JP2019060393A - Axial direction input type fluid-encapsulated cylindrical vibration control device - Google Patents

Axial direction input type fluid-encapsulated cylindrical vibration control device Download PDF

Info

Publication number
JP2019060393A
JP2019060393A JP2017184781A JP2017184781A JP2019060393A JP 2019060393 A JP2019060393 A JP 2019060393A JP 2017184781 A JP2017184781 A JP 2017184781A JP 2017184781 A JP2017184781 A JP 2017184781A JP 2019060393 A JP2019060393 A JP 2019060393A
Authority
JP
Japan
Prior art keywords
fluid
axial direction
axial
intermediate sleeve
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017184781A
Other languages
Japanese (ja)
Inventor
廷志 久米
Takashi Kume
廷志 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2017184781A priority Critical patent/JP2019060393A/en
Publication of JP2019060393A publication Critical patent/JP2019060393A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

To provide an axial direction input type fluid-encapsulated cylindrical vibration control device in a novel structure capable of realizing excellent vibration control performance while reducing the number of vulcanized moldings.SOLUTION: A main body rubber elastic body 16 fixed to an inner shaft member 12 comprises outer wall rubbers 40 and 42 and a partition wall rubber 46, and fluid chambers 68 and 70 are provided at both sides of the partition wall rubber 46 in an axial direction. In an intermediate sleeve 20 fixed to the main body rubber elastic body 16, on the other hand, annular parts 22 and 24 that are fixed to the outer wall rubbers 40 and 42, at both sides in the axial direction and coupling parts 26 and 28 which couple the annular parts 22 and 24 are formed. Circumferential groove parts 58 and 59 extending in the annular parts 22 and 24 in a circumferential direction and fluid chamber connection groove parts 60 and 61 extending to the coupling parts 26 and 28 and connecting the circumferential groove parts 58 and 59 to the fluid chambers 68 and 70 are formed on an outer peripheral surface of the intermediate sleeve 20. The circumferential groove parts 58 and 59 and the fluid chamber connection groove parts 60 and 61 are covered by an outer cylinder member 14, and an orifice passage 72 is formed.SELECTED DRAWING: Figure 1

Description

本発明は、自動車のキャブマウントなどに適用される流体封入式筒形防振装置に係り、特に軸方向の入力に対する防振性能を発揮する軸方向入力型の流体封入式筒形防振装置に関するものである。   The present invention relates to a fluid-filled cylindrical vibration damping device applied to a cab mount of an automobile, and more particularly to an axial direction input fluid-filled cylindrical vibration damping device that exhibits vibration damping performance against an axial input. It is a thing.

従来から、自動車のキャブマウントなどに適用される軸方向入力型の流体封入式筒形防振装置が知られている。軸方向入力型の流体封入式筒形防振装置は、特許第5552059号公報(特許文献1)などに示されているように、インナ軸部材がアウタ筒部材に挿通されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって連結されており、軸方向振動入力時に相対的な圧力変動が生ぜしめられる2つの流体室が軸方向両側に設けられていると共に、それら流体室を相互に連通するオリフィス通路が設けられた構造を有している。   BACKGROUND ART Conventionally, an axial input type fluid-filled cylindrical vibration-damping device applied to a cab mount or the like of an automobile is known. As shown in Japanese Patent No. 5552059 (Patent Document 1) and the like, an axial input type fluid-filled cylindrical vibration-damping device is formed by inserting an inner shaft member into an outer cylinder member, and the inner shaft members And the outer cylinder member are connected by the main rubber elastic body, and two fluid chambers are provided on both sides in the axial direction in which relative pressure fluctuation is generated at the time of axial vibration input, and these fluid chambers are mutually It has a structure in which an orifice passage that communicates is provided.

ところで、特許文献1に示された軸方向入力型の流体封入式筒形防振装置は、2つの流体室を隔てる隔壁ゴムを備えており、隔壁ゴムの内周部分にオリフィス通路を形成するオリフィス部材が固着された構造を有している。   By the way, the axial direction input type fluid-filled cylindrical vibration damping device disclosed in Patent Document 1 includes a partition rubber separating two fluid chambers, and an orifice forming an orifice passage in the inner peripheral portion of the partition rubber. It has a structure in which the members are fixed.

しかしながら、特許文献1の構造では、隔壁ゴムが本体ゴム弾性体を構成する軸方向両側の外壁ゴムとは別体とされており、2つの流体室の軸方向壁部を構成する外壁ゴムの加硫成形品と隔壁ゴムの加硫成形品が互いに別部品となることで、部品点数が多くなると共に、加硫成形工程や組立工程において工程数が多くなるという問題があった。   However, in the structure of Patent Document 1, the partition wall rubber is separated from the outer wall rubbers on both sides in the axial direction that constitute the main rubber elastic body, and the outer wall rubbers forming the axial wall portions of the two fluid chambers are added. Since the vulcanized molded product and the vulcanized molded product of the partition wall rubber become separate parts from each other, the number of parts increases, and there is a problem that the number of processes increases in the vulcanization molding process and the assembly process.

また、特許文献1の構造では、オリフィス通路を形成するオリフィス部材が隔壁ゴムの内周部分に設けられていることから、周方向に延びるオリフィス通路の通路長を長く確保し難く、オリフィス通路による防振効果を有効に得ようとすると、オリフィス通路をチューニング可能な周波数域が狭くなり易かった。   Further, in the structure of Patent Document 1, since the orifice member forming the orifice passage is provided on the inner peripheral portion of the partition rubber, it is difficult to secure a long passage length of the orifice passage extending in the circumferential direction. In order to obtain the vibration effect effectively, it was easy to narrow the frequency range in which the orifice passage can be tuned.

特許第5552059号公報Patent 5552059 gazette

本発明は、上述の事情を背景に為されたものであって、その解決課題は、加硫成形品の部品点数を少なくしつつ、優れた防振性能を実現することができる、新規な構造の軸方向入力型の流体封入式筒形防振装置を提供することにある。   The present invention has been made against the background described above, and the problem to be solved is a novel structure capable of realizing excellent vibration-proofing performance while reducing the number of parts of a vulcanized molded article. It is an object of the present invention to provide a fluid filled cylindrical vibration damping device of the axial input type.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   The following describes aspects of the present invention made to solve such problems. In addition, the component employ | adopted in each aspect described below can be employ | adopted as much as possible in arbitrary combination.

すなわち、本発明の第一の態様は、インナ軸部材とアウタ筒部材とが本体ゴム弾性体で連結されており、軸方向両側に設けられて軸方向振動入力時に相対的な圧力変動が生ぜしめられる複数の流体室と、該複数の流体室を連通するオリフィス通路とが設けられた軸方向入力型の流体封入式筒形防振装置において、前記本体ゴム弾性体が前記インナ軸部材に固着されて軸方向両側の外壁ゴムと軸方向中間部分の隔壁ゴムとを有しており、前記流体室が該隔壁ゴムの軸方向両側に設けられている一方、該本体ゴム弾性体の外周面に中間スリーブが固着されており、該中間スリーブにおいて該各外壁ゴムの外周面に固着された軸方向両側の環状部と軸方向両側の該環状部を連結する連結部とが形成されていると共に、該中間スリーブの外周面上において、該環状部を周方向に延びる周方向溝部と、該周方向溝部から該連結部に延び出して該周方向溝部を該複数の流体室に接続する流体室接続溝部とが形成されており、該周方向溝部と該流体室接続溝部とが前記アウタ筒部材で覆われることによって前記オリフィス通路が形成されていることを、特徴とする。   That is, in the first aspect of the present invention, the inner shaft member and the outer cylindrical member are connected by the main rubber elastic body, and provided on both sides in the axial direction to cause relative pressure fluctuation at the time of axial vibration input. In the axial direction input fluid-sealed cylindrical vibration-damping device having a plurality of fluid chambers and an orifice passage communicating the fluid chambers, the main rubber elastic body is fixed to the inner shaft member. The outer wall rubber on both sides in the axial direction and the partition rubber in the middle portion in the axial direction, and the fluid chambers are provided on both sides in the axial direction of the partition rubber, A sleeve is fixed, and in the intermediate sleeve, an annular portion on both sides in the axial direction fixed to the outer peripheral surface of the outer wall rubber and a connecting portion for connecting the annular portion on both sides in the axial direction are formed. On the outer peripheral surface of the intermediate sleeve A circumferential groove extending in the circumferential direction of the annular portion; and a fluid chamber connecting groove extending from the circumferential groove to the connecting portion and connecting the circumferential groove to the plurality of fluid chambers. The orifice passage is formed by covering the circumferential groove and the fluid chamber connection groove with the outer cylinder member.

このような第一の態様に従う構造とされた軸方向入力型の流体封入式筒形防振装置によれば、本体ゴム弾性体が軸方向両側の外壁ゴムと軸方向中間部分の隔壁ゴムとを有していることにより、それら外壁ゴムと隔壁ゴムを1つの加硫成形品として形成することができる。それ故、外壁ゴムと隔壁ゴムが別体とされた従来構造に比して、加硫成形品の数を少なくすることができて、加硫成形の工程数を少なくすることができると共に、部品点数の削減によって組立工程も簡単になる。   According to the fluid input type cylindrical vibration isolation device of the axial direction input type having the structure according to the first aspect, the main rubber elastic body comprises the outer wall rubber on both sides in the axial direction and the partition rubber in the axial intermediate portion. By having them, the outer wall rubber and the partition rubber can be formed as one vulcanized molded product. Therefore, as compared with the conventional structure in which the outer wall rubber and the partition rubber are separated, the number of vulcanized molded articles can be reduced, and the number of steps of vulcanization molding can be reduced, and the parts The reduction of points also simplifies the assembly process.

また、中間スリーブの外周面上に形成された周方向溝部と流体室接続溝部の開口がアウタ筒部材で覆われることによって、オリフィス通路が形成されていることから、オリフィス通路を形成するために特別なオリフィス部材を設ける必要がない。しかも、オリフィス通路が中間スリーブの外周面上を延びるように設けられることで、オリフィス通路の通路長さを長く確保し易く、オリフィス通路のチューニング周波数を大きな自由度で設定することができると共に、オリフィス通路による防振効果を有効に得ることができる。加えて、周方向溝部が連結部に延び出す流体室接続溝部によって流体室に接続されていることから、オリフィス通路の通路長を流体室接続溝部によって更に長く確保し易い。   Further, since the orifice passage is formed by covering the circumferential groove formed on the outer peripheral surface of the intermediate sleeve and the opening of the fluid chamber connection groove with the outer cylindrical member, the orifice passage is formed. There is no need to provide an orifice member. Moreover, by providing the orifice passage so as to extend on the outer peripheral surface of the intermediate sleeve, the passage length of the orifice passage can be easily secured long, and the tuning frequency of the orifice passage can be set with a large degree of freedom. The vibration damping effect by the passage can be effectively obtained. In addition, since the circumferential groove is connected to the fluid chamber by the fluid chamber connecting groove extending out to the connecting portion, the passage length of the orifice passage can be easily secured longer by the fluid chamber connecting groove.

本発明の第二の態様は、第一の態様に記載された軸方向入力型の流体封入式筒形防振装置において、前記中間スリーブにおける軸方向両側の前記環状部の軸方向間には、前記隔壁ゴムの外周面に固着された中間固着部が形成されているものである。   According to a second aspect of the present invention, in the axial input type fluid-filled cylindrical anti-vibration device described in the first aspect, an axial direction between the annular portions on both axial sides of the intermediate sleeve is An intermediate fixing portion fixed to the outer peripheral surface of the partition rubber is formed.

第二の態様によれば、隔壁ゴムの外周面が中間スリーブの中間固着部に固着されることで、隔壁ゴムの外周端部がアウタ筒部材側に強固に固定されて、軸方向の振動入力に対して外壁ゴムと隔壁ゴムの間に形成される流体室の内圧変動が安定して惹起される。   According to the second aspect, the outer peripheral surface of the partition rubber is fixed to the intermediate fixing portion of the intermediate sleeve, whereby the outer peripheral end of the partition rubber is firmly fixed to the outer cylindrical member side, and the vibration in the axial direction is input. On the other hand, the internal pressure fluctuation of the fluid chamber formed between the outer wall rubber and the partition rubber is stably induced.

本発明の第三の態様は、第一又は第二の態様に記載された軸方向入力型の流体封入式筒形防振装置において、前記インナ軸部材が前記隔壁ゴムに固着される隔壁補強部を備えているものである。   According to a third aspect of the present invention, in the axial direction input fluid-filled cylindrical vibration-damping device described in the first or second aspect, a partition reinforcing portion in which the inner shaft member is fixed to the partition rubber Are provided.

第三の態様によれば、軸方向の振動入力に対する隔壁ゴムの変形量が隔壁補強部によって制限されて、外壁ゴムと隔壁ゴムの変形量の差が大きくなることから、流体室における内圧変動がより大きく生ぜしめられる。これにより、オリフィス通路を通じた流体室間の流体流動が効率的に生ぜしめられて、流体の流動作用による防振効果が有利に発揮される。   According to the third aspect, the amount of deformation of the partition rubber with respect to the vibration input in the axial direction is limited by the partition reinforcing portion, and the difference between the amounts of deformation of the outer wall rubber and the partition rubber becomes large. It is produced bigger. Thereby, the fluid flow between the fluid chambers through the orifice passage is efficiently generated, and the vibration damping effect by the fluid flow action is advantageously exhibited.

本発明の第四の態様は、第一〜第三の何れか1つの態様に記載された軸方向入力型の流体封入式筒形防振装置において、前記周方向溝部が軸方向両側の前記環状部に形成されているものである。   According to a fourth aspect of the present invention, in the axial direction input fluid-filled cylindrical anti-vibration device described in any one of the first to third aspects, the circumferential groove portion has the annular shape on both sides in the axial direction. It is formed in the part.

第四の態様によれば、軸方向両側の環状部にそれぞれ設けられた周方向溝部を含んでオリフィス通路を形成することにより、通路長の長いオリフィス通路をスペース効率よく得ることができる。   According to the fourth aspect, by forming the orifice passage by including the circumferential grooves respectively provided in the annular portions on both axial sides, it is possible to obtain an orifice passage having a long passage length in a space efficient manner.

本発明の第五の態様は、第一〜第四の何れか1つの態様に記載された軸方向入力型の流体封入式筒形防振装置において、前記中間スリーブが中心軸を含む直交三軸のそれぞれに関して180°の回転対称体とされているものである。   According to a fifth aspect of the present invention, in the axial direction input fluid-filled cylindrical vibration damping device described in any one of the first to fourth aspects, the intermediate sleeve includes three central axes. Is considered to be a rotationally symmetric object of 180 ° with respect to each of the above.

第五の態様によれば、例えば中間スリーブを本体ゴム弾性体の加硫成形用金型にセットする際に、中間スリーブの向きを簡単に決めることができる。   According to the fifth aspect, for example, when setting the intermediate sleeve in the mold for vulcanizing and forming the main body rubber elastic body, the orientation of the intermediate sleeve can be easily determined.

なお、本態様に従う構造の中間スリーブは、例えば、周方向溝を軸方向両側の環状部に形成すると共に、流体室接続溝部が連結部の外周面上に固着されたゴム弾性体に形成することで得ることができる。   In the intermediate sleeve of the structure according to the present embodiment, for example, the circumferential groove is formed in the annular portion on both sides in the axial direction, and the fluid chamber connection groove portion is formed in the rubber elastic body fixed on the outer peripheral surface of the connecting portion. Can be obtained by

本発明によれば、インナ軸部材とアウタ筒部材を連結する本体ゴム弾性体が、流体室の壁部を構成する軸方向両側の外壁ゴムと軸方向中間部分の隔壁ゴムとを有しており、それら外壁ゴムと隔壁ゴムが1つの加硫成形品として形成されている。それ故、外壁ゴムと隔壁ゴムが別体とされた従来構造に比して、加硫成形品の数を少なくすることができて、加硫成形の工程数を少なくすることができると共に、部品点数の削減によって組立工程も簡単になる。また、中間スリーブの外周面上に形成された周方向溝部と流体室接続溝部の開口がアウタ筒部材で覆われることによって、オリフィス通路が形成されていることから、オリフィス通路を形成するための特別なオリフィス部材を設けることなく、通路長の長いオリフィス通路を形成することができて、オリフィス通路のチューニング周波数を大きな自由度で設定しながら、オリフィス通路による防振効果を有効に得ることができる。   According to the present invention, the main rubber elastic body connecting the inner shaft member and the outer cylindrical member has the outer wall rubber on both axial sides constituting the wall portion of the fluid chamber and the partition rubber in the axial middle portion. The outer wall rubber and the partition rubber are formed as one vulcanized molded product. Therefore, as compared with the conventional structure in which the outer wall rubber and the partition rubber are separated, the number of vulcanized molded articles can be reduced, and the number of steps of vulcanization molding can be reduced, and the parts The reduction of points also simplifies the assembly process. In addition, since the orifice passage is formed by covering the circumferential groove formed on the outer peripheral surface of the intermediate sleeve and the opening of the fluid chamber connection groove with the outer cylindrical member, a special method for forming the orifice passage is provided. It is possible to form an orifice passage having a long passage length without providing an orifice member, and it is possible to effectively obtain the vibration damping effect by the orifice passage while setting the tuning frequency of the orifice passage with a large degree of freedom.

本発明の第一の実施形態としての下側マウントを示す断面図。FIG. 1 is a cross-sectional view showing a lower mount as a first embodiment of the present invention. 図1のII−II断面図。II-II sectional drawing of FIG. 図1のIII−III断面図。III-III sectional drawing of FIG. 図1に示す下側マウントを構成する中間スリーブの斜視図。FIG. 2 is a perspective view of an intermediate sleeve that constitutes the lower mount shown in FIG. 1; 図4に示す中間スリーブの正面図。FIG. 5 is a front view of the intermediate sleeve shown in FIG. 4; 図4に示す中間スリーブの右側面図。FIG. 5 is a right side view of the intermediate sleeve shown in FIG. 4; 図6のVII−VII断面図。VII-VII sectional drawing of FIG. 図5のVIII−VIII断面図。VIII-VIII sectional drawing of FIG. 図1に示す下側マウントを構成する一体加硫成形品の斜視図。FIG. 2 is a perspective view of an integrally vulcanized molded product constituting the lower mount shown in FIG. 1; 図9に示す一体加硫成形品の平面図。FIG. 10 is a plan view of the integrally vulcanized molded article shown in FIG. 9; 図9に示す一体加硫成形品の正面図。The front view of the integral vulcanization molded article shown in FIG. 図9に示す一体加硫成形品の背面図。FIG. 10 is a rear view of the integrally vulcanized molded article shown in FIG. 9; 図9に示す一体加硫成形品の右側面図。FIG. 10 is a right side view of the integrally vulcanized molded article shown in FIG. 9; 図9に示す一体加硫成形品の左側面図。The left view of the integral vulcanization molded article shown in FIG. 図13のXV−XV断面図。XV-XV sectional drawing of FIG. 図11のXVI−XVI断面図。XVI-XVI sectional drawing of FIG. 図11のXVII−XVII断面図。XVII-XVII sectional drawing of FIG. 図11のXVIII−XVIII断面図。XVIII-XVIII sectional drawing of FIG. 本発明の別の一実施形態としての下側マウントを構成する一体加硫成形品の断面図。Sectional drawing of the integrally vulcanized molded article which comprises the lower side mount as another one Embodiment of this invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜3には、本発明に従う構造とされた軸方向入力型の流体封入式筒形防振装置の第一の実施形態として、キャブマウントを構成する下側マウント10が示されている。この下側マウント10は、インナ軸部材12とアウタ筒部材14が本体ゴム弾性体16によって弾性連結された構造を有している。以下の説明において、上下方向とは、原則として、軸方向となる図1中の上下方向を言う。   FIGS. 1 to 3 show a lower mount 10 constituting a cab mount as a first embodiment of an axial direction input fluid-filled cylindrical vibration-damping device having a structure according to the present invention. The lower mount 10 has a structure in which the inner shaft member 12 and the outer cylindrical member 14 are elastically connected by the main rubber elastic body 16. In the following description, the up and down direction basically refers to the up and down direction in FIG. 1 which is the axial direction.

より詳細には、インナ軸部材12は、金属などで形成されており、直線的に延びる小径の略円筒形状を有している。また、インナ軸部材12の軸方向中間部分には、外周へ突出する隔壁補強部としての補強板部材18が固定されている。本実施形態の補強板部材18は、合成樹脂や金属などで形成された硬質の部材であって、略円環板形状を有しており、インナ軸部材12に外嵌状態で固定されることによって、インナ軸部材12の外周面から全周に亘って外周へ突出している。   More specifically, the inner shaft member 12 is formed of metal or the like, and has a substantially cylindrical shape with a small diameter extending linearly. Further, at an axially intermediate portion of the inner shaft member 12, a reinforcing plate member 18 as a partition reinforcing portion projecting to the outer periphery is fixed. The reinforcing plate member 18 of the present embodiment is a hard member formed of a synthetic resin, metal or the like, has a substantially annular plate shape, and is fixed to the inner shaft member 12 in an externally fitted state. Thus, the inner shaft member 12 projects from the outer peripheral surface of the inner shaft member 12 to the outer periphery over the entire periphery.

さらに、インナ軸部材12は、中間スリーブ20に対して挿通状態で配設されている。中間スリーブ20は、図4〜8に示すように、薄肉大径の略円筒形状を有しており、軸方向両側に設けられた上下の環状部22,24と、それら上下の環状部22,24を相互に連結する前後一対の連結部26,28とを備えている。更に、中間スリーブ20における一対の連結部26,28の周方向間には、左右方向に貫通する一対の窓部29a,29bが形成されている。   Furthermore, the inner shaft member 12 is disposed to be inserted into the intermediate sleeve 20. As shown in FIGS. 4-8, the intermediate sleeve 20 has a thin-walled large-diameter, substantially cylindrical shape, and upper and lower annular portions 22 and 24 provided on both sides in the axial direction, and the upper and lower annular portions 22, A pair of front and rear connecting portions 26, 28 are provided to connect the two 24 together. Further, between the circumferential direction of the pair of connecting portions 26 and 28 in the intermediate sleeve 20, a pair of window portions 29a and 29b penetrating in the left-right direction is formed.

上下の環状部22,24における軸方向外側の端部と、一対の窓部29a,29bの開口縁部は、拡径されて外周側へ突出している。これらによって、上下の環状部22,24は、連結部26,28への接続部分を周方向に外れた部分において溝状とされており、中間スリーブ20の外周面上において周方向に延びる上下の周溝30,32を備えている。なお、一対の連結部26,28の外周面は、上下の環状部22,24における上下の周溝30,32の底壁面と略同じ径方向位置にあり、一対の連結部26,28の外周面と上下の周溝30,32の底壁面が段差等なく滑らかに連続している。   The axially outer end portions of the upper and lower annular portions 22 and 24 and the opening edge portions of the pair of window portions 29a and 29b are expanded in diameter and project outward. Thus, the upper and lower annular portions 22 and 24 are groove-shaped at a portion deviating in the circumferential direction from the connection portion to the connecting portions 26 and 28, and the upper and lower annular portions 22 and 24 extend in the circumferential direction on the outer peripheral surface of the intermediate sleeve 20. The circumferential grooves 30, 32 are provided. The outer peripheral surfaces of the pair of connecting portions 26 and 28 are at substantially the same radial positions as the bottom wall surfaces of the upper and lower circumferential grooves 30 and 32 in the upper and lower annular portions 22 and 24. The surface and the bottom wall surfaces of the upper and lower circumferential grooves 30, 32 are smoothly continuous without any step or the like.

更にまた、中間スリーブ20における上下の環状部22,24の軸方向間には、窓部29a,29bの各一方を周方向に跨ぐように延びる中間固着部34a,34bが設けられており、各中間固着部34の周方向両端部が一対の連結部26,28の各一方につながっている。そして、各窓部29に中間固着部34が設けられていることにより、各窓部29が中間固着部34によって上下に二分されている。なお、中間固着部34a,34bの外周面は、上下の環状部22,24において拡径された軸方向外側の端部および一対の窓部29a,29bの上下開口縁部の外周面に対して、径方向で略同じ位置にあり、連結部26,28の外周面よりも外周側に突出している。   Furthermore, between the axial directions of the upper and lower annular parts 22 and 24 in the intermediate sleeve 20, intermediate fixed parts 34a and 34b extending so as to straddle each one of the windows 29a and 29b in the circumferential direction are provided. Both circumferential end portions of the intermediate fixing portion 34 are connected to one of the pair of connecting portions 26 and 28. Further, by providing the intermediate fixing portion 34 in each window portion 29, each window portion 29 is divided into upper and lower portions by the intermediate fixing portion 34. The outer peripheral surfaces of the intermediate fixing portions 34a and 34b are with respect to the outer peripheral surfaces of the axially outer end portions expanded in the upper and lower annular portions 22 and 24 and the upper and lower opening edges of the pair of windows 29a and 29b. In the radial direction, they are at substantially the same position and project outward from the outer peripheral surface of the connecting portions 26 and 28.

この中間スリーブ20は、インナ軸部材12に外挿された状態で配置されており、それらインナ軸部材12と中間スリーブ20の径方向間に本体ゴム弾性体16が配設されている。本体ゴム弾性体16は、図9〜18に示すように、全体として略円筒形状とされており、内周面がインナ軸部材12の外周面に加硫接着されていると共に、外周面が中間スリーブ20の内周面に加硫接着されている。このように、本実施形態の本体ゴム弾性体16は、インナ軸部材12と中間スリーブ20を備える一体加硫成形品36として形成されている。   The intermediate sleeve 20 is disposed outside the inner shaft member 12, and a main rubber elastic body 16 is disposed between the inner shaft member 12 and the intermediate sleeve 20 in the radial direction. The main rubber elastic body 16 has a generally cylindrical shape as a whole as shown in FIGS. 9 to 18, and the inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the inner shaft member 12, and the outer peripheral surface is intermediate It is vulcanized and bonded to the inner peripheral surface of the sleeve 20. Thus, the main rubber elastic body 16 of the present embodiment is formed as an integrally vulcanized molded article 36 including the inner shaft member 12 and the intermediate sleeve 20.

なお、本実施形態の中間スリーブ20は、図7に示す上下中心軸l1 と、上下中央で前後に延びる図8の前後中心軸l2 と、上下中央で左右に延びる図8の左右中心軸l3 との直交三軸のそれぞれに関して、180°の回転対称体とされている。これにより、例えば、本体ゴム弾性体16の加硫成形用金型に中間スリーブ20をセットして本体ゴム弾性体16を加硫成形する際に、中間スリーブ20を正しい向きで加硫成形用金型にセットする作業が容易になる。 The intermediate sleeve 20 of this embodiment includes a vertical central axis l 1 shown in FIG. 7, a longitudinal center axis l 2 of Figure 8 which extends back and forth up and down the center, left and right center axis of Figure 8 extending to the left and right upper and lower central It is considered to be a 180 ° rotational symmetric body with respect to each of three orthogonal axes with l 3 . Thus, for example, when the intermediate sleeve 20 is set in a mold for vulcanization molding of the main rubber elastic body 16 and the main rubber elastic body 16 is vulcanized and formed, the intermediate sleeve 20 is oriented in the correct direction and the gold for vulcanization molding is formed. The work of setting in the mold becomes easy.

本体ゴム弾性体16には、一対の窓部29a,29bに対応する一対のポケット部38a,38bが、径方向の両側に向けて開口するように設けられている。そして、本体ゴム弾性体16におけるポケット部38a,38bの開口縁部が窓部29a,29bの開口縁部に固着されており、ポケット部38a,38bが窓部29a,29bを通じて外周側へ開放されている。   The body rubber elastic body 16 is provided with a pair of pocket portions 38a and 38b corresponding to the pair of window portions 29a and 29b so as to open toward both sides in the radial direction. The opening edges of the pockets 38a and 38b in the main rubber elastic body 16 are fixed to the opening edges of the windows 29a and 29b, and the pockets 38a and 38b are opened to the outer peripheral side through the windows 29a and 29b. ing.

また、本体ゴム弾性体16において、ポケット部38a,38bの軸方向両側の壁部を構成する部分が、上下の外壁ゴム40,42とされており、インナ軸部材12と中間スリーブ20の環状部22,24との径方向間に連続して広がっている。本実施形態の外壁ゴム40,42は、軸方向内側の面が略軸直角方向に広がる平面とされている一方、軸方向外側の面にすぐり凹部44が設けられており、すぐり凹部44の形成部分において、厚さ寸法が小さくされていると共に、軸方向外側の面が外周へ行くに従って軸方向内側に傾斜するテーパ面とされている。   Further, in the main rubber elastic body 16, portions constituting wall portions on both sides in the axial direction of the pocket portions 38a and 38b are upper and lower outer wall rubbers 40 and 42, and annular portions of the inner shaft member 12 and the intermediate sleeve 20 It extends continuously between 22 and 24 in the radial direction. The outer wall rubbers 40 and 42 according to the present embodiment are flat surfaces extending in the axial direction substantially in the axial direction, and the recessed portions 44 are provided on the outer surface in the axial direction, and the recessed portions 44 are formed. In the portion, the thickness dimension is reduced, and the axially outer surface is a tapered surface which inclines inward axially toward the outer periphery.

さらに、本体ゴム弾性体16における上下の外壁ゴム40,42の軸方向間には、略軸直角方向に広がる隔壁ゴム46が設けられている。隔壁ゴム46は、インナ軸部材12と中間スリーブ20の中間固着部34a,34bとの径方向間に設けられて、内周端部がインナ軸部材12に固着されていると共に、外周端部が中間スリーブ20の中間固着部34a,34bに固着されている。また、隔壁ゴム46の内周部分には、インナ軸部材12に固定された補強板部材18が埋設状態で固着されており、隔壁ゴム46の内周部分の変形剛性が補強板部材18によって高められている。   Further, a partition rubber 46 which extends in a direction substantially perpendicular to the axis is provided between the upper and lower outer wall rubbers 40 and 42 in the main rubber elastic body 16 in the axial direction. The partition rubber 46 is provided between the inner shaft member 12 and the intermediate fixing portions 34 a and 34 b of the intermediate sleeve 20 in the radial direction, and the inner peripheral end is fixed to the inner shaft member 12 and the outer peripheral end is It is fixed to the intermediate fixing portions 34 a and 34 b of the intermediate sleeve 20. Further, a reinforcing plate member 18 fixed to the inner shaft member 12 is fixed in a buried state to the inner peripheral portion of the partition rubber 46 so that the deformation rigidity of the inner peripheral portion of the partition rubber 46 is enhanced by the reinforcing plate member 18 It is done.

この隔壁ゴム46によってポケット部38a,38bは、それぞれ上下に二分されており、隔壁ゴム46の上側に左右一対の上側溝状部48a,48bが形成されていると共に、隔壁ゴム46の下側に左右一対の下側溝状部50a,50bが形成されている。   The pocket portions 38 a and 38 b are respectively divided into upper and lower portions by the partition rubber 46, and a pair of upper and lower upper groove-shaped portions 48 a and 48 b are formed on the upper side of the partition rubber 46. A pair of left and right lower groove portions 50a, 50b are formed.

さらに、上側溝状部48a,48bには、上側連通孔52,52が形成されている。上側連通孔52は、上側溝状部48a,48bが配された径方向(図18中、上下方向)で上側溝状部48a,48bの底壁部を貫通する孔であって、本実施形態では上側溝状部48a,48bの長さ方向(図18中、左右方向)に離れた二つが形成されている。同様に、下側溝状部50a,50bには、上側溝状部48a,48bの上側連通孔52,52と略同じ構造の下側連通孔54,54が形成されている。   Further, upper communication holes 52, 52 are formed in the upper groove-shaped portions 48a, 48b. The upper communication hole 52 is a hole which penetrates the bottom wall portion of the upper groove portions 48a and 48b in the radial direction (vertical direction in FIG. 18) in which the upper groove portions 48a and 48b are disposed. In this case, two are formed apart in the length direction (the left and right direction in FIG. 18) of the upper groove shaped portions 48a and 48b. Similarly, lower communication holes 54, 54 having substantially the same structure as the upper communication holes 52, 52 of the upper groove portions 48a, 48b are formed in the lower groove portions 50a, 50b.

また、中間スリーブ20の連結部26,28の外周面には、本体ゴム弾性体16の溝形成ゴム56,57が固着されている。この溝形成ゴム56,57によって、上側の周溝30が周方向に二分されており、それぞれ半周弱の長さで延びる周方向溝部58aと周方向溝部58bが形成されている。また、下側の周溝32は、周方向の一部が溝形成ゴム57によって周方向に隔てられており、全体としてC字環状をなす周方向溝部59が形成されている。   Further, groove forming rubbers 56 and 57 of the main rubber elastic body 16 are fixed to the outer peripheral surface of the connecting portions 26 and 28 of the intermediate sleeve 20. The upper circumferential groove 30 is divided into two in the circumferential direction by the groove forming rubbers 56 and 57, and a circumferential groove 58a and a circumferential groove 58b are formed, each having a length of less than a half circumference. Further, a part of the lower circumferential groove 32 in the circumferential direction is separated in the circumferential direction by the groove forming rubber 57, and a circumferential groove portion 59 having a C-shape as a whole is formed.

さらに、一方の溝形成ゴム56には、図11に示すように、上側の周方向溝部58aの周方向一端と上側溝状部48aの周方向一端とをつなぐ接続溝60が形成されていると共に、上側の周方向溝部58bの周方向他端と下側溝状部50bの周方向他端とをつなぐ接続溝61が形成されている。他方の溝形成ゴム57には、図12に示すように、上側の周方向溝部58aの周方向他端と下側の周方向溝部59の周方向他端とをつなぐ接続溝62が形成されていると共に、上側の周方向溝部58bの周方向一端と下側の周方向溝部59の周方向一端とをつなぐ接続溝64が形成されている。   Further, as shown in FIG. 11, the groove forming rubber 56 is formed with a connecting groove 60 connecting one circumferential end of the upper circumferential groove 58a and one circumferential end of the upper groove 48a. A connection groove 61 is formed to connect the other circumferential end of the upper circumferential groove 58b and the other circumferential end of the lower groove 50b. On the other groove forming rubber 57, as shown in FIG. 12, a connection groove 62 connecting the other end in the circumferential direction of the upper circumferential groove portion 58a and the other end in the circumferential direction of the lower circumferential groove portion 59 is formed A connection groove 64 is formed which connects one circumferential end of the upper circumferential groove 58b and one circumferential end of the lower circumferential groove 59b.

要するに、上側の周方向溝部58a,58bと、下側の周方向溝部59と、上側溝状部48a,48bと、下側溝状部50a,50bとが、接続溝60,61,62,64によって直列的に接続されている。   In short, the upper circumferential grooves 58a and 58b, the lower circumferential grooves 59, the upper grooves 48a and 48b, and the lower grooves 50a and 50b are formed by the connection grooves 60, 61, 62 and 64, respectively. It is connected in series.

なお、中間スリーブ20は、上下の環状部22,24が本体ゴム弾性体16における軸方向両側の外壁ゴム40,42に固着されていると共に、上下の環状部22,24の外周面は、上下の周方向溝部58,59の溝内面と、軸方向両端部および窓部29a,29bの軸方向両側の開口縁部とにおいて、外壁ゴム40,42から露出している。更に、中間固着部34a,34bの外周面が、本体ゴム弾性体16の隔壁ゴム46から露出している。   The upper and lower annular portions 22 and 24 of the intermediate sleeve 20 are fixed to the outer wall rubbers 40 and 42 on both sides in the axial direction of the main rubber elastic body 16, and the outer peripheral surfaces of the upper and lower annular portions 22 and 24 The groove inner surfaces of the circumferential groove portions 58 and 59 and the opening edge portions on both axial direction both end portions and the axial direction both sides of the window portions 29a and 29b are exposed from the outer wall rubbers 40 and 42. Further, the outer peripheral surfaces of the intermediate fixing portions 34 a and 34 b are exposed from the partition rubber 46 of the main rubber elastic body 16.

かくの如き構造とされた本体ゴム弾性体16の一体加硫成形品36には、アウタ筒部材14が装着されている。アウタ筒部材14は、図1〜3に示すように、薄肉大径の略円筒形状を有していると共に、内周面にはシールゴム層66が被着形成されている。   The outer cylindrical member 14 is mounted on the integrally vulcanized molded product 36 of the main rubber elastic body 16 having such a structure. The outer cylindrical member 14 has a thin-walled, large-diameter, substantially cylindrical shape as shown in FIGS. 1 to 3, and a seal rubber layer 66 is formed on the inner peripheral surface.

そして、アウタ筒部材14は、本体ゴム弾性体16の一体加硫成形品36に外挿された状態で、八方絞りなどの縮径加工を施されることにより、一体加硫成形品36を構成する中間スリーブ20の外周面に嵌着される。また、アウタ筒部材14の内周面と中間スリーブ20の外周面との間にシールゴム層66が配されており、それらアウタ筒部材14と中間スリーブ20の嵌着面間がシールゴム層66によって流体密に封止されている。   Then, the outer cylindrical member 14 is subjected to diameter reduction processing such as octagonal drawing in a state of being extrapolated to the integrally vulcanized molded product 36 of the main body rubber elastic body 16 to configure the integrally vulcanized molded product 36 Is fitted onto the outer peripheral surface of the intermediate sleeve 20. Further, a seal rubber layer 66 is disposed between the inner peripheral surface of the outer cylindrical member 14 and the outer peripheral surface of the intermediate sleeve 20, and the seal rubber layer 66 is a fluid between the fitting surfaces of the outer cylindrical member 14 and the intermediate sleeve 20. It is tightly sealed.

本実施形態では、中間スリーブ20が、外壁ゴム40,42の外周面に固着される環状部22,24に加えて、隔壁ゴム46の外周面に固着される中間固着部34a,34bを備えていることから、アウタ筒部材14が外壁ゴム40,42の外周端部に固定されているとともに隔壁ゴム46の外周端部にも固定されている。   In this embodiment, in addition to the annular portions 22 and 24 fixed to the outer peripheral surface of the outer wall rubbers 40 and 42, the intermediate sleeve 20 includes intermediate fixed portions 34a and 34b fixed to the outer peripheral surface of the partition rubber 46 Since the outer cylinder member 14 is fixed to the outer peripheral end of the outer wall rubbers 40 and 42, the outer cylindrical member 14 is also fixed to the outer peripheral end of the partition rubber 46.

また、図1に示すように、上側溝状部48a,48bの外周開口部がアウタ筒部材14の装着によって流体密に塞がれて、上側流体室68a,68bが形成されている。本実施形態では、径方向両側に形成された上側流体室68a,68bが、上側連通孔52,52を通じて相互に連通されており、実質的に一つの流体室を構成している(図3参照)。   Further, as shown in FIG. 1, the outer peripheral openings of the upper groove-shaped portions 48a and 48b are closed in a fluid-tight manner by the attachment of the outer cylindrical member 14, and the upper fluid chambers 68a and 68b are formed. In the present embodiment, the upper fluid chambers 68a and 68b formed on both sides in the radial direction communicate with each other through the upper communication holes 52 and 52, and substantially constitute one fluid chamber (see FIG. 3). ).

さらに、下側溝状部50a,50bの外周開口部がアウタ筒部材14の装着によって流体密に塞がれて、下側流体室70a,70bが形成されており、上側流体室68a,68bと下側流体室70a,70bが隔壁ゴム46の軸方向両側に設けられている。本実施形態では、径方向両側に形成された下側流体室70a,70bが、下側連通孔54,54を通じて相互に連通されており、実質的に一つの流体室を構成している。   Further, the outer peripheral openings of the lower groove-shaped portions 50a and 50b are closed in a fluid-tight manner by the attachment of the outer cylindrical member 14, and the lower fluid chambers 70a and 70b are formed, and the upper fluid chambers 68a and 68b and the lower are formed. The side fluid chambers 70 a and 70 b are provided on both sides in the axial direction of the partition rubber 46. In the present embodiment, the lower fluid chambers 70a and 70b formed on both sides in the radial direction communicate with each other through the lower communication holes 54 and 54, and substantially constitute one fluid chamber.

本実施形態の上側流体室68a,68bと下側流体室70a,70bは、何れも壁部の一部が本体ゴム弾性体16で構成されて、振動入力時に内圧変動が惹起される受圧室とされている。また、上側流体室68a,68bと下側流体室70a,70bには、非圧縮性流体が封入されている。封入流体は、特に限定されるものではないが、好適には、例えば水やエチレングリコール、アルキレングリコール、ポリアルキレングリコール、シリコーン油、或いはそれらの混合液などの低粘性の液体とされる。   The upper fluid chambers 68a and 68b and the lower fluid chambers 70a and 70b according to the present embodiment are both configured by the main rubber elastic body 16 at a part of the wall portion, and a pressure receiving chamber that causes internal pressure fluctuation at the time of vibration input It is done. Incompressible fluid is enclosed in the upper fluid chambers 68a and 68b and the lower fluid chambers 70a and 70b. The filling fluid is not particularly limited, but is preferably a low viscosity liquid such as water, ethylene glycol, alkylene glycol, polyalkylene glycol, silicone oil, or a mixture thereof.

また、中間スリーブ20の上下の環状部22,24に設けられた周方向溝部58,59と、溝形成ゴム56,57によって中間スリーブ20の連結部26,28上に設けられた接続溝60,61,62,64の外周開口が、アウタ筒部材14の装着によってそれぞれ流体密に塞がれている。これにより、上側流体室68aと下側流体室70bを相互に連通するオリフィス通路72が、上下の周方向溝部58,59と接続溝60,61,62,64によって構成されている。このオリフィス通路72は、流動流体の共振周波数であるチューニング周波数が、通路断面積の通路長に対する比を調節することにより適宜にチューニングされる。また、本実施形態において、連結部26,28に延び出して上下の周方向溝部58,59を流体室68,70に接続する流体室接続溝部は、上側の周方向溝部58aと上側流体室68aとを接続する接続溝60と、上側の周方向溝部58bと下側流体室70bを接続する接続溝61とによって構成されている。   Further, circumferential grooves 58 and 59 provided on the upper and lower annular portions 22 and 24 of the intermediate sleeve 20 and connection grooves 60 provided on the coupling portions 26 and 28 of the intermediate sleeve 20 by the groove forming rubbers 56 and 57, The outer peripheral openings 61, 62 and 64 are closed in a fluid-tight manner by the attachment of the outer cylindrical member 14. As a result, an orifice passage 72 for connecting the upper fluid chamber 68a and the lower fluid chamber 70b to each other is constituted by the upper and lower circumferential groove portions 58, 59 and the connection grooves 60, 61, 62, 64. The orifice passage 72 is appropriately tuned by adjusting the ratio of the passage cross sectional area to the passage length, which is the resonance frequency of the fluid flow. Further, in the present embodiment, the fluid chamber connection grooves extending to the connecting portions 26 and 28 and connecting the upper and lower circumferential grooves 58 and 59 to the fluid chambers 68 and 70 are the upper circumferential groove 58a and the upper fluid chamber 68a. And a connection groove 61 connecting the upper circumferential groove 58b and the lower fluid chamber 70b.

なお、径方向両側に形成された上側流体室68a,68bを連通する上側連通孔52,52によって上側の軸直オリフィス通路を形成すると共に、径方向両側に形成された下側流体室70a,70bを連通する下側連通孔54,54によって下側の軸直オリフィス通路を形成することもできる。これによれば、上側流体室68a,68bおよび下側流体室70a,70bが配された径方向の振動入力に対して、それら軸直オリフィス通路による防振効果を得ることも可能となる。   An upper axial direct orifice passage is formed by upper communication holes 52, 52 communicating upper fluid chambers 68a, 68b formed on both sides in the radial direction, and lower fluid chambers 70a, 70b formed on both sides in the radial direction. The lower communicating holes 54, 54 can communicate with each other to form a lower axial straight orifice passage. According to this, it is also possible to obtain the vibration isolation effect by the axial straight orifice passage with respect to the radial vibration input in which the upper fluid chambers 68a and 68b and the lower fluid chambers 70a and 70b are disposed.

このような構造とされた下側マウント10は、インナ軸部材12が、内孔を貫通して挿通される図示しない固定ボルトによって、自動車のキャブハウジングに装着されると共に、アウタ筒部材14が、例えば図示しないブラケットを介して車両ボデーに装着されることで、車両に装着される。なお、キャブマウントは、要求される特性などによっては、下側マウント10に加えて、主として軸方向の荷重を支持する上側マウントを備えている場合もある。即ち、特許第5552059号公報に開示されたキャブマウントの負荷支持ボディーマウント(102)の如き上側マウントが、キャブハウジングと車両ボデーの上下間に配設され得る。   In the lower mount 10 having such a structure, the inner shaft member 12 is attached to a cab housing of an automobile by a fixing bolt (not shown) inserted through the inner hole, and the outer cylindrical member 14 is For example, it is mounted on a vehicle by being mounted on a vehicle body via a bracket (not shown). In addition to the lower mount 10, the cab mount may be provided with an upper mount that mainly supports an axial load, depending on required characteristics and the like. That is, an upper mount such as the cab mount load support body mount (102) disclosed in Japanese Patent No. 5552059 may be disposed between the cab housing and the upper and lower of the vehicle body.

かかる車両への装着状態において、軸方向の振動が入力されると、外壁ゴム40,42と隔壁ゴム46との変形量の差によって、上側流体室68と下側流体室70の間に液圧差が生ぜしめられる。そして、上側流体室68と下側流体室70を相互に連通するオリフィス通路72において、上下の流体室68,70の液圧差に基づいた流体の流動が生ぜしめられて、流体の流動作用による防振効果が発揮される。   In the vehicle mounted state, when axial vibration is input, the hydraulic pressure difference between the upper fluid chamber 68 and the lower fluid chamber 70 is caused by the difference in the amount of deformation between the outer wall rubbers 40 and 42 and the partition rubber 46. Is born. The fluid flow based on the hydraulic pressure difference between the upper and lower fluid chambers 68 and 70 is generated in the orifice passage 72 which connects the upper fluid chamber 68 and the lower fluid chamber 70 to each other, thereby preventing the fluid flow action. The shaking effect is exhibited.

本実施形態では、外壁ゴム40,42の外周面に固着される環状部22,24と、隔壁ゴム46の外周面に固着される中間固着部34a,34bとが、何れもアウタ筒部材14に固定されていることから、軸方向の振動入力時に、外壁ゴム40,42と隔壁ゴム46の各外周端部がアウタ筒部材14に対して軸方向にずれるのが防止されている。それ故、外壁ゴム40,42と隔壁ゴム46の軸方向間に形成される流体室68,70において、相対的な圧力変動が有効に惹起されて、オリフィス通路72の流体流動量が効率的に確保されることから、流体の流動作用に基づく防振効果を有利に得ることができる。   In the present embodiment, both the annular portions 22 and 24 fixed to the outer peripheral surface of the outer wall rubbers 40 and 42 and the intermediate fixed portions 34 a and 34 b fixed to the outer peripheral surface of the partition rubber 46 Since it is fixed, the outer peripheral end portions of the outer wall rubbers 40 and 42 and the partition rubber 46 are prevented from being displaced in the axial direction with respect to the outer cylindrical member 14 at the time of axial vibration input. Therefore, in the fluid chambers 68, 70 formed between the outer wall rubbers 40, 42 and the partition rubber 46 in the axial direction, relative pressure fluctuations are effectively induced, and the fluid flow rate of the orifice passage 72 is efficiently made. Since it is ensured, the vibration damping effect based on the fluid flow action can be advantageously obtained.

また、本実施形態では、インナ軸部材12に固定された補強板部材18が、本体ゴム弾性体16の隔壁ゴム46に固着されており、隔壁ゴム46の内周部分の変形剛性が補強板部材18で高められていることによって、隔壁ゴム46の実質的な径方向自由長が短くなっている。これにより、軸方向の振動入力時に、外壁ゴム40,42の変形による上下の流体室68,70の容積変化量と、隔壁ゴム46の変形による上下の流体室68,70の容積変化量との差が大きく生じるようにされている。それ故、軸方向の振動入力時に、上下の流体室68,70の液圧差が大きく生ぜしめられて、それら上下の流体室68,70の液圧差に基づいたオリフィス通路72の流体流動が効率的に惹起される。   Further, in the present embodiment, the reinforcing plate member 18 fixed to the inner shaft member 12 is fixed to the partition rubber 46 of the main rubber elastic body 16, and the deformation rigidity of the inner peripheral portion of the partition rubber 46 is a reinforcing plate Due to the increase by 18, the substantial radial free length of the partition rubber 46 is shortened. Thereby, at the time of axial vibration input, the volume change amount of the upper and lower fluid chambers 68, 70 due to the deformation of the outer wall rubbers 40, 42 and the volume change amount of the upper and lower fluid chambers 68, 70 due to the deformation of the partition rubber 46 The difference is made to be large. Therefore, at the time of axial vibration input, the hydraulic pressure difference between the upper and lower fluid chambers 68, 70 is largely produced, and the fluid flow in the orifice passage 72 based on the hydraulic pressure difference between the upper and lower fluid chambers 68, 70 is efficient. Evoked.

なお、本実施形態では、隔壁補強部がインナ軸部材12とは別体形成された補強板部材18で構成された例を示すが、隔壁補強部は、例えばインナ軸部材12の軸方向中間部分に部分的な拡径部として一体的に設けることなども可能である。   In the present embodiment, an example in which the partition reinforcing portion is formed of the reinforcing plate member 18 separately formed from the inner shaft member 12 is shown, but the partition reinforcing portion is, for example, an intermediate portion in the axial direction of the inner shaft member 12 It is also possible to provide it integrally as a partial diameter expansion part.

ここにおいて、本実施形態の下側マウント10では、オリフィス通路72が中間スリーブ20の上下の環状部22,24に設けられた周方向溝部58,59を含んで構成されていることから、オリフィス通路72の長さが中間スリーブ20を大径化することなく長く確保されている。これにより、オリフィス通路72の通路断面積を十分に確保して流体の流動作用に基づく防振効果を有効に得ながら、オリフィス通路72のチューニング周波数をより低周波に設定することも可能となることから、オリフィス通路72のチューニングの自由度を大きく得ることができる。   Here, in the lower mount 10 of the present embodiment, since the orifice passage 72 includes the circumferential groove portions 58 and 59 provided in the upper and lower annular portions 22 and 24 of the intermediate sleeve 20, the orifice passage is formed. The length 72 is secured long without increasing the diameter of the intermediate sleeve 20. As a result, it is possible to set the tuning frequency of the orifice passage 72 to a lower frequency while sufficiently securing the passage sectional area of the orifice passage 72 and effectively obtaining the vibration damping effect based on the fluid flow action. Thus, the degree of freedom in tuning the orifice passage 72 can be obtained.

特に本実施形態では、オリフィス通路72を構成する周方向溝部58,59が軸方向両側の環状部22,24にそれぞれ形成されていることから、オリフィス通路72の通路長がより長く確保されており、オリフィス通路72のチューニング周波数をより大きな自由度で設定することが可能とされている。   In particular, in the present embodiment, since the circumferential groove portions 58 and 59 constituting the orifice passage 72 are respectively formed in the annular portions 22 and 24 on both sides in the axial direction, the passage length of the orifice passage 72 is secured longer. The tuning frequency of the orifice passage 72 can be set with a greater degree of freedom.

さらに、オリフィス通路72が連結部26,28上に設けられた接続溝60,61,62,64を含んで構成されることから、環状部22,24の軸方向間のスペースを有効に利用してオリフィス通路72の通路長をより長く確保することができる。   Furthermore, since the orifice passage 72 includes the connection grooves 60, 61, 62, 64 provided on the connection portions 26, 28, the space between the annular portions 22, 24 in the axial direction is effectively utilized. Thus, the passage length of the orifice passage 72 can be made longer.

また、オリフィス通路72を構成する上下の周方向溝部58,59や接続溝60,61,62,64は、何れも本体ゴム弾性体16の一体加硫成形品36に設けられており、オリフィス通路72を形成するためのオリフィス部材を一体加硫成形品36と別に設ける必要がない。それ故、上下の流体室68,70を隔てる隔壁ゴム46を備えた軸方向入力型の流体封入式筒形防振装置(下側マウント10)において、それら上下の流体室68,70を相互に連通するオリフィス通路72を少ない部品点数で形成することができる。本実施形態の下側マウント10は、本体ゴム弾性体16の一体加硫成形品36とシールゴム層66を備えるアウタ筒部材14の二つの加硫成形品によって構成されており、加硫成形の工程数が少なくなっていると共に、それら加硫成形品を組み付ける工程数も少なくなっている。   The upper and lower circumferential grooves 58, 59 and the connecting grooves 60, 61, 62, 64 constituting the orifice passage 72 are all provided on the integrally vulcanized molded article 36 of the main rubber elastic body 16, and the orifice passage is formed. There is no need to provide an orifice member for forming 72 separately from the integrally vulcanized molded article 36. Therefore, in the axial input type fluid-filled cylindrical anti-vibration device (lower mount 10) provided with the partition rubber 46 separating the upper and lower fluid chambers 68, 70, the upper and lower fluid chambers 68, 70 are mutually The communicating orifice passage 72 can be formed with a small number of parts. The lower mount 10 of this embodiment is constituted by two vulcanized molded articles of the outer cylindrical member 14 provided with the integrally vulcanized molded article 36 of the main rubber elastic body 16 and the seal rubber layer 66, and the process of vulcanization molding As the number is reduced, the number of steps for assembling these vulcanized molded articles is also reduced.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態では周方向溝部58,59が軸方向両側の環状部22,24に形成されていたが、周方向溝部は、何れか一方の環状部だけに形成されていても良い。具体的には、例えば、一周以下の長さで周方向に延びる周方向溝部を形成して、周方向溝部の両端部を連結部に延び出す流体室接続溝部によって各一方の流体室に接続しても良い。更に、両側の環状部に周方向溝部を設ける場合に、各周方向溝部を半周程度の長さとして、それら周方向溝部の各一方の端部を一方の連結部に設けられた接続溝によって相互に接続すると共に、それら周方向溝部の各他方の端部を他方の連結部に設けられた流体室接続溝部によって各一方の流体室に接続することもできる。   Although the embodiments of the present invention have been described above in detail, the present invention is not limited by the specific description. For example, although the circumferential groove portions 58 and 59 are formed in the annular portions 22 and 24 on both sides in the axial direction in the above embodiment, the circumferential groove portions may be formed in only one of the annular portions. Specifically, for example, a circumferential groove extending in the circumferential direction is formed with a length of one or less, and both ends of the circumferential groove are connected to each one fluid chamber by a fluid chamber connection groove extending out to the connecting portion. It is good. Furthermore, when circumferential grooves are provided in the annular portions on both sides, each circumferential groove has a length of about a half circumference, and one end of each circumferential groove is connected to a connection groove provided in one of the connection portions. The other end of each circumferential groove can also be connected to one fluid chamber by means of a fluid chamber connection groove provided in the other connection.

また、中間スリーブ20の連結部26は、周方向で1つだけが設けられていても良いし、3つ以上が設けられていても良い。なお、3つ以上の連結部が設けられている場合には、周方向溝部を流体室に接続する流体室接続溝部や軸方向両側の周方向溝部を相互に接続する接続溝などが、全ての連結部に設けられている必要はない。   Further, only one connecting portion 26 of the intermediate sleeve 20 may be provided in the circumferential direction, or three or more may be provided. When three or more connecting parts are provided, all of the fluid chamber connecting groove connecting the circumferential groove to the fluid chamber, the connecting groove connecting the circumferential grooves on both axial sides, etc. It does not have to be provided at the connecting part.

また、周方向溝部58,59は、中間スリーブ20の環状部22,24に対して直接形成された周溝30,32で形成される態様に限定されず、例えば、環状部22,24の外周面に固着されたゴム弾性体に形成されていても良く、この場合には、環状部22,24を溝状断面とする必要はない。一方、例えば、中間スリーブ20の連結部26,28を接続溝60,61,62,64に対応する溝状断面を有するように加工して、接続溝60,61,62,64を中間スリーブ20の連結部26,28に対して直接形成することもできる。   Further, the circumferential groove portions 58 and 59 are not limited to the aspect formed by the circumferential grooves 30 and 32 directly formed on the annular portions 22 and 24 of the intermediate sleeve 20, for example, the outer periphery of the annular portions 22 and 24 It may be formed of a rubber elastic body fixed to a surface, and in this case, it is not necessary to make the annular parts 22 and 24 into a grooved cross section. On the other hand, for example, the connecting portions 60, 61, 62, 64 of the intermediate sleeve 20 are processed by processing the connecting portions 26, 28 of the intermediate sleeve 20 so as to have grooved cross sections corresponding to the connecting grooves 60, 61, 62, 64. It can also be formed directly on the connection parts 26, 28 of

前記実施形態では、アウタ筒部材14の内周面に本体ゴム弾性体16とは別体のシールゴム層66が設けられた構造を例示したが、アウタ筒部材14の内周面と中間スリーブ20の外周面の間を封止するシール構造は、中間スリーブ20側に設けることもできる。具体的には、例えば、図19に示す本体ゴム弾性体16の一体加硫成形品80のように、中間スリーブ20の外周面における周方向溝部58,59や接続溝60,61,62,64の形成部分を外れた部分にシールゴム部82が固着されていても良い。図19に示すシールゴム部82には、外周面に突出するシールリップ84が設けられており、シール性能の向上が図られている。なお、シールゴム部82は、本体ゴム弾性体16とは別体で形成することで、より優れたシール性能を実現することも可能であるが、図19に示すように本体ゴム弾性体16と一体形成することで、製造の容易化を図ることもできる。また、図19のように中間スリーブ20側にシールゴム部82を設ける場合には、アウタ筒部材14側のシールゴム層66は省略することも可能であり、加硫成形品の点数を少なくすることができて、加硫成形工程を削減することができる。   In the above embodiment, the seal rubber layer 66 separate from the main rubber elastic body 16 is provided on the inner peripheral surface of the outer cylindrical member 14, but the inner peripheral surface of the outer cylindrical member 14 and the intermediate sleeve 20 are illustrated. A seal structure that seals between the outer circumferential surfaces can also be provided on the intermediate sleeve 20 side. Specifically, for example, as in the case of an integrally vulcanized molded article 80 of the main rubber elastic body 16 shown in FIG. 19, circumferential groove portions 58, 59 and connection grooves 60, 61, 62, 64 in the outer peripheral surface of the intermediate sleeve 20. The seal rubber portion 82 may be fixed to a portion out of the formation portion of. The seal rubber portion 82 shown in FIG. 19 is provided with a seal lip 84 projecting to the outer peripheral surface, and the seal performance is improved. Although the seal rubber portion 82 can realize a better sealing performance by being formed separately from the main rubber elastic body 16, it is integrated with the main rubber elastic body 16 as shown in FIG. The formation can also facilitate the manufacture. When the seal rubber portion 82 is provided on the intermediate sleeve 20 side as shown in FIG. 19, the seal rubber layer 66 on the outer cylindrical member 14 side can be omitted, and the number of vulcanized molded articles can be reduced. It is possible to reduce the number of vulcanization molding steps.

10:下側マウント(軸方向入力型の流体封入式筒形防振装置)、12:インナ軸部材、14:アウタ筒部材、16:本体ゴム弾性体、18:補強板部材(隔壁補強部)、20:中間スリーブ、22,24:環状部、26,28:連結部、58,59:周方向溝部、34:中間固着部、40,42:外壁ゴム、46:隔壁ゴム、60,61:接続溝(流体室接続溝部)、68:上側流体室(流体室)、70:下側流体室(流体室)、72:オリフィス通路 10: lower mount (axial input type fluid-filled cylindrical vibration-damping device), 12: inner shaft member, 14: outer cylindrical member, 16: main body rubber elastic body, 18: reinforcing plate member (partition wall reinforcing portion) 20: middle sleeve 22 24: annular part 26, 28: connection part 58, 59: circumferential groove part 34: middle fixed part 40, 42: outer wall rubber 46: partition rubber 60, 61: Connection groove (fluid chamber connection groove), 68: upper fluid chamber (fluid chamber), 70: lower fluid chamber (fluid chamber), 72: orifice passage

Claims (5)

インナ軸部材とアウタ筒部材とが本体ゴム弾性体で連結されており、軸方向両側に設けられて軸方向振動入力時に相対的な圧力変動が生ぜしめられる複数の流体室と、該複数の流体室を連通するオリフィス通路とが設けられた軸方向入力型の流体封入式筒形防振装置において、
前記本体ゴム弾性体が前記インナ軸部材に固着されて軸方向両側の外壁ゴムと軸方向中間部分の隔壁ゴムとを有しており、前記流体室が該隔壁ゴムの軸方向両側に設けられている一方、該本体ゴム弾性体の外周面に中間スリーブが固着されており、該中間スリーブにおいて該各外壁ゴムの外周面に固着された軸方向両側の環状部と軸方向両側の該環状部を連結する連結部とが形成されていると共に、該中間スリーブの外周面上において、該環状部を周方向に延びる周方向溝部と、該周方向溝部から該連結部に延び出して該周方向溝部を該複数の流体室に接続する流体室接続溝部とが形成されており、該周方向溝部と該流体室接続溝部とが前記アウタ筒部材で覆われることによって前記オリフィス通路が形成されていることを特徴とする軸方向入力型の流体封入式筒形防振装置。
The inner shaft member and the outer cylinder member are connected by the main rubber elastic body, and are provided on both sides in the axial direction so as to generate relative pressure fluctuation at the time of axial vibration input, and the plurality of fluids In an axial input type fluid-filled cylindrical anti-vibration device provided with an orifice passage communicating with a chamber,
The main rubber elastic body is fixed to the inner shaft member and has an outer wall rubber on both axial sides and a partition rubber in an axial intermediate portion, and the fluid chambers are provided on both axial sides of the partition rubber On the other hand, an intermediate sleeve is fixed to the outer peripheral surface of the main rubber elastic body, and in the intermediate sleeve, an annular portion on both axial sides fixed to the outer peripheral surface of each outer wall rubber and the annular portion on both axial directions A circumferential groove extending in the circumferential direction on the outer circumferential surface of the intermediate sleeve is formed on the outer peripheral surface of the intermediate sleeve and extends from the circumferential groove to the circumferential portion on the outer peripheral surface of the intermediate sleeve. And a fluid chamber connection groove portion connecting the plurality of fluid chambers, and the orifice passage is formed by covering the circumferential groove portion and the fluid chamber connection groove portion with the outer cylindrical member. Axial direction characterized by Force type fluid-filled cylindrical vibration damping device.
前記中間スリーブにおける軸方向両側の前記環状部の軸方向間には、前記隔壁ゴムの外周面に固着された中間固着部が形成されている請求項1に記載の軸方向入力型の流体封入式筒形防振装置。   The fluid input type of axial direction input type according to claim 1, wherein an intermediate fixed portion fixed to the outer peripheral surface of the partition rubber is formed between the axial direction of the annular portions on both axial sides of the intermediate sleeve. Tubular vibration control device. 前記インナ軸部材が前記隔壁ゴムに固着される隔壁補強部を備えている請求項1又は2に記載の軸方向入力型の流体封入式筒形防振装置。   The fluid-filled cylindrical vibration-damping device of axial direction input type according to claim 1 or 2, wherein the inner shaft member is provided with a partition reinforcing portion fixed to the partition rubber. 前記周方向溝部が軸方向両側の前記環状部に形成されている請求項1〜3の何れか一項に記載の軸方向入力型の流体封入式筒形防振装置。   The fluid-filled cylindrical vibration-damping device of axial direction input type according to any one of claims 1 to 3, wherein the circumferential groove is formed in the annular portion on both axial sides. 前記中間スリーブが中心軸を含む直交三軸のそれぞれに関して180°の回転対称体とされている請求項1〜4の何れか一項に記載の軸方向入力型の流体封入式筒形防振装置。   5. An axially input fluid-filled cylindrical anti-vibration device according to any one of claims 1 to 4, wherein said intermediate sleeve is a rotational symmetry of 180 degrees with respect to each of three orthogonal axes including the central axis. .
JP2017184781A 2017-09-26 2017-09-26 Axial direction input type fluid-encapsulated cylindrical vibration control device Pending JP2019060393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184781A JP2019060393A (en) 2017-09-26 2017-09-26 Axial direction input type fluid-encapsulated cylindrical vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184781A JP2019060393A (en) 2017-09-26 2017-09-26 Axial direction input type fluid-encapsulated cylindrical vibration control device

Publications (1)

Publication Number Publication Date
JP2019060393A true JP2019060393A (en) 2019-04-18

Family

ID=66176419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184781A Pending JP2019060393A (en) 2017-09-26 2017-09-26 Axial direction input type fluid-encapsulated cylindrical vibration control device

Country Status (1)

Country Link
JP (1) JP2019060393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019006047A1 (en) * 2019-08-27 2021-03-04 Sumitomo Riko Company Limited Hydraulic bearing and method of making a hydraulic bearing
CN114517823A (en) * 2022-02-10 2022-05-20 西华大学 Vibration damper suitable for wind power generation equipment unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019006047A1 (en) * 2019-08-27 2021-03-04 Sumitomo Riko Company Limited Hydraulic bearing and method of making a hydraulic bearing
CN112443578A (en) * 2019-08-27 2021-03-05 住友理工株式会社 Fluid bearing and method of manufacturing fluid bearing
US11773942B2 (en) 2019-08-27 2023-10-03 Sumitomo Riko Company Limited Hydraulic mount and method of producing a hydraulic mount
CN114517823A (en) * 2022-02-10 2022-05-20 西华大学 Vibration damper suitable for wind power generation equipment unit
CN114517823B (en) * 2022-02-10 2023-05-12 西华大学 Damping device suitable for among wind power generation equipment unit

Similar Documents

Publication Publication Date Title
JP3477920B2 (en) Fluid-filled anti-vibration support
JP4718484B2 (en) Bush bearing with hydraulic damping action
JPH06677Y2 (en) Fluid filled anti-vibration bush
US4971456A (en) Fluid-filled elastic center bearing mount
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
US4921229A (en) Fluid-filled elastic center bearing mount
CN110168248B (en) Fluid-filled cylindrical vibration damping device
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JPH03121327A (en) Fluid sealed type cylindrical mount apparatus
JP2006064119A (en) Fluid sealed-type vibration control device
JP2010196841A (en) Cylindrical vibration isolator of fluid encapsulation type
JP2019060393A (en) Axial direction input type fluid-encapsulated cylindrical vibration control device
JP3743304B2 (en) Fluid filled vibration isolator
JP6251729B2 (en) Liquid seal type vibration isolator
JPH0694889B2 (en) Fluid-filled cylinder mount device
JPH026935B2 (en)
JPH061095B2 (en) Fluid filled anti-vibration assembly
JP6431738B2 (en) Fluid filled cylindrical vibration isolator
JP2015028369A (en) Fluid sealed type vibration control device
CN219176863U (en) Axial auxiliary frame hydraulic bushing assembly
JP3846328B2 (en) Fluid filled vibration isolator
JP2003269525A (en) Fluid sealed type tubular vibration isolator and manufacturing method therefor
JP2005282780A (en) Liquid sealed cylindrical vibration absorbing device
JP3719054B2 (en) Fluid filled cylindrical vibration isolator
JPH0645073Y2 (en) Fluid filled tubular mount assembly