JP2019060692A - Method for estimating water content in wood and device therefor - Google Patents

Method for estimating water content in wood and device therefor Download PDF

Info

Publication number
JP2019060692A
JP2019060692A JP2017184852A JP2017184852A JP2019060692A JP 2019060692 A JP2019060692 A JP 2019060692A JP 2017184852 A JP2017184852 A JP 2017184852A JP 2017184852 A JP2017184852 A JP 2017184852A JP 2019060692 A JP2019060692 A JP 2019060692A
Authority
JP
Japan
Prior art keywords
wood
moisture content
probability
water content
propagation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017184852A
Other languages
Japanese (ja)
Other versions
JP6920729B2 (en
Inventor
加納 喜代継
Kiyotsugu Kano
喜代継 加納
康壽 佐々木
Yasuhisa Sasaki
康壽 佐々木
真理子 山崎
Mariko Yamazaki
真理子 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2017184852A priority Critical patent/JP6920729B2/en
Publication of JP2019060692A publication Critical patent/JP2019060692A/en
Application granted granted Critical
Publication of JP6920729B2 publication Critical patent/JP6920729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To obtain the water content in wood with a simple method.SOLUTION: The present invention is proposed in consideration of the above-described circumstances, and is directed to provide a method and a device capable of estimating the water content in the entire sample with a simple device and in a non-destructive manner.MEANS FOR SOLVING THE PROBLEM: The water content estimating method includes: determining, from a database of the water content of wood and propagation speed of a stress wave (hereinafter may be simply referred to as a propagation speed), a formula representing a probability distribution curved surface having a probability density at which the probability on a minus side of two variables becomes zero as the vertical axis on a coordinate plane of a "function of water content-propagation speed," together with a parameter of the formula; and in an above-described state, determining the propagation speed Cof wood to be measured, and obtaining, from the propagation speed C, the estimated value of the water content from a peak point, obtained by the parameter, of an intersection curve between the probability distribution curved surface and a surface perpendicular to the coordinate plane of a straight line corresponding to the propagation speed Con the coordinate plane. The method can also calculate the confidence interval of the water content.SELECTED DRAWING: Figure 5

Description

本発明は、木材の含水率を推定するための含水率推定方法と装置に関する。   The present invention relates to a moisture content estimation method and apparatus for estimating the moisture content of wood.

森林資源の保全の面から、国産材の構造部材として木造家屋への有効利用の促進が望まれている。新しい木材を新築家屋に使用する場合には、当該木材が完全に、あるいは一定程度にまで乾燥していないと、建築後の建物のひずみの発生の原因になるところから、建築基準法では用途に応じた木材の含水率が決められている。従って、伐採、製材あるいは最終製品の種々の段階で、木材の含水率を評価できるようにしておくのが望ましいことになる。   From the aspect of conservation of forest resources, promotion of effective use to wooden houses as a structural member of domestic timber is desired. When new wood is used for a new house, if the wood is not completely or partially dried, it may cause distortion of the building after construction. The moisture content of the wood is determined accordingly. Therefore, it would be desirable to be able to assess the moisture content of the wood at various stages of harvesting, lumbering or finished products.

木材の含水率を測定する方法は種々あり、当該方法に応じた装置、器具が市販されている。   There are various methods for measuring the moisture content of wood, and devices and instruments corresponding to the methods are commercially available.

電気抵抗法は、針状のプローブ間に高電圧を印加したとき、木材が含水率に応じた抵抗値を示すことを利用したものである。プローブは針状で4本の構成になっておりこれを試料にハンマーで打ち込み通電することによって、表層部の抵抗値を測定することになる。この方法による測定値は樹種の影響を受けるので、予め樹種が分かっていることが前提である(例えば、特開平11−304741参照)。   The electrical resistance method utilizes the fact that when a high voltage is applied between needle-like probes, wood exhibits a resistance value corresponding to the moisture content. The probe is needle-shaped and has a configuration of four, and the resistance of the surface layer portion is measured by driving the sample with a hammer and energizing the same. Since the measurement value by this method is influenced by the tree species, it is premised that the tree species is known in advance (for example, see JP-A-11-304741).

高周波法は、木材の含水率によって高周波の減衰率が異なることを利用するものであるが、材質の厚みや密度の影響を受け、これらの測定も合わせて行っておく必要がある(例えば、特開2010−237135参照)。   The high frequency method utilizes the fact that the attenuation factor of the high frequency is different depending on the moisture content of wood, but it is necessary to carry out the measurement together with the influence of the thickness and density of the material (for example, Open 2010-237135)).

赤外法は、赤外線が水分で吸収されるところから、試料に赤外線を照射してその反射率を測るものであり、当然含水率が高い程、反射強度は小さくなる。   In the infrared method, since infrared rays are absorbed by moisture, the sample is irradiated with infrared rays to measure its reflectance. Naturally, the higher the water content, the smaller the reflection intensity.

乾燥法は原材料から試料となる部分を切り出して(JASでは20g以上)乾燥させ、乾燥前と乾燥後の重量から含水率を求めようとするものである(例えば、特開平11−148892参照)。   In the drying method, a portion to be a sample is cut out from the raw material (20 g or more in JAS) and dried, and the moisture content is obtained from the weight before and after drying (see, for example, JP-A-11-1488892).

特開平11−304741号公報Unexamined-Japanese-Patent No. 11-304741 特開平11−148892号公報Unexamined-Japanese-Patent No. 11-148892 特開2010−237135号公報JP, 2010-237135, A

前記電気抵抗法は、試料に針状のプローブを刺すことから、試料を傷める欠点があり、また、プローブが当接された部分の周辺(約3cm2)のみの測定が可能であり、木材全体の含水率が測定できる訳ではない。また、測定結果は樹種に依存するので、樹種が分からない試料では測定できないことになる。 The electrical resistance method has the disadvantage of damaging the sample since the sample is pierced with a needle-like probe, and it is possible to measure only the periphery (about 3 cm 2 ) of the portion abutted by the probe, and the whole wood can be measured The moisture content of can not be measured. In addition, since the measurement result depends on the tree species, it can not be measured with a sample whose tree species is not known.

高周波法は装置が大きくなりまた厚みや密度に依存するところから、それ等の値を別途求める必要がある。高周波の反射で測定する場合と透過で測定する場合があるが、いずれの場合も、高周波を当てるプローブ周辺部のみ、あるいは高周波が透過する試料の厚み方向の部分的な測定になる。   In the high frequency method, since the size of the apparatus is increased and the thickness and the density depend, it is necessary to separately obtain such values. There are cases where measurement is performed by reflection of high frequency and measurement by transmission, but in either case, it is a partial measurement only in the peripheral portion of the probe to which high frequency is applied or in the thickness direction of the sample through which high frequency is transmitted.

上記の2つの方法はいずれもハンディタイプのプローブが使用されており、測定作業が比較的簡単であるので、木材加工工場等の多くの現場で、大雑把な含水率を得るために使用されているが、使用機器に依存する誤差もあり、また、測定方法間の測定値も大幅に異なることがあり、信頼性には劣る欠点がある。   Both of the above two methods use handheld probes and are relatively easy to measure, so they are used to obtain rough moisture content at many sites such as wood processing plants. However, there are also errors depending on the equipment used, and also the measured values between the measuring methods may differ significantly, which has the disadvantage of being unreliable.

赤外線法は、上記したように薄い試料、あるいは試料の表面の含水率を測定するには有効であるが、厚みのある試料の内部の含水率まで測定できない欠点がある。   The infrared method is effective for measuring the moisture content of the thin sample or the surface of the sample as described above, but has a drawback that the moisture content inside the thick sample can not be measured.

更に、乾燥法は、精度が高いが、試料片を材料から切り取る破壊検査であり、乾燥に時間がかかるとともに、当然のことながら、乾燥前後の重量の測定の必要がある。また、製材の現場や使用の現場で連続的に測定することができない欠点がある。   Furthermore, although the drying method is highly accurate, it is a destructive test for cutting a sample piece out of the material, and while drying takes time, it is naturally necessary to measure the weight before and after drying. In addition, there is a drawback that it can not be measured continuously at the site of lumber or at the site of use.

本発明は上記従来の事情に鑑みて提案されたものであって、簡単な装置で、かつ非破壊で試料全体の含水率を推定できる方法と装置を提供することを目的とするものである。   The present invention has been proposed in view of the above-mentioned conventional circumstances, and an object thereof is to provide a method and an apparatus capable of estimating the moisture content of the whole sample nondestructively with a simple apparatus.

本発明は、上記目的を達成するために、以下の手段を採用している。   The present invention adopts the following means in order to achieve the above object.

まず、木材の含水率と応力波の伝播速度(以下単に伝播速度という場合がある)のデータベースより、「含水率-伝播速度の関数」の座標面上の、2変量のマイナス側の確率がゼロとなる確率密度を縦軸とする確率分布曲面を表す式をそのパラメータとともに求めておく。上記の状態で、測定対象の木材の伝播速度C0を求め、当該伝播速度C0より、前記座標面上の前記伝播速度C0に対応する直線の前記座標面に垂直な面と前記確率分布曲面の交曲線の、前記パラメータより得られるピーク点より含水率の推定値を求める。 First, from the database of the moisture content of wood and the propagation velocity of stress waves (hereinafter sometimes referred to simply as propagation velocity), the probability of the negative side of the bivariate on the coordinate surface of "moisture content-function of propagation velocity" is zero An expression representing a probability distribution curved surface with the probability density as y-axis as the vertical axis is determined together with its parameters. In the above state, obtains the propagation velocity C 0 wood to be measured, from the propagation speed C 0, the probability distribution and the plane perpendicular to the coordinate plane of the straight line corresponding to the propagation velocity C 0 on the coordinate plane An estimated value of the moisture content is obtained from the peak point of the crossing curve of the curved surface obtained from the above parameters.

上記の方法は以下の、伝播速度測定手段と、記憶手段と、推定値演算手段とを備えた装置を使用することによって実現できる。   The above method can be realized by using an apparatus provided with the following propagation speed measurement means, storage means, and estimated value calculation means.

前記記憶手段に木材の含水率と伝播速度のデータベースより、「含水率-伝播速度の関数」の座標面上に、2変量のマイナス側の確率がゼロとなる確率密度を縦軸とする確率分布曲面を表す式をそのパラメータとともに記憶しておく。   Probability distribution with vertical axis as probability density that probability of minus side of bivariate becomes zero on coordinate plane of "function of moisture content-propagation velocity" from database of moisture content of wood and propagation velocity in the above storage means The equation representing the surface is stored along with its parameters.

前記伝播速度測定手段は、測定対象の木材の応力波伝播速度C0を求める。また、推定値演算手段は、当該伝播速度C0より、前記座標面上の前記伝播速度C0に対応する直線の前記座標面に垂直な面と前記確率分布曲面の交曲線の、前記パラメータより得られるピーク点より含水率の推定値y0を求める。 The propagation velocity measuring means determines the stress wave propagation velocity C 0 of the wood to be measured. Also, the estimated value calculation means, from the propagation speed C 0, a plane perpendicular to the coordinate plane of the straight line corresponding to the propagation velocity C 0 on the coordinate plane with the交曲line of the probability distribution curved surface, from the parameter An estimated value y 0 of water content is determined from the obtained peak point.

前記確率分布曲面はマイナス側の確率がゼロとなる曲面である。この種の確率分布として2変量対数正規分布、ガンマ分布、ポアソン分布等を用いることができる。前記2変量対数正規分布を表す式の各パラメータはハミルトニアン・モンテカルロ法で求める。また、伝播速度の関数としては以下の例では伝播速度の逆数の2乗を採用している。   The probability distribution surface is a surface on which the probability on the minus side is zero. A bivariate lognormal distribution, a gamma distribution, a Poisson distribution or the like can be used as this type of probability distribution. Each parameter of the equation representing the bivariate lognormal distribution is determined by the Hamiltonian Monte Carlo method. Also, as a function of the propagation velocity, the following example adopts the square of the reciprocal of the propagation velocity.

上記の方法により測定対象の木材の応力波伝播速度を求めるだけで、非破壊で簡単に木材の含水率を推定することができ、しかも確率分布を利用しているので、含水率の信用区間も算出することができる。さらに、測定に連続性を持たせることができ、木材製品の生産現場、使用現場で用いることができる効果がある。   Since the moisture content of wood can be easily estimated nondestructively simply by determining the stress wave propagation velocity of the wood to be measured by the above method, and since the probability distribution is used, the credit interval of the moisture content is also obtained. It can be calculated. Furthermore, the measurement can be made to be continuous, and there is an effect that it can be used at the production site and use site of wood products.

本発明に使用する含水率測定装置。Water content measuring device used in the present invention. 木材の含水率MCと伝播速度Cの確率分布曲線。Probability distribution curve of moisture content MC and propagation speed C of wood. 2変量正規分布関数による確率分布曲線。Probability distribution curve with bivariate normal distribution function. 2変量対数正規分布関数による確率分布曲線。Probability distribution curve with bivariate lognormal distribution function. 本発明による推定と真値との誤差を示す図。The figure which shows the difference | error of the estimation by this invention, and a true value.

<原理>
木材の含水率は、繊維組織と結合した水分(結合水)が影響する領域と、それに加えて細胞組織にまで水分が自由水として残存している領域とがある。前者は含水率が低い領域での現象であり、含水率が低くなるに従ってヤング率が大きく(強度が増す)なるが、自由水の増減はヤング率に影響を与えない。このように木材に含まれる水分の形態の分岐点をFSPといい、概ね含水率28%である。この含水の水分形態とヤング率の含水率依存性の簡単なモデルより、FSP以上では含水率が伝播速度の逆数の二乗に比例することが分かる。この事実を以下に利用する。
<Principle>
The moisture content of wood is divided into a region affected by water (bonded water) bonded to the fiber tissue and a region in which the water remains as free water to the cell tissue. The former is a phenomenon in a region where the water content is low, and the Young's modulus increases (the strength increases) as the water content decreases, but the increase or decrease in free water does not affect the Young's modulus. Thus, the branch point of the form of water contained in wood is called FSP, and the water content is approximately 28%. From this simple model of water content and water content dependence of Young's modulus, it can be seen that the water content is proportional to the square of the reciprocal of the propagation speed above FSP. We will use this fact below.

本出願人はヤング率Eと密度ρの間に、E=v2ρ(v:応力波の伝播速度)の関係が成り立つことを利用して、多数の木材試料のヤング率E‐密度ρ平面上での存在確率(密度)の密度分布曲面を採り、当該曲面と前記式に相当する直線の前記座標平面に直角な面との交曲線から試料のヤング率と密度を同時に決定する方法を特願2016−193588で提案している。 The applicant has taken advantage of the fact that the relationship E = v 2 ((v: propagation velocity of stress wave) holds between Young's modulus E and density 、, and Young's modulus E-density 平面 plane of many wood samples. Taking a density distribution curved surface of the existence probability (density) above, the method of simultaneously determining the Young's modulus and the density of the sample from the intersection curve of the curved surface and the straight line corresponding to the above equation. It proposes in application 2016-193588.

前記したように含水率とヤング率とが相関関係を持っているということは、木材の含水率が応力波伝播速度となんらかの関係を持っていると推測される。   As described above, that the water content and the Young's modulus have a correlation, it is presumed that the water content of wood has some relationship with the stress wave propagation speed.

そこで、2変量対数正規分布を利用して、木材試料の「含水率‐伝播速度の関数」の座標面上での多数データの確率密度の曲面を作成しておき、特定の木材試料の伝播速度C0から含水率を推定することを以下に試みる。 Therefore, a bivariate lognormal distribution is used to create a surface of probability density of multiple data on the coordinate surface of the "water content-propagation velocity function" of the wood sample, and the propagation speed of a specific wood sample We will try to estimate the moisture content from C 0 below.

ここで、伝播速度の関数としては以下の説明では伝播速度Cの逆数の2乗を採るが、その理由は前述による。また2変量対数正規分布を採る理由については後述する。   Here, as a function of the propagation velocity, in the following description, the square of the reciprocal of the propagation velocity C is taken, and the reason is as described above. The reason for adopting the bivariate lognormal distribution will be described later.

<確率曲面>
図2(a)は、木材の含水率MC(%)と応力波の伝播速度C(m/s)の明らかなデータベースを基にした、含水率と伝播速度の散布図を示すものである。
<Probability surface>
FIG. 2 (a) shows a scatter plot of moisture content and propagation velocity based on a clear database of moisture content MC (%) of wood and propagation velocity C (m / s) of stress wave.

本発明では、ハミルトニアン・モンテカルロ法を用いて、確率分布のパラメータを決定することを前提としている。この方法で、良く知られた確率分布の関数形として2変量正規分布を採用するためには、散布状態が線形近似できる状態であることが望ましい。   In the present invention, it is assumed that the parameters of the probability distribution are determined using the Hamiltonian Monte Carlo method. In order to adopt a bivariate normal distribution as a function form of a well-known probability distribution in this method, it is desirable that the scatter states be able to be linearly approximated.

図2(a)の散布図から、線形近似できる散布状態が得られる変換を試みると、前述したように含水率-伝播速度の逆数の2乗(C-2)(単位はs2/m2)を採ることで、図2(b)に示すように略線形の散布図が得られることになる。但し、伝播速度の逆数の2乗(C-2)をそのまま表すと非常に小さい値となるので10-8を掛け合わせている。 From scatter diagram of FIG. 2 (a), the attempt to convert the distribution state capable linear approximation obtained, the water content as described above - the square (C -2) (units of inverse propagation velocity s 2 / m 2 By taking the above, a substantially linear scatter plot is obtained as shown in FIG. 2 (b). However, since it becomes a very small value when expressing the square of the reciprocal of propagation velocity (C -2 ) as it is, it is multiplied by 10 -8 .

更に、図3は図2(b)に示す散布図から、「含水率-伝播速度の関数」の座標平面に垂直な軸を確率軸として2変量正規分布による確率分布図を描いたものである。当該図3の状態では含水率MCが負の領域でも存在することになるので(図3矢印参照)、分布関数として2変量正規分布関数を用いることは不都合となる。そこで、分布関数として下記(1)式に示す2変量対数正規分布関数を採用する。これによって図4に示す確率分布図を得ることができる。尚、上記2つの確率分布関数の具体的な形を決めるパラメータは、ベイズ統計のハミルトニアン・モンテカルロ法を適用することにより求められる。   Furthermore, FIG. 3 draws a probability distribution map by bivariate normal distribution from the scatter diagram shown in FIG. 2 (b), with the axis perpendicular to the coordinate plane of “function of moisture content-propagation velocity” as the probability axis. . In the state of FIG. 3, the water content MC is present even in a negative region (see the arrow in FIG. 3), so it is inconvenient to use a bivariate normal distribution function as the distribution function. Therefore, a bivariate lognormal distribution function shown in the following equation (1) is adopted as the distribution function. This makes it possible to obtain the probability distribution chart shown in FIG. The parameters for determining the specific forms of the above two probability distribution functions can be obtained by applying the Hamiltonian Monte Carlo method of Bayesian statistics.

Figure 2019060692
Figure 2019060692

Figure 2019060692
Figure 2019060692

ここで、μは平均、σは標準偏差、Rは相関係数である。またそれぞれの添え字xとyはその属性(すなわち、xは伝播速度、yは含水率)を示す。   Here, μ is an average, σ is a standard deviation, and R is a correlation coefficient. Also, each subscript x and y indicates its attribute (ie, x is propagation velocity and y is moisture content).

上記(1)式の5つのパラメータμx、μy、σx、σy、Rはベイズ統計のハミルトニアン・モンテカルロ法(HMC法)で求めることができ、具体的な確率分布関数(1)式、(2)式を適用して得られた結果を表1に示す。
The five parameters μ x , μ y , σ x , σ y and R in the above equation (1) can be determined by the Hamiltonian Monte Carlo method (HMC method) of Bayesian statistics, and the specific probability distribution function (1) equation The results obtained by applying the equation (2) are shown in Table 1.

Figure 2019060692
Figure 2019060692

上記のようにしてパラメータが決定された(1)式に基づいて含水率‐伝播速度Cの逆数の2乗の確率分布曲面を描くと図4と同様、図5(a)のようになる。ここで特定の試料についての伝播速度C0を測定してその逆数の2乗C0 -2=一定の直線から含水率‐伝播速度の逆数の2乗座標面に垂直に立ち上げられた平面(b)と前記確率曲面との交曲線(c)のピーク(d)の位置が前記特定の試料について求める推定含水率y0ということになる。 When a probability distribution curved surface of the reciprocal of the moisture content-the propagation velocity C is drawn based on the equation (1) whose parameters are determined as described above, it becomes as shown in FIG. Here, the propagation velocity C 0 is measured for a specific sample, and the reciprocal square power C 0 −2 = a straight line perpendicular to the moisture content-inverse velocity squared coordinate plane of a constant straight line The position of the peak (d) of the intersection curve (c) between b) and the probability curved surface is the estimated moisture content y 0 to be determined for the specific sample.

ここでピークの位置は下記式(3)で与えられる。   Here, the position of the peak is given by the following equation (3).

Figure 2019060692
Figure 2019060692

y:求める含水率、x:伝播速度の逆数の2乗×10-8
表2は複数の試料について測定した伝播速度に基づいて上記の方法で算出した含水率の推定値を示すものである。比較として、乾燥法で得た含水率を併記している。
y: Water content to be determined, x: inverse power of propagation speed squared × 10 -8
Table 2 shows the estimated value of the moisture content calculated by said method based on the propagation speed measured about several samples. As a comparison, the water content obtained by the drying method is also described.

また、確率分布を用いているので、前記のようにして得られた含水率についての信用区間も計算できることになり、表2では70%信用区間を示している。ここで、サンプルNo153を例にすると、「85%の確率で含水率が34.9%以下である。」ということができることを意味している。
すなわち、信用区間の上限を用いて含水率を別の表現で表すことができることになる。
Further, since the probability distribution is used, the credit interval for the water content obtained as described above can also be calculated, and Table 2 shows the 70% credit interval. Here, taking sample No. 153 as an example, it means that "the moisture content is 34.9% or less with a probability of 85%" can be said.
That is, the moisture content can be expressed in another expression by using the upper limit of the credit interval.

Figure 2019060692
Figure 2019060692

図1は本発明に係る含水率推定装置一例を示すものである。基本的には伝播速度測定手段10と、記憶手段20および推定値演算手段30より構成される。   FIG. 1 shows an example of a water content estimation device according to the present invention. Basically, it comprises the propagation velocity measuring means 10, the storage means 20 and the estimated value calculating means 30.

伝播速度測定手段10は、1対の針状のプローブ11,11を備え、当該2つのプローブ11、11を特定の試料上に所定距離を保って打ち込んで、一方のプローブ11を図示しないハンマー等で打撃すると、当該一方のプローブ11での衝撃音が検知されてから他方のプローブ11で衝撃音が検知されるまでの時間が測定されるようになっている。これによって、伝播速度測定手段10で木材を伝播する応力波伝播速度C0が得られることになる。 The propagation velocity measuring means 10 is provided with a pair of needle-like probes 11 and 11, and the two probes 11 and 11 are struck on a specific sample while keeping a predetermined distance, and one of the probes 11 is a hammer etc. When it is struck with a ball, the time from the detection of the impact sound by the one probe 11 to the detection of the impact sound by the other probe 11 is measured. This results in the stress wave propagation velocity C 0 propagating wood propagation velocity measuring means 10 is obtained.

このようにして得られた前記特定の試料の伝播速度C0は推定値演算手段30に入力される。一方、記憶手段20には、前記した確率曲面が予め、前記(1)式と5つのパラメータとして記憶され、さらにピークの位置(含水率)を得るための(3)式も記憶されている。 The propagation velocity C 0 of the specific sample obtained in this manner is input to the estimated value calculation means 30. On the other hand, in the storage means 20, the above-mentioned probability curved surface is stored in advance as the above-mentioned equation (1) and five parameters, and further, equation (3) for obtaining the position of peak (water content) is also stored.

この状態で、前記伝播速度測定手段10より応力波伝播速度C0が得られると、推定値演算手段30は記憶手段20より、前記(3)式と5つのパラメータを読み出して、ピークの位置に対応する含水率y0を得ることになる。このようにして得られた含水率y0は表示部40で表示されることになる。 In this state, when the stress wave propagation velocity C 0 is obtained from the propagation velocity measuring means 10, the estimated value computing means 30 reads out the equation (3) and the five parameters from the storage means 20 and sets the peak position. The corresponding moisture content y 0 will be obtained. The moisture content y 0 obtained in this manner is displayed on the display unit 40.

尚、伝播速度測定手段としては、上記以外に打音法がある。   In addition to the above, there is a hammering method as the propagation speed measuring means.

すなわち、試料である木材の一方の端をハンマーで叩くと試料はその試料の固有振動数fで縦振動することになる。当該固有振動数fと、応力波伝播速度Cとの関係は、試料の長さをLとするとC=2Lfであるので、固有振動数を得ることによって応力波伝播速度を得ることができる。   That is, when one end of wood as a sample is hit with a hammer, the sample longitudinally vibrates at the natural frequency f of the sample. The relationship between the natural frequency f and the stress wave propagation speed C is C = 2Lf, where L is the length of the sample. Therefore, the stress wave speed can be obtained by obtaining the natural frequency.

上記において、確立分布曲線の一方の軸として、応力波伝播速度の逆数の2乗を用いているが、他方の軸の含水率との間で直線近似が得られる関数であれば、これにこだわるものではない。また、確率分布として2変量対数正規分布を採用しているが、これに限定されるものではなく、2つの変量のいずれの要素であってもマイナス側での確率がゼロとなる、例えばガンマ分布、ポアソン分布等を用いることができる。   In the above, although the square of the reciprocal of the stress wave propagation velocity is used as one axis of the probability distribution curve, it is particular about this if it is a function that can obtain a linear approximation with the water content of the other axis It is not a thing. In addition, although bivariate lognormal distribution is adopted as the probability distribution, the present invention is not limited to this, and the probability on the negative side becomes zero for any element of two variables, for example, gamma distribution , Poisson distribution, etc. can be used.

以上説明したように、本発明は伝播速度を求めるだけで、実用レベルの木材の含水率を得ることができ、また、確率分布曲線を用いているので、得られた含水率についての信用区間も計算できることになる。従って、木材資源を利用する生産現場、流通現場での利用価値は大きいものと考えられる。   As described above, the present invention can obtain the water content of practical level wood only by determining the propagation speed, and also uses the probability distribution curve, so the credit interval for the obtained water content is also obtained. It can be calculated. Therefore, the value of use at production sites and distribution sites utilizing wood resources is considered to be large.

11・・プローブ
10・・伝播速度測定手段
20・・記憶手段
30・・推定値演算手段
40・・表示部
11 · · · probe 10 · · propagation speed measuring means 20 · · storage means 30 · · estimated value calculating means 40 · · display unit

Claims (10)

木材の含水率と応力波伝播速度のデータベースより、「含水率-伝播速度の関数」の座標面上の、2変量のマイナス側の確率がゼロとなる確率密度をその平面に垂直な軸とする確率分布曲面を表す式をそのパラメータとともに求めるステップと、
測定対象の木材の伝播速度C0を求めるステップと、
前記伝播速度C0より、前記座標面上の前記伝播速度C0に対応する直線の前記座標平面に垂直な面と前記確率分布曲面の交曲線の、前記パラメータより得られるピーク点より含水率の推定値を求めるステップと、
を備えたことを特徴とする木材の含水率推定方法。
From the moisture content of wood and the stress wave propagation velocity database, the probability density with which the probability of the minus side of the bivariate becomes zero on the coordinate surface of "moisture content-function of propagation velocity" is taken as the axis perpendicular to that plane Determining an expression representing a probability distribution surface together with its parameters;
Determining the propagation velocity C 0 of the wood to be measured;
Than the propagation speed C 0, the straight line of the coordinate plane to a plane perpendicular to the probability distribution curved surface of交曲line corresponding to the propagation velocity C 0 on the coordinate plane, the water content from the peak point obtained from the parameter Obtaining an estimated value;
A method for estimating the moisture content of wood, comprising:
前記含水率の推定値に加えて、その値の信用区間を求める請求項1に記載の木材の含水率推定方法。   The method for estimating moisture content of wood according to claim 1, wherein a credit interval of the value is determined in addition to the estimated value of moisture content. 前記応力波伝播速度の関数として応力波伝播速度の逆数の2乗を用いた、請求項1に記載の木材の含水率推定方法。   The method for estimating moisture content of wood according to claim 1, wherein a square of an inverse number of stress wave propagation speed is used as a function of the stress wave propagation speed. 前記2変量のマイナス側の確率がゼロとなる確率分布として2変量対数正規分布を表す式を用いた請求項1に記載の木材の含水率推定方法。   The method for estimating the moisture content of wood according to claim 1, wherein a formula representing a bivariate lognormal distribution is used as the probability distribution in which the probability on the negative side of the bivariate is zero. 前記2変量対数正規分布の各パラメータはハミルトニアン・モンテカルロ法で求める請求項4に記載の木材の含水率推定方法。   The method according to claim 4, wherein each parameter of the bivariate lognormal distribution is determined by a Hamiltonian Monte Carlo method. 木材の含水率と伝播速度のデータベースより、「含水率-伝播速度の関数」の座標面上に、2変量のマイナス側の確率がゼロとなる確率密度をその平面に垂直な軸とする確率分布曲面を表す式をそのパラメータとともに記憶した記憶手段と、
測定対象の木材の応力波伝播速度C0を求める伝播速度測定手段と、
前記伝播速度C0と、前記パラメータより得られる前記確率分布曲面上のピーク点より含水率の推定値を求める推定値演算手段と、
を備えたことを特徴とする木材の含水率推定装置。
From the moisture content and propagation velocity database of wood, probability distribution with the probability density at which the probability on the minus side of the bivariate becomes zero on the axis perpendicular to that surface on the coordinate surface of "function of moisture content-propagation velocity" Storage means storing an expression representing a curved surface together with its parameters;
A propagation velocity measuring means for determining stress wave propagation velocity C 0 of wood to be measured;
Estimated value calculation means for obtaining an estimated value of water content from the propagation speed C 0 and a peak point on the probability distribution curved surface obtained from the parameter;
Moisture content estimation device of wood characterized by having.
前記含水率の推定値に加えて、その値の信用区間を求める請求項6に記載の木材の含水率推定装置。   The wood moisture content estimation device according to claim 6, wherein a credit interval of the value is determined in addition to the estimated value of the moisture content. 前記応力波伝播速度の関数として応力波伝播速度の逆数の2乗を用いた、請求項6に記載の木材の含水率推定装置。   The wood moisture content estimation device according to claim 6, wherein a square of an inverse number of the stress wave propagation speed is used as a function of the stress wave propagation speed. 前記2変量のマイナス側の確率がゼロとなる確率分布として2変量対数正規分布を表す式を用いた請求項6に記載の木材の含水率推定装置。   The moisture content estimation device for wood according to claim 6, wherein a formula representing a bivariate lognormal distribution is used as the probability distribution in which the probability on the negative side of the bivariate is zero. 前記2変量対数正規分布の各パラメータはハミルトニアン・モンテカルロ法で求める請求項9に記載の木材の含水率推定装置。 10. The wood moisture content estimation apparatus according to claim 9, wherein each parameter of the bivariate lognormal distribution is determined by a Hamiltonian Monte Carlo method.
JP2017184852A 2017-09-26 2017-09-26 Moisture content estimation method for wood and its equipment Active JP6920729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184852A JP6920729B2 (en) 2017-09-26 2017-09-26 Moisture content estimation method for wood and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184852A JP6920729B2 (en) 2017-09-26 2017-09-26 Moisture content estimation method for wood and its equipment

Publications (2)

Publication Number Publication Date
JP2019060692A true JP2019060692A (en) 2019-04-18
JP6920729B2 JP6920729B2 (en) 2021-08-18

Family

ID=66178139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184852A Active JP6920729B2 (en) 2017-09-26 2017-09-26 Moisture content estimation method for wood and its equipment

Country Status (1)

Country Link
JP (1) JP6920729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096197A (en) * 2019-12-19 2021-06-24 中日本ハイウェイ・エンジニアリング東京株式会社 Concrete structure interior situation checking method, and system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096197A (en) * 2019-12-19 2021-06-24 中日本ハイウェイ・エンジニアリング東京株式会社 Concrete structure interior situation checking method, and system using the same

Also Published As

Publication number Publication date
JP6920729B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
Legg et al. Measurement of stiffness of standing trees and felled logs using acoustics: A review
Dackermann et al. In situ assessment of structural timber using stress-wave measurements
Feng et al. Tomographic image reconstruction using an interpolation method for tree decay detection
Íñiguez-González et al. Reference conditions and modification factors for the standardization of nondestructive variables used in the evaluation of existing timber structures
US7066007B2 (en) Systems and methods for predicting the bending stiffness of wood products
Alves et al. Application of acoustic tomography and ultrasonic waves to estimate stiffness constants of muiracatiara Brazilian wood
Tippner et al. Experimental evaluation of mechanical properties of softwood using acoustic methods
Espinosa et al. Ultrasound computed tomography on standing trees: accounting for wood anisotropy permits a more accurate detection of defects
Chiu et al. Application of Nondestructive Methods to Evaluate Mechanical Properties of 32-Year-Old Taiwan Incense Cedar (Calocedrus formosana) Wood.
Alves et al. Determination of the transverse Young’s modulus (TYM) of wood by means of an input power technique
Oh et al. Feasibility of ultrasonic spectral analysis for detecting insect damage in wooden cultural heritage
JP2006053045A (en) Method and apparatus for inspecting inside of tree in non-destructive manner using acoustic tomography
JP2019060692A (en) Method for estimating water content in wood and device therefor
Krajnc et al. The use of ultrasound velocity and damping for the detection of internal structural defects in standing trees of European beech and Norway spruce
Planès et al. LOCADIFF: Locating a weak change with diffuse ultrasound
Wei et al. Research on stress wave wood nondestructive testing technology
Teder et al. Investigation of the physical-mechanical properties of timber using ultrasound examination
Xu et al. Propagation behavior of acoustic wave in wood
Krajnc et al. Evaluating timber quality in larger-diameter standing trees: rethinking the use of acoustic velocity
Elsener Material characterization of timber utility poles using experimental approaches
Liu et al. Effects of moisture content and fiber proportion on stress wave velocity in cathay poplar (Populus cathayana) wood
Vun et al. Calibration of non-contact ultrasound as an online sensor for wood characterization: Effects of temperature, moisture, and scanning direction
JP6723605B2 (en) Measuring method of Young&#39;s modulus of wood and its equipment
Lee et al. Indirect detection of internal defects in wooden rafter with ultrasound
Lin et al. Nondestructive testing of wood defects based on stress wave technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6920729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250