JP2019066084A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2019066084A
JP2019066084A JP2017190617A JP2017190617A JP2019066084A JP 2019066084 A JP2019066084 A JP 2019066084A JP 2017190617 A JP2017190617 A JP 2017190617A JP 2017190617 A JP2017190617 A JP 2017190617A JP 2019066084 A JP2019066084 A JP 2019066084A
Authority
JP
Japan
Prior art keywords
fluid
outer container
heat
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017190617A
Other languages
Japanese (ja)
Other versions
JP6563455B2 (en
Inventor
智亮 稲場
Tomoaki Inaba
智亮 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTAKA KENSETSU KK
Original Assignee
OTAKA KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTAKA KENSETSU KK filed Critical OTAKA KENSETSU KK
Priority to JP2017190617A priority Critical patent/JP6563455B2/en
Publication of JP2019066084A publication Critical patent/JP2019066084A/en
Application granted granted Critical
Publication of JP6563455B2 publication Critical patent/JP6563455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a heat exchanger that performs heat exchange efficiently and is smaller and cheaper than conventional ones.SOLUTION: A heat exchanger comprises a bottomed cylindrical outer container, a cylindrical partition wall having a diameter smaller than the outer container, and a heat transfer pipe. The partition wall is detachably arranged in the outer container. An upper end of the partition wall is positioned above a water level of fluid in the outer container. In a cylindrical space formed by the outer container and the partition wall, the heat transfer pipe is arranged in a direction intersecting with a direction where fluid flows. Both ends of a heat exchange unit of the heat transfer pipe are respectively arranged at an upper end and lower end of the cylindrical space. At an upper end and lower end of a lateral surface of the outer container, a flow port for fluid is positioned so as to face each other in a horizontal direction.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換器、特に、小流量の流体による熱交換処理にも対応できる熱交換器に関するものである。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger that can cope with heat exchange treatment with a small flow rate of fluid.

従来の熱交換器として、図3に示すように、2本のチューブの間に、伝熱管としての多数の細管を一定間隔でつなぎシート状にしたものを丸めて円柱形にし、水槽内の流体中に設置するものが知られている。   As a conventional heat exchanger, as shown in FIG. 3, a large number of thin tubes as heat transfer tubes are connected at regular intervals between two tubes, and a sheet is rolled into a cylindrical shape, and the fluid in the water tank It is known to install in.

前記のような熱交換器において、大型の既存水槽を使用することが多く、小型化が困難である欠点がある。また、流体の流れを伝熱管周辺に集中させる機能を備えておらず、伝熱管周辺で発生する自然対流のみによる熱交換を行うため、熱交換効率が悪いという課題があった。本発明は前記実情に鑑み、効率良く熱交換が行え、従来品よりも小型で安価な熱交換器を提供することを目的とする。   In the heat exchanger as described above, a large existing water tank is often used, and there is a drawback that miniaturization is difficult. In addition, the heat exchange efficiency is poor because the heat exchange is performed only by natural convection generated around the heat transfer pipe without the function of concentrating the flow of the fluid around the heat transfer pipe. An object of the present invention is to provide a heat exchanger which can perform heat exchange efficiently and which is smaller and cheaper than conventional products.

本発明の熱交換器は、有底の筒状の外容器と、外容器よりも径の小さい筒状の隔壁と、伝熱管とを備え、隔壁は、着脱可能であり、外容器の内部に配置され、隔壁の上端は、外容器内の流体の水面よりも上部に位置し、外容器と隔壁によって生じた筒状空間において、伝熱管が、流体の流れる方向と交差する方向に配され、伝熱管の熱交換部の両端は、筒状空間の上端および下端にそれぞれ配置され、外容器側面の上端と下端において、水平方向に相対向する位置に流体の流通口を備えることを特徴とする。   The heat exchanger according to the present invention includes a bottomed cylindrical outer container, a cylindrical partition having a diameter smaller than that of the outer container, and a heat transfer tube, and the partition is removable, and is provided inside the outer container. The upper end of the partition wall is located above the water surface of the fluid in the outer container, and the heat transfer tube is disposed in a direction intersecting the fluid flow direction in the cylindrical space created by the outer container and the partition wall, Both ends of the heat exchange section of the heat transfer tube are respectively disposed at the upper end and the lower end of the cylindrical space, and the upper and lower ends of the side surface of the outer container are provided with fluid flow ports at horizontally opposing positions. .

前記の構成に加えて請求項2に記載の通り、円筒形の外容器と、円筒形の隔壁と、筒状空間内に螺旋状に配される伝熱管を備えることを特徴とする。   In addition to the above-mentioned constitution, as described in claim 2, it is characterized by comprising a cylindrical outer container, a cylindrical partition, and a heat transfer pipe spirally disposed in the cylindrical space.

本発明によれば、流体が外容器の上端または下端から流入し、下端または上端から流出することで、筒状空間内の流体の流れが滞ることなく促進されるので、伝熱管における熱交換効率が向上する。さらに、上記流体の流れる方向を、筒状空間内の流体の自然対流の方向と一致させることにより、自然対流によっても流体の流れが促進され、熱交換効率をより向上させることができる。
また、伝熱管の熱交換部分における熱媒体の上下方向の流れる向きを、流体の流れる向きとは逆方向とすることで、流体と熱媒体の温度差を最大限に利用する対向流熱交換を行い、熱交換効率を向上させる。そして、隔壁の上端が流体水面よりも上部に突出していることで、隔壁内側の流体が隔壁外部へ流出するための流通経路が上方に存在しないため、流体が筒状空間内、すなわち伝熱管の近傍を優先して流れることによって、流体の熱交換器外部からの流入圧による強制対流が伝熱管近傍に集中する。そして、この強制対流の方向もまた前記自然対流と同方向となるため、熱交換がさらに促進される。
以上のように、流体の流れる方向および強制対流の方向を流体の自然対流の方向に合わせ、加えて熱媒体の流れを流体と対向流とすることにより、高効率の熱交換を実現し、従来よりも小型の熱交換器を提供することができる。
According to the present invention, since the fluid flows in from the upper end or the lower end of the outer container and flows out from the lower end or the upper end, the flow of the fluid in the cylindrical space is promoted without stagnation, so the heat exchange efficiency in the heat transfer tube Improve. Furthermore, by matching the flow direction of the fluid with the direction of the natural convection of the fluid in the cylindrical space, the flow of the fluid is also promoted by the natural convection, and the heat exchange efficiency can be further improved.
In addition, by setting the flow direction of the heat medium in the heat exchange portion of the heat transfer tube in the opposite direction to the flow direction of the fluid, countercurrent heat exchange that maximizes the temperature difference between the fluid and the heat medium is achieved. To improve the heat exchange efficiency. And, because the upper end of the partition projects above the fluid water surface, there is no flow path at the upper side for the fluid inside the partition to flow out to the outside of the partition, so the fluid is in the cylindrical space, that is, the heat transfer tube. By preferentially flowing in the vicinity, forced convection due to the inflow pressure of the fluid from the outside of the heat exchanger is concentrated in the vicinity of the heat transfer tube. And since the direction of this forced convection also becomes the same direction as the above-mentioned natural convection, heat exchange is further promoted.
As described above, high efficiency heat exchange is realized by aligning the flow direction of the fluid and the direction of forced convection with the direction of natural convection of the fluid, and by making the flow of the heat medium countercurrent to the fluid, and A smaller heat exchanger can be provided.

また請求項2記載の発明によれば、外容器の形状を円筒形とすることにより、その内部に配置する伝熱管の形状を角のない単なるコイル状とすることができ、その結果伝熱管の局所的な折り曲げ加工が不要となるので、容易に作製できる。   Further, according to the second aspect of the present invention, by making the shape of the outer container cylindrical, the shape of the heat transfer tube disposed inside can be made just a coil shape without corners, and as a result, the heat transfer tube Since local bending processing is not required, it can be easily manufactured.

(a)(b)本発明の熱交換器の主要な内部構成と熱交換の仕組みを示す縦断面図である。(A) (b) It is a longitudinal cross-sectional view which shows the main internal structures of the heat exchanger of this invention, and the structure of heat exchange. 伝熱管の他の形態を示す模式図である。It is a schematic diagram which shows the other form of a heat exchanger tube. 従来の水槽型熱交換器の主要な内部構成を示す模式図である。It is a schematic diagram which shows the main internal structures of the conventional water tank type heat exchanger.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on the drawings.

本発明の熱交換器は、円筒形の外容器1の内部に外側から順に、伝熱管2、円筒状の隔壁5で構成される。これらの部材を樹脂で構成することにより、耐薬品・耐腐食性に優れた熱交換器を作製することができ、流体8として地下水、工業廃水ならびに温泉水等の適用も可能である。   The heat exchanger of the present invention is constituted of a heat transfer pipe 2 and a cylindrical partition 5 in this order from the outside inside the cylindrical outer container 1. By forming these members from resin, a heat exchanger excellent in chemical resistance and corrosion resistance can be manufactured, and application of groundwater, industrial wastewater, hot spring water, etc. as the fluid 8 is also possible.

外容器1は、樹脂製タンクを用いることにより、安価で設置が容易な熱交換器が作製可能である。該外容器1の形状は、有底の円筒形であり、開口部を上に向けて設置する。形状を円筒形とすることにより、内部に配置する伝熱管2の配置形状を角のない単なるコイル状とすることができ、その結果伝熱管2の局所的な折り曲げ加工が不要となるので、容易に作製できる。外容器1は、流体8の一方の流通口7aを側面下端に、流体8の他方の流通口7bを側面上端に備える。また、外容器1の下部には、伝熱管2と隔壁5を支持するための樹脂製の格子板9が、流体8の一方の流通口7aよりも上方位置に水平に配置される。なお、流体88は格子板9を通過可能である。   By using a resin tank, it is possible to manufacture a heat exchanger which is inexpensive and easy to install. The outer container 1 has a cylindrical shape with a bottom, and is installed with the opening facing upward. By making the shape into a cylindrical shape, the arrangement shape of the heat transfer tube 2 disposed inside can be made into a simple coil shape without corners, and as a result, the local bending processing of the heat transfer tube 2 becomes unnecessary, so it is easy Can be produced. The outer container 1 is provided with one flow port 7a of the fluid 8 at the lower end of the side surface and the other flow port 7b of the fluid 8 at the upper end of the side surface. Further, a grid plate 9 made of resin for supporting the heat transfer pipe 2 and the partition 5 is horizontally disposed at a lower position of the outer container 1 at a position above the one flow passage 7 a of the fluid 8. The fluid 88 can pass through the grid plate 9.

伝熱管2は、図示せぬ熱媒体を流通させるものであって、樹脂製チューブで構成することにより、加工が容易で、安価に作製できる。前記伝熱管2は、前記格子板9上に載置される。伝熱管2の熱交換部4の上端4aおよび下端4bは、外容器1の上端および下端にそれぞれ配置され、伝熱管2の熱交換部4は外容器1と隔壁5の間に形成される筒状空間6に、前記流体8の流れる方向と交差する方向に螺旋状に配置される。伝熱管2には、隔壁5との間に空間を保つため、樹脂製の板状のスペーサー10が複数取り付けられる。スペーサー10は、上下方向に長く、その長手方向に複数の孔を有し、その孔に螺旋状の伝熱管2が挿通される。これにより、伝熱管2が隔壁5に密着することなく、伝熱管2の表面の全周が流体8に接触し、熱交換効率が向上する。熱媒体は、熱交換により熱媒体を冷却する場合には、伝熱管2の熱交換部4の上端4aから流入し螺旋内周を通って下端4bに達した後、熱交換器から排出される。一方、熱交換により熱媒体を加熱する場合には、伝熱管2の熱交換部4の下端4bから流入し螺旋内周を通って上端4aに達した後、熱交換器から排出される。   The heat transfer tube 2 circulates a heat medium (not shown), and by forming it with a resin tube, processing is easy and it can be manufactured at low cost. The heat transfer tubes 2 are placed on the grid plate 9. The upper end 4 a and the lower end 4 b of the heat exchange portion 4 of the heat transfer tube 2 are disposed at the upper end and the lower end of the outer vessel 1 respectively, and the heat exchange portion 4 of the heat transfer tube 2 is a cylinder formed between the outer vessel 1 and the partition 5 It is helically disposed in the space 6 in the direction intersecting the flow direction of the fluid 8. A plurality of resin-made plate-like spacers 10 are attached to the heat transfer tube 2 in order to maintain a space between the heat transfer tube 2 and the partition wall 5. The spacer 10 is long in the vertical direction, has a plurality of holes in the longitudinal direction, and the spiral heat transfer tube 2 is inserted through the holes. As a result, the entire periphery of the surface of the heat transfer tube 2 contacts the fluid 8 without the heat transfer tube 2 coming into close contact with the partition wall 5, and the heat exchange efficiency is improved. When the heat medium is cooled by heat exchange, the heat medium flows in from the upper end 4a of the heat exchange unit 4 of the heat transfer tube 2, passes through the spiral inner circumference and reaches the lower end 4b, and is then discharged from the heat exchanger . On the other hand, in the case of heating the heat medium by heat exchange, it flows from the lower end 4b of the heat exchange part 4 of the heat transfer tube 2, passes through the spiral inner circumference and reaches the upper end 4a, and is then discharged from the heat exchanger.

円筒形の隔壁5は、樹脂製の板材で構成され、円筒軸方向を上下方向にして配置してある。隔壁5の上端は、流体8の水面Sよりも上部に配置される。隔壁5の設置方法については、樹脂板を、配置完了時よりも径の小さい円筒状に丸めた状態で螺旋状の伝熱管2の内側空間に挿入し格子板9上に載置すると、円筒の外周側へ広がろうとする付勢力によって、伝熱管2に取り付けられたスペーサー10に当接することで留まり、前記筒状空間6を最小の厚みで形成することができるので、筒状空間6を流れる流体8の必要流量を最小限に抑えることができる。加えて、隔壁5が軽量であるため、伝熱管2の清掃が必要となった場合にも容易に取り外しが可能であり、メンテナンス性に優れる。   The cylindrical partition wall 5 is made of a plate material made of resin, and is disposed with the cylinder axial direction up and down. The upper end of the partition 5 is disposed above the water surface S of the fluid 8. With regard to the method of installing the partition walls 5, when the resin plate is inserted into the inner space of the spiral heat transfer tube 2 in a state of being rolled into a cylindrical shape having a smaller diameter than at the completion of arrangement, and placed on the grid plate 9, Since the cylindrical space 6 can be formed with the minimum thickness, it can flow through the cylindrical space 6 because it can be formed to have the minimum thickness by remaining in contact with the spacer 10 attached to the heat transfer tube 2 by the biasing force that tries to spread outward. The required flow rate of fluid 8 can be minimized. In addition, since the partition wall 5 is lightweight, it can be easily removed even when the heat transfer tube 2 needs to be cleaned, and the maintenance performance is excellent.

熱媒体を流体8で冷却する場合の熱交換の仕組みを図1(a)に示す。図示せぬ外部機器等により加熱された熱媒体は、伝熱管2の一方の熱媒体流通口3aから流入し、螺旋状の伝熱管2内を通過して順次下降する際に、外容器1下端にある、流体8の一方の流通口7aより筒状空間6へ流入した流体8と熱交換を行い、冷却され、熱交換部4の下端4bを経て他方の熱媒体流通口3bより熱交換器外部へ流出する。一方、熱交換により加熱された流体8は、熱交換器外部から流入した際の流入圧に加え、自然対流により筒状空間6内を上方へ向かって流れ、外容器1上端にある、流体8の他方の流通口7bから排出される。すなわち、熱媒体の流れる方向(上から下へ)が、流体8の流れる方向(下から上へ)とは逆方向である対向流熱交換となり、流体8と熱媒体の温度差を最大限に利用でき熱交換効率が向上する。   The mechanism of heat exchange when the heat medium is cooled by the fluid 8 is shown in FIG. The heat medium heated by an external device or the like (not shown) flows in from one heat medium flow port 3a of the heat transfer tube 2 and passes sequentially through the spiral heat transfer tube 2 and descends sequentially. Heat exchange with the fluid 8 that has flowed into the cylindrical space 6 from one of the flow openings 7a of the fluid 8, is cooled, passes through the lower end 4b of the heat exchange unit 4, and then the heat exchanger from the other heat medium flow opening 3b Leak out. On the other hand, the fluid 8 heated by heat exchange flows upward in the cylindrical space 6 by natural convection in addition to the inflow pressure when flowing from the outside of the heat exchanger, and the fluid 8 at the upper end of the outer container 1 It is discharged from the other distribution port 7b of That is, the flow direction of the heat medium (from top to bottom) is opposite flow heat exchange opposite to the flow direction of the fluid 8 (from bottom to top), and the temperature difference between the fluid 8 and the heat medium is maximized. It can be used to improve the heat exchange efficiency.

また、隔壁5の上端が流体8の水面Sよりも上側に位置するため、外容器1下端の、流体8の一方の流通口7aより外容器内に流入した流体8は、上部に流出口のない隔壁5内側空間よりも、上部に流体8の他方の流通口7bのある筒状空間6中を優先的に流れる。したがって、隔壁5内部の流体8は、筒状空間6内の流体8に比べて殆ど流動しない。これにより、流体8の流れは筒状空間6、すなわち螺旋状の伝熱管2近傍に集中する。その結果、流体8が熱交換器外部から流入する際の流入圧による強制対流が、伝熱管2近傍に集中し、この強制対流の方向(下から上へ)は前記自然対流(下から上へ)と同方向であるので、流体8の流れが促進され、高効率の熱交換を行うことができる。   Further, since the upper end of the partition wall 5 is positioned above the water surface S of the fluid 8, the fluid 8 which has flowed into the outer container from the one flow opening 7a of the fluid 8 at the lower end of the outer container 1 It flows preferentially in the cylindrical space 6 which has the other communication port 7b of the fluid 8 at the upper part than the non-partition wall 5 inner space. Therefore, the fluid 8 inside the partition 5 hardly flows as compared with the fluid 8 in the cylindrical space 6. As a result, the flow of the fluid 8 is concentrated in the cylindrical space 6, that is, in the vicinity of the spiral heat transfer tube 2. As a result, forced convection due to the inflow pressure when the fluid 8 flows in from the outside of the heat exchanger is concentrated in the vicinity of the heat transfer tube 2, and the direction of this forced convection (from bottom to top) is the natural convection (from bottom to top). Since the directions are the same, the flow of the fluid 8 is promoted and heat exchange with high efficiency can be performed.

なお、熱媒体を加熱する場合については、図1(b)に示すように、熱媒体と流体8を前記冷却時とは逆方向に流すことで、同様に流体8の自然対流と強制対流による熱交換の促進および対向流熱交換を実現し、高効率の熱交換を行う。   In the case of heating the heat medium, as shown in FIG. 1 (b), the heat medium and the fluid 8 flow in the opposite direction to that during the cooling, and the natural convection and forced convection of the fluid 8 are similarly performed. It realizes heat exchange promotion and countercurrent heat exchange, and performs highly efficient heat exchange.

本発明に係る熱交換器は、隔壁5内部の流体8の流動が少なく、筒状空間6を流れる流体8の流量が確保できればよいため、小流量の流体8にも適用可能である。また、外容器1を地中に半埋設することで、排水側の流体8出入口の高さを限度に、低揚程の自噴井等にも適用できる。自噴井はもとより噴出し用水に放流されているので、水源と排水先の検討が不要であり、また、地下の配管も不要となるため、容易かつ安価に施工できる。そのため、家庭用エアコンのヒートポンプシステム等にも好適である。なお、工業用水や温泉水を用いる場合にも、水源が高位置にあれば、自噴井と同様外部からの動力が不要である。   The heat exchanger according to the present invention is applicable to a small flow of fluid 8 as long as the flow of the fluid 8 inside the partition 5 is small and the flow rate of the fluid 8 flowing through the cylindrical space 6 can be secured. Moreover, by semi-burying the outer container 1 in the ground, the height of the fluid 8 inlet / outlet on the drainage side can be applied to a self-injection well or the like with a low head. Since the self-injection well is naturally discharged into the spouting water, it is unnecessary to study the water source and the drainage destination, and underground piping is also unnecessary, so installation can be performed easily and inexpensively. Therefore, it is suitable also for the heat pump system etc. of a home-use air conditioner. In the case of using industrial water or hot spring water, if the water source is at a high position, power from the outside is unnecessary as in the case of the self-injection well.

表1に、本発明の熱交換器と従来の水槽型熱交換器における熱通過率[W/(Km2)](交換熱量/(平均温度差・総面積))の計測結果を示す。なお、本発明の熱交換器の外容器1の容積は、従来の水槽型熱交換器の水槽の容積の10.4%であり、熱交換チューブの総表面積比は44%である。表中の《1》〜《5》はそれぞれ下記条件での測定値を示す。
《1》従来の水槽型熱交換器
《2》本発明の熱交換器 − 本実施例の構成
《3》本発明の熱交換器 − 本実施例の構成のうち、熱媒体の流れる向きを逆方向とした場合
《4》本発明の熱交換器 − 本実施例の構成のうち、熱媒体の流れる向きおよび、地下水の流れる向きを逆方向とした場合
《5》本発明の熱交換器 − 本実施例の構成のうち、地下水の流れる向きを逆方向とした場合
Table 1 shows the measurement results of the heat transfer rate [W / (Km 2 )] (exchange heat quantity / (average temperature difference / total area)) in the heat exchanger of the present invention and the conventional water tank type heat exchanger. The volume of the outer vessel 1 of the heat exchanger of the present invention is 10.4% of the volume of the water tank of the conventional water tank type heat exchanger, and the total surface area ratio of the heat exchange tubes is 44%. Each of “1” to “5” in the table indicates a measured value under the following conditions.
<< 1 >> Conventional Water Tank Type Heat Exchanger << 2 >> Heat Exchanger of the Present Invention-Configuration of the Present Embodiment << 3 >> Heat Exchanger of the Present Invention-In the configuration of the present embodiment, the flow direction of the heat medium is reversed In the case of the direction 44 熱 Heat exchanger of the present invention-in the configuration of the present embodiment, when the flow direction of the heat medium and the flow direction of the ground water are reversed 《5 《heat exchanger of the present invention-this In the configuration of the embodiment, when the flow direction of the groundwater is reversed

熱通過率の測定値は《2》>《3》>《4》>《5》>《1》となり、本発明の熱交換器《2》が従来の水槽型熱交換器の3倍以上の熱通過率を実現していることがわかる。また、《3》〜《5》においては、流体8または熱媒体の流れる方向を本実施例とは逆向きにした検討結果であり、流体8または熱媒体の流れる方向が一つでも本実施例と逆方向であれば、熱交換性能が低下することが確認できた。   The measured values of heat transfer rate are "2"> "3"> "4"> "5"> "1", and the heat exchanger "2" of the present invention is more than three times as large as the conventional water tank type heat exchanger. It can be seen that the heat transfer rate is realized. In addition, in «3» to «5», it is a study result in which the flow direction of the fluid 8 or the heat medium is reverse to that of the present embodiment, and even if the flow direction of the fluid 8 or the heat medium is only one It has been confirmed that the heat exchange performance is lowered if the direction is the reverse of the above.

Figure 2019066084
Figure 2019066084

本発明は、上記の実施形態に限定されない。例えば、隔壁5の構成材は樹脂板に限られず、円柱状の固体等、内部の流体8の流れを制限できるものであればよく、隔壁5の下端は、外容器1の底面に接していてもよい。また、伝熱管2は複数本であってもよく、形状は図2に示すように段階的配置としてもよい。   The present invention is not limited to the above embodiments. For example, the constituent material of the partition 5 is not limited to a resin plate, and it may be a cylindrical solid or the like as long as it can limit the flow of the fluid 8 inside, and the lower end of the partition 5 is in contact with the bottom surface of the outer container 1 It is also good. Further, the heat transfer tubes 2 may be plural, and the shape may be stepwise arranged as shown in FIG.

1 外容器
2 伝熱管
3a 一方の熱媒体流通口
3b 他方の熱媒体流通口
4 伝熱線の熱交換部
4a 熱交換部の上端
4b 熱交換部の下端
5 隔壁
6 筒状空間
7a 流体の一方の流通口
7b 流体の他方の流通口
8 流体
9 格子板
10 スペーサー
1 Outer container
2 Heat transfer tube
3a One heat medium circulation port
3b The other heat medium flow port
4 Heat exchange section of heat transfer line
4a Heat Exchanger Top
4b lower end of heat exchange section
5 bulkheads
6 cylindrical space
7a One fluid port
7b The other fluid port
8 fluid
9 grid board
10 spacer

Claims (2)

有底の筒状の外容器と、外容器よりも径の小さい筒状の隔壁と、伝熱管とを備え、隔壁は、着脱可能であり、外容器の内部に配置され、隔壁の上端は、外容器内の流体の水面よりも上部に位置し、外容器と隔壁によって生じた筒状空間において、伝熱管が、流体の流れる方向と交差する方向に配され、伝熱管の熱交換部の両端は、筒状空間の上端および下端にそれぞれ配置され、外容器側面の上端と下端において、水平方向に相対向する位置に流体の流通口を備えることを特徴とした熱交換器。   A bottomed cylindrical outer container, a cylindrical partition having a diameter smaller than that of the outer container, and a heat transfer tube are provided. The partition is removable and disposed inside the outer container. The upper end of the partition is: The heat transfer tube is disposed in a direction intersecting with the flow direction of the fluid in the cylindrical space formed above the water surface of the fluid in the outer vessel and generated by the outer vessel and the partition, both ends of the heat exchange portion of the heat transfer tube A heat exchanger characterized in that the heat exchanger is disposed at the upper end and the lower end of the cylindrical space respectively, and has fluid circulation ports at positions opposite to each other in the horizontal direction at the upper end and the lower end of the outer container side surface. 円筒形の外容器と、円筒形の隔壁と、筒状空間内に螺旋状に配される伝熱管を備えることを特徴とする、請求項1に記載の熱交換器。   The heat exchanger according to claim 1, further comprising a cylindrical outer container, a cylindrical partition, and a heat transfer pipe spirally disposed in the cylindrical space.
JP2017190617A 2017-09-29 2017-09-29 Heat exchanger Active JP6563455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190617A JP6563455B2 (en) 2017-09-29 2017-09-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190617A JP6563455B2 (en) 2017-09-29 2017-09-29 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019066084A true JP2019066084A (en) 2019-04-25
JP6563455B2 JP6563455B2 (en) 2019-08-21

Family

ID=66340428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190617A Active JP6563455B2 (en) 2017-09-29 2017-09-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6563455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009007A (en) * 2019-07-03 2021-01-28 三菱ケミカルインフラテック株式会社 Heat exchanger, manufacturing method of the same, and heat exchange device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009007A (en) * 2019-07-03 2021-01-28 三菱ケミカルインフラテック株式会社 Heat exchanger, manufacturing method of the same, and heat exchange device
JP7299084B2 (en) 2019-07-03 2023-06-27 三菱ケミカルインフラテック株式会社 HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND HEAT EXCHANGE DEVICE

Also Published As

Publication number Publication date
JP6563455B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN204923968U (en) Vortex is adverse current double -pipe heat exchanger entirely
JP2019066084A (en) Heat exchanger
WO2016094971A1 (en) Hot drain water heat recovery installation of vertical heat exchanger type
RU2005136550A (en) STEAM-WATER HEAT EXCHANGER
CN103245216A (en) Closed cooling tower
CN104296383A (en) Efficient condensing heat exchanger
KR20150098451A (en) Shell and tube type heat exchanger
CN104061808B (en) The horizontal shell-and-tube heat exchanger that medium is detained can be prevented
CN104728215A (en) Heat exchanger high in heat dissipation performance
CN204227701U (en) A kind of high-efficiency condensation heat exchanger
CN209042765U (en) Heat exchanger and water heater
CN203928818U (en) Can prevent the horizontal shell-and-tube heat exchanger that medium is detained
KR20150004531A (en) Heat Exchanger
CN205808184U (en) Efficiently U-tube volumetric heat exchanger
CN210268301U (en) Novel double-pipe heat exchanger
PH12018500588A1 (en) Double plated heat exchange
CN211084902U (en) Nine-tube heat exchanger
CN219572782U (en) Antifreezing heat exchange inclined tube
KR101140830B1 (en) Heat exchanging apparatus for sewer-pipe
CN216114802U (en) Multi-stage shell and tube condenser
CN219064215U (en) Waste heat exchange system for campus bath wastewater
CN213984046U (en) Water immersion heating type electric water heater
KR101604536B1 (en) Haet exchanger for heat pump
CN220893064U (en) Heat exchange device with parallel heat exchange tubes, water heater and waste heat recovery system
CN110631390B (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190724

R150 Certificate of patent or registration of utility model

Ref document number: 6563455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250