JP2019059941A - Friction material composition, and friction material and member using the same - Google Patents

Friction material composition, and friction material and member using the same Download PDF

Info

Publication number
JP2019059941A
JP2019059941A JP2018218555A JP2018218555A JP2019059941A JP 2019059941 A JP2019059941 A JP 2019059941A JP 2018218555 A JP2018218555 A JP 2018218555A JP 2018218555 A JP2018218555 A JP 2018218555A JP 2019059941 A JP2019059941 A JP 2019059941A
Authority
JP
Japan
Prior art keywords
friction material
mass
friction
material composition
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018218555A
Other languages
Japanese (ja)
Inventor
真理 光本
Mari Mitsumoto
真理 光本
光朗 海野
Mitsuaki Unno
光朗 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Brake Industrial Co Ltd
Original Assignee
Japan Brake Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Brake Industrial Co Ltd filed Critical Japan Brake Industrial Co Ltd
Priority to JP2018218555A priority Critical patent/JP2019059941A/en
Publication of JP2019059941A publication Critical patent/JP2019059941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

To provide a friction material composition that has a constitution of low environmental hazard with the copper content not exceeding 0.5 mass%, and that yields a friction material effective for automobile fuel consumption improvement by having a good effectiveness characteristic, wear resistance and BTV characteristic, and furthermore by being light-weight; and also to provide a friction material and member using said friction material composition.SOLUTION: Provided is a friction material composition containing a binder, an organic filler, an inorganic filler and a fiber base material, and in which the content of copper as an element does not exceed 0.5 mass%, and in which a ferrous fiber or ferrous powder is contained by 1 to 3 mass% as well as wollastonite is contained by 10 to 30 mass% as the fiber base material.SELECTED DRAWING: Figure 1

Description

本発明は、自動車等の制動に用いられるディスクブレーキパッド、ブレーキライニング等の摩擦材に適した摩擦材組成物、該摩擦材組成物を用いた摩擦材及び摩擦部材に関する。   The present invention relates to a friction material composition suitable for a friction material such as a disk brake pad and a brake lining used for braking an automobile or the like, and a friction material and a friction member using the friction material composition.

自動車等には、その制動のためにディスクブレーキパッドやブレーキライニング等の摩擦材が使用されている。ディスクブレーキパッドやブレーキライニング等の摩擦材は、相手材となるディスクロータやブレーキドラム等と摩擦することによって制動の役割を果たす。そのため摩擦材には、使用条件に応じた適切な摩擦係数(効き特性)が求められるだけでなく、鳴きが発生しにくいこと(鳴き特性)、摩擦材の寿命が長いこと(耐摩耗性)等が要求される。また、安全性だけでなく運転時の快適性からも、ブレーキ時のトルク振動が小さいこと(BTV=Brake Torque Variation特性)が求められる。   In automobiles and the like, friction materials such as disc brake pads and brake linings are used for braking. A friction material such as a disk brake pad or a brake lining plays a role of braking by friction with a disk rotor or a brake drum as a mating material. Therefore, not only the friction material is required to have an appropriate coefficient of friction (effect characteristics) according to the conditions of use, but it is difficult for the noise to occur (noise characteristics), the life of the friction material is long (wear resistance), etc. Is required. Further, not only safety but also comfort during driving is required to have a small torque vibration at the time of braking (BTV = Brake Torque Variation characteristic).

さらに近年、燃費向上の観点で自動車の軽量化が求められており、特に効果の大きいバネ下荷重の軽量化が着目されている。従って、摩擦材の軽量化は自動車の燃費向上に有効であるが、従来の摩擦材には、銅や酸化ジルコニウムといった高比重の素材が一般的に使用されている。   Further, in recent years, weight reduction of automobiles has been demanded from the viewpoint of fuel efficiency improvement, and weight reduction of unsprung load, which is particularly effective, has been focused. Therefore, although reducing the weight of the friction material is effective for improving the fuel consumption of the automobile, materials having a high specific gravity, such as copper and zirconium oxide, are generally used as conventional friction materials.

銅は摩擦材への熱伝導率付与、繊維形状で使用した際の補強効果付与等を目的として添加され、例えば銅繊維の減量によって高温時のマトリクス補強効果が低下し、耐摩耗性が低下してしまう。また、銅の減量によって摩擦界面の熱拡散効率が低下し、相手材のディスクロータに局所的な温度勾配(ヒートスポット)が形成され、トルク振動が大きくなってしまう。一方で、銅は摩耗粉として河川や湖を汚染するという観点から、摩擦材に添加しないことが望まれている。   Copper is added for the purpose of imparting thermal conductivity to the friction material, imparting a reinforcing effect when used in a fiber shape, etc. For example, the weight loss of copper fiber reduces the matrix reinforcing effect at high temperature, and the abrasion resistance decreases. It will In addition, the loss of copper reduces the thermal diffusion efficiency at the frictional interface, and a local temperature gradient (heat spot) is formed on the disk rotor of the mating material, resulting in an increase in torque vibration. On the other hand, it is desirable not to add copper to the friction material from the viewpoint of contaminating rivers and lakes as wear powder.

また、酸化ジルコニウムは高融点の無機充填材で、モース硬度が相手材の鋳鉄よりも高いため研削材として機能しており、減量によって摩擦係数が低下してしまう。   Zirconium oxide is an inorganic filler with a high melting point, and has a Mohs hardness higher than that of the counterpart cast iron, so it functions as an abrasive and its coefficient of friction decreases due to weight loss.

上記弊害の改善策として、銅繊維を他の高熱伝導素材や無機繊維に、酸化ジルコニウムを他の軽量な研削材に代替する手法が検討されてきた。   As a remedy for the above-mentioned adverse effect, a method of replacing copper fibers with other high thermal conductivity materials and inorganic fibers and zirconium oxide with other lightweight abrasives has been studied.

例えば、銅を使用せず、低比重で熱伝導率も酸化ジルコニウムより高い研削材である酸化マグネシウムと熱伝導率が高い黒鉛を摩擦材中に45〜80体積%含有し、酸化マグネシウムと黒鉛の比率を1/1〜4/1とする方法が提案されている(特許文献1)。   For example, magnesium oxide, which is an abrasive that does not use copper and has a lower specific gravity and higher thermal conductivity than zirconium oxide, and graphite having a high thermal conductivity, contains 45 to 80% by volume of friction material; A method of setting the ratio to 1/1 to 4/1 has been proposed (Patent Document 1).

また、摩擦材の補強を目的として金属繊維や鉱物繊維と共に、ウォラストナイトを10〜15質量%と比較的多く添加する方法が提案されている(特許文献2)。   In addition, in order to reinforce the friction material, a method has been proposed in which wollastonite is added in a relatively large amount of 10 to 15% by mass together with metal fibers and mineral fibers (Patent Document 2).

また、摩擦材の補強を目的として2〜30質量%の針状炭酸カルシウムを添加する方法が提案されている(特許文献3)。   Moreover, the method of adding 2-30 mass% needle-like calcium carbonate for the purpose of reinforcement of a friction material is proposed (patent document 3).

特開2002−138273号公報JP, 2002-138273, A 特開2008−57693号公報JP 2008-57693 A 特開平5−105867号公報JP-A-5-105867

特許文献1のブレーキ用摩擦材では、研削材である酸化マグネシウムと、潤滑材である黒鉛の添加量が極端に多くなり、各種摩擦特性をバランス良く改善することは困難であるとの課題がある。   In the friction material for brakes of Patent Document 1, there is an issue that it is difficult to improve various friction characteristics in a well-balanced manner because the addition amounts of magnesium oxide which is an abrasive and graphite which is a lubricant are extremely large. .

また、特許文献2のブレーキ用摩擦材では、繊維基材の添加量の合計が極端に多くなってしまい、摩擦材の気孔率増加による強度低下、圧縮歪量増加によるブレーキのペダルフィール悪化を招いてしまう。   Moreover, in the friction material for brakes of patent document 2, the total of the addition amount of a fiber base material increases extremely, causing the strength fall by the porosity increase of a friction material, and the pedal feel deterioration of the brake by the compression distortion amount increase. You

また、特許文献3の方法のように、摩擦材の補強を目的として針状炭酸カルシウムを用いる場合、炭酸カルシウムは低比重ではあるが融点が低く、特に銅繊維を含有しない組成では高温時の耐摩耗性等が悪化してしまう。   Also, as in the method of Patent Document 3, when using acicular calcium carbonate for the purpose of reinforcing the friction material, calcium carbonate has a low specific gravity but a low melting point, and in particular, a composition containing no copper fiber, resistance at high temperatures Abrasion etc. will deteriorate.

一方で、摩擦材の小型化によっても軽量化は図ることが可能であるが、摩擦面積を縮小した場合は摩擦面の単位面積当たりの熱負荷が高まり、特に銅を含有しない組成では耐摩耗性の悪化が懸念される。また、摩擦材の薄型化によって軽量化を図ると、製品寿命が短くなってしまう。   On the other hand, weight reduction can be achieved even by downsizing of the friction material, but when the friction area is reduced, the heat load per unit area of the friction surface increases, and particularly the composition which does not contain copper wear resistance Is a concern for the In addition, if the weight reduction is achieved by thinning the friction material, the product life will be shortened.

そこで本発明は、銅含有率が0.5質量%を超えない環境有害性が低い組成で、良好な効き特性、耐摩耗性、BTV特性を有し、さらに軽量であることで自動車の燃費向上に効果的である摩擦材を与える摩擦材組成物を提供することを目的とする。また、該摩擦材組成物を用いた摩擦材及び摩擦部材を提供することを目的とする。   Therefore, the present invention is a composition having a low environmental harmfulness in which the copper content does not exceed 0.5% by mass, and has good performance, wear resistance, BTV characteristics, and further light weight to improve the fuel efficiency of the automobile. It is an object of the present invention to provide a friction material composition that provides a friction material that is effective. Another object of the present invention is to provide a friction material and a friction member using the friction material composition.

本発明者等は、上記目標を達成するため、元素としての銅含有率が0.5質量%を超えず、鉄系繊維又は鉄系粉末を1〜3質量%含有し、かつ、繊維基材としてウォラストナイトを10〜30質量%含有することで、銅添加量が極めて少ない、あるいは銅を含有しなくても、効き特性、耐摩耗性、BTV特性をバランス良く向上しつつ、軽量化が可能であることを見出した。   The present inventors, in order to achieve the above target, the copper content as an element does not exceed 0.5% by mass, and contains 1 to 3% by mass of iron-based fiber or iron-based powder, and a fiber base By containing 10 to 30% by mass of wollastonite, the weight reduction is achieved while the effect characteristics, the abrasion resistance, and the BTV characteristics are well-balancedly improved even if the copper addition amount is extremely small or does not contain copper. I found it possible.

本発明は次の事項に関する。
(1)結合材、有機充填材、無機充填材、及び繊維基材を含有する摩擦材組成物であり、元素としての銅含有率が0.5質量%を超えず、鉄系繊維又は鉄系粉末を1〜3質量%含有し、かつ、繊維基材としてウォラストナイトを10〜30質量%含有する摩擦材組成物。
(2)研削材として酸化マグネシウムを1〜10質量%含有する(1)に記載の摩擦材組成物。
(3)無機充填材として黒鉛を1〜10質量%含有し、該黒鉛のメジアン径が1〜30μmである(1)又は(2)に記載の摩擦材組成物。
(4)有機充填材としてカシューダストを2〜8質量%含有する請求項(1)〜(3)に記載の摩擦材組成物。
(5)(1)〜(4)のいずれか一項に記載の摩擦材組成物を成形してなる摩擦材。
(6)(5)記載の摩擦材と裏金とを一体化した摩擦部材。
The present invention relates to the following matters.
(1) A friction material composition comprising a binder, an organic filler, an inorganic filler, and a fibrous base material, wherein the copper content as an element does not exceed 0.5% by mass, iron-based fiber or iron-based A friction material composition containing 1 to 3% by mass of powder and containing 10 to 30% by mass of wollastonite as a fiber base.
(2) The friction material composition according to (1), which contains 1 to 10% by mass of magnesium oxide as an abrasive.
(3) The friction material composition according to (1) or (2), which contains 1 to 10% by mass of graphite as an inorganic filler, and the median diameter of the graphite is 1 to 30 μm.
(4) The friction material composition according to any one of (1) to (3), which contains 2 to 8% by mass of cashew dust as an organic filler.
(5) A friction material formed by molding the friction material composition according to any one of (1) to (4).
(6) A friction member in which the friction material according to (5) and the back metal are integrated.

本発明によれば、自動車用ディスクブレーキパッドやブレーキライニング等の摩擦材に用いた際に、銅含有量を抑制して、環境有害性が低い組成としつつ、良好な効き特性、耐摩耗性、BTV特性を有し、さらに軽量であることで自動車の燃費向上に寄与する摩擦材を与える摩擦材組成物を提供することができる。また、本発明によれば、上記特性を有する摩擦材及び摩擦部材を提供することができる。   According to the present invention, when used as a friction material such as a disc brake pad or brake lining for automobiles, the copper content is suppressed to make the composition less harmful to the environment, and the good effect characteristic, the wear resistance, It is possible to provide a friction material composition which provides a friction material which has BTV characteristics and is lightweight so as to contribute to the improvement of the fuel efficiency of automobiles. Further, according to the present invention, it is possible to provide a friction material and a friction member having the above-mentioned characteristics.

本発明の実施例及び比較例のBTV評価時のディスロータのサーモグラフィ画像である。It is a thermographic image of the disrotor at the time of BTV evaluation of the Example and comparative example of this invention.

以下、本発明のノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材について詳述する。   Hereinafter, the non-asbestos friction material composition of the present invention, and a friction material and a friction member using the same will be described in detail.

[ノンアスベスト摩擦材組成物]
本実施形態のノンアスベスト摩擦材組成物は、結合材、有機充填材、無機充填材、及び繊維基材を含有する摩擦材組成物であって、元素としての銅含有率が0.5質量%を超えず、鉄系繊維又は鉄系粉末を1〜3質量%含有し、かつ、繊維基材としてウォラストナイトを10〜30質量%含有することを特徴とする。なお、上記の「元素としての銅含有率」とは、繊維状や粉末状等の銅、銅合金及び銅化合物に含まれる銅元素の、全摩擦材組成物中における含有率を示す。
[Non-Asbestos Friction Material Composition]
The non-asbestos friction material composition of the present embodiment is a friction material composition containing a binder, an organic filler, an inorganic filler, and a fiber base material, and the copper content as an element is 0.5 mass% And containing 1 to 3% by mass of iron-based fiber or iron-based powder, and 10 to 30% by mass of wollastonite as a fiber base. In addition, said "copper content as an element" shows the content rate in all the friction material compositions of the copper element contained in copper, copper alloys, and copper compounds, such as fibrous form and a powder form.

上記構成により、本実施形態のノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材は、銅添加量が極めて少ない、あるいは銅を含有しないため、従来品と比較して制動時に生成に生成する摩耗粉中の銅が少なく、さらに軽量であることから自動車の燃費向上に寄与するため環境に優しく、良好な効き特性、耐摩耗性、BTV特性をバランス良く発現する。   With the above configuration, the friction material and the friction member using the non-asbestos friction material composition of the present embodiment are generated at the time of braking as compared with the conventional product because the amount of added copper is extremely small or contains no copper. There is less copper in the wear powder, and because it is lightweight, it contributes to the improvement of the fuel efficiency of the automobile and is environmentally friendly, and exhibits well-balanced properties, good abrasion resistance and BTV characteristics in a well-balanced manner.

[無機充填材]
本実施形態の摩擦材組成物は無機充填材を含有する。無機充填材は、摩擦材の耐熱性の悪化を避けるために摩擦調整材として含まれるものである。本実施形態において、無機充填材としては、対面材への攻撃性低下の観点から、酸化マグネシウム、黒鉛、硫酸バリウムを含有することが好ましい。
[Inorganic filler]
The friction material composition of the present embodiment contains an inorganic filler. The inorganic filler is included as a friction modifier in order to avoid the deterioration of the heat resistance of the friction material. In the present embodiment, as the inorganic filler, it is preferable to contain magnesium oxide, graphite and barium sulfate from the viewpoint of reducing the aggressivity to the facing material.

上記酸化マグネシウムの含有率は1〜10質量%であることが好ましく、2〜10質量%であることがより好ましく、3〜10質量%であることがさらに好ましい。また、上記酸化マグネシウムのメジアン径は、1〜20μmであることが好ましく、1〜15μmであることがより好ましく、1〜10μmであることがさらに好ましい。酸化マグネシウムのメジアン径を1μm以上とすることで良好な摩擦係数、耐摩耗性が発現し、20μm以下とすることで摩擦材中の分散性を高め、摩擦係数を安定化できる。   The content of the magnesium oxide is preferably 1 to 10% by mass, more preferably 2 to 10% by mass, and still more preferably 3 to 10% by mass. The median diameter of the magnesium oxide is preferably 1 to 20 μm, more preferably 1 to 15 μm, and still more preferably 1 to 10 μm. By setting the median diameter of magnesium oxide to 1 μm or more, a good coefficient of friction and wear resistance are exhibited, and by setting the median diameter to 20 μm or less, the dispersibility in the friction material can be enhanced and the coefficient of friction can be stabilized.

また、上記黒鉛の含有率は1〜10質量%であることが好ましく、1〜9質量%であることがより好ましく、2〜8質量%であることがさらに好ましい。また、上記黒鉛のメジアン径は、1〜100μmであることが好ましく、1〜50μmであることがより好ましく、1〜30μmであることがさらに好ましい。黒鉛のメジアン径を1μm以上とすることで良好な摩擦係数、耐摩耗性が発現し、100μm以下とすることで、摩擦材の熱伝導率低下を避けることができる。   Moreover, it is preferable that it is 1-10 mass%, as for the content rate of the said graphite, it is more preferable that it is 1-9 mass%, and it is further more preferable that it is 2-8 mass%. The median diameter of the above-mentioned graphite is preferably 1 to 100 μm, more preferably 1 to 50 μm, and still more preferably 1 to 30 μm. By setting the median diameter of graphite to 1 μm or more, a good coefficient of friction and wear resistance are exhibited, and by setting the median diameter to 100 μm or less, it is possible to avoid the decrease in the thermal conductivity of the friction material.

なお、上記酸化マグネシウムと黒鉛のメジアン径は、レーザー回折粒度分布測定等の方法を用いて測定することができる。例えば、レーザー回折/散乱式粒子径分布測定装置、商品名:LA・920(株式会社堀場製作所製)で測定することができる。また、本発明の効果を損なわない程度であれば、本実施形態の摩擦材組成物に、上記酸化マグネシウム以外の、通常、摩擦材に用いられる無機充填材を組み合わせて用いることができる。   In addition, the median diameter of the said magnesium oxide and graphite can be measured using methods, such as a laser diffraction particle size distribution measurement. For example, it can be measured by a laser diffraction / scattering type particle size distribution measuring device, trade name: LA · 920 (manufactured by Horiba, Ltd.). If the effect of the present invention is not impaired, the friction material composition of the present embodiment may be used in combination with an inorganic filler generally used for the friction material other than the magnesium oxide.

上記酸化マグネシウム以外の無機充填材としては、例えば、酸化ジルコニウム、三硫化アンチモン、硫化スズ、二硫化モリブデン、硫化鉄、硫化ビスマス、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、コークス、黒鉛、マイカ、酸化鉄、バーミキュライト、粒状チタン酸カリウム、チタン酸リチウムカリウム、硫酸カルシウム、板状チタン酸カリウム、タルク、クレー、ゼオライト、珪酸ジルコニウム、ムライト、クロマイト、酸化チタン、シリカ、γ−アルミナ等の活性アルミナを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。   As inorganic fillers other than magnesium oxide, for example, zirconium oxide, antimony trisulfide, tin sulfide, molybdenum disulfide, iron sulfide, bismuth sulfide, zinc sulfide, calcium hydroxide, calcium oxide, calcium oxide, sodium carbonate, calcium carbonate, carbonate Magnesium, barium sulfate, dolomite, coke, graphite, mica, iron oxide, vermiculite, granular potassium titanate, lithium potassium titanate, calcium sulfate, plate-like potassium titanate, talc, clay, zeolite, zirconium silicate, mullite, chromite, Activated aluminas such as titanium oxide, silica and γ-alumina can be used, and these can be used alone or in combination of two or more.

前記無機充填材の総含有量は、酸化マグネシウム、黒鉛を含め、摩擦材用組成物において20〜80質量%であることが好ましく、30〜80質量%であることがより好ましく40〜80質量%であることがさらに好ましい。無機充填材の含有量を20〜80質量%とすると、耐熱性の悪化を避けることができる。   It is preferable that it is 20-80 mass% in the composition for friction materials including magnesium oxide and graphite, and, as for the total content of the said inorganic filler, it is more preferable that it is 30-80 mass%. It is further preferred that When the content of the inorganic filler is 20 to 80% by mass, the deterioration of the heat resistance can be avoided.

[繊維基材]
本実施形態の摩擦材組成物は繊維基材を含有する。繊維基材は摩擦材において補強作用を示すものである。繊維基材としては、有機繊維、金属繊維、無機繊維等が挙げられる。
[Fiber base material]
The friction material composition of the present embodiment contains a fibrous base material. The fibrous base material exhibits the reinforcing action in the friction material. As a fiber base material, an organic fiber, a metal fiber, an inorganic fiber etc. are mentioned.

本実施形態の摩擦材組成物は有機繊維としてアラミド繊維、アクリル繊維、セルロース繊維、フェノール樹脂繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。この中でも、耐熱性、補強効果の観点から、アラミド繊維を用いることが好ましい。   In the friction material composition of the present embodiment, aramid fibers, acrylic fibers, cellulose fibers, phenol resin fibers and the like can be used as organic fibers, and these can be used alone or in combination of two or more. Among these, it is preferable to use an aramid fiber from the viewpoint of heat resistance and a reinforcing effect.

金属繊維としては銅繊維、鉄系繊維、チタン繊維、亜鉛繊維、アルミ繊維等を用いることができ、1種又は2種類以上を組み合わせて用いることができるが、銅繊維を用いる場合は、摩擦材中の元素としての銅含有率が0.5質量%を超えないようにする。   As the metal fiber, copper fiber, iron-based fiber, titanium fiber, zinc fiber, aluminum fiber, etc. can be used, and one type or a combination of two or more types can be used, but in the case of using copper fiber, friction material The content of copper as an element in the composition does not exceed 0.5% by mass.

また、本実施形態の摩擦材組成物は金属繊維として鉄系繊維1〜3質量%を含有する。   Moreover, the friction material composition of this embodiment contains 1-3 mass% of iron-type fibers as a metal fiber.

なお、ここでいう鉄系繊維とは、純鉄繊維、鋼繊維、鋳鉄繊維、ステンレス繊維、シリコンやアルミとの鉄系合金繊維等が挙げられる。本明細書では、上記の鋼繊維を鉄繊維と記載する。   The iron-based fibers referred to here include pure iron fibers, steel fibers, cast iron fibers, stainless steel fibers, iron-based alloy fibers with silicon and aluminum, and the like. In the present specification, the above-described steel fibers are described as iron fibers.

摩擦材組成物における上記鉄系繊維の含有量を1質量%以上とすることで、良好な耐摩耗性、BTV特性が発現し、3質量%以下とすることで相手材であるディスクロータへの攻撃性、摩擦面における錆の発生を抑制できる。上記鉄系繊維の含有量は、1.2〜3質量%であることがより好ましく、1.4〜3質量%であることがさらに好ましい。   By setting the content of the iron-based fibers in the friction material composition to 1% by mass or more, good abrasion resistance and BTV characteristics are exhibited, and by setting the content to 3% by mass or less, the disc rotor which is a mating material is obtained. Aggressiveness, the occurrence of rust on the friction surface can be suppressed. The content of the iron-based fiber is more preferably 1.2 to 3% by mass, and still more preferably 1.4 to 3% by mass.

また、上記鉄系素材の形状は繊維形状に限定されるものではなく、粉末状で用いても同様の効果を発現することができる。   Moreover, the shape of the said iron-type raw material is not limited to a fiber shape, Even if it uses in powder form, the same effect can be exhibited.

無機繊維としては、ウォラストナイト、セラミック繊維、生分解性セラミック繊維、鉱物繊維、炭素繊維、ガラス繊維、チタン酸カリウム繊維、アルミノシリケート繊維等を用いることができ、1種又は2種類以上を組み合わせて用いることができるが、環境への優しさの観点から、吸引性のチタン酸カリウム繊維等を含有しないことが好ましい。また、本実施形態の摩擦材組成物は、無機繊維として繊維長30μm以下のウォラストナイト10〜30質量%を含有する。   As the inorganic fibers, wollastonite, ceramic fibers, biodegradable ceramic fibers, mineral fibers, carbon fibers, glass fibers, potassium titanate fibers, aluminosilicate fibers, etc. can be used, and one or more of them can be used in combination Although it can be used, it is preferable not to contain a suctionable potassium titanate fiber or the like from the viewpoint of environmental friendliness. Moreover, the friction material composition of the present embodiment contains 10 to 30% by mass of wollastonite having a fiber length of 30 μm or less as inorganic fibers.

摩擦材組成物における上記ウォラストナイトの含有量を10質量%以上とすることで、良好な摩擦係数、耐摩耗性が発現し、30質量%以下とすることで、摩擦材の気孔率、圧縮歪量の増大を避けることができる。上記ウォラストナイトの含有量は、10〜25質量%であることがより好ましく、10〜20質量%であることがさらに好ましい。   By setting the content of the wollastonite in the friction material composition to 10% by mass or more, a good friction coefficient and wear resistance are exhibited, and by setting the content to 30% by mass or less, the porosity and compression of the friction material An increase in the amount of distortion can be avoided. The content of wollastonite is more preferably 10 to 25% by mass, and still more preferably 10 to 20% by mass.

なお、ここでいう鉱物繊維とは、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維であり、Al元素を含む天然鉱物であることがより好ましい。具体的には、SiO、Al、CaO、MgO、FeO、NaO等が含まれるもの、又はこれら化合物が1種又は2種以上含有されるものを鉱物繊維として用いることができ、これらのうちAl元素を含むものがより好ましい。摩擦材組成物中に含まれる鉱物繊維全体の平均繊維長が大きくなるほど摩擦組成物中の各成分との接着強度が低下する傾向があるため、鉱物繊維全体の平均繊維長は500μm以下が好ましく、より好ましくは100〜400μmである。ここで、平均繊維長とは、該当する全ての繊維の長さの平均値を示した数平均繊維長のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物原料として用いる鉱物繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。 In addition, mineral fiber here is artificial mineral fiber melt-spun mainly with blast furnace slag such as slag wool, basalt such as basalt fiber, other natural rock etc, and it is natural mineral containing Al element Is more preferred. Specifically, those containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc., or those containing one or more of these compounds can be used as mineral fibers. Among these, those containing Al element are more preferable. The adhesive strength with each component in the friction composition tends to decrease as the average fiber length of all the mineral fibers contained in the friction material composition increases, so the average fiber length of the entire mineral fibers is preferably 500 μm or less, More preferably, it is 100 to 400 μm. Here, the average fiber length refers to a number average fiber length indicating the average value of the lengths of all the corresponding fibers. For example, with an average fiber length of 200 μm, 50 mineral fibers to be used as a raw material of the friction material composition are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 μm.

本実施形態で用いられる鉱物繊維は、人体有害性の観点で生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内又は腹膜内試験で過度の発癌性の証拠がないか又は長期呼吸試験で関連の病原性や腫瘍発生がないことを満たす繊維を示す(EU指令97/69/ECのNota Q(発癌性適用除外))。このような生体分解性鉱物繊維としては、SiO−Al−CaO−MgO−FeO−NaO系繊維等が挙げられ、SiO、Al、CaO、MgO、FeO、NaO等を任意の組み合わせで含有した繊維が挙げられる。市販品としてはLAPINUS FIBERS B.V.製のRoxulシリーズ(「Roxul」は、登録商標。)等が挙げられる。「Roxul」には、SiO、Al、CaO、MgO、FeO、NaO等が含まれる。 The mineral fiber used in the present embodiment is preferably bio-soluble from the viewpoint of human toxicity. The term "biosoluble mineral fiber" as used herein is a mineral fiber having a characteristic that it is partially decomposed in a short time and taken out of the body even when it is taken into the human body. Specifically, the chemical composition is at least 18% by mass of alkali oxides and alkaline earth oxides (total of sodium, potassium, calcium, magnesium and barium oxides), and in a short-term biopermanence test by respiration, The mass half-life of fibers greater than 20 μm indicates fibers within 40 days or within the peritoneal test and that there is no evidence of excessive carcinogenicity in an intraperitoneal test or that there is no associated pathogenicity or tumorigenesis in a long-term respiratory test (EU directive 97 / 69 / EC Nota Q (oncogenic exclusion excluded)). Such biodegradable mineral fibers include SiO 2 -Al 2 O 3 -CaO-MgO-FeO-Na 2 O-based fibers and the like, and SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na Fibers containing 2 O etc. in any combination may be mentioned. Commercially available products include LAPINUS FIBERS B. V. And Roxul series ("Roxul" is a registered trademark) and the like. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.

繊維基材は、摩擦材組成物中に5〜40質量%含有することが好ましく、5〜35質量%含有することがより好ましく、10〜30質量%含有することがさらに好ましい。繊維基材の含有量を5〜40質量%とすると、効き特性の著しい低下等の弊害を与えることなく、適度な補強効果を摩擦材に付与する効果がある。   The content of the fiber base in the friction material composition is preferably 5 to 40% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass. When the content of the fiber base material is 5 to 40% by mass, there is an effect of imparting an appropriate reinforcing effect to the friction material without giving negative effects such as a significant decrease in the effective properties.

[結合材]
本実施形態の摩擦材組成物は、結合材を含有する。結合材は、摩擦材組成物に含まれる有機充填材及び繊維基材等を一体化して、強度を与えるものである。本実施形態の摩擦材組成物に含まれる結合材としては、通常、摩擦材に用いられる熱硬化性樹脂を用いることができる。熱硬化性樹脂としては、例えば、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂が挙げられ、特に、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂が好ましく、これらを単独で又は2種類以上を組み合わせて使用することができる。良好な耐熱性、成形性及び摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
[Binder]
The friction material composition of the present embodiment contains a binder. The binder integrates the organic filler and the fiber base contained in the friction material composition to give strength. As a binder contained in the friction material composition of the present embodiment, a thermosetting resin generally used for a friction material can be used. Examples of the thermosetting resin include various modified phenolic resins such as phenolic resin, acrylic modified phenolic resin, silicone modified phenolic resin, cashew modified phenolic resin, epoxy modified phenolic resin, alkylbenzene modified phenolic resin and the like, and in particular, phenolic resin Acrylic modified phenolic resins and silicone modified phenolic resins are preferred, and these can be used alone or in combination of two or more. It is preferable to use a phenol resin, an acrylic modified phenolic resin, a silicone modified phenolic resin, and an alkylbenzene modified phenolic resin in order to give good heat resistance, moldability and friction coefficient.

本実施形態の摩擦材組成物における、結合材の含有量は、5〜20質量%であることが好ましく、5〜15質量%であることがより好ましく、5〜10質量%であることがさらに好ましい。結合材の含有量を5〜20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化を抑制できる。   The content of the binder in the friction material composition of the present embodiment is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and further preferably 5 to 10% by mass. preferable. By setting the content of the binder in the range of 5 to 20% by mass, it is possible to further suppress the decrease in strength of the friction material, and to reduce the porosity of the friction material and to increase the modulus of elasticity. Vibration deterioration can be suppressed.

[有機充填材]
本実施形態の摩擦材組成物は、有機充填材を含有する。有機充填材は、摩擦材の音振性能や耐摩耗性等を向上させるための摩擦調整剤として含まれるものである。本発明の摩擦材用組成物に含まれる有機充填材としては、カシューダストやゴム成分等を用いることができる。
[Organic filler]
The friction material composition of the present embodiment contains an organic filler. The organic filler is included as a friction modifier for improving the sound vibration performance and the wear resistance of the friction material. As the organic filler contained in the composition for a friction material of the present invention, cashew dust, a rubber component and the like can be used.

上記カシューダストは、カシューナッツシェルオイルを重合、硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。   The above-mentioned cashew dust may be obtained by pulverizing a product obtained by polymerizing and curing cashew nut shell oil, as long as it is generally used as a friction material.

上記ゴム成分としては、例えば、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)が挙げられ、これらを単独で又は2種類以上を組み合わせて使用される。   Examples of the rubber component include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber), and these are used alone or in combination of two or more.

また、カシューダストとゴム成分とを併用してもよく、カシューダストをゴム成分で被覆したものを用いてもよいが、音振性能の観点から、カシューダストとゴム成分とを併用することが好ましい。上記カシューダストの含有量は、2〜8質量%であることが好ましく、2.5〜8質量%であることがより好ましく、2.5〜7.5質量%であることがさらに好ましい。カシューダストの含有量を2〜8質量%とすることで、摩擦材の弾性率が高くなることによる鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。   Moreover, although cashew dust and a rubber component may be used together and what coated cashew dust with a rubber component may be used, it is preferable to use cashew dust and a rubber component together from a viewpoint of sound vibration performance. . The content of the above-mentioned cashew dust is preferably 2 to 8% by mass, more preferably 2.5 to 8% by mass, and still more preferably 2.5 to 7.5% by mass. By setting the content of the cashew dust to 2 to 8% by mass, it is possible to avoid the deterioration of the sound vibration performance such as the squeal caused by the increase of the elastic modulus of the friction material, and also the heat resistance deterioration and the strength due to the heat history. You can avoid the decline.

本実施形態のノンアスベスト摩擦材組成物中における、有機充填材の含有量は、1〜20質量%であることが好ましく、1〜15質量%であることがより好ましく、2〜10質量%であることがさらに好ましい。有機充填材の含有量を1〜20質量%の範囲とすることで、摩擦材の弾性率が高くなることによる鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。   The content of the organic filler in the non-asbestos friction material composition of the present embodiment is preferably 1 to 20% by mass, more preferably 1 to 15% by mass, and 2 to 10% by mass. It is further preferred that By setting the content of the organic filler in the range of 1 to 20% by mass, it is possible to avoid the deterioration of the acoustic vibration performance such as the squeal caused by the increase of the elastic modulus of the friction material, and the deterioration of the heat resistance and the heat. It is possible to avoid the strength reduction due to the history.

[その他の成分]
また、本実施形態の摩擦材組成物は、前記の材料以外に、必要に応じてその他の材料を配合することができ、例えば、亜鉛粉等の金属粉末等を配合することができる。
[Other ingredients]
In addition to the above-described materials, the friction material composition of the present embodiment can be blended with other materials as needed. For example, metal powder such as zinc powder can be blended.

<摩擦材及び摩擦部材>
本実施形態の摩擦材組成物は、自動車等のディスクブレーキパッド、ブレーキライニング等の摩擦材として又は本実施形態の摩擦材組成物を目的形状に成形、加工、貼り付け等の工程を施すことによりクラッチフェーシング、電磁ブレーキ、保持ブレーキ等の摩擦材としても使用することができる。
<Friction material and friction member>
The friction material composition of the present embodiment can be used as a friction material for a disc brake pad, brake lining, etc. of an automobile or the like, or by subjecting the friction material composition of the present embodiment to a desired shape. It can also be used as a friction material for clutch facings, electromagnetic brakes, holding brakes and the like.

本実施形態の摩擦材組成物は、摩擦面となる摩擦部材そのものとして用いて摩擦材を得ることができる。それを用いた摩擦材としては、例えば、下記の構成が挙げられる。(1)摩擦部材のみの構成(2)裏金と、該裏金の上に形成させ、摩擦面となる本発明の摩擦材組成物からなる摩擦部材とを有する構成(3)上記(2)の構成において、裏金と摩擦部材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、裏金と摩擦部材の接着を目的とした接着層をさらに介在させた構成、等が挙げられる。
上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属又は繊維強化プラスチック等を用いることができ、例えば、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチックが挙げられる。プライマー層及び接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。
The friction material composition of the present embodiment can be used as a friction member itself that becomes a friction surface to obtain a friction material. As a friction material using it, the following composition is mentioned, for example. (1) Configuration of only the friction member (2) Configuration including the back metal and the friction member made of the friction material composition of the present invention which is formed on the back metal and becomes the friction surface (3) Configuration of the above (2) Between the back metal and the friction member, a primer layer for surface modification to enhance the adhesion effect of the back metal, and a configuration further including an adhesive layer for bonding the back metal and the friction member. It can be mentioned.
The above-mentioned back metal is usually used as a friction member in order to improve the mechanical strength of the friction member, and as the material, metal or fiber reinforced plastic can be used. For example, iron, stainless steel, inorganic fiber Reinforced plastics and carbon fiber reinforced plastics may be mentioned. The primer layer and the adhesive layer may be those generally used for friction members such as brake shoes.

本実施形態の摩擦材組成物は、一般に使用されている方法を用いて摩擦材を製造することができ、本発明の摩擦材組成物を加熱加圧成形して製造することができる。詳細には、例えば、本実施形態の摩擦材組成物をレーディゲミキサー(「レーディゲ」は、登録商標。)、加圧ニーダー、アイリッヒミキサー(「アイリッヒ」は、登録商標。)等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度130〜160℃、成形圧力20〜50MPa、成形時間2〜10分間の条件で成形し、得られた成形物を150〜250℃で2〜10時間熱処理することにより本実施形態の摩擦材を得ることができる。なお、必要に応じて塗装、スコーチ処理、研磨処理等を行ってもよい。   The friction material composition of this embodiment can manufacture a friction material using the method generally used, and can be manufactured by heat-pressing the friction material composition of this invention. Specifically, for example, the friction material composition of the present embodiment is mixed with a Loedige mixer ("Ledige" is a registered trademark), a pressure kneader, an Eirich mixer ("Eich" is a registered trademark), etc. The mixture is uniformly mixed using a molding machine, and the mixture is preformed in a molding die, and the obtained preform is molded under conditions of a molding temperature of 130 to 160 ° C., a molding pressure of 20 to 50 MPa and a molding time of 2 to 10 minutes. The friction material of the present embodiment can be obtained by molding and heat treating the obtained molded product at 150 to 250 ° C. for 2 to 10 hours. In addition, you may perform coating, a scorch process, grinding | polishing process etc. as needed.

本実施形態の摩擦材組成物は、高温での耐摩耗性やメタルキャッチ抑制等に優れるため、ディスクブレーキパッドやブレーキライニング等の摩擦部材の「上張り材」として有用であり、さらに摩擦部材の「下張り材」として成形して用いることもできる。
なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。
The friction material composition of the present embodiment is excellent as the wear resistance at high temperatures, suppression of metal catch and the like, and thus is useful as an "overlaying material" for friction members such as disc brake pads and brake linings. It can also be molded and used as a "underlaying material".
Here, the "overlaying material" is a friction material which is the friction surface of the friction member, and the "underlaying material" is a friction material which is interposed between the friction material which is the friction surface of the friction member and the backing metal. It is a layer for the purpose of improving shear strength and crack resistance in the vicinity of the bonding portion with the back metal.

以下、実施例により本発明をさらに詳細に説明する。本発明は何らこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to these.

<実施例1〜7及び比較例1〜7>[ディスクブレーキパッドの作製]
表1及び2に示す配合比率に従って材料を配合し、実施例1〜7及び比較例1〜7の摩擦材組成物を得た。なお、表1及び2の各成分の配合量の単位は、摩擦材組成物中の質量%である
<Examples 1 to 7 and Comparative Examples 1 to 7> [Production of Disc Brake Pad]
The materials were compounded according to the compounding ratios shown in Tables 1 and 2 to obtain friction material compositions of Examples 1 to 7 and Comparative Examples 1 to 7. In addition, the unit of the compounding quantity of each component of Table 1 and 2 is the mass% in a friction material composition.

この摩擦材組成物をレーディゲミキサー(株式会社マツボー製、商品名:レーディゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形し、得られた予備成形物を成形温度45℃、成形圧力35MPa、成形時間5分間の条件で成形プレス(三起精工株式会社製)を用いて、日立オートモティブシステムズ株式会社製の裏金(鉄製)と共に加熱加圧成形し、得られた成形品を200℃で4.5時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ9.5mm、摩擦材投影面積52cm)を得た。 This friction material composition was mixed by a Loedige mixer (made by Matsubo Co., Ltd., trade name: Loedige mixer M20), and this mixture was preformed by a molding press (manufactured by Oji Machine Industry Co., Ltd.). The preform is heated and pressed together with a backing metal (iron) manufactured by Hitachi Automotive Systems, Ltd. using a molding press (manufactured by Sanki Seiko Co., Ltd.) under the conditions of a molding temperature of 45 ° C., a molding pressure of 35 MPa and a molding time of 5 minutes. The resulting molded product is heat-treated at 200 ° C. for 4.5 hours, polished using a rotary polisher, scorked at 500 ° C., and disc brake pad (friction material thickness 9.5 mm, friction Projected area 52 cm 2 ) was obtained.

なお、実施例及び比較例において使用した各種材料は次のとおりである。(結合材)・フェノール樹脂:日立化成株式会社製(商品名:HP491UP)(有機充填材)・カシューダスト・SBR粉(無機充填材)・チタン酸カリウム・硫酸バリウム・黒鉛A:メジアン径=8.5μm・黒鉛B:メジアン径=380.4μm・三硫化アンチモン・水酸化カルシウム・酸化ジルコニウム:メジアン径=2.5μm・酸化マグネシウム:メジアン径=3.5μm(繊維基材)・アラミド繊維(有機繊維)・ウォラストナイト(無機繊維)・銅繊維(金属繊維)・鉄繊維(金属繊維)(その他)・鉄粉   In addition, the various materials used in the Example and the comparative example are as follows. (Binder)-Phenolic resin: Hitachi Chemical Co., Ltd. (trade name: HP 491UP) (organic filler)-Cashew dust-SBR powder (inorganic filler)-potassium titanate-barium sulfate-Graphite A: median diameter = 8 .5 μm · Graphite B: median diameter = 380.4 μm · antimony trisulfide · calcium hydroxide · zirconium oxide: median diameter = 2.5 μm · magnesium oxide: median diameter = 3.5 μm (fiber base material) · aramid fiber (organic Fiber) · Wollastonite (inorganic fiber) · Copper fiber (metal fiber) · Iron fiber (metal fiber) (Others) · Iron powder

前記の方法で作製した実施例1〜7及び比較例1〜7のディスクブレーキパッドを、ブレーキダイナモ試験機(新日本特機株式会社製)を用いて各種性能の評価を行った。実験には、一般的なピンスライド式のコレット型キャリパー及び株式会社キリウ製ベンチレーテッドディスクローター(FC250(ねずみ鋳鉄))を用い、日産自動車株式会社製、商品名:スカイラインV35の慣性モーメントで評価を行った。   The disk brake pads of Examples 1 to 7 and Comparative Examples 1 to 7 manufactured by the above-described method were evaluated for various performances using a brake dynamo tester (manufactured by New Japan Special Machine Co., Ltd.). For the experiment, using a general pin-slide collet caliper and a bench-rated disc rotor (FC 250 (grey cast iron)) manufactured by Kiriu Corporation, Nissan Motor Co., Ltd., trade name: Evaluated by the moment of inertia of Skyline V35 Did.

(効き特性の評価)
試験は自動車技術会規格JASO C406に準拠し、第2効力試験における摩擦係数の平均値を算出し、効き特性として評価した。
(Evaluation of effectiveness characteristics)
The test conformed to Automobile Engineering Society Standard JASO C406, and the average value of the coefficient of friction in the second efficacy test was calculated and evaluated as an effective characteristic.

(耐摩耗性の評価)
試験はJASO C427に準拠し、制動前ブレーキ温度が100、200、300、400℃におけるディスクパッドの摩耗量をそれぞれ計測し、耐摩耗性として評価した。
(Evaluation of wear resistance)
The test conformed to JASO C 427, and the wear amount of the disk pad at brake temperatures before braking of 100, 200, 300 and 400 ° C. was measured and evaluated as wear resistance.

(BTV特性の評価)
まず、初速度60km/h、終速度0km/h、減速度0.3G、制動開始時のディスクロータ温度130℃で200回のすり合わせを行った。続いて本測定として、初速度160km/h、終速度60km/h、減速度0.3G、制動開始時のディスクロータ温度400℃の条件で制動を3回実施し、発生したトルク振動の最大値をBTV特性として評価した。
(Evaluation of BTV characteristics)
First, grinding was performed 200 times at an initial speed of 60 km / h, a final speed of 0 km / h, a deceleration of 0.3 G, and a disc rotor temperature at 130 ° C. at the start of braking. Subsequently, as the main measurement, braking was performed three times under the conditions of an initial speed of 160 km / h, a final speed of 60 km / h, a deceleration of 0.3 G, and a disc rotor temperature of 400 ° C. at the start of braking. Were evaluated as BTV characteristics.

(比重の評価)
試験は日本工業規格JIS D4417に準拠した。作製したディスクブレーキパッドを破断して裏金を取り除き、接着層等の摩擦部材以外の要素を有する場合は研磨等によって取り除くことで得られた摩擦部材を価に使用した。比重が2.25未満であればA評価、2.25以上2.30未満であればB評価、2.30以上であればC評価とした。
(Evaluation of specific gravity)
The test conformed to Japanese Industrial Standard JIS D4417. The manufactured disk brake pad was broken to remove the back metal, and when it had elements other than the friction member such as an adhesive layer, the friction member obtained by removing by grinding was used. If specific gravity is less than 2.25, it will be A evaluation, if 2.25 or more and less than 2.30, it will be B evaluation and if 2.30 or more, it will be C evaluation.


※ 表1、2の配合量は、摩擦材組成物全体に対する質量%である。

* The compounding amounts in Tables 1 and 2 are% by mass with respect to the entire friction material composition.

実施例1〜6は、鉄繊維を含有しない比較例1、鉄繊維の含有率が3質量%を超える比較例2、ウォラストナイトの含有率が10質量%未満である比較例3、酸化マグネシウムの含有率が10質量%以上であると共に黒鉛のメジアン径が30μm以上である比較例4、カシューダストの含有率が2質量%未満である比較例5、黒鉛と酸化マグネシウムの含有率が共に10質量%を超える比較例6と比較して、効き特性、耐摩耗性、BTV特性がバランス良く改善されていることは明らかである。また、BTV評価時におけるディスクロータのサーモグラフィ画像を図1に示す。実施例1は比較例1に対して温度勾配が均一で、安定した摩擦特性を発現した。さらに、摩擦特性は比較的良好であるが銅の含有率が0.5質量%以上であると共に、比重の大きな酸化ジルコニウムを研削材として含有する比較例7に対して比重が小さく、自動車の燃費改善に寄与できる。   Examples 1 to 6 are Comparative Example 1 not containing iron fibers, Comparative Example 2 in which the content of iron fibers exceeds 3% by mass, Comparative Example 3 in which the content of wollastonite is less than 10% by mass, magnesium oxide 10% by weight or more and Comparative Example 4 in which the median diameter of graphite is 30 μm or more, Comparative Example 5 in which the content ratio of cashew dust is less than 2% by weight, and the content ratio of both graphite and magnesium oxide is 10 It is clear that the effect characteristics, the abrasion resistance and the BTV characteristics are improved in a well-balanced manner as compared with Comparative Example 6 in which the content is more than% by mass. Moreover, the thermographic image of the disk rotor at the time of BTV evaluation is shown in FIG. Example 1 exhibited stable friction characteristics with a uniform temperature gradient compared to Comparative Example 1. Furthermore, the specific gravity is smaller than that of Comparative Example 7 in which the friction characteristics are relatively good but the copper content is 0.5% by mass or more, and zirconium oxide having a large specific gravity is contained as an abrasive material, and the fuel consumption of the automobile It can contribute to improvement.

本発明のノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材は、従来品と比較して制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、かつ良好な効き特性、耐摩耗性、BTV特性を有し、さらに軽量であることから自動車等の燃費向上にも貢献するため、乗用車用ブレーキパッド等の摩擦材及び摩擦部材に好適である。   The non-asbestos friction material composition, the friction material and the friction member using the same according to the present invention are environmentally friendly and have good properties because less copper is contained in the wear powder generated during braking as compared with the conventional products. It is suitable for friction materials and friction members such as brake pads for passenger cars and the like because it has wear resistance, BTV characteristics, and further contributes to improvement in fuel efficiency of automobiles and the like because it is lightweight.

Claims (6)

結合材、有機充填材、無機充填材、及び繊維基材を含有する摩擦材組成物であり、元素としての銅含有率が0.5質量%を超えず、鉄系繊維又は鉄系粉末を1〜3質量%含有し、かつ、繊維基材としてウォラストナイトを10〜30質量%含有する摩擦材組成物。   A friction material composition comprising a binder, an organic filler, an inorganic filler, and a fibrous base material, wherein the copper content as an element does not exceed 0.5% by mass, and iron-based fiber or iron-based powder 1 A friction material composition containing 3% by mass and containing 10 to 30% by mass of wollastonite as a fiber base. 無機充填材として酸化マグネシウムを1〜10質量%含有する、請求項1に記載の摩擦材組成物。   The friction material composition according to claim 1, containing 1 to 10% by mass of magnesium oxide as an inorganic filler. 無機充填材として黒鉛を1〜10質量%含有し、該黒鉛のメジアン径が1〜30μmである請求項1又は2に記載の摩擦材組成物。   The friction material composition according to claim 1 or 2, wherein the inorganic filler contains 1 to 10% by mass of graphite, and the median diameter of the graphite is 1 to 30 μm. 有機充填材としてカシューダストを2〜8質量%含有する請求項1〜3に記載の摩擦材組成物。   The friction material composition according to any one of claims 1 to 3, which contains 2 to 8% by mass of cashew dust as an organic filler. 請求項1〜4のいずれか一項に記載の摩擦材組成物を成形してなる摩擦材。   The friction material formed by shape | molding the friction material composition as described in any one of Claims 1-4. 請求項5に記載の摩擦材と裏金とを一体化してなる摩擦部材。   A friction member formed by integrating the friction material according to claim 5 and a back metal.
JP2018218555A 2018-11-21 2018-11-21 Friction material composition, and friction material and member using the same Pending JP2019059941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218555A JP2019059941A (en) 2018-11-21 2018-11-21 Friction material composition, and friction material and member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218555A JP2019059941A (en) 2018-11-21 2018-11-21 Friction material composition, and friction material and member using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014033985A Division JP6440947B2 (en) 2014-02-25 2014-02-25 Friction material composition, friction material using friction material composition, and friction member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020035314A Division JP2020094220A (en) 2020-03-02 2020-03-02 Friction material composition, and friction material and member using the same

Publications (1)

Publication Number Publication Date
JP2019059941A true JP2019059941A (en) 2019-04-18

Family

ID=66177150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218555A Pending JP2019059941A (en) 2018-11-21 2018-11-21 Friction material composition, and friction material and member using the same

Country Status (1)

Country Link
JP (1) JP2019059941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974523A (en) * 2022-12-09 2023-04-18 湖北飞龙摩擦密封材料股份有限公司 Porous mullite for friction material and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974523A (en) * 2022-12-09 2023-04-18 湖北飞龙摩擦密封材料股份有限公司 Porous mullite for friction material and preparation method and application thereof
CN115974523B (en) * 2022-12-09 2024-02-20 湖北飞龙摩擦密封材料股份有限公司 Porous mullite for friction material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6558465B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6179519B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6610014B2 (en) Friction material composition, friction material using friction material composition, and friction member
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
JP6425894B2 (en) Friction material composition, friction material using friction material composition and friction member
WO2012066967A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
WO2017130332A1 (en) Friction material composition, friction material, and friction member
JP7169981B2 (en) Friction material composition, friction material and friction member using friction material composition
JP6592976B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP5263454B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6440947B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP2013185016A (en) Friction material composition, and friction material and friction member using the friction material composition
JP2018172496A (en) Friction material composition
JP2018162385A (en) Friction material composition, and friction material and friction member using the friction material composition
JP2018131479A (en) Friction material composition, friction material using friction material composition, and friction member
JP6490936B2 (en) Friction material composition, friction material and friction member using the friction material composition
JP2016079246A (en) Friction material composition, friction material, and friction member
JP6493957B2 (en) Friction material composition, friction material and friction member
WO2020089979A1 (en) Friction member, composition for friction material, friction material, and vehicle
JPWO2019151390A1 (en) Friction material, friction material composition, friction member and vehicle
JP2019059941A (en) Friction material composition, and friction material and member using the same
JP6828791B2 (en) Friction material composition, friction material and friction member using friction material composition
JP2019048989A (en) Friction material composition, and friction material and friction member using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200302

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200310

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200317

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200403

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200407

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200907

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200915

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201013

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210202

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309