: 47.

その他は実施例1と同様にして燃料電池用セパレータを製造し、製造した燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。   The fuel cell separator was manufactured in the same manner as in Example 1 and the thermal conductivity, flexural strength, flexural modulus and surface resistance of the manufactured fuel cell separator were measured in the same manner as in Example 1. The results are summarized in Table 1 did.

〔実施例4〕
粉末のポリフェニレンスルフィド樹脂として、メルトフローレート値が4000[g/10min]のL4031(東レ株式会社製:製品名)を用いた。また、平均粒径の大きい黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用い、平均粒径の小さい黒鉛粒子として、平均粒径52μmのAT‐No.5S(オリエンタル産業株式会社製:製品名)を採用した。これらの重量配合比は、100:1345:55に変更した。
Example 4
As a powdery polyphenylene sulfide resin, L4031 (manufactured by Toray Industries, Inc .: product name) having a melt flow rate value of 4000 [g / 10 min] was used. In addition, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm is used as graphite particles having a large average particle diameter, and AT-No. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) was adopted. The weight blending ratio of these was changed to 100: 1345: 55.

その他は実施例1と同様にして燃料電池用セパレータを製造し、製造した燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。   The fuel cell separator was manufactured in the same manner as in Example 1 and the thermal conductivity, flexural strength, flexural modulus and surface resistance of the manufactured fuel cell separator were measured in the same manner as in Example 1. The results are summarized in Table 1 did.

〔実施例5〕
粉末のポリフェニレンスルフィド樹脂として、メルトフローレート値が4000[g/10min]のL4031(東レ株式会社製:製品名)を用いた。また、平均粒径の大きい黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用い、平均粒径の小さい黒鉛粒子として、平均粒径52μmのAT‐No.5S(オリエンタル産業株式会社製:製品名)を採用した。これらの重量配合比は、100:1500:100に変更した。
[Example 5]
As a powdery polyphenylene sulfide resin, L4031 (manufactured by Toray Industries, Inc .: product name) having a melt flow rate value of 4000 [g / 10 min] was used. In addition, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm is used as graphite particles having a large average particle diameter, and AT-No. 5S (manufactured by Oriental Sangyo Co., Ltd .: product name) was adopted. The weight blending ratio of these was changed to 100: 1500: 100.

その他は実施例1と同様にして燃料電池用セパレータを製造し、製造した燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。   The fuel cell separator was manufactured in the same manner as in Example 1 and the thermal conductivity, flexural strength, flexural modulus and surface resistance of the manufactured fuel cell separator were measured in the same manner as in Example 1. The results are summarized in Table 1 did.

〔比較例〕
燃料電池用セパレータを製造するため、粉末のポリフェニレンスルフィド樹脂と、1種類の粉末の黒鉛粒子とを用意した。ポリフェニレンスルフィド樹脂としては、メルトフローレート値が100[g/10min]のE2180(東レ株式会社製:製品名)を用いた。また、黒鉛粒子として、平均粒径120μmの8020SJ(オリエンタル産業株式会社製:製品名)を用いた。これらの重量配合比は、100:1000に設定した。
Comparative Example
In order to produce a fuel cell separator, powdered polyphenylene sulfide resin and one kind of powdered graphite particles were prepared. As polyphenylene sulfide resin, E2180 (made by Toray Industries, Inc .: product name) having a melt flow rate value of 100 [g / 10 min] was used. As graphite particles, 8020 SJ (manufactured by Oriental Sangyo Co., Ltd .: product name) having an average particle diameter of 120 μm was used. The weight blending ratio of these was set to 100: 1000.

次いで、ポリフェニレンスルフィド樹脂と黒鉛粒子とを60Lタンブラーボトル〔株式会社セイワ技研製〕に多数のジルコニアボール〔株式会社ニッカトー製〕と共に加え、配合機〔株式会社セイワ技研製:製品名TM‐60P〕により回転数30rpm(40Hz)、60分の条件で攪拌・混合し、燃料電池用セパレータの成形材料を調製した。ジルコニアボールは、φ9mmサイズとφ5mmサイズとをそれぞれ9kg、合計18kg用いた。   Next, polyphenylene sulfide resin and graphite particles are added to a 60 L tumbler bottle (made by Seiwa Giken Co., Ltd.) together with a large number of zirconia balls (made by Nikkato Co., Ltd.), and a compounding machine (made by Seiwa Giken Co., Ltd .: product name TM-60P) The mixture was stirred and mixed under the conditions of rotation speed 30 rpm (40 Hz) for 60 minutes to prepare a molding material for a fuel cell separator. The zirconia balls used were 9 kg in diameter and 9 mm in diameter, respectively, for a total of 18 kg.

その他は実施例1と同様にして燃料電池用セパレータを製造し、この製造した燃料電池用セパレータの熱伝導率、曲げ強度、曲げ弾性率、面方向抵抗値をそれぞれ測定し、表1にまとめて評価した。   Others were carried out similarly to Example 1, manufactured the separator for fuel cells, and measured the thermal conductivity, the bending strength, the bending elastic modulus, and the surface direction resistance value of this manufactured separator for fuel cells, and put it together in Table 1 evaluated.

Figure 2019067687
Figure 2019067687

各実施例における燃料電池用セパレータは、熱伝導率が60[W/mK]以上となり、きわめて良好な結果を得た。また、燃料電池用セパレータの曲げ強度が30[MPa]以上、面方向抵抗値が4.00[mΩ・cm]未満となり、良好な結果を得た。さらに、水素や酸素の気体透過性についても測定したが、優れた結果が得られた。
これに対し、比較例における燃料電池用セパレータは、曲げ強度が良好ではあったが、メルトフローレート値が120[g/10min]未満なので、熱伝導率も60[W/mK]未満となり、満足する結果を得ることができなかった。
The fuel cell separator in each example had a thermal conductivity of 60 [W / mK] or more, and very good results were obtained. In addition, the flexural strength of the fuel cell separator was 30 [MPa] or more, and the in-plane resistance value was less than 4.00 [mΩ · cm], and good results were obtained. Furthermore, the gas permeability of hydrogen and oxygen was also measured, but excellent results were obtained.
On the other hand, the fuel cell separator in the comparative example had good bending strength, but since the melt flow rate value is less than 120 [g / 10 min], the thermal conductivity is also less than 60 [W / mK], which is satisfactory. Could not get the result.

本発明に係る燃料電池用セパレータは、燃料電池の製造分野で使用される。
The fuel cell separator according to the present invention is used in the field of fuel cell production.

Claims (6)

熱可塑性樹脂と導電材とを含有する成形材料により成形され、燃料と酸化剤用の流路を有する燃料電池用セパレータであり、
成形材料の熱可塑性樹脂がポリフェニレンスルフィド系樹脂とされるとともに、導電材が黒鉛とされ、ポリフェニレンスルフィド系樹脂のメルトフローレートが120[g/10min]以上に設定されることにより、熱伝導率が60[W/mK]以上とされることを特徴とする燃料電池用セパレータ。
A fuel cell separator which is molded of a molding material containing a thermoplastic resin and a conductive material and has a flow path for fuel and an oxidant.
The thermoplastic resin of the molding material is a polyphenylene sulfide resin, the conductive material is a graphite, and the melt flow rate of the polyphenylene sulfide resin is set to 120 [g / 10 min] or more, whereby the thermal conductivity is increased. A fuel cell separator characterized in that it is 60 [W / mK] or more.
曲げ強度が30[MPa]以上である請求項1記載の燃料電池用セパレータ。   The fuel cell separator according to claim 1, wherein the bending strength is 30 [MPa] or more. 成形材料のポリフェニレンスルフィド系樹脂と黒鉛とが重量配合比100:950〜1650で混合される請求項1又は2記載の燃料電池用セパレータ。   The fuel cell separator according to claim 1 or 2, wherein the polyphenylene sulfide resin of the molding material and the graphite are mixed at a weight blending ratio of 100: 950 to 1650. 黒鉛が、平均粒径の異なる少なくとも2種類以上の黒鉛粒子である請求項1、2、又は3記載の燃料電池用セパレータ。   4. The fuel cell separator according to claim 1, wherein the graphite is at least two types of graphite particles having different average particle sizes. 1種類の黒鉛粒子の平均粒径が100μm以上150μm以下とされ、他種類の黒鉛粒子の平均粒径が40μm以上60μm以下とされる請求項4記載の燃料電池用セパレータ。   5. The fuel cell separator according to claim 4, wherein the average particle size of one kind of graphite particles is 100 μm to 150 μm, and the average particle size of other kinds of graphite particles is 40 μm to 60 μm. ポリフェニレンスルフィド系樹脂のメルトフローレートが550[g/10min]以上4100[g/10min]以下に設定される請求項1ないし5のいずれかに記載の燃料電池用セパレータ。

The fuel cell separator according to any one of claims 1 to 5, wherein the melt flow rate of the polyphenylene sulfide resin is set to 550 [g / 10 min] or more and 4100 [g / 10 min] or less.

JP2017194097A 2017-10-04 2017-10-04 Fuel cell separator Active JP6944330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194097A JP6944330B2 (en) 2017-10-04 2017-10-04 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194097A JP6944330B2 (en) 2017-10-04 2017-10-04 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2019067687A true JP2019067687A (en) 2019-04-25
JP6944330B2 JP6944330B2 (en) 2021-10-06

Family

ID=66340784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194097A Active JP6944330B2 (en) 2017-10-04 2017-10-04 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP6944330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083096A (en) * 2017-10-30 2019-05-30 信越ポリマー株式会社 Fuel cell separator
WO2021200711A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Thermally conductive resin composition and molded article comprising same
WO2023047796A1 (en) 2021-09-27 2023-03-30 日清紡ケミカル株式会社 Fuel cell separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126744A (en) * 1999-10-28 2001-05-11 Osaka Gas Co Ltd Separator for fuel cell and fabricating method therefor
JP2003268236A (en) * 2002-03-20 2003-09-25 Toray Ind Inc Polyarylene sulfide resin composition
WO2009128260A1 (en) * 2008-04-17 2009-10-22 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
JP2010027277A (en) * 2008-07-16 2010-02-04 Shin Etsu Polymer Co Ltd Method of manufacturing separator for fuel cell
WO2014080743A1 (en) * 2012-11-21 2014-05-30 株式会社高木化学研究所 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126744A (en) * 1999-10-28 2001-05-11 Osaka Gas Co Ltd Separator for fuel cell and fabricating method therefor
JP2003268236A (en) * 2002-03-20 2003-09-25 Toray Ind Inc Polyarylene sulfide resin composition
WO2009128260A1 (en) * 2008-04-17 2009-10-22 ポリプラスチックス株式会社 Polyarylene sulfide resin composition
JP2010027277A (en) * 2008-07-16 2010-02-04 Shin Etsu Polymer Co Ltd Method of manufacturing separator for fuel cell
WO2014080743A1 (en) * 2012-11-21 2014-05-30 株式会社高木化学研究所 Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083096A (en) * 2017-10-30 2019-05-30 信越ポリマー株式会社 Fuel cell separator
WO2021200711A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Thermally conductive resin composition and molded article comprising same
WO2023047796A1 (en) 2021-09-27 2023-03-30 日清紡ケミカル株式会社 Fuel cell separator
KR20240063891A (en) 2021-09-27 2024-05-10 닛신보 케미칼 가부시키가이샤 Separator for fuel cells

Also Published As

Publication number Publication date
JP6944330B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
Guo et al. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering
Kang et al. Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites
Boyaci San et al. A review of thermoplastic composites for bipolar plate applications
Nam et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)
Kang et al. Effects of type of graphite conductive filler on the performance of a composite bipolar plate for fuel cells
JP2019067687A (en) Fuel cell separator
US10418645B2 (en) Magnesium phosphate cement based bipolar plate composite material
Radzuan et al. Fabrication of multi-filler MCF/MWCNT/SG-based bipolar plates
CN106319288B (en) Be introduced directly into strengthens nickel-base composite material and its preparation method and application jointly with In-situ Synthesis TiC Particle
WO2019095497A1 (en) Composition for preparing electrically conductive material and preparation method therefor, bipolar plate for proton exchange membrane fuel battery and preparation method therefor, and proton exchange membrane fuel battery
TW200845048A (en) High electrical conductive composite material
WO2006049319A1 (en) Separator material for solid polymer fuel cell and process for producing the same
JP2013069605A (en) Porous separator for fuel cell
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
CN113594487A (en) Bipolar plate and preparation method thereof
JP6865147B2 (en) Fuel cell separator
JP2008016307A (en) Fuel cell separator
JP2011060667A (en) Manufacturing method of fuel cell separator, and fuel cell separator
JP6332579B1 (en) Resin composition for fuel cell dense separator
Li et al. Fabrication of electrically conductive polymer composites for bipolar plate by two‐step compression molding technique
JP5880649B1 (en) Fuel cell separator
Xu et al. Synergized Tricomponent All‐Inorganics Solid Electrolyte for Highly Stable Solid‐State Li‐Ion Batteries
JP6370494B2 (en) Manufacturing method of bipolar plate for redox flow battery
Zarmehri et al. Construction of composite polymer bipolar plate for Pem fuel cell
Chen et al. Fabrication of PEM fuel cell bipolar plates by indirect SLS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350