JP2019064541A - Ducted fan, multi-copter, vertical takeoff and landing aircraft, cpu cooling fan and radiator cooling fan - Google Patents
Ducted fan, multi-copter, vertical takeoff and landing aircraft, cpu cooling fan and radiator cooling fan Download PDFInfo
- Publication number
- JP2019064541A JP2019064541A JP2017194779A JP2017194779A JP2019064541A JP 2019064541 A JP2019064541 A JP 2019064541A JP 2017194779 A JP2017194779 A JP 2017194779A JP 2017194779 A JP2017194779 A JP 2017194779A JP 2019064541 A JP2019064541 A JP 2019064541A
- Authority
- JP
- Japan
- Prior art keywords
- duct
- blade
- ducted fan
- thrust
- chord length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims description 11
- 230000007423 decrease Effects 0.000 claims description 14
- 238000013459 approach Methods 0.000 claims description 9
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000003068 static effect Effects 0.000 abstract description 7
- 238000004364 calculation method Methods 0.000 description 20
- 238000005457 optimization Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 11
- 230000006698 induction Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000012887 quadratic function Methods 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 238000002922 simulated annealing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UJCHIZDEQZMODR-BYPYZUCNSA-N (2r)-2-acetamido-3-sulfanylpropanamide Chemical compound CC(=O)N[C@@H](CS)C(N)=O UJCHIZDEQZMODR-BYPYZUCNSA-N 0.000 description 1
- VJJPUSNTGOMMGY-NBJJDLTASA-N (8aR,9R)-5-[[(2R,4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-isobenzofuro[6,5-f][1,3]benzodioxol-8-one Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3C(O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)C3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-NBJJDLTASA-N 0.000 description 1
- 241001669680 Dormitator maculatus Species 0.000 description 1
- 241000287462 Phalacrocorax carbo Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/02—Hub construction
- B64C11/04—Blade mountings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C11/00—Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
- B64C11/16—Blades
- B64C11/18—Aerodynamic features
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/26—Ducted or shrouded rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/467—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/10—All-wing aircraft
- B64C2039/105—All-wing aircraft of blended wing body type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、推進力や冷却風を得るために用いられるダクテッドファン、当該ダクテッドファンを搭載するマルチコプタや垂直離着陸機並びに当該ダクテッドファンからなるCPU冷却用ファン及びラジエータ冷却用ファンに関する。 The present invention relates to a ducted fan used to obtain a propulsive force and cooling air, a multi-copter and a vertical take-off and landing machine equipped with the ducted fan, and a CPU cooling fan and a radiator cooling fan including the ducted fan.
マルチコプタ形式のドローンは観測、撮影ばかりでなく、物資の輸送にまで活躍の場を広げている。より大きく重い物資を運ぶためにマルチコプタは大型化しており、大きなパワーで回転するブレードによる人身事故が懸念されている。対人安全性を向上させるためにプロペラの外側にガードをつける例が見られる。さらに進んでイスラエルのETOP(特許文献1)ではダクテッドファンを用いている。有人機では米国のPiasecki社のVZ-8が(特許文献2)、またイスラエルのCormorant(特許文献3)がダクテッドファンを2基使用している。 The multicopter type drone extends not only observation and photography but also to the transportation of goods. The multicopter is becoming larger in size to carry larger and heavier supplies, and there is concern about personal injury due to blades rotating with large power. There are cases where a guard is attached to the outside of the propeller to improve personal safety. Further, in ETOP (Patent Document 1) of Israel, a ducted fan is used. In manned aircraft, VZ-8 manufactured by Piasecki of the United States (Patent Document 2) and Cormorant of Israel (Patent Document 3) use two ducted fans.
ダクテッドファンを使用する利点は対人安全性が高いことばかりでなく、ダクト内面に吸音材を貼ることで騒音を軽減できること、ダクトのリップが推力を発生するため同じパワー、同じ直径であれば従来のプロペラと比べて理論的には1.27倍(非特許文献1)、実験では1.4倍の推力を出せることなどがある。 The advantages of using a ducted fan are not only high personal safety but also noise reduction by attaching a sound absorbing material to the inner surface of the duct, the lip of the duct generates thrust, and the same power and conventional propeller as long as it has the same diameter. In theory, it is possible to give a thrust of 1.27 times (Non-Patent Document 1), and 1.4 times in experiments.
非特許文献2では、低い円盤荷重のプロペラブレードの最適形状を決定する手法を導き出した。静止したロータの推力を最大にする問題は本発明者によって報告されている(非特許文献3)。しかし、この報告は巡航時のように円盤荷重が小さい時にのみ適用可能であり、静止推力を最大にするダクテッドファンには適用できない。
本発明の目的は、静止推力を最大とすることができるダクテッドファンを提供することにある。
本発明の目的は、そのようなダクテッドファンを搭載するマルチコプタや垂直離着陸機を提供することにある。
本発明の目的は、そのようなダクテッドファンからなるCPU冷却用ファン及びラジエータ冷却用ファンを提供することにある。
Non-Patent
An object of the present invention is to provide a ducted fan capable of maximizing stationary thrust.
An object of the present invention is to provide a multi-copter and a vertical take-off and landing aircraft equipped with such a ducted fan.
An object of the present invention is to provide a CPU cooling fan and a radiator cooling fan comprising such a ducted fan.
上記目的を達成するため、本発明の一形態に係るダクテッドファンは、排出口にR形状のリップを有するダクトと、翼端が前記ダクトの内壁に近接し、翼弦長が前記翼端に近づくに従って漸減し且つ前記翼端近傍部からは前記翼端まで拡大し又は一定長となるブレードを有するプロペラとを有する。 In order to achieve the above object, the ducted fan according to one aspect of the present invention has a duct having an R-shaped lip at an outlet, a blade tip close to an inner wall of the duct, and a chord length approaching the blade tip The propeller has a blade which gradually decreases and extends from the vicinity of the blade tip to the blade tip or has a fixed length.
本発明者の知見によれば、ブレードの翼端とダクトの内壁とが近接しているので、これらの間の隙間をとおる渦流は実質的になくなり、渦流によるエネルギの損失が低下する。また、ブレードの翼弦長を翼端に近づくに従って漸減したことによって、強度を確保しつつダクト内を一様流に近づけることができる。さらにブレードの翼弦長が翼端近傍部から翼端まで拡大していることにより、ダクト内外側の流速が高まり、ダクトが有するR形状のリップを回る流速によって生じる上向きの吸引力による推力が増加する。適度なブレードの翼弦長の翼端に近づくに連れての漸減によるダクト内の流れの一様化によるエネルギ損失の低下による利得と、翼端の拡大によるダクト内外側の速度増加による推力増加の利得が双方を損じることなく最適な値となり、静止推力を最大とすることができる。 According to the inventor's knowledge, since the blade tip of the blade and the inner wall of the duct are in close proximity, the vortex flow through the gap between them is substantially eliminated and the energy loss due to the vortex flow is reduced. In addition, by gradually reducing the chord length of the blade as it approaches the wing tip, it is possible to make the flow in the duct close to uniform flow while securing the strength. Furthermore, the blade chord length increases from near the blade tip to the blade tip, increasing the flow velocity outside the duct and increasing the thrust due to the upward suction force generated by the flow velocity around the R-shaped lip of the duct Do. Gain due to energy loss reduction due to flow equalization in the duct due to tapering towards a moderate blade chord length wingtip, and thrust increase due to increased velocity inside and outside the duct due to blade tip enlargement The gain is an optimal value without losing both, and the stationary thrust can be maximized.
本発明によれば、ダクテッドファンの静止推力を最大とすることができる。 According to the present invention, the stationary thrust of the ducted fan can be maximized.
以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の一実施形態に係るダクテッドファンを示す上面図、図2は図1のA−A断面図である。
ダクテッドファン1は、ダクト10と、プロペラ20と、モーター30と、ハウジング40と、ステーター50とを有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a top view showing a ducted fan according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line A-A of FIG.
The ducted
ダクト10は、円筒状のダクト本体11と、ダクト本体11の排出口12側に設けられたフランジ13とを有する。ダクト本体11の排出口12は、R形状のリップ14を有する。
The
プロペラ20は、ダクト10と同心円状に配置されたハブ21と、ハブ21の外周に等間隔で設けられた4枚のブレード22とを有する。なお、ブレード22の枚数は、典型的には4枚であるが、2枚〜8枚が好ましい範囲である。また、ブレード22の枚数は、例えばステーター50が7本のとき、4枚とするように、ステーター50の枚数とステータ50の本数の最小公倍数が大きな値となるように取ることで複数のブレード22とステーター50の位置が同時に重なることを避け、干渉に依る騒音を下げることができる。
ハブ21は、ハウジング40に収容されたモーター30により回転駆動される。これにより、ブレード22が回転する。
The
The
複数のステーター50は、ハウジング40の外周とダクト10の内壁15との間を掛け渡すように固定して配置される。これにより、ハウジング40は、ダクト10内の中心に固定して配置される。
図3は図2の符号Bで示す領域の拡大図である。
The plurality of
FIG. 3 is an enlarged view of a region indicated by reference symbol B in FIG.
ブレード22は、その翼端22Aがダクト10の内壁15に近接している。翼端22Aとダクト10の内壁15との間の隙間Gは、翼端22Aがダクト10の内壁15に接触しない範囲で最小であることが好ましい。
図4はブレード22の翼弦長CLの分布の一例を示すグラフである。
The
FIG. 4 is a graph showing an example of the distribution of the chord length CL of the
ブレード22の翼弦長CLは、付根から翼端22Aに近づくに従って漸減している。つまり、ブレード22の翼弦長CLは、付根で最も大きく、先端に行くに従って次第に減少する。しかし、ブレード22の翼弦長CLは、翼端近傍部22Bからは翼端21Aまで拡大している。なお、この翼弦長CLが翼端近傍部22Bからは翼端22Aまで一定長であってもよい。
The chord length CL of the
ブレード22の翼弦長CLが付根から翼端22Aに近づくに従って漸減していることで、ダクト内を一様流に近づけることができ、またブレード22の強度を確保しやすく、空力的に優れた薄い翼型を付根から先端にかけて使用することができる。
ここで、ブレード22の翼端22Aの翼弦長をCLA、ブレード22の翼端近傍部22Bの翼弦長をCLBとしたとき、
1.0×CLB≦CLA≦1.3×CLB
であることが好ましい。CLAが1.3×CLBを超えるとダクト10内の気体の流れが却って一様でなくなる。
The chord length CL of the
Here, when the chord length of the
1.0 × CL B ≦ CL A ≦ 1.3 × CL B
Is preferred. When CL A exceeds 1.3 × CL B , the gas flow in the
このようにブレード22の翼弦長CLが拡大することとなる翼端近傍部22Bの位置は、翼端21Aよりブレード22の半径(図4のr)の15%以内(図4のr15)にあることが好ましい。翼端近傍部22Bの位置がブレード22の半径の15%の超えると、つまり翼弦長CLが翼端22Aに近づくに従って漸減する領域を減らしすぎると、ブレード22の翼弦長CLの漸減によるダクト10内の流れの一様化が不十分になる。
上記のブレード22の翼弦長CLの漸減の程度は、翼端22Aに近づくに従って小さくなることが好ましい。この漸減が低下する翼弦長分布によってダクト内の流れは一様に近づき、誘導エネルギ損失が最小になる。
Thus, the position of the tip
It is preferable that the degree of the gradual reduction of the chord length CL of the
ブレード22の最大翼弦長(ブレード22の付根の翼弦長CLC)と最小翼弦長と(翼端近傍部22Bの翼弦長CLB)の比は、1.5以上で3.0以下であることが好ましい。ブレード先端速度を制限して大きな推力を発生させる設計を行うとこのテーパー比は小さくなり1.5に近づき、小さな推力を発生させると3.0に近づく。従って、最適なテーパー比はこの1.5から3の間にある。
ハブ21の直径Dhは、ダクト10の内径Rdの10%以上で50%以下であることが好ましい。10%より小さいとブレード付根の翼弦長が小さく設計され、強度を保つのが困難になる。50%より大きいと、ブレード回転面の面積に占めるハブの面積が大きくなり過ぎ、発生できる推力が減少する。
ダクト本体11の排出口12のリップ14は、ダクト10の内径をRdとしたとき、
3/100×Rd≦rr≦30/100×Rd
の曲率半径rrのR形状を有することが好ましい。3/100より小さいと、リップを回る流れが剥離する。30/100より大きいと必要以上にリップが大きくなり、ダクテッドファンの無意味な大型化につながる。
ダクト10の長さLd(図2参照)は、ダクト10の内径Rdの25%より長いことが好ましい。25%より小さいと、ダクト後方で流れの収縮が起こり、フィギュアオブメリットが低下する。
(実施例)
このように構成されたダクテッドファン1の実施例を示す。
表1に設計条件を、表2に設計されたダクテッドファン1の性能を示す
The ratio of the maximum chord length of blade 22 (the chord length CL C of the root of blade 22) and the minimum chord length (the chord length CL B of
The diameter Dh of the
When the
3/100 × Rd ≦ r r ≦ 30/100 × Rd
It is preferable to have an R-shape with a radius of curvature r r of If it is smaller than 3/100, the flow around the lip peels off. If it is larger than 30/100, the lip will be larger than necessary, leading to a meaningless enlargement of the ducted fan.
The length Ld (see FIG. 2) of the
(Example)
The Example of the
Table 1 shows the design conditions, and Table 2 shows the performance of the
この実施例のダクテッドファン1の翼弦長の分布は図4に示したとおりである。ブレード22の付根の点Aで翼弦長が最も大きくなっており4.77cmである。点Aから点Bまで翼弦長が減少し、減少の割合は点Aで最も大きく、先端に向けて減少の割合が減り、点Bで極小点となる。点Bの半径位置は11.7cmであり、ブレード半径の85.2%である。また、点Bでの翼弦長は1.71cmであり、点Aでの値の35.9%である。点Bから翼端22Aにかけて翼弦長が増加し、翼端の点Cに至る。翼端の点Cでの翼弦長は2.06cmであり、点Bにおける値の1.2倍である。
The chord length distribution of the
図5にこの実施例でのダクト10の排出口12での気流の出口速度vを示す。
図5に示すように、出口速度vはブレード22の付根の点Dから翼端22Aの点Eにかけて単調増加し、一次関数で近似できる。この一次関数をブレード22の半径をrとして
v=ar+b
で近似すると、ブレード角θは
θ=tan−1((ar+b)/rΩ)+θ0
FIG. 5 shows the outlet velocity v of the air flow at the
As shown in FIG. 5, the outlet velocity v monotonously increases from the point D at the root of the
Is approximated by the following equation, the blade angle θ is θ = tan −1 ((ar + b) / rΩ) + θ 0
で与えられる。ここで、Ωはブレード回転角速度であり、θ0は例えば揚力係数0.6を与える翼(ブレード22)の迎角である。図6にこのようなブレード22のブレード角を示す。
図7にこの実施例でのレイノルズ数を示す。
Given by Here, Ω is the blade rotational angular velocity, and θ 0 is, for example, the attack angle of the blade (blade 22) giving a lift coefficient of 0.6. The blade angle of such a
FIG. 7 shows the Reynolds number in this embodiment.
図7に示すように、ブレード22の広い半径に渡ってレイノルズ数がほぼ一定の値に保たれており、低いレイノルズ数の領域が存在しない。このため低いレイノルズ数による抵抗の増加の影響を受けにくい。従って、小型のダクテッドファンであっても高いフィギュアオブメリットが得られる。
As shown in FIG. 7, the Reynolds number is maintained at a substantially constant value over the wide radius of the
(証明)
本発明は、以上のとおりダクテッドファンの静止推力を最大とすることができるものである。以下、このことを証明する。
1.静止推力を最大にする設計における問題
1−1.リップに生じる前縁推力の問題
平板翼では図8(a)に示すように、翼の前縁を回り込む流れにより前縁に大きな負圧が生じ、この負圧により推力方向の力が前縁に働く。Vortex Lattice Method(以下、VLM)では翼が平板により近似されるため、前縁面積が0、回り込む流れの速さが無限となる。そのためこの前縁推力の算出には特別な計算方法を用いる必要がある(Weissinger, J. : The Lift Distribution of Swept-Back Wings, NACA TM-1120, 1947.参照)。しかしこの方法は対象表面のポテンシャルが連続である場合にのみ適用可能である。
(Proof)
As described above, the present invention can maximize the static thrust of the ducted fan. The following proves this.
1. Problems in Design for Maximizing Static Thrust 1-1. The problem of leading edge thrust occurring at the lip In a flat blade, as shown in FIG. 8 (a), the flow around the leading edge of the wing causes a large negative pressure at the leading edge, and this negative pressure causes the force in the thrust direction to be at the leading edge. work. In Vortex Lattice Method (hereinafter, VLM), since the blade is approximated by a flat plate, the leading edge area is 0, and the flow velocity is infinite. Therefore, it is necessary to use a special calculation method to calculate this leading edge thrust (see Weissinger, J .: The Lift Distribution of Swept-Back Wings, NACA TM-1120, 1947.). However, this method is applicable only when the potential of the target surface is continuous.
同様に図8(b)に示すように円盤荷重が大きいとき(前進速度Vが軸方向誘導速度vより十分大きくないとき)、リップを回り込む流れが存在し、リップに前縁推力が働く。ダクト内側のファン面より後方に翼端放出渦が螺旋状に貼り付いているためポテンシャルが流れ方向に不連続になり、VLMではこの前縁推力の計算を行うことができない。
本発明者は非特許文献3においてはこの前縁推力の計算を避けるためにリップを回り込む流れを無視出来る条件、つまりV>vという制約の下に計算を行った。
Similarly, as shown in FIG. 8B, when the disc load is large (when the advancing speed V is not sufficiently larger than the axial induction speed v), there is a flow around the lip, and the leading edge thrust acts on the lip. Since the tip discharge vortices are spirally attached to the rear of the fan surface inside the duct, the potential becomes discontinuous in the flow direction, and VLM can not calculate this leading edge thrust.
In the non-patent document 3, in order to avoid the calculation of the leading edge thrust, the inventor performed the calculation under the condition that the flow around the lip can be neglected, that is, V> v.
ここで対象とする静止したダクテッドファンの前縁推力は大きく、単純運動量理論によれば全推力Tのうち、リップに働く前縁推力TDは全推力Tの50%に達する(非特許文献1参照)。そのためVLMを用いてダクテッドファンの正確な全推力Tを求めることは出来なかった。
1−2.螺旋渦ピッチの問題
Here the leading edge thrust ducted fan stationary in question is large, of the total thrust T according to the simple momentum theory, edge thrust T D before acting on the lip reaches 50% of the total thrust T (see Non-Patent Document 1 ). Therefore, it was not possible to determine the exact total thrust T of the ducted fan using VLM.
1-2. Problem of spiral vortex pitch
通常のプロペラ理論では、前進速度Vに対して誘導速度vは無視できる程小さいとして、ブレードから放出される螺旋渦のピッチをブレード回転角速度ΩとVから決定する。しかし、静止時の推力を最大にする問題において、この前進速度Vは0である。よって従来の螺旋渦のピッチ決定方法は用いることが出来ない。
1−3.Trefftz面での運動量の不整合の問題
In the conventional propeller theory, the pitch of the spiral vortices emitted from the blade is determined from the blade rotational angular velocities Ω and V, assuming that the induction velocity v is negligibly small with respect to the forward velocity V. However, in the problem of maximizing thrust at rest, this forward velocity V is zero. Therefore, the conventional method of determining the pitch of a spiral vortex can not be used.
1-3. Problem of momentum mismatch in the Trefftz plane
ダクテッドファンの全推力TはTrefftz面での速度分布から計算される推力TT(以下 Trefftz面推力)と一致しなければならない。当初この全推力TとTrefftz面推力TTが一致しなかった。
1−4.VLMの精度の問題
The total thrust T of the ducted fan must be equal to the thrust T T (hereinafter referred to as Trefftz surface thrust) calculated from the velocity distribution on the Trefftz surface. Initially, the total thrust T and the Trefftz thrust T T did not match.
1-4. VLM accuracy issues
この問題は正確には静止推力を最大とするダクテドファン設計の問題に限らず、円盤荷重が小さい場合のダクテッドプロペラの設計でも生じる。翼端放出渦がダクト表面に沿って流れるため、翼端放出渦近辺の渦格子の循環の変化が大きい。そこでこの変化を捕らえるために格子を細かく切ると計算時間が膨大になる。
2.問題の解決方法
This problem is not limited to the problem of the ducted fan design which maximizes the static thrust precisely, but also occurs in the design of the ducted propeller when the disc load is small. Because the tip emitting vortices flow along the duct surface, the change in the circulation of the vortex lattice around the tip emitting vortices is large. So, if you break up the grid to catch this change, the computation time will be huge.
2. How to solve the problem
1−1の前縁推力の問題は図9に示すように、ダクトにフランジをつけ、ダクトとの接続部に曲率を設けることで回避できる。以後この曲率を持つ部分をリップと呼ぶ。フランジの先端を回り込む流れによりここに前縁推力が発生するが、フランジの半径が十分大きければフランジ先端での流速は十分小さくなり、前縁推力は無視できる程小さくなる。さらにフランジの反対側でも同じ大きさで向きが反対の前縁推力が発生するため、前縁推力は打ち消し合う。フランジがないストレートなダクトで発生するリップでの前縁推力は、図9のフランジのあるダクトのリップとフランジを回り込む流れが作る負圧の軸方向成分をリップとフランジの表面上で積分することで得られる。この前縁推力はリップの曲率半径RRに依存することが後述する計算で示される。 The problem of the leading edge thrust of 1-1 can be avoided by flanged the duct and providing a curvature at the connection with the duct as shown in FIG. Hereinafter, a portion having this curvature is called a lip. The flow around the tip of the flange generates a leading edge thrust here, but if the radius of the flange is large enough, the flow velocity at the flange tip becomes sufficiently small and the leading edge thrust becomes negligibly small. Furthermore, the leading edge thrusts cancel each other because the leading edge thrusts having the same magnitude and opposite direction are generated on the opposite side of the flange. The leading edge thrust at the lip produced by the straight duct without flange should be integrated on the lip and flange surface with the axial component of the negative pressure created by the flow around the lip of the flanged duct in FIG. 9 and the flange. It is obtained by It is shown in the calculation described later that this leading edge thrust depends on the curvature radius R R of the lip.
1−2の問題は次のようにして解決した。まず単純運動量理論から求められる誘導速度を初期渦面移動速度v0'とし、最適化計算を行う。次に得られたブレードにおける軸方向の誘導速度w(後述する座標系では負の値をとる)と回転方向の誘導速度vから次式で与えられる渦面移動速度 v'を計算する。 The problem 1-2 was solved as follows. First, the induction velocity obtained from the simple momentum theory is set as the initial vortex surface movement velocity v 0 ′, and optimization calculation is performed. Next, the vortex surface movement velocity v 'given by the following equation is calculated from the axial induced velocity w (a negative value is taken in the coordinate system described later) and the induced velocity v in the rotational direction of the blade obtained.
渦面移動速度v'は半径方向に一定ではないため、単純な関数でカーブフィッティングし、その関数を用いてピッチを決定する。この新しい螺旋渦を用いて最適設計を行い、新たな螺旋渦を生成する。この螺旋渦の更新を繰り返し、打ち切り誤差を下回った段階で解が収束したと判定する。 Since the vortex surface movement velocity v 'is not constant in the radial direction, curve fitting is performed using a simple function, and the pitch is determined using that function. Optimal design is performed using this new spiral vortex, and a new spiral vortex is generated. The update of the spiral vortex is repeated, and it is determined that the solution has converged at a stage below the truncation error.
1−3の問題はダクト表面及び後述するダクト放出渦が静止したダクト壁面あるいは大気との境界にあることを考慮することで解決した。超関数理論(今井功:応用超関数論 I,サイエンス社,1981.)によれば、図10のように静止した壁面にそって速度Vの流れがあるとき、壁面には渦が分布しており、この渦はV/2の速度で移動している。同様にダクト表面の翼端放出渦、静止大気とダクト内流れの境界にあるダクト後縁馬蹄渦(後述)の移動速度も、すぐ内側の渦面移動速度v'の半分とすることで全推力TとTrefftz面推力TTが一致する。 Problems 1-3 were solved by considering that the duct surface and the duct discharge vortex described later are at the stationary duct wall surface or the boundary with the atmosphere. According to the theory of superfunctions (Isao Imai: Applied Superfunction Theory I, Science, 1981.), when there is a flow of velocity V along a stationary wall as shown in FIG. The vortex is moving at a velocity of V / 2. Similarly, the movement speed of the tip discharge vortex on the duct surface, and the movement velocity of the duct trailing edge horseshoe vortex (described later) at the boundary between the static atmosphere and the flow in the duct are all the thrust by setting the vortex surface movement velocity v 'just inside. T and Trefftz surface thrust T T coincide with each other.
1−4の問題は図11のようにダクト表面を一定の大きさの格子で分割せず、図11のように階層構造を持った格子を用いる。翼端渦近くの格子の大きさは基準となる格子の(1/2)n倍にする。図11はn=2の場合である。格子には三角形を用い、斜辺が翼端 渦の螺旋角に一致するようにとることで、循環分布の変化が大きい翼端渦の周囲に細かな格子を配置することを可能にする。
3.最適化手法
3−1.ダクテッドファンのモデル
In the problem 1-4, the duct surface is not divided by a grid of a certain size as shown in FIG. 11, but a grid having a hierarchical structure as shown in FIG. 11 is used. The size of the grid near the tip vortices should be (1/2) n times that of the reference grid. FIG. 11 shows the case of n = 2. By using a triangle for the grid and taking the hypotenuse to coincide with the helix angle of the tip vortex, it is possible to place a fine grid around the tip vortex where the change in circulation distribution is large.
3. Optimization Method 3-1. Ducted fan model
ダクテッドファンの座標系を図12のようにとる。ダクト表面の格子(以下ダクト格子)に任意の順番を付け、図11に示すようにi番目のダクト格子の循環をΓDiとする。また格子の重心位置にコントロールポイントを設ける。ダクトの後縁から螺旋状の馬蹄渦(以下ダクト馬蹄渦)を放出し、i番目のダクト馬蹄渦の循環をΓEiとする。ダクト馬蹄渦の軸方向の長さは直径の5倍程度で良い。 The coordinate system of the ducted fan is taken as shown in FIG. The grids on the surface of the duct (hereinafter referred to as duct grids) are given an arbitrary order, and the circulation of the ith duct grid is denoted by 図Di as shown in FIG. Also, control points are provided at the center of gravity of the grid. A spiral horseshoe vortex (hereinafter referred to as a duct horseshoe vortex) is released from the trailing edge of the duct, and the circulation of the ith duct horseshoe vortex is denoted by Γ Ei . The axial length of the duct horseshoe vortex may be about 5 times the diameter.
またブレードの座標系を図13に示す。ブレード枚数Bは任意であるが、1枚目のブレードはx軸に一致するようにとる。ブレードを揚力線で表し、この揚力線をN個に等分し、分割幅をdrとする。分割点より放出渦を初期渦面移動速度v0'、ブレード角速度Ωに従い螺旋状に放出する。放出渦の軸方向長さは直径の5倍程度で良い。放出渦は図14に示すように離散化して折線で近似する。翼端渦はダクトの最も微細な格子の斜辺に一致させる。 The coordinate system of the blade is shown in FIG. The number of blades B is arbitrary, but the first blade is set to coincide with the x-axis. The blade is represented by a lifting line, the lifting line is equally divided into N pieces, and the dividing width is dr. From the dividing point, the discharge vortices are spirally discharged according to the initial vortex surface moving velocity v 0 ′ and the blade angular velocity Ω. The axial length of the discharge vortex may be about 5 times the diameter. The discharge vortices are discretized and approximated by broken lines as shown in FIG. Tip vortices coincide with the hypotenuses of the most fine grid of ducts.
図14に示すように分割した揚力線(以下翼素)の中点にコントロールポイントをとる。j番目の放出渦、j番目の束縛渦、j+1番目の束縛渦からなる螺旋状の馬蹄渦をj番目の馬蹄渦とし、この馬蹄渦の循環をΓBjとする。
3−2.ファンの推力及び吸収パワー
As shown in FIG. 14, the control point is taken at the middle point of the divided lifting lines (hereinafter referred to as blade elements). A spiral horseshoe vortex consisting of the j-th shedding vortex, the j-th bound vortex, and the j + 1-th bound vortex is called the j-th horseshoe vortex, and the circulation of this horseshoe vortex is denoted by Γ Bj .
3-2. Thrust and absorption power of fan
ブレードのコントロールポイントに流入する流れの速度ベクトル図を図15に示す。ブレードのi番目のコントロールポイントに誘導される誘導速度のy方向成分、z方向成分をそれぞれvBi、wBi とする。
wBiは一般に負の値をとる。水平方向の相対速度UTi
は次式で与えられる。
A velocity vector diagram of the flow entering the control point of the blade is shown in FIG. Let the y-direction component and the z-direction component of the induced velocity induced to the ith control point of the blade be v Bi and w Bi respectively.
w Bi generally takes a negative value. Horizontal relative velocity U Ti
Is given by the following equation.
i番目の翼素の循環はΓBiであるから、Kutta-Joukowski の定理より局所揚力dLiは次式で与えられる。
Since the circulation of the i-th wing element is Γ Bi , local lift force dL i is given by the following equation according to Kutta-Joukowski's theorem.
よって翼弦長ciと流速Viからレイノルズ数Reが分かり、選定した翼型とレイノルズ数Re及び設計揚力係数CLからCD が定まる。このCDを用いて局所抵抗dDiは次式で与えられる。 Accordingly, the Reynolds number Re is known from the chord length c i and the flow velocity V i , and C D is determined from the selected airfoil and Reynolds number Re and the designed lift coefficient C L. Local resistance dD i using this C D is given by the following equation.
3−3.ダクト推力の計算方法
3-3. Calculation method of duct thrust
ファン直径とダクト出口直径が同じ場合、単純運動量理論からファンが発生する推力TFが全推力に占める割合は50%であり、ダクトのリップが発生する推力(以下ダクト推力)TDが全推力Tに占める割合は50%であることが導かれる。 If the fan diameter and the duct outlet diameters are the same, the ratio of the thrust T F of the fan is generated from a simple momentum theory the total thrust is 50% thrust lip of the duct occurs (hereinafter duct thrust) T D is the total thrust It is derived that the ratio to T is 50%.
ダクト推力TDは全ダクト格子に働く負圧に格子面積をかけ、そのz方向成分の和をとることで得られる。実際には法線が水平な格子はz方向成分の力を生じないから、ダクトのフランジとリップを構成するダクト格子のみ計算すれば良い。フランジおよびリップの i番目のダクト格子のコントロールポイントロールポイントは流れのある内側と止水域である外側の間にあるため、3章の第3図で行った議論によりダクト内側表面の速度(u,v,w)Tは(uDci,vDci,wDci)Tの2倍となる。また、i番目のダクト格子のコントロールポイントにおけるダクト推力dT'Diは非定常のBernoulliの定理より The duct thrust T D is obtained by multiplying the grid area by the negative pressure acting on the entire duct grid and summing the z-direction components. In practice, a grid with a normal normal does not generate a force in the z direction, so it is only necessary to calculate the duct grid that constitutes the flange and the lip of the duct. Since the control point roll point of the i-th duct grid of the flange and lip is between the inside with flow and the outside which is the water stop area, the velocity of the inside surface of the duct (u, v, w) T is twice of (u Dci , v Dci , w Dci ) T Also, the duct thrust dT ' Di at the control point of the ith duct grid is from the nonstationary Bernoulli's theorem
ここでnziはi番目の格子の法線ベクトルのz成分である。ダクトにわたって局所推力dT'Diの和をとると、ブレードの周期性によってポテンシャルの時間微分の項は0になる。よってダクト推力TDは次式で与えられる。 Here, n zi is the z component of the normal vector of the ith grid. When the local thrust dT ' Di is summed over the duct, the term of the time derivative of the potential becomes zero due to the periodicity of the blade. Accordingly, the duct thrust T D is given by the following equation.
ファンの発生する推力TF及び吸収するパワーPの計算には誘導速度を用いた。本節ではこれら誘導速度の計算式を導く。
誘導速度を引き起こす渦には3種類あり、ブレードの馬蹄渦(循環の大きさΓBi)がNB×B個、ダクト表面の渦輪(循環の大きさΓDi)がND個、ダクト馬蹄渦(循環の大きさΓEi)がNE個ある。 There are three types of vortices that cause the induced velocity, and there are N B × B pieces of horseshoe vortices of the blade (circulation size Γ Bi ), N D vortex rings of the duct surface (circulation size Γ Di ), duct horseshoe vortices There are N E (the size of circulation Γ Ei ).
まずブレードの全ての馬蹄渦がi番目のブレードのコントロールポイントに引き起こす誘導速度(uBBi、vBBi、wBBi)TはBiot-Savartの法則より First, the induced velocity (u BBi , v BBi , w BBi ) T caused by all the horseshoe vortices of the blade at the control point of the ith blade is from Biot-Savart's law
と影響係数を用いた形で表すことが出来る(原田正志,小竹祥太,白鳥敏正:ダクテッドプロペラの最適設計法,日本航空宇宙学会論文集,第59 巻,2011,pp.298-305.参照)。ここで添字i、jはアインシュタインの規約に従う。(22)の表記は次式の表記と同義である And the influence coefficient can be expressed in the form (H. Harada, S. Kotake, Toshimasa Shiro: Optimal Design of Ducted Propellers, Proceedings of the Japan Aerospace Society of Japan, Vol. 59, 2011, pp. 298-305. ). Here, the subscripts i and j follow Einstein's rule. The notation of (22) is synonymous with the notation of the following formula
3−5.ダクト表面上の境界条件
ブレードの馬蹄渦がダクト格子のコントロールポイントに引き起こす誘導速度の格子に対する法線成分uDBを次式で表す。
3-5. Boundary Condition on Duct Surface The normal component u DB to the lattice of the induced velocity which the horseshoe vortex of the blade causes at the control point of the duct lattice is expressed by the following equation.
ダクト格子がダクト格子のコントロールポイントに引き起こす誘導速度の格子に対する法線成分uDD、ダクト馬蹄渦がダクト格子のコントロールポイントに引き起こす誘導速度の格子に対する法線成分uDEをそれぞれ The normal component u DD to the lattice of the induced velocity induced by the duct lattice at the control point of the duct lattice, and the normal component u DE to the lattice of the induced velocity induced by the duct horseshoe vortex at the control point of the duct lattice.
ダクトは固体であり、表面を貫通する流れがない。したがってダクト格子のコントロールポイントに誘導される速度の格子に対する法線成分は0でなければならない。つまり The ducts are solid and there is no flow through the surface. Therefore, the normal component to the grid of the velocity induced to the control point of the duct grid should be zero. In other words
3−6.ダクト後縁の境界条件
3-6. Boundary condition of duct trailing edge
図11のダクト後縁付近を拡大した図を図17に示す。i番目のダクト馬蹄渦はk番目のダクト格子に隣接している。ダクト格子の数はNDであり、そのうち後縁に位置するのはNE個だけである。NEはNDより遥かに小さな数であり、適当な縦NE列,横ND行の要素が1か0の行列KKによって、KKijΓDj をi番目のダクト後縁馬蹄渦に隣接するΓDの要素とすることが出来る。
クッタの条件より後縁の循環は0でなければならない。これを図17の循環の向きに注意して式で表すと
The figure which expanded the duct trailing-edge vicinity of FIG. 11 is shown in FIG. The ith duct horseshoe vortex is adjacent to the kth duct grid. The number of duct grids is N D , of which only N E are located at the trailing edge. N E is much smaller number than N D, appropriate vertical N E columns, by a matrix K K lateral N D element row 1 or 0, the K Kij gamma Dj to the i-th duct trailing edge horseshoe vortex It can be an element of adjacent Γ D.
The circulation behind the Kutta's condition must be zero. If this is expressed by an equation paying attention to the direction of circulation in FIG.
3−7.変数の削減
3-7. Variable reduction
(29)式で表される条件はΓDの要素数であるND個存在する。一般にNDは数万になる。その一方でΓBの要素数NBは数十から数百と少ない。本節ではΓDを消去して変数量を大きく削減する。
(29)式に(26)、(27)、(28)式を代入して次式を得る。
The condition represented by the equation (29) is N D which is the number of elements of Γ D. In general, N D will be tens of thousands. On the other hand, the number of elements N B of Γ B is as small as several tens to several hundreds. In this section, we eliminate Γ D and reduce the amount of variables significantly.
By substituting the equations (26), (27) and (28) into the equation (29), the following equation is obtained.
ブレードに引き起こされる誘導速度のx成分uBは(22)、(24)、(25)式より次式で表される。
The x component u B of the induction velocity induced by the blade is expressed by the following equation from the equations (22), (24) and (25).
3−8.ダクト推力の二次形式での表現
本節では3−3で求めたダクト推力TDをΓBの二次形式で表す。
3-8. Representation of Duct Thrust in Quadratic Form In this section, duct thrust T D determined in 3-3 is represented in 二B quadratic form.
ダクト内側の表面に誘導される速度はダクト格子に誘導される速度の2倍であること、および(41)、(42)、(43)式の導出と同様の手順により次の式で表すことが出来る。 The velocity induced on the surface inside the duct is twice the velocity induced on the duct grid, and expressed by the following equation by the procedure similar to the derivation of the equations (41), (42) and (43) Can do.
3−9.抵抗を考慮しない場合の推力とパワー
抵抗を考慮しない場合、ファンの推力TFは(17)式に(15)式を代入し、さらに(3)式、(42)式を代入して次式で表される。
3-9. When not considering the thrust and the power resistance without considering the resistance, the fan thrust T F substitutes the equation (15) into the equation (17), and further substitutes the equations (3) and (42) into the following equation Is represented by
ファンの吸収パワーPは(18)式に(16)式を代入し、さらに(4)式,(43)式を代入して次式で表される。
The absorption power P of the fan is expressed by the following equation by substituting the equation (16) into the equation (18) and further substituting the equations (4) and (43).
ダクテッドファン全体の推力Tはファン推力TFとダクト推力TDの和であるから次式で表される。
The thrust T of the entire ducted fan is the sum of the fan thrust T F and the duct thrust T D , which is expressed by the following equation.
3−10.最適化問題
静止推力を最大とするダクテッドファンの形状を決定する問題は、ここまでの計算より次の最適化問題を満たすΓBを求める問題に帰着する。
minimize -T
subject to P -P0 = 0
ここでP0は設計者が設定する吸収パワーである。
ΓBが得られればブレード角θiは(6)式から、翼弦長ciは(10)式より求められる。
3-10. Optimization problem The problem of determining the shape of the ducted fan that maximizes the static thrust results in the problem of finding Γ B that satisfies the next optimization problem from the calculations so far.
minimize -T
subject to P-P 0 = 0
Here, P 0 is the absorption power set by the designer.
If Γ B is obtained, the blade angle θ i can be obtained from the equation (6), and the chord length c i can be obtained from the equation (10).
抵抗を考慮しない場合、目的関数のTは(58)式で与えられ、拘束条件のPは(56)式で与えられる。だが、この問題の最適化を行うとダクト推力TDが非常に大きな値に収束する。そこでTDの値を制限する拘束条件として、単純運動量理論から導かれるダクト推力TDは全推力Tの半分に等しいとする条件を加える。
改善された問題は次の形をとる。
minimize -T
subject to P -P0 = 0,TD = 0.5T
When resistance is not considered, T of the objective function is given by equation (58), and P of constraint condition is given by equation (56). However, when the problem is optimized, the duct thrust T D converges to a very large value. So as a constraint condition for limiting the values of T D, the duct thrust T D derived from simple momentum theory adds a condition that is equal to half of the total thrust T.
The improved problem has the following form.
minimize -T
subject to P-P 0 = 0, TD = 0.5T
抵抗を考慮する場合、推力Tは(58)式のような二次形式で表記できず、(42)式,(43)式から誘導速度vBおよびwBを求め、(3)式から(12)式までの式、及び(17)式からファン推力 TFを求め、(50)式から求められるダクト推力TDから When resistance is taken into consideration, the thrust T can not be expressed in a quadratic form such as the equation (58), and the induction velocities v B and w B are determined from the equations (42) and (43). 12) The fan thrust T F is determined from the equation up to the equation (17) and the equation (17), and from the duct thrust T D determined from the equation (50)
吸収パワーPも同様に(42)式、(43)式から誘導速度vBおよびwBを求め、(3)式から(14)式までの式、及び(18)式から求める。抵抗係数の値は揚力係数に比べはるかに小さいため、抵抗を考慮した解が抵抗を考慮しない場合から大きく異なることはない。
3−11.最適化問題の繰り返し計算
Similarly, the absorption power P is determined from the equations (42) and (43), and the induction velocities v B and w B are determined from the equations (3) to (14) and the equation (18). Since the value of the drag coefficient is much smaller than the lift coefficient, the resistance solution does not differ significantly from the case where the drag is not considered.
3-11. Iterative calculation of optimization problems
本問題を解く際に前章で述べたように螺旋渦の渦面移動速度が収束するまで繰り返し計算を行わなければならない。ここでは繰り返し計算を安定させるために渦面移動速度を2次関数で表す。繰り返し計算ごとにこの2次関数の係数をカーブフィッティングにより更新する。 In order to solve this problem, as described in the previous chapter, it is necessary to repeat the calculation until the moving velocity of the spiral vortex converges. Here, in order to stabilize the repeated calculation, the vortex surface moving velocity is expressed by a quadratic function. The coefficients of this quadratic function are updated by curve fitting for each iteration.
また、3−10で拘束条件に単純運動量理論が要求するTD=0.5Tを用いたが、より現実に近い数学モデルでもダクト推力TDが全推力Tの50%になるとは限らない。パラメータk(以降リップファクター)を導入してTD=kTとし、このパラメータの導入で得られる自由度でTrefftz面推力TTと全推力Tを一致させる。具体的にはTrefftz 面推力TTが全推力Tより大きいときはkを減少させ、逆の時は増加させてkを収束させる。
3−12.ハブを考慮したモデルへの拡張
Moreover, although T D = 0.5 T required by the simple momentum theory is used as the constraint condition in 3-10, the duct thrust T D is not necessarily 50% of the total thrust T even with a more realistic mathematical model. A parameter k (hereinafter referred to as a lip factor) is introduced to make T D = kT, and the Trefftz surface thrust T T and the total thrust T are made to coincide with the degree of freedom obtained by the introduction of this parameter. Specifically, when the Trefftz surface thrust T T is larger than the total thrust T, k is decreased, and in the opposite case, k is increased to converge k.
3-12. Expansion to model considering hub
図18に示すように現実的にはダクトの中心にはモーター等を格納するハブが必要である。ハブはダクトの中心に固定され、モーターを格納し、モーター軸にブレードとスピナーが取付けられる。ここでは以下のようにモデル化する。スピナーとハブは同じ直径、ハブは短い円柱であり、ハブ後端で流れは剥離し、まっすぐ流れるものとする。従ってハブ後端の下流は死水領域である。ダクトがブレード翼端の翼端板の役割を果たすのと同様にスピナーとハブが翼根の翼端板の役割を果たす。そのためスピナー及びハブ表面には翼根渦が螺旋状に存在する。ダクト表面と同様にスピナー表面、ハブ表面に階層構造を持った格子を切り、ハブ後端からはダクト馬蹄渦と同様にハブ馬蹄渦を放出する。またダクト長さとはブレード回転面から後方のダクトの長さとする。 ダクト前部とはダクトの直線部分のブレード面より前方の部分とする。 As shown in FIG. 18, in reality, a hub for storing a motor or the like is required at the center of the duct. The hub is fixed at the center of the duct, houses the motor, and has a blade and spinner mounted on the motor shaft. Here, it models as follows. The spinner and the hub are the same diameter, the hub is a short cylinder, and the flow separates at the rear end of the hub and flows straight. Thus, the downstream end of the hub is a dead water region. The spinner and the hub play the role of the wingtip of the blade root as well as the ducting of the blade tip of the wingtip. Therefore, blade root vortices spirally exist on the spinner and hub surface. A lattice having a hierarchical structure is cut on the spinner surface and the hub surface as well as the duct surface, and the hub horseshoe vortex is emitted from the rear end of the hub like the duct horseshoe vortex. Also, the duct length is the length of the duct behind the blade rotation surface. The front of the duct is a portion forward of the blade surface of the straight portion of the duct.
次に用語を再定義する。ダクト格子はフランジ、 リップ、ダクト前部、ダクト、スピナー、ハブ表面の格子からなる。ダクト馬蹄渦はダクト後縁から放出される馬蹄渦とハブ後縁から放出される馬蹄渦からなる。ダクト推力はリップとフランジとスピナーが発生する推力とする。このように、ダクト格子、 ダクト馬蹄渦、ダクト推力を再定義すればスピナー、ハブを含んだモデルを扱うことが出来る。
4.計算結果
Next we redefine the terms. Duct grid consists of flange, lip, duct front, duct, spinner, and hub surface grid. The duct horseshoe vortex consists of a horseshoe vortex emitted from the duct trailing edge and a horseshoe vortex emitted from the hub trailing edge. The duct thrust is the thrust generated by the lip, flange and spinner. In this way, if you redefine duct grids, duct horseshoe vortices, and duct thrusts, you can handle models that include spinners and hubs.
4. Calculation result
ここでは抵抗を考慮した最適化問題を解いた。解く際にはペナルティ関数法で拘束条件を目的関数に組み込み、この目的関数をシミュレーテッド・アニーリングで最小化した。様々な初期値を用いても同一の解に収束した。計算条件は以下の通りである。
〈計算条件〉
ダクト直径: 0.25m
スピナー直径: 0.06m
吸収パワーP0: 1200W
ブレード枚数B: 4
ダクト長さ: 0.12m
ダクト前部長さ: 0.015m
ブレード分割数NB: 80
格子階層数n: 2
ダクト格子数ND: 15,000 程度(ハブ無し)
: 30,000 程度(ハブあり)
設計揚力係数CL: 0.6
形状抵抗係数 CD: 0.014(Re 非依存とした)
〈パラメータ〉
リップ半径 RR: 0.01?0.06m
フランジ半径 RF: 0.25、0.75m
Here, we solved the optimization problem in consideration of resistance. In the solution, constraints were incorporated into the objective function by the penalty function method, and this objective function was minimized by simulated annealing. It converged to the same solution using various initial values. The calculation conditions are as follows.
<Calculation condition>
Duct diameter: 0.25 m
Spinner diameter: 0.06m
Absorbing power P 0 : 1200 W
Number of blades B: 4
Duct length: 0.12 m
Duct front length: 0.015 m
Blade division number N B : 80
Number of lattice layers n: 2
Duct grid number N D : about 15,000 (without hub)
: About 30,000 (with hub)
Design lift coefficient C L : 0.6
Shape resistance coefficient C D : 0.014 (Re independent)
<Parameter>
Lip radius R R : 0.01 to 0.06 m
Flange radius R F : 0.25, 0.75 m
Trefftz面はダクトから十分後方にあるため、ダクトの影響を受けず、ブレード放出渦およびダクト馬蹄渦の影響のみ受ける。そこでTrefftz面推力TTを計算する際は、全長がダクト直径の10倍のブレード放出渦およびダクト馬蹄渦を作り、この中央にTrefftz面をとった。 The Trefftz plane is sufficiently aft of the duct so it is not affected by the duct and is only affected by the blade discharge vortices and duct horseshoe vortices. Therefore, when calculating the Trefftz surface thrust T T , a blade discharge vortex and a duct horseshoe vortex having a total length of 10 times the duct diameter were formed, and the Trefftz surface was taken at the center.
最適化で得られたフランジ半径RFが0.75mの際のブレードの形状を図19の上に、0.25mの際のブレード形状を図19の下に示す。リップ半径RRが0.01mの場合を実線で、0.05mの場合を一点鎖線で示した。同様にハブがある時の最適化で得られたフランジ半径 RFが0.75mの際の形状を図20の上に、0.25mの際の形状を図20の下に示す。ここでもリップ半径RRが0.01mの場合を実線で、0.05m の場合を一点鎖線で示した。この図20の上の条件での渦面移動速度を図21に示す。図に示した渦面移動速度はカーブフィッティングにより2次関数で近似した値であり、最適化の際に渦面の形状決定に使用した流速である。 The shape of the blade when the flange radius R F is 0.75 m obtained by optimization is shown on the top of FIG. 19 and the shape of the blade at 0.25 m is on the bottom of FIG. The case where the lip radius R R is 0.01 m is shown by a solid line, and the case where it is 0.05 m is shown by an alternate long and short dash line. Similarly on the flange radius R F obtained in the optimization when there is the hub of Figure 20 the shape of the time of 0.75 m, indicating the shape of the time of 0.25m below the figure 20. Here also, the case where the lip radius R R is 0.01 m is indicated by a solid line, and the case of 0.05 m is indicated by an alternate long and short dash line. The vortex surface moving speed under the condition of the upper part of FIG. 20 is shown in FIG. The vortex surface moving speed shown in the figure is a value approximated by a quadratic function by curve fitting, and is the flow velocity used to determine the shape of the vortex surface at the time of optimization.
リップ半径に対する推力およびリップファクターkを図22に示す。ハブがなくフランジ半径RFが0.25mの時の値を○で、0.75の時の値を□で示す。また、ハブがありフランジ半径RFが0.25mの時の値を△で、0.75の時の値を▽で示す。
5.考察
The thrust and lip factor k versus lip radius are shown in FIG. Hub flange radius R F no is in ○ the value at 0.25 m, indicating the value at 0.75 □. Also, the value when the hub is present and the flange radius R F is 0.25 m is indicated by Δ, and the value at 0.75 is indicated by ▽.
5. Consideration
図19及び図20に示すように先端が拡大したブレード形状が得られた。これはダクト壁面によって翼端渦の形成が阻害されるため、またリップ推力を利用するためであると思われる。またリップ半径に最適化されたブレード形状が依存する結果となった。これはダクト推力TDを与える(50)式の行列TDがダクトの形状に依存するためであり、得られる結果はリップ半径RR に依存すると予想していた。 As shown in FIGS. 19 and 20, a blade shape with an enlarged tip was obtained. This seems to be due to the fact that the duct wall inhibits the formation of the tip vortices and also uses the lip thrust. Also, the result is that the lip shape optimized for the lip radius is dependent. This is because the matrix T D of the equation (50) which gives the duct thrust T D depends on the shape of the duct, and the obtained result is expected to depend on the lip radius R R.
リップ半径RRが小さい程翼端の拡大の程度は大きくなる。これはリップ半径が小さい程、壁面近く軸流速度を増加させることで、リップを回り込む流速によるダクト推力を大きくできるためと考えられる。これを裏付けるように図21に示した渦面移動速度v'の分布は、RR =0.05において一様に近く、RR=0.01において壁面近くでの速度が増加している。また、図19に示すようにリップ半径RRが小さい程、推力Tは大きくなった。これは上述のようにリップ半径RRが小さい程、ダクト推力が大きくなるためである。リップファクターkのグラフ(図22)を見るとリップ半径RRが小さい程ダクト推力が大きくなっていることが分かる。 The smaller the lip radius R R, the larger the degree of expansion of the wing tip. This is considered to be because, as the lip radius is smaller, by increasing the axial flow velocity near the wall surface, it is possible to increase the duct thrust due to the flow velocity around the lip. In order to support this, the distribution of vortex surface movement velocity v ′ shown in FIG. 21 is nearly uniform at R R = 0.05, and the velocity near the wall increases at R R = 0.01. Further, as shown in FIG. 19, as the lip radius R R is smaller, the thrust T is larger. This is because, as described above, the smaller the lip radius R R , the larger the duct thrust. It can be seen from the graph of lip factor k (FIG. 22) that the smaller the lip radius R R, the larger the duct thrust.
単純運動量理論ではリップファクターkは厳密に0.5となるが、本計算では0.5より小さい値が得られた。しかし図22に見られるように、フランジ半径RFが0.25mのときより0.75mのときの方がkの値が0.5に近づいており、より大きなフランジを用いるとリップファクターkは0.5に近づくと思われる。 In simple momentum theory, the lip factor k is exactly 0.5, but in this calculation a value smaller than 0.5 was obtained. However, as seen in FIG. 22, the value of k is closer to 0.5 when the flange radius R F is 0.75 m than when the flange radius R F is 0.25 m, and the lip factor k approaches 0.5 when a larger flange is used. Seem.
ハブを考慮した場合、ブレード形状はハブのない時のブレード形状のハブの部分を単に取り除いた形状になった。しかし、図22の推力のグラフを見るとほとんど推力の低下はない。逆にリップファクターが増加し、よりダクト推力を利用しようとする傾向がある。これを裏付ける様に、図22に示した様に先端の拡大の程度が最も大きかった条件は、ハブがあり、フランジ半径RFが0.75mであり、リップ半径RRが0.01mの場合であった。 When considering the hub, the blade shape is a shape in which the portion of the blade-shaped hub when the hub is not present is simply removed. However, when looking at the graph of thrust in FIG. 22, there is almost no decrease in thrust. On the contrary, the lip factor increases, and there is a tendency to use duct thrust more. In order to support this, as shown in FIG. 22, the condition in which the degree of enlargement of the tip is the largest is the case where there is a hub, the flange radius R F is 0.75 m, and the lip radius R R is 0.01 m. The
フランジ半径が大きくなる程ダクト推力が大きくなるため、同一のファン直径ではフランジ半径が大きい程推力は大きくなる。しかし、フランジ半径RFがファン半径の2倍と6倍の時を計算したが、推力の増加は2N程度であり、全推力60Nの3%程度にしか過ぎない。かさばる上に重量が増加する大きなフランジを使用する応用例は特殊な場合に限られると思われる。 The duct thrust increases as the flange radius increases, so the thrust increases as the flange radius increases for the same fan diameter. However, when the flange radius RF is calculated to be twice and six times the fan radius, the increase in thrust is about 2N, which is only about 3% of the total thrust 60N. Applications that use large flanges that add bulk and weight are believed to be limited to special cases.
本方法では抵抗を考慮した場合の最適化を行ったが、計算例で用いたレイノルズ数領域では最適な形状は抵抗を考慮した場合としない場合でほとんど差がなかった。しかし著しくレイノルズ数が小さく、 抵抗係数が無視できない程大きい場合は大きく異なる解が得られる可能性がある。
6.結言
静止推力を最大とするダクテッドファンの設計を最適化問題としてあらわし、最小化した。
In this method, optimization was carried out in consideration of the resistance, but in the Reynolds number region used in the calculation example, there was almost no difference between the optimum shape with and without the resistance taken into consideration. However, if the Reynolds number is extremely small and the drag coefficient can not be ignored, it is possible to obtain significantly different solutions.
6. Conclusion The design of ducted fan that maximizes the static thrust is expressed as an optimization problem and minimized.
本計算の最大の特徴は、設計者の能力によらず解が一意に求められる、抵抗の効果を考慮した推力そのものを目的関数としているため、低レイノルズ数での最適化も行うことが出来る、点であり、細かな特徴は、ダクト推力を考慮している、ブレードを製作する際必要になるハブを考慮している、繰り返し計算により放出渦の形状を決定している翼端放出渦のピッチを内部の渦の半分にしている階層的な構造の格子を用いている、変数の数が数十と少なく、短時間で最適化を行うことが出来る、点である
最適化問題を最小化して得られたブレードは先端が拡大している特徴的な形状をしており、かつ拡大の程度はダクトのリップ半径に依存する結果が得られた。
(その他)
The greatest feature of this calculation is that the thrust itself taking into consideration the effect of resistance is used as the objective function, which allows solutions to be uniquely determined regardless of the designer's ability, so optimization with a low Reynolds number can also be performed. The point and fine features are considered the duct thrust, the hub needed to make the blade, and the pitch of the wing tip discharge vortices which determine the shape of the discharge vortices by repeated calculation Using a hierarchically structured grid with half of the internal vortices, few variables with only a few dozens of optimizations in a short time, minimizing the optimization problem The obtained blade has a characteristic shape in which the tip is enlarged, and the degree of enlargement depends on the lip radius of the duct.
(Others)
本発明に係るダクテッドファンは、マルチコプタや垂直離着陸機(VTOL機)、CPU冷却用ファン、ラジエータ冷却用ファンなどに用いることができる。また、ヘリコプターのテールファンに用いることができる。
本発明は上記の実施形態には限定されず様々に変形して実施が可能であり、その実施の範囲も本発明の技術的範囲に属することは勿論である。
The ducted fan according to the present invention can be used as a multicopter, a vertical take-off and landing (VTOL) machine, a CPU cooling fan, a radiator cooling fan, and the like. In addition, it can be used for tail fans of helicopters.
The present invention is not limited to the above-described embodiment, and can be variously modified and implemented, and the scope of the implementation is, of course, within the technical scope of the present invention.
1 :ダクテッドファン
10 :ダクト
12 :排出口
14 :リップ
15 :内壁
20 :プロペラ
21 :ハブ
21A :翼端
22 :ブレッド
22 :ブレード
22A :翼端
22B :翼端近傍部
DESCRIPTION OF SYMBOLS 1: Ducted fan 10: Duct 12: Exhaust port 14: Lip 15: Inner wall 20: Propeller 21: Hub 21 A: Wing tip 22: Bread 22:
プロペラ20は、ダクト10と同心円状に配置されたハブ21と、ハブ21の外周に等間隔で設けられた4枚のブレード22とを有する。なお、ブレード22の枚数は、典型的には4枚であるが、2枚〜8枚が好ましい範囲である。また、ブレード22の枚数は、例えばステーター50が7本のとき、4枚とするように、ステーター50の枚数とステーター50の本数の最小公倍数が大きな値となるように取ることで複数のブレード22とステーター50の位置が同時に重なることを避け、干渉に依る騒音を下げることができる。
ハブ21は、ハウジング40に収容されたモーター30により回転駆動される。これにより、ブレード22が回転する。
The
The
ここでは抵抗を考慮した最適化問題を解いた。解く際にはペナルティ関数法で拘束条件を目的関数に組み込み、この目的関数をシミュレーテッド・アニーリングで最小化した。様々な初期値を用いても同一の解に収束した。計算条件は以下の通りである。
〈計算条件〉
ダクト直径: 0.25m
スピナー直径: 0.06m
吸収パワーP0: 1200W
ブレード枚数B: 4
ダクト長さ: 0.12m
ダクト前部長さ: 0.015m
ブレード分割数NB: 80
格子階層数n: 2
ダクト格子数ND: 15,000 程度(ハブ無し)
: 30,000 程度(ハブあり)
設計揚力係数CL: 0.6
形状抵抗係数 CD: 0.014(Re 非依存とした)
〈パラメータ〉
リップ半径 RR: 0.01〜0.06m
フランジ半径 RF: 0.25、0.75m
Here, we solved the optimization problem in consideration of resistance. In the solution, constraints were incorporated into the objective function by the penalty function method, and this objective function was minimized by simulated annealing. It converged to the same solution using various initial values. The calculation conditions are as follows.
<Calculation condition>
Duct diameter: 0.25 m
Spinner diameter: 0.06m
Absorbing power P 0 : 1200 W
Number of blades B: 4
Duct length: 0.12 m
Duct front length: 0.015 m
Blade division number N B : 80
Number of lattice layers n: 2
Duct grid number N D : about 15,000 (without hub)
: About 30,000 (with hub)
Design lift coefficient C L : 0.6
Shape resistance coefficient C D : 0.014 (Re independent)
<Parameter>
Lip radius R R : 0.01 to 0.06 m
Flange radius R F : 0.25, 0.75 m
Claims (13)
翼端が前記ダクトの内壁に近接し、翼弦長が前記翼端に近づくに従って漸減し且つ前記翼端近傍部からは前記翼端まで拡大し又は一定長となるブレードを有するプロペラと
を具備するダクテッドファン。 A duct with an R-shaped lip at the outlet,
And a propeller having a blade tip close to an inner wall of the duct, a chord length gradually decreasing toward the blade tip, and a portion extending from the vicinity of the blade tip to the blade tip or having a fixed length. Ducted fan.
前記ブレードの前記翼端の翼弦長をCLA、前記ブレードの前記翼端近傍部の翼弦長をCLBとしたとき、
1.0×CLB≦CLA≦1.3×CLB
である
ダクテッドファン。 A ducted fan according to claim 1, wherein
Assuming that the chord length of the blade tip of the blade is CL A and the chord length of the portion near the blade tip of the blade is CL B :
1.0 × CL B ≦ CL A ≦ 1.3 × CL B
That's a ducted fan.
前記翼弦長が拡大又は一定長となる前記翼端近傍部の位置は、前記翼端より前記ブレードの半径の15%以内にある
ダクテッドファン。 A ducted fan according to claim 1 or 2, wherein
The ducted fan, wherein the position near the blade tip where the chord length is enlarged or fixed is within 15% of the radius of the blade from the blade tip.
前記ブレードの前記翼弦長の漸減の程度は、前記翼端に近づくに従って小さくなる
ダクテッドファン。 A ducted fan according to any one of claims 1 to 3, which is:
The degree of gradual reduction of the chord length of the blade decreases as it approaches the blade tip.
前記ブレードの最大翼弦長と最小翼弦長との比は、1.5以上で3.0以下である
ダクテッドファン。 The ducted fan according to any one of claims 1 to 4, wherein
The ratio of the maximum chord length to the minimum chord length of the blade is 1.5 or more and 3.0 or less.
前記リップは、前記ダクトの内径をRとしたとき、
3/100×R≦r≦30/100×R
の曲率半径rのR形状を有する
ダクテッドファン。 The ducted fan according to any one of claims 1 to 5, wherein
When the inside diameter of the duct is R,
3/100 × R ≦ r ≦ 30/100 × R
A ducted fan having an R shape with a radius of curvature r.
前記ダクトの長さは、前記ダクトの内径の25%より長い
ダクテッドファン。 A ducted fan according to any one of claims 1 to 6, which is:
The ducted fan is longer than 25% of the inner diameter of the duct.
前記プロペラは、前記ブレードを保持するハブを有し、
前記ハブの直径は、前記ダクトの内径の10%以上で50%以下である
ダクテッドファン。 The ducted fan according to any one of claims 1 to 7, wherein
The propeller has a hub for holding the blade,
The diameter of the hub is 10% or more and 50% or less of the inner diameter of the duct.
前記ハブは、2枚から8枚の前記ブレードを保持する
ダクテッドファン。 A ducted fan according to claim 8, wherein
The hub holds two to eight of the blades.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017194779A JP7116459B2 (en) | 2017-10-05 | 2017-10-05 | Ducted fan, multicopter, vertical take-off and landing aircraft, CPU cooling fan and radiator cooling fan |
PCT/JP2018/032006 WO2019069591A1 (en) | 2017-10-05 | 2018-08-29 | Ducted fan, multicopter, vertical takeoff and landing aircraft, cpu cooling fan, and radiator cooling fan |
US16/754,064 US11913470B2 (en) | 2017-10-05 | 2018-08-29 | Ducted fan, multicopter, vertical take-off and landing aircraft, CPU-cooling fan, and radiator-cooling fan |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017194779A JP7116459B2 (en) | 2017-10-05 | 2017-10-05 | Ducted fan, multicopter, vertical take-off and landing aircraft, CPU cooling fan and radiator cooling fan |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019064541A true JP2019064541A (en) | 2019-04-25 |
JP7116459B2 JP7116459B2 (en) | 2022-08-10 |
Family
ID=65994513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017194779A Active JP7116459B2 (en) | 2017-10-05 | 2017-10-05 | Ducted fan, multicopter, vertical take-off and landing aircraft, CPU cooling fan and radiator cooling fan |
Country Status (3)
Country | Link |
---|---|
US (1) | US11913470B2 (en) |
JP (1) | JP7116459B2 (en) |
WO (1) | WO2019069591A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110162863A (en) * | 2019-05-15 | 2019-08-23 | 北京玮航科技有限公司 | The thermal coupling design method of electric ducted fan |
DE102021124502A1 (en) | 2020-09-28 | 2022-03-31 | Subaru Corporation | VERTICAL TAKEOFF AND LANDING PLANE AND WING DEVICE |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020112941A2 (en) | 2018-11-27 | 2020-06-04 | Teva Czech Industries S.R.O | Solid state forms of lumateperone salts and processes for preparation of lumateperone and salts thereof |
USD963547S1 (en) * | 2020-08-07 | 2022-09-13 | Metro Air Inc. | Propeller guard of aircraft |
CN116395133B (en) * | 2023-04-13 | 2024-05-14 | 南京航空航天大学 | Aircraft and tail rotor and duct tail rotor blade |
CN118362069B (en) * | 2024-06-20 | 2024-09-27 | 广东电网有限责任公司佛山供电局 | Modeling method and device for cable duct, electronic device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020104919A1 (en) * | 2001-01-30 | 2002-08-08 | Nick Geranio | Counter rotating ducted fan flying vehicle |
JP2011513688A (en) * | 2008-02-28 | 2011-04-28 | エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド | Fan shroud for heat exchange tower |
US20120003098A1 (en) * | 2010-07-01 | 2012-01-05 | Spx Cooling Technologies, Inc. | Flared tip fan blade and method of manufacturing same |
CN102935892A (en) * | 2012-11-20 | 2013-02-20 | 吉林大学 | Multi-duct aircraft |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2536130A (en) * | 1946-05-21 | 1951-01-02 | Hartzell Industries | Air handling apparatus |
US3184183A (en) | 1962-01-15 | 1965-05-18 | Piasecki Aircraft Corp | Flying platform |
DE8612292U1 (en) * | 1986-05-02 | 1987-01-02 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Axial fan |
FR2683599B1 (en) * | 1991-11-07 | 1994-03-04 | Ecia | IMPROVED FAIRING FOR FAN AND ITS APPLICATION TO A MOTOR FAN GROUP OF AUTOMOBILE. |
US5399070A (en) * | 1992-07-22 | 1995-03-21 | Valeo Thermique Moteur | Fan hub |
US5320493A (en) * | 1992-12-16 | 1994-06-14 | Industrial Technology Research Institute | Ultra-thin low noise axial flow fan for office automation machines |
US5295643A (en) * | 1992-12-28 | 1994-03-22 | Hughes Missile Systems Company | Unmanned vertical take-off and landing, horizontal cruise, air vehicle |
US6375419B1 (en) * | 1995-06-02 | 2002-04-23 | United Technologies Corporation | Flow directing element for a turbine engine |
US5906179A (en) * | 1997-06-27 | 1999-05-25 | Siemens Canada Limited | High efficiency, low solidity, low weight, axial flow fan |
JP3189251B2 (en) | 1999-03-12 | 2001-07-16 | 株式会社コミュータヘリコプタ先進技術研究所 | Rotor blades for rotary wing aircraft |
US7249931B2 (en) * | 2002-03-30 | 2007-07-31 | University Of Central Florida Research Foundation, Inc. | High efficiency air conditioner condenser fan with performance enhancements |
US7014423B2 (en) * | 2002-03-30 | 2006-03-21 | University Of Central Florida Research Foundation, Inc. | High efficiency air conditioner condenser fan |
JP4374897B2 (en) * | 2003-05-12 | 2009-12-02 | 株式会社日立製作所 | Axial fan |
KR101018925B1 (en) * | 2004-03-19 | 2011-03-02 | 한라공조주식회사 | Axial flow fan |
WO2006080055A1 (en) * | 2005-01-26 | 2006-08-03 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Turbofan engine |
KR101160991B1 (en) * | 2006-02-10 | 2012-06-29 | 한국델파이주식회사 | Cooling Fan for Auto Mobile |
BRPI0711849B1 (en) | 2006-05-31 | 2019-09-10 | Bosch Gmbh Robert | axial fan and axial fan assembly |
WO2009147630A1 (en) | 2008-06-03 | 2009-12-10 | Urban Aeronautics Ltd. | Vtol vehicle with offset engine |
US8376712B2 (en) | 2010-01-26 | 2013-02-19 | United Technologies Corporation | Fan airfoil sheath |
GB2486448B (en) | 2010-12-15 | 2013-06-05 | Gh Dynamics Ltd | Aircraft propulsion system tilting mechanism |
FR2969120B1 (en) * | 2010-12-15 | 2013-08-30 | Eurocopter France | IMPROVED BLADE FOR ANTI-TORQUE HELICOPTER DEVICE |
US20130233964A1 (en) | 2012-03-07 | 2013-09-12 | Aurora Flight Sciences Corporation | Tethered aerial system for data gathering |
US9476385B2 (en) * | 2012-11-12 | 2016-10-25 | The Boeing Company | Rotational annular airscrew with integrated acoustic arrester |
GB201220601D0 (en) | 2012-11-16 | 2013-01-02 | Rolls Royce Plc | Rotor blade |
FR3028299B1 (en) * | 2014-11-07 | 2019-11-22 | Valeo Systemes Thermiques | AUTOMOBILE FAN WITH OPTIMIZED BLADES FOR STRONG DEBITS |
US10473107B1 (en) * | 2017-11-29 | 2019-11-12 | Stephen Thomas Newton | Variable performance axial flow ducted fan with high efficiency and reduced current drawn |
GB201818684D0 (en) * | 2018-11-16 | 2019-01-02 | Rolls Royce Plc | Boundary layer ingestion fan system |
US11999466B2 (en) * | 2019-11-14 | 2024-06-04 | Skydio, Inc. | Ultra-wide-chord propeller |
-
2017
- 2017-10-05 JP JP2017194779A patent/JP7116459B2/en active Active
-
2018
- 2018-08-29 US US16/754,064 patent/US11913470B2/en active Active
- 2018-08-29 WO PCT/JP2018/032006 patent/WO2019069591A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020104919A1 (en) * | 2001-01-30 | 2002-08-08 | Nick Geranio | Counter rotating ducted fan flying vehicle |
JP2011513688A (en) * | 2008-02-28 | 2011-04-28 | エスピーエックス・クーリング・テクノロジーズ・インコーポレーテッド | Fan shroud for heat exchange tower |
US20120003098A1 (en) * | 2010-07-01 | 2012-01-05 | Spx Cooling Technologies, Inc. | Flared tip fan blade and method of manufacturing same |
CN102935892A (en) * | 2012-11-20 | 2013-02-20 | 吉林大学 | Multi-duct aircraft |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110162863A (en) * | 2019-05-15 | 2019-08-23 | 北京玮航科技有限公司 | The thermal coupling design method of electric ducted fan |
CN110162863B (en) * | 2019-05-15 | 2021-07-13 | 北京玮航科技有限公司 | Thermal coupling design method of electric ducted fan |
DE102021124502A1 (en) | 2020-09-28 | 2022-03-31 | Subaru Corporation | VERTICAL TAKEOFF AND LANDING PLANE AND WING DEVICE |
US12017763B2 (en) | 2020-09-28 | 2024-06-25 | Subaru Corporation | Vertical take-off and landing aircraft and wing apparatus |
Also Published As
Publication number | Publication date |
---|---|
US11913470B2 (en) | 2024-02-27 |
US20200325910A1 (en) | 2020-10-15 |
WO2019069591A1 (en) | 2019-04-11 |
JP7116459B2 (en) | 2022-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019069591A1 (en) | Ducted fan, multicopter, vertical takeoff and landing aircraft, cpu cooling fan, and radiator cooling fan | |
US10907495B2 (en) | Unducted thrust producing system | |
US10415581B1 (en) | Ultra-quiet propeller system | |
EP3144218B1 (en) | Aft engine nacelle shape for an aircraft | |
US11485486B2 (en) | Active flow control for ducted fans and fan-in-wing configurations | |
US11772777B2 (en) | Variable pitch bladed disc | |
EP3441305B1 (en) | Low-noise airfoil for an open rotor | |
EP3077283B1 (en) | Boundary layer ingesting blade | |
JP2673156B2 (en) | Fan blade | |
US10704418B2 (en) | Inlet assembly for an aircraft aft fan | |
EP3599159B1 (en) | Lift fan with diffuser duct | |
ElGhazali et al. | Aerodynamic optimization of unmanned aerial vehicle through propeller improvements | |
CN116750186B (en) | Low noise blade for open rotor | |
Sheng et al. | Numerical investigations of fan-in-wing aerodynamic performance with active flow control | |
JP6856930B2 (en) | Rotor, drone and helicopter | |
US20040187475A1 (en) | Apparatus and method for reducing radiated sound produced by a rotating impeller | |
WO2017146028A1 (en) | Rotor blade, drone, and helicopter | |
US4795308A (en) | Obstacle in front of a propeller | |
CN112926148B (en) | Propeller airfoil aerodynamic shape design method considering influence of three-dimensional effect | |
Almazo et al. | Selection and design of an axial flow fan | |
Colman et al. | Wind tunnel test results and performance prediction for a ducted fan with collective and cyclic pitch actuation for VTOL with efficient cruise | |
Cramer et al. | Investigation of Anti-Phase Asymmetric Quiet Rotor Technology | |
US20230249810A1 (en) | Low-noise blade for an open rotor | |
EP3366571B1 (en) | Passive boundary layer propulsor | |
Sharafi | A new method to primary and optimized design of ducted fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180829 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211015 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20211015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7116459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |