JP2019067406A - Funを用いて特徴マップを生成するための方法及び装置 - Google Patents
Funを用いて特徴マップを生成するための方法及び装置 Download PDFInfo
- Publication number
- JP2019067406A JP2019067406A JP2018188345A JP2018188345A JP2019067406A JP 2019067406 A JP2019067406 A JP 2019067406A JP 2018188345 A JP2018188345 A JP 2018188345A JP 2018188345 A JP2018188345 A JP 2018188345A JP 2019067406 A JP2019067406 A JP 2019067406A
- Authority
- JP
- Japan
- Prior art keywords
- feature map
- block
- filter
- upsampling
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000005070 sampling Methods 0.000 claims abstract description 83
- 230000008569 process Effects 0.000 claims description 50
- 230000008859 change Effects 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 3
- 238000013527 convolutional neural network Methods 0.000 description 58
- 238000001514 detection method Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 9
- 238000013341 scale-up Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 3
- 101100202934 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SEN34 gene Proteins 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101100382067 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BUD14 gene Proteins 0.000 description 1
- 101100033865 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RFA1 gene Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
- G06V10/464—Salient features, e.g. scale invariant feature transforms [SIFT] using a plurality of salient features, e.g. bag-of-words [BoW] representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/776—Validation; Performance evaluation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20164—Salient point detection; Corner detection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (12)
- (i)入力イメージのサイズを減らすダウンサンプリングブロック、(ii)少なくとも一回のコンボリューション演算を遂行して各々の第1−1ないし第1−K特徴マップを各々獲得する各々の第1−1ないし第1−Kフィルタブロック;及び(iii)前記各々の第1−1ないし第1−Kフィルタブロックと各々連動する各々の第2−Kないし2−1アップサンプリングブロックを含む、特徴アップサンプリングネットワーク(FUN)を含むCNN装置を用いた特徴マップ生成方法において、
(a)前記CNN装置は、前記入力イメージが入力されると、前記ダウンサンプリングブロックをもって前記入力されたイメージに所定の演算を遂行して前記入力されたイメージのサイズを減らしたダウンサンプリングイメージを獲得するようにする段階;
(b)前記CNN装置は、前記ダウンサンプリングイメージが獲得されると、前記各々の第1−1ないし第1−Kフィルタブロックをもって前記ダウンサンプリングイメージに対して前記少なくとも一回のコンボリューション演算を遂行して前記各々の第1−1ないし1−K特徴マップを順次獲得する段階;及び
(c)前記CNN装置は、(I)第2−1アップサンプリングブロックをもって(i)前記ダウンサンプリングブロックから前記ダウンサンプリングイメージを受信して(ii)前記第2−2アップサンプリングブロックから前記第2−2特徴マップを受信した後、前記2−2特徴マップのサイズを前記ダウンサンプリングイメージと同一にリスケーリングし、(iii)ダウンサンプリングイメージと第2−2リスケーリング済み特徴マップに所定の演算を遂行して、前記第2−1特徴マップを獲得し、(II)Mが1より大きいか同じ整数である場合、前記第(2−(M+1))アップサンプリングブロックをもって、(i)前記第1−Mフィルタブロックから出力された前記第1−M特徴マップを受信し、(ii)前記第2−(M+2)アップサンプリングブロックから出力された前記第2−(M+2)特徴マップを受信した後、前記2−(M+2)特徴マップのサイズを前記第1−M特徴マップと同一にリスケーリングし、(iii)前記第(1−M)特徴マップと前記(2−(M+2))リスケーリング済み特徴マップに所定の演算を遂行して、前記(2−(M+1))特徴マップを生成することで、前記第2−Kないし第2−2特徴マップを獲得する段階;
を含むことを特徴とする方法。 - 前記(c)段階で、
前記CNN装置は、Mが1以上(K−2)以下の整数である場合、前記(2−(M+1))アップサンプリングブロックをもって(i)前記第1−M特徴マップに対して前記第2−(M+1)アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算を遂行してチャネルが変更された第1−M調整特徴マップを求めるプロセス、(ii)前記第2−(M+2)アップサンプリングブロックから伝達された前記第2−(M+2)特徴マップに対して前記第2−(M+1)アップサンプリングブロック内の第2フィルタを用いたコンボリューション演算を遂行してチャネルが変更された第2−(M+2)調整特徴マップを獲得した後、前記第2−(M+2)調整特徴マップに対してアップサンプリング演算を遂行して前記第2−(M+2)リスケーリング済み特徴マップを獲得し、(iii)前記第1−M調整特徴マップと前記第2−(M+2)リスケーリング済み特徴マップを演算して、前記第2−(M+1)特徴マップを生成し、(iv)第2−(M+1)アップサンプリングブロックから獲得した第2−(M+1)特徴マップを第2−Mアップサンプリングブロックに伝達するプロセスを遂行することで、前記第2−(K−1)ないし前記第2−2特徴マップを獲得するようにすることを特徴とする請求項1に記載の方法。 - 前記(c)段階で、
前記CNN装置は、(i)前記ダウンサンプリングイメージに対して前記第2−1アップサンプリングブロック内の前記第1フィルタを用いたコンボリューション演算を遂行して前記ダウンサンプリングイメージのチャネル数が変更された調整特徴マップを求め、(ii)前記第(2−2)特徴マップに対して前記第2−1アップサンプリングブロック内の第2フィルタを用いたコンボリューション演算を遂行してチャネル数が変更された第2−2調整特徴マップを求めた後、前記第2−2調整特徴マップに対してサイズを増やすアップサンプリング演算を遂行して第2−2リスケーリング済み特徴マップを求め、(iii)前記ダウンサンプリングイメージの調整特徴マップと前記第2−2リスケーリング済み特徴マップを演算して、前記第(2−1)特徴マップを生成することで、前記第2−1特徴マップを第2−1アップサンプリングブロックから獲得することを特徴とする請求項2に記載の方法。 - 前記(c)段階で、
前記CNN装置は、前記第(2−K)アップサンプリングブロックをもって(i)前記第1−(K−1)特徴マップに対して前記第2−Kアップサンプリングブロック内の第1フィルタを用いたコンボリューション演算を遂行してチャネル数が変更された第1−(K−1)調整特徴マップを求め、(ii)前記第1−K特徴マップに対してアップサンプリング演算を遂行して第1−Kリスケーリング済み特徴マップを求め、(iii)前記第1−(K−1)調整特徴マップと前記第1−Kリスケーリング済み特徴マップを演算して前記(2−K)特徴マップを生成し、(iv)第2−Kアップサンプリングブロックから獲得した前記(2−K)特徴マップを第2−(K−1)アップサンプリングブロックに伝達するプロセスを遂行することで、前記2−K特徴マップを獲得するようにすることを特徴とする請求項2に記載の方法。 - 前記第2−(M+1)アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算は前記第1−M特徴マップのチャネル数を前記第2−(M+2)調整特徴マップのチャネル数と同一に調整するための演算であり、
前記第2−1アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算は前記ダウンサンプリングイメージのチャネル数を前記第2−2調整特徴マップのチャネル数と同一に変更するための演算であることを特徴とする請求項2に記載の方法。 - 前記(b)段階で、
前記CNN装置は、前記ダウンサンプリングブロックから獲得した前記ダウンサンプリングイメージにコンボリューション演算を遂行して生成された第1−1特徴マップを前記第1−1フィルタブロックから獲得した後、第1−Mフィルタブロックから獲得した第1−M特徴マップにコンボリューション演算を遂行して生成された第1−(M+1)特徴マップを第1−(M+1)フィルタブロックから獲得するが、Mは2から(K−1)までの整数であることを特徴とする請求項1に記載の方法。 - (i)入力イメージのサイズを減らすダウンサンプリングブロック、(ii)コンボリューション演算を少なくとも一回遂行して各々の第1−1ないし第1−K特徴マップを獲得する各々の第1−1ないし第1−Kフィルタブロック;(iii)前記各々の第1−1ないし第1−Kフィルタブロックと各々連動する第2−Kないし2−1アップサンプリングブロック;を含む、特徴マップを生成するための特徴アップサンプリングネットワーク(FUN)を含むCNNを適用した装置において、
入力イメージを受信する通信部;及び
(1)入力イメージを獲得するとダウンサンプリングブロックをもって入力イメージに所定の演算を加えることで前記入力されたイメージのサイズを減らしたダウンサンプリングイメージを獲得するようにするプロセス;(2)前記ダウンサンプリングイメージが獲得されると、前記第1−1ないし前記第1−Kフィルタブロック各々をもって前記ダウンサンプリングイメージに一つ以上のコンボリューション演算を適用して各々前記第1−1ないし前記第1−K特徴マップを獲得するようにするプロセス及び(3)(I)前記第2−1アップサンプリングブロックをもって(i)前記ダウンサンプリングブロックから前記ダウンサンプリングイメージを受信するようにし、(ii)前記第2−2アップサンプリングブロックから前記第2−2特徴マップを受信して、前記第2−2特徴マップのサイズを前記ダウンサンプリングイメージのサイズと同一にリスケーリングするようにし、(iii)前記ダウンサンプリングイメージと第2−2リスケーリング済み特徴マップに所定の演算を遂行して、前記第2−1特徴マップを獲得し、(II)Mが1より大きいか同じ整数である場合、前記第(2−(M+1))アップサンプリングブロックをもって、(i)前記第1−Mフィルタブロックから出力された前記第1−M特徴マップを受信し、(ii)前記第2−(M+2)アップサンプリングブロックから出力された前記第2−(M+2)特徴マップを受信した後、前記2−(M+2)特徴マップのサイズを前記第1−M特徴マップと同一にリスケーリングし、(iii)前記第(1−M)特徴マップと前記(2−(M+2))リスケーリング済み特徴マップに所定の演算を遂行して、前記(2−(M+1))特徴マップを生成することで、前記第2−Kないし第2−2特徴マップを獲得するプロセス;を遂行するプロセッサ
を含むことを特徴とする装置。 - 前記(3)プロセスにおいて、
前記プロセッサは、Mが1以上(K−2)以下の整数である場合、前記(2−(M+1))アップサンプリングブロックをもって(i)前記第1−M特徴マップに対して前記第2−(M+1)アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算を遂行してチャネルが変更された第1−M調整特徴マップを求めるプロセス、(ii)前記第2−(M+2)アップサンプリングブロックから伝達された前記第2−(M+2)特徴マップに対して前記第2−(M+1)アップサンプリングブロック内の第2フィルタを用いたコンボリューション演算を遂行してチャネルが変更された第2−(M+2)調整特徴マップを獲得した後、前記第2−(M+2)調整特徴マップに対してアップサンプリング演算を遂行して前記第2−(M+2)リスケーリング済み特徴マップを獲得し、(iii)前記第1−M調整特徴マップと前記第2−(M+2)リスケーリング済み特徴マップを演算して、前記第2−(M+1)特徴マップを生成し、(iv)第2−(M+1)アップサンプリングブロックから獲得した第2−(M+1)特徴マップを第2−Mアップサンプリングブロックに伝達するプロセスを遂行することで、前記第2−(K−1)ないし前記第2−2特徴マップを獲得するようにすることを特徴とする請求項7に記載の装置。 - 前記(3)プロセスにおいて、
前記プロセッサは、(i)前記ダウンサンプリングイメージに対して前記第2−1アップサンプリングブロック内の前記第1フィルタを用いたコンボリューション演算を遂行して前記ダウンサンプリングイメージのチャネル数が変更された調整特徴マップを求め、(ii)前記第(2−2)特徴マップに対して前記第2−1アップサンプリングブロック内の第2フィルタを用いたコンボリューション演算を遂行してチャネル数が変更された第2−2調整特徴マップを求めた後、前記第2−2調整特徴マップに対してサイズを増やすアップサンプリング演算を遂行して第2−2リスケーリング済み特徴マップを求め、(iii)前記ダウンサンプリングイメージの調整特徴マップと前記第2−2リスケーリング済み特徴マップを演算して、前記第(2−1)特徴マップを生成することで、前記第2−1特徴マップを第2−1アップサンプリングブロックから獲得することを特徴とする請求項8に記載の装置。 - 前記(3)プロセスで、
前記プロセッサは、前記第(2−K)アップサンプリングブロックをもって(i)前記第1−(K−1)特徴マップに対して前記第2−Kアップサンプリングブロック内の第1フィルタを用いたコンボリューション演算を遂行してチャネル数が変更された第1−(K−1)調整特徴マップを求め、(ii)前記第1−K特徴マップに対してアップサンプリング演算を遂行して第1−Kリスケーリング済み特徴マップを求め、(iii)前記第1−(K−1)調整特徴マップと前記第1−Kリスケーリング済み特徴マップを演算して前記(2−K)特徴マップを生成し、(iv)第2−Kアップサンプリングブロックから獲得した前記(2−K)特徴マップを第2−(K−1)アップサンプリングブロックに伝達するようにするプロセスを遂行することで、前記2−K特徴マップを獲得するようにすることを特徴とする請求項8に記載の装置。 - 前記第2−(M+1)アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算は前記第1−M特徴マップのチャネル数を前記第2−(M+2)調整特徴マップのチャネル数と同一に調整するための演算であり、
前記第2−1アップサンプリングブロック内の第1フィルタを用いたコンボリューション演算は前記ダウンサンプリングイメージのチャネル数を前記第2−2調整特徴マップのチャネル数と同一に変更するための演算であることを特徴とする請求項8に記載の装置。 - 前記(2)プロセスで、
前記プロセッサは、前記ダウンサンプリングブロックから獲得した前記ダウンサンプリングイメージにコンボリューション演算を遂行して生成された第1−1特徴マップを前記第1−1フィルタブロックから獲得した後、第1−Mフィルタブロックから獲得した第1−M特徴マップにコンボリューション演算を遂行して生成された第1−(M+1)特徴マップを第1−(M+1)フィルタブロックから獲得するが、Mは2から(K−1)までの整数であることを特徴とする請求項7に記載の装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/724,588 | 2017-10-04 | ||
US15/724,588 US10043113B1 (en) | 2017-10-04 | 2017-10-04 | Method and device for generating feature maps by using feature upsampling networks |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019067406A true JP2019067406A (ja) | 2019-04-25 |
JP6679688B2 JP6679688B2 (ja) | 2020-04-15 |
Family
ID=63014093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018188345A Active JP6679688B2 (ja) | 2017-10-04 | 2018-10-03 | Funを用いて特徴マップを生成するための方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10043113B1 (ja) |
EP (1) | EP3467721B1 (ja) |
JP (1) | JP6679688B2 (ja) |
KR (1) | KR102192850B1 (ja) |
CN (1) | CN109635817B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020261324A1 (ja) * | 2019-06-24 | 2020-12-30 | 日本電信電話株式会社 | 物体検出認識装置、物体検出認識方法、及び物体検出認識プログラム |
CN113490948A (zh) * | 2019-05-14 | 2021-10-08 | 维奥赖特有限公司 | 轮胎侧壁成像方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020046041A1 (en) | 2018-08-31 | 2020-03-05 | Samsung Electronics Co., Ltd. | Electronic device for high-speed compression processing of feature map of cnn utilizing system and controlling method thereof |
US10579924B1 (en) * | 2018-09-17 | 2020-03-03 | StradVision, Inc. | Learning method, learning device with multi-feeding layers and testing method, testing device using the same |
CN109544553B (zh) * | 2018-09-27 | 2023-06-02 | 天津大学 | 以空间水平和垂直方向为通道方向的神经网络上采样方法 |
US10304009B1 (en) * | 2018-10-08 | 2019-05-28 | StradVision, Inc. | Learning method and testing method for object detector based on R-CNN, and learning device and testing device using the same |
US10803594B2 (en) | 2018-12-31 | 2020-10-13 | Beijing Didi Infinity Technology And Development Co., Ltd. | Method and system of annotation densification for semantic segmentation |
US10467500B1 (en) | 2018-12-31 | 2019-11-05 | Didi Research America, Llc | Method and system for semantic segmentation involving multi-task convolutional neural network |
CN109672885B (zh) * | 2019-01-08 | 2020-08-04 | 中国矿业大学(北京) | 一种用于矿井智能监控的视频图像编解码方法 |
US10509987B1 (en) | 2019-01-22 | 2019-12-17 | StradVision, Inc. | Learning method and learning device for object detector based on reconfigurable network for optimizing customers' requirements such as key performance index using target object estimating network and target object merging network, and testing method and testing device using the same |
CN113592004A (zh) * | 2019-02-25 | 2021-11-02 | 深圳市商汤科技有限公司 | 分配方法及装置、电子设备和存储介质 |
CN110378976B (zh) * | 2019-07-18 | 2020-11-13 | 北京市商汤科技开发有限公司 | 图像处理方法及装置、电子设备和存储介质 |
CN110568445A (zh) * | 2019-08-30 | 2019-12-13 | 浙江大学 | 一种轻量化卷积神经网络的激光雷达与视觉融合感知方法 |
CN110910329B (zh) * | 2019-11-27 | 2022-09-02 | 中国科学技术大学 | 一种以需求为导向的图像去噪方法 |
CN111210443B (zh) * | 2020-01-03 | 2022-09-13 | 吉林大学 | 基于嵌入平衡的可变形卷积混合任务级联语义分割方法 |
CN111310805B (zh) * | 2020-01-22 | 2023-05-30 | 中能国际高新科技研究院有限公司 | 一种对图像中的目标进行密度预测的方法、装置及介质 |
CN111369582B (zh) * | 2020-03-06 | 2023-04-07 | 腾讯科技(深圳)有限公司 | 图像分割方法、背景替换方法、装置、设备及存储介质 |
WO2022047783A1 (en) * | 2020-09-07 | 2022-03-10 | Intel Corporation | Poly-scale kernel-wise convolution for high-performance visual recognition applications |
CN112950703B (zh) * | 2021-03-11 | 2024-01-19 | 无锡禹空间智能科技有限公司 | 小目标的检测方法、装置、存储介质及设备 |
US11475240B2 (en) * | 2021-03-19 | 2022-10-18 | Apple Inc. | Configurable keypoint descriptor generation |
WO2023128421A1 (ko) * | 2021-12-29 | 2023-07-06 | 삼성전자 주식회사 | 컨볼루션 신경망을 이용한 이미지 처리 방법 및 장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017091833A1 (en) * | 2015-11-29 | 2017-06-01 | Arterys Inc. | Automated cardiac volume segmentation |
JP2017157138A (ja) * | 2016-03-04 | 2017-09-07 | キヤノン株式会社 | 画像認識装置、画像認識方法及びプログラム |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100963006B1 (ko) | 2007-11-16 | 2010-06-09 | 경희대학교 산학협력단 | 변환 영역에서 영상 이미지의 크기를 변환하는 방법 및 그장치 |
DK177154B1 (da) * | 2010-12-17 | 2012-03-05 | Concurrent Vision Aps | Method and device for parallel processing of images |
WO2015078017A1 (en) | 2013-11-30 | 2015-06-04 | Xiaoou Tang | Method and system for exacting face features from data of face images |
US10719939B2 (en) * | 2014-10-31 | 2020-07-21 | Fyusion, Inc. | Real-time mobile device capture and generation of AR/VR content |
KR101649317B1 (ko) * | 2014-12-31 | 2016-08-18 | 인천대학교 산학협력단 | 화질 개선 및 소형 적외선 이미지에 대한 확대 알고리즘 |
EP3259911B1 (en) * | 2015-02-19 | 2021-04-07 | Magic Pony Technology Limited | Enhancing visual data using updated neural networks |
US9524450B2 (en) * | 2015-03-04 | 2016-12-20 | Accenture Global Services Limited | Digital image processing using convolutional neural networks |
US9286524B1 (en) * | 2015-04-15 | 2016-03-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Multi-task deep convolutional neural networks for efficient and robust traffic lane detection |
US10417555B2 (en) * | 2015-05-29 | 2019-09-17 | Samsung Electronics Co., Ltd. | Data-optimized neural network traversal |
WO2016197303A1 (en) * | 2015-06-08 | 2016-12-15 | Microsoft Technology Licensing, Llc. | Image semantic segmentation |
KR20160144660A (ko) * | 2015-06-09 | 2016-12-19 | 김태경 | 컨볼루션 신경망을 위한 개선된 분류 층 |
US9633282B2 (en) * | 2015-07-30 | 2017-04-25 | Xerox Corporation | Cross-trained convolutional neural networks using multimodal images |
CN105184779B (zh) * | 2015-08-26 | 2018-04-06 | 电子科技大学 | 一种基于快速特征金字塔的车辆多尺度跟踪方法 |
CN106548127B (zh) * | 2015-09-18 | 2022-11-04 | 松下电器(美国)知识产权公司 | 图像识别方法 |
KR102592076B1 (ko) * | 2015-12-14 | 2023-10-19 | 삼성전자주식회사 | 딥러닝 기반 영상 처리 장치 및 방법, 학습 장치 |
US10140522B2 (en) * | 2015-12-16 | 2018-11-27 | Intel Corporation | Fully convolutional pyramid networks for pedestrian detection |
GB2545661A (en) * | 2015-12-21 | 2017-06-28 | Nokia Technologies Oy | A method for analysing media content |
US20170262996A1 (en) * | 2016-03-11 | 2017-09-14 | Qualcomm Incorporated | Action localization in sequential data with attention proposals from a recurrent network |
US9779492B1 (en) * | 2016-03-15 | 2017-10-03 | International Business Machines Corporation | Retinal image quality assessment, error identification and automatic quality correction |
US10095957B2 (en) * | 2016-03-15 | 2018-10-09 | Tata Consultancy Services Limited | Method and system for unsupervised word image clustering |
US9864912B2 (en) * | 2016-03-30 | 2018-01-09 | Nec Corporation | Large margin high-order deep learning with auxiliary tasks for video-based anomaly detection |
US9830529B2 (en) * | 2016-04-26 | 2017-11-28 | Xerox Corporation | End-to-end saliency mapping via probability distribution prediction |
US10176425B2 (en) * | 2016-07-14 | 2019-01-08 | University Of Dayton | Analog neuromorphic circuits for dot-product operation implementing resistive memories |
CN106503729A (zh) * | 2016-09-29 | 2017-03-15 | 天津大学 | 一种基于顶层权值的图像卷积特征的生成方法 |
US10401866B2 (en) * | 2017-05-03 | 2019-09-03 | GM Global Technology Operations LLC | Methods and systems for lidar point cloud anomalies |
CN107145908B (zh) * | 2017-05-08 | 2019-09-03 | 江南大学 | 一种基于r-fcn的小目标检测方法 |
-
2017
- 2017-10-04 US US15/724,588 patent/US10043113B1/en active Active
-
2018
- 2018-09-05 EP EP18192819.3A patent/EP3467721B1/en active Active
- 2018-10-02 KR KR1020180117320A patent/KR102192850B1/ko active IP Right Grant
- 2018-10-03 JP JP2018188345A patent/JP6679688B2/ja active Active
- 2018-10-08 CN CN201811169735.1A patent/CN109635817B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017091833A1 (en) * | 2015-11-29 | 2017-06-01 | Arterys Inc. | Automated cardiac volume segmentation |
JP2017157138A (ja) * | 2016-03-04 | 2017-09-07 | キヤノン株式会社 | 画像認識装置、画像認識方法及びプログラム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113490948A (zh) * | 2019-05-14 | 2021-10-08 | 维奥赖特有限公司 | 轮胎侧壁成像方法 |
JP2022533952A (ja) * | 2019-05-14 | 2022-07-27 | ホイールライト・リミテッド | タイヤサイドウォールの画像化方法 |
JP7534331B2 (ja) | 2019-05-14 | 2024-08-14 | ホイールライト・リミテッド | タイヤサイドウォールの画像化方法 |
WO2020261324A1 (ja) * | 2019-06-24 | 2020-12-30 | 日本電信電話株式会社 | 物体検出認識装置、物体検出認識方法、及び物体検出認識プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6679688B2 (ja) | 2020-04-15 |
CN109635817B (zh) | 2023-04-28 |
KR20190039458A (ko) | 2019-04-12 |
CN109635817A (zh) | 2019-04-16 |
KR102192850B1 (ko) | 2020-12-18 |
US10043113B1 (en) | 2018-08-07 |
EP3467721B1 (en) | 2023-08-23 |
EP3467721C0 (en) | 2023-08-23 |
EP3467721A1 (en) | 2019-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019067406A (ja) | Funを用いて特徴マップを生成するための方法及び装置 | |
JP2019067407A (ja) | Funを用いてcnnの性能を向上させるための学習方法及び学習装置、そしてこれを利用した、テスト方法及びテスト装置 | |
JP6720264B2 (ja) | イメージセグメンテーションのための学習方法及び学習装置、そしてこれを利用したイメージセグメンテーション方法及びイメージセグメンテーション装置 | |
CN109905624B (zh) | 一种视频帧插值方法、装置及设备 | |
US11462034B2 (en) | Generating images using neural networks | |
CN106991646B (zh) | 一种基于密集连接网络的图像超分辨率方法 | |
US10019642B1 (en) | Image upsampling system, training method thereof and image upsampling method | |
US20210358082A1 (en) | Computer-implemented method using convolutional neural network, apparatus for generating composite image, and computer-program product | |
JP6676722B2 (ja) | アクティベーション演算とコンボリューション演算を同時に遂行するための方法及び装置、そしてこのための学習方法及び学習装置 | |
JP2019067408A (ja) | イメージセグメンテーションのための学習方法及び学習装置、そしてこれを利用したイメージセグメンテーション方法及びイメージセグメンテーション装置 | |
CN110569851B (zh) | 门控多层融合的实时语义分割方法 | |
EP3483793A1 (en) | Method and device for performing activation and convolution operation at the same time and learning method and learning device for the same | |
JP2023548468A (ja) | 深層学習ベースの音声強調 | |
KR20200027425A (ko) | 자율 주행 상황에서 장애물 검출을 위한 학습용 이미지 데이터 세트의 생성 방법 및 이를 이용한 컴퓨팅 장치, 학습 방법 및 학습 장치 | |
US20200389182A1 (en) | Data conversion method and apparatus | |
US20230267307A1 (en) | Systems and Methods for Generation of Machine-Learned Multitask Models | |
WO2021111633A1 (ja) | パラメータ最適化装置、パラメータ最適化方法、およびパラメータ最適化プログラム | |
CN112633260B (zh) | 视频动作分类方法、装置、可读存储介质及设备 | |
JP2023527228A (ja) | 情報処理装置、情報処理方法及びプログラム | |
CN111210439A (zh) | 通过抑制非感兴趣信息的语义分割方法、设备及存储设备 | |
US12106487B2 (en) | Feature prediction for efficient video processing | |
US20230262259A1 (en) | Unified Space-Time Interpolation of Video Information | |
WO2020129716A1 (ja) | モデル学習装置、モデル学習方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6679688 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |