JP2019059808A - Fiber reinforced resin tubular body - Google Patents

Fiber reinforced resin tubular body Download PDF

Info

Publication number
JP2019059808A
JP2019059808A JP2017183554A JP2017183554A JP2019059808A JP 2019059808 A JP2019059808 A JP 2019059808A JP 2017183554 A JP2017183554 A JP 2017183554A JP 2017183554 A JP2017183554 A JP 2017183554A JP 2019059808 A JP2019059808 A JP 2019059808A
Authority
JP
Japan
Prior art keywords
fiber
bending
tubular body
reinforced resin
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183554A
Other languages
Japanese (ja)
Other versions
JP7024959B2 (en
Inventor
勝彦 壁谷
Katsuhiko Kabetani
勝彦 壁谷
原田 真
Makoto Harada
真 原田
和昌 石川
Kazumasa Ishikawa
和昌 石川
俊嗣 田中
Toshitsugu Tanaka
俊嗣 田中
町屋 修太郎
Shutaro Machiya
修太郎 町屋
博仁 平
Hirohito Taira
博仁 平
朝美 仲井
Asami Nakai
朝美 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Engineering Kk
Gifu University NUC
Aichi Prefecture
Daido Gakuen School
Original Assignee
Chubu Engineering Kk
Gifu University NUC
Aichi Prefecture
Daido Gakuen School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Engineering Kk, Gifu University NUC, Aichi Prefecture, Daido Gakuen School filed Critical Chubu Engineering Kk
Priority to JP2017183554A priority Critical patent/JP7024959B2/en
Publication of JP2019059808A publication Critical patent/JP2019059808A/en
Application granted granted Critical
Publication of JP7024959B2 publication Critical patent/JP7024959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a fiber reinforced resin tubular body of which reinforced fiber forming a flexure planned area is hardly broken and the flexure planned area is hardly buckled when flexure processing is conducted at a state that a resin at the flexure planned area can be plastically deformed by heating.SOLUTION: A fiber reinforced thermoplastic resin forming a fiber reinforced resin tubular body 1 is formed by a continuous carbon fiber S and a polyamide resin, and has an arrangement structure of the continuous carbon fiber so that orientation angle θ1 to an axis line G of the continuous carbon fiber S forming a flexure planned area VE is larger than orientation angle θ2 to the axis line G of the continuous carbon fiber S respectively forming areas E1, E2 which are other than the flexure planned area.SELECTED DRAWING: Figure 2

Description

本発明は、繊維強化樹脂により形成された繊維強化樹脂管状体に関する。   The present invention relates to a fiber-reinforced resin tubular body formed of a fiber-reinforced resin.

従来、この種の繊維強化樹脂管状体として、繊維強化樹脂をマンドレルに巻き付けて製造するFRP筒体が知られている(特許文献1)。このFRP筒体は、強化繊維のパイプの軸方向両端部における巻角度Aを±80〜90°、中央部における巻角度Bを±5〜20°、両端部と中央部との間における巻角度を巻角度Aから巻角度Bに徐々に変化する巻角度Cにそれぞれ設定している。   Conventionally, as a fiber reinforced resin tubular body of this type, an FRP cylindrical body manufactured by winding a fiber reinforced resin around a mandrel is known (Patent Document 1). The FRP cylinder has a winding angle A of ± 80 to 90 ° at both axial ends of the reinforcing fiber pipe, a winding angle B at the central portion of ± 5 to 20 °, and a winding angle between both ends and the central portion Are set to the winding angle C which gradually changes from the winding angle A to the winding angle B.

特開平8−99373号公報JP-A-8-99373

しかし、前述した特許文献1に記載のFRP筒体は、端部以外の領域の曲げ強度が高いため、曲げ予定領域の樹脂が加熱により塑性変形が可能となった状態で曲げ加工したときに、曲げ予定領域を形成する強化繊維が破断し、曲げ予定領域が座屈し易いという問題がある。   However, since the FRP cylinder described in Patent Document 1 described above has high bending strength in the area other than the end, when bending is performed in a state where plastic deformation is possible by heating the resin in the area to be bent, There is a problem that the reinforcing fiber forming the bending expected area is broken and the bending expected area is easily buckled.

そこで、本発明は、上記の問題を解決するために創出されたものであって、曲げ予定領域の樹脂が加熱により塑性変形が可能となった状態で曲げ加工したときに、曲げ予定領域を形成する強化繊維が破断し難く、曲げ予定領域が座屈し難い繊維強化樹脂管状体を提供することを目的とする。   Therefore, the present invention is created to solve the above-mentioned problems, and when the resin in the area to be bent is bent in a state where plastic deformation is possible by heating, the area to be bent is formed. It is an object of the present invention to provide a fiber-reinforced resin tubular body in which reinforcing fibers are less likely to break and in which a region to be bent is less likely to buckle.

上述した目的を達成するため、本願発明に係る繊維強化樹脂管状体は、繊維強化熱可塑性樹脂により形成されており、曲げ予定領域の熱可塑性樹脂が加熱により塑性変形が可能となった状態で曲げ予定領域の曲げ加工が可能になる繊維強化樹脂管状体であって、曲げ予定領域における強化繊維の配置構造は、強化繊維間が曲げ予定領域以外の領域よりも曲げ加工に対して相対変位し易くなっている配置構造であることを第1の特徴とする。
上記の「強化繊維間が相対変位し易くなっている」とは、換言すると、加熱により塑性変形が可能となった熱可塑性樹脂の中で強化繊維が動き易い(滑り易い)という意味である。
In order to achieve the above-mentioned object, the fiber-reinforced resin tubular body according to the present invention is formed of a fiber-reinforced thermoplastic resin, and is bent in a state where the thermoplastic resin in the area to be bent can be plastically deformed by heating. A fiber-reinforced resin tubular body capable of bending a predetermined area, and the arrangement structure of reinforcing fibers in the predetermined bending area is easier to displace relative to bending than the area other than the predetermined bending area between the reinforcing fibers. The first feature is the arrangement structure.
The above-mentioned "relative displacement between reinforcing fibers is easily caused" means that the reinforcing fibers are easily moved (slippery) in the thermoplastic resin in which plastic deformation is possible by heating.

上記第1の特徴を備える繊維強化樹脂管状体は、曲げ予定領域の熱可塑性樹脂が加熱により塑性変形が可能となった状態で曲げ予定領域の曲げ加工が可能になる繊維強化樹脂管状体であって、曲げ予定領域の方が曲げ予定領域以外の領域よりも、曲げ加工に対して強化繊維間が相対変位し易くなっている。
つまり、曲げ予定領域の強化繊維間は、加熱により塑性変形が可能となった熱可塑性樹脂の中で、曲げ加工するときの曲げ荷重に追従して相対変位し易く破断し難いため、曲げ予定領域が座屈し難い。
The fiber-reinforced resin tubular body having the above first feature is a fiber-reinforced resin tubular body which enables bending of the planned bending region in a state where plastic deformation of the thermoplastic resin in the planned bending region becomes possible by heating. Thus, the area to be bent is more likely to be displaced relative to the bending process relative to the area other than the area to be bent.
That is, among the thermoplastic resins which can be plastically deformed by heating, the reinforcing fibers in the planned bending region are relatively easy to be displaced due to the bending load at the time of bending, and are not easily broken. Is hard to buckle.

また、本願発明に係る繊維強化樹脂管状体は、前述の第1の特徴において、繊維強化熱可塑性樹脂は、連続強化繊維と熱可塑性樹脂とから少なくとも形成されており、配置構造は、当該繊維強化樹脂管状体の軸線に対する連続強化繊維の配向角度が、曲げ予定領域以外の領域よりも曲げ予定領域の方が大きい配置構造であることを第2の特徴とする。   Further, in the fiber-reinforced resin tubular body according to the present invention, in the first feature described above, the fiber-reinforced thermoplastic resin is at least formed of a continuous reinforcing fiber and a thermoplastic resin, and the arrangement structure is the fiber-reinforced resin. A second feature is that the orientation structure of the continuous reinforcing fiber with respect to the axis of the resin tubular body is a configuration in which the area to be bent is larger than the area other than the area to be bent.

上記第2の特徴を備える繊維強化樹脂管状体は、軸線に対する連続強化繊維の配向角度が、曲げ予定領域以外の領域よりも曲げ予定領域の方が大きい配置構造である。
このため、曲げ予定領域を形成する連続強化繊維間は、加熱により塑性変形が可能となった熱可塑性樹脂の中で、曲げ加工するときの曲げ荷重に追従して相対変位し易く破断し難いため、曲げ予定領域が座屈し難い。
The fiber-reinforced resin tubular body having the second feature has an arrangement structure in which the orientation angle of the continuous reinforcing fiber with respect to the axis line is larger in the planned bending region than in the region other than the planned bending region.
For this reason, among the continuous reinforcing fibers forming the planned bending region, among thermoplastic resins which can be plastically deformed by heating, they are relatively easy to be displaced following the bending load at the time of bending, and it is difficult to break. , Bending area is difficult to buckle.

また、本願発明に係る繊維強化樹脂管状体は、前述の第1または第2の特徴において、繊維強化熱可塑性樹脂は、連続強化繊維と熱可塑性樹脂とから少なくとも形成されており、配置構造は、連続強化繊維の体積含有率が、曲げ予定領域以外の領域よりも曲げ予定領域の方が小さい配置構造であることを第3の特徴とする。   Further, in the fiber-reinforced resin tubular body according to the present invention, in the first or second feature described above, the fiber-reinforced thermoplastic resin is at least formed of a continuous reinforcing fiber and a thermoplastic resin, and the arrangement structure is A third feature of the present invention is a configuration in which the volume content of the continuous reinforcing fibers is smaller in the planned bending region than in the region other than the planned bending region.

上記第3の特徴を備える繊維強化樹脂管状体は、連続強化繊維の体積含有率が、曲げ予定領域以外の領域よりも曲げ予定領域の方が小さい配置構造である。
このため、曲げ予定領域を形成する連続強化繊維間は、加熱により塑性変形が可能となった熱可塑性樹脂の中で、曲げ加工するときの曲げ荷重に追従してより相対変位する際に干渉し合う(相対変位の妨げとなる)連続強化繊維が、曲げ予定領域以外の領域よりも少ないために相対変位し易く破断し難い。
したがって、曲げ予定領域が座屈し難い。
The fiber-reinforced resin tubular body provided with the third feature is an arrangement structure in which the volume fraction of continuous reinforcing fibers is smaller in the planned bending region than in the region other than the planned bending region.
For this reason, among the thermoplastic resins which can be plastically deformed by heating, the continuous reinforcing fibers forming the planned bending region interfere with each other when the relative displacement is performed following the bending load at the time of bending. Because there are less continuous reinforcing fibers (that hinder the relative displacement) than the area other than the area to be bent, relative displacement is likely to occur and breakage is difficult.
Therefore, it is difficult for the region to be bent to buckle.

また、本願発明に係る繊維強化樹脂管状体は、前述の第1ないし第3のいずれか1つの特徴において、配置構造は、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回された配置構造であることを第4の特徴とする。   Further, in the fiber-reinforced resin tubular body according to the present invention, in the first to third features described above, the disposition structure is a tape formed by weaving reinforcing fibers with a thermoplastic resin. A fourth feature is that the configuration has a spirally wound configuration so as to partially overlap.

上記第4の特徴を備える管状体は、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回された配置構造である。このため、熱可塑性樹脂が、加熱により塑性変形が可能となった状態で曲げ加工した際に、曲げ予定領域を形成するテープの強化繊維間は、曲げ予定領域以外の領域を形成する強化繊維間よりも、相対変位し易く破断し難いため、曲げ予定領域が座屈し難い。
しかも、曲げ予定領域に捲回されているテープは、曲げ加工時の曲げ荷重によって幅方向に相対変位する。
このとき、テープに掛かる曲げ荷重は、曲げ予定領域を形成する曲げ方向の内側のテープの部分よりも、曲げ予定領域を形成する曲げ方向の外側のテープの部分の方が大きくなる。
しかし、テープは、幅方向の短い強化繊維と、テープの捲回方向に連続する強化繊維とから形成されているため、捲回された状態では軸線方向に沿って短い強化繊維が配置された状態になる。
したがって、曲げ予定領域の曲げ方向の外側を形成するテープの短い強化繊維は、テープに掛かる曲げ荷重に追従して変位するだけであるため、破断し難い。
The tubular body having the fourth feature is an arrangement structure in which a tape formed by weaving reinforcing fibers with a thermoplastic resin is spirally wound so that a part thereof overlaps. For this reason, when the thermoplastic resin is bent in a state where plastic deformation is possible by heating, between the reinforcing fibers of the tape forming the planned bending region is between the reinforcing fibers forming the region other than the planned bending region. In addition, since the relative displacement is likely to occur and the fracture is unlikely to occur, it is difficult for the region to be bent to buckle.
Moreover, the tape wound in the area to be bent is relatively displaced in the width direction due to the bending load at the time of bending.
At this time, the bending load applied to the tape is greater in the portion of the tape outside in the bending direction that forms the region to be bent than in the portion of the tape inside in the bending direction that forms the region to be bent.
However, since the tape is formed of short reinforcing fibers in the width direction and reinforcing fibers continuous in the winding direction of the tape, in the wound state, the short reinforcing fibers are disposed along the axial direction. become.
Therefore, since the short reinforcing fibers of the tape forming the outside of the bending direction in the bending direction are only displaced following the bending load applied to the tape, it is difficult to break.

また、本願発明に係る繊維強化樹脂管状体は、前述の第2の特徴を有する繊維強化樹脂管状体に対して、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されたことを第5の特徴とする。   In the fiber-reinforced resin tubular body according to the present invention, a tape formed by weaving reinforcing fibers with a thermoplastic resin with respect to the fiber-reinforced resin tubular body having the second feature described above is a part thereof The fifth feature of the present invention is that it is spirally wound to overlap.

上記第5の特徴を備える繊維強化樹脂管状体は、前述の第2の特徴を有する繊維強化樹脂管状体に対して、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されている。
したがって、前述の第2の特徴を有する繊維強化樹脂管状体の圧縮強度をより一層高めることができる。
The fiber-reinforced resin tubular body having the fifth feature is a tape formed by weaving reinforcing fibers with a thermoplastic resin with respect to the fiber-reinforced resin tubular body having the second feature described above. It is spirally wound so that parts overlap.
Therefore, the compressive strength of the fiber-reinforced resin tubular body having the second feature described above can be further enhanced.

また、本願発明に係る繊維強化樹脂管状体は、前述の第3の徴を有する繊維強化樹脂管状体に対して、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されたことを第6の特徴とする。   In the fiber-reinforced resin tubular body according to the present invention, a tape formed by weaving reinforcing fibers with a thermoplastic resin with respect to the fiber-reinforced resin tubular body having the third feature described above is a part thereof The sixth feature of the present invention is that it is spirally wound so as to overlap each other.

上記第6の特徴を備える繊維強化樹脂管状体は、前述の第3の特徴を有する繊維強化樹脂管状体に対して、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されている。
したがって、前述の第3の特徴を有する繊維強化樹脂管状体の圧縮強度をより一層高めることができる。
The fiber-reinforced resin tubular body having the sixth feature is a tape formed by weaving reinforcing fibers with a thermoplastic resin with respect to the fiber-reinforced resin tubular body having the third feature described above. It is spirally wound so that parts overlap.
Accordingly, the compressive strength of the fiber-reinforced resin tubular body having the third feature described above can be further enhanced.

本願発明に係る管状体を実施すれば、曲げ予定領域の樹脂が加熱により塑性変形が可能となった状態で曲げ加工したときに、曲げ予定領域を形成する強化繊維が破断し難く、曲げ予定領域が座屈し難い繊維強化樹脂管状体を提供することができる。   By carrying out the tubular body according to the present invention, when the resin in the planned bending region is bent in a state where plastic deformation is possible by heating, the reinforcing fibers forming the planned bending region are less likely to break, and the planned bending region It is possible to provide a fiber-reinforced resin tubular body which is less likely to buckle.

本発明の第1実施形態における実験1に使用した繊維強化樹脂管状体の説明図であり、(a)は正面図、(b)は側面図である。It is explanatory drawing of the fiber reinforced resin tubular body used for Experiment 1 in 1st Embodiment of this invention, (a) is a front view, (b) is a side view. 本発明の第1実施形態に係る繊維強化樹脂管状体を形成する連続炭素繊維の配向角度の説明図であり、(a)は連続炭素繊維が捲回された繊維強化樹脂管状体の正面図、(b),(c)は曲げ予定領域における連続強化繊維の配向角度の説明図、(d),(e)は曲げ予定領域以外の領域における連続強化繊維の配向角度の説明図である。It is explanatory drawing of the orientation angle of the continuous carbon fiber which forms the fiber reinforced resin tubular body which concerns on 1st Embodiment of this invention, (a) is a front view of the fiber reinforced resin tubular body which continuous carbon fiber was wound, (B), (c) is explanatory drawing of the orientation angle of the continuous reinforcing fiber in a bending plan area | region, (d), (e) is explanatory drawing of the orientation angle of the continuous reinforcing fiber in area | regions other than a bending plan area | region. 本発明の各実験において使用した曲げ加工装置の概念図である。It is a conceptual diagram of the bending apparatus used in each experiment of this invention. 図3に示す曲げ加工装置が繊維強化樹脂管状体を曲げ加工した状態を示す概念図である。It is a conceptual diagram which shows the state which the bending apparatus shown in FIG. 3 bent-processed the fiber reinforced resin tubular body. 本発明の第3実施形態に係る繊維強化樹脂管状体の説明図であり、(a)は繊維強化樹脂管状体の正面図、(b)は(a)に示す繊維強化樹脂管状体の一部を拡大して示す拡大図、(c)は(a)に示すテープを形成する炭素繊維の説明図、(d)はテープのずらし幅および重なり幅の説明図である。It is explanatory drawing of the fiber reinforced resin tubular body which concerns on 3rd Embodiment of this invention, (a) is a front view of a fiber reinforced resin tubular body, (b) is a part of fiber reinforced resin tubular body shown to (a) (C) is an explanatory view of carbon fibers forming the tape shown in (a), and (d) is an explanatory view of a shift width and an overlap width of the tape. 図5(a)に示す繊維強化樹脂管状体を形成するテープの変位を説明するための説明図であり、(a)は変位前のテープの説明図、(b)は変位後のテープの説明図である。It is an explanatory view for explaining displacement of a tape which forms a fiber reinforced resin tubular body shown in Drawing 5 (a), (a) is an explanatory view of a tape before displacement, (b) is an explanation of a tape after displacement. FIG. 曲げ加工された繊維強化樹脂管状体の説明図であり、(a)は平面図、(b)は、(a)のJ−J矢視断面図である。It is explanatory drawing of the fiber reinforced resin tubular body by which the bending process was carried out, (a) is a top view, (b) is JJ arrow sectional drawing of (a). 実験結果をまとめた図表である。It is the chart which put together the experimental result.

以下の各実施形態における繊維強化樹脂管状体は、CFRTP(Carbon Fiber Reinforced Thermo Plastics:炭素繊維強化熱可塑性樹脂)により形成されており、曲げ予定領域の熱可塑性樹脂が加熱により塑性変形が可能となった状態で曲げ予定領域の曲げ加工が可能になる繊維強化樹脂管状体である。また、以下の各実施形態における繊維強化樹脂管状体は、曲げ予定領域の方が曲げ予定領域以外の領域よりも、曲げ加工に対して炭素繊維間が相対変位し易くなっている炭素繊維の配置構造を有する。   The fiber-reinforced resin tubular body in each of the following embodiments is formed of CFRTP (Carbon Fiber Reinforced Thermo Plastics: carbon fiber reinforced thermoplastic resin), and the thermoplastic resin in the region to be bent can be plastically deformed by heating. It is a fiber reinforced resin tubular body which enables bending processing of a bending scheduled area in a fixed state. Further, in the fiber-reinforced resin tubular body in each of the following embodiments, the arrangement of carbon fibers in which the carbon fibers are more easily displaced relative to bending processing in the bending planned area than in the area other than the bending planned area. It has a structure.

〈第1実施形態〉
本発明の第1実施形態に係る繊維強化樹脂管状体について図を参照しつつ説明する。
本実施形態の繊維強化樹脂管状体は、CFRTPにより形成されており、繊維強化樹脂管状体の軸線に対する連続炭素繊維の配向角度が、曲げ予定領域以外の領域よりも曲げ予定領域の方が大きい連続強化繊維の配置構造を有することを特徴とする。
図1に示すように、本実施形態の繊維強化樹脂管状体1は、縦断面形状が円形の円筒形状(中空パイプ状)に形成されている。繊維強化樹脂管状体1の全長はL、外径はφ1、内径はφ2である。繊維強化樹脂管状体1には、曲げ加工を行う予定の領域、つまり、曲げ予定領域VEが設定されている。符号Cにて示す点は、曲げ半径の中心である。繊維強化樹脂管状体1の左端から右端に向けてL1移動した位置から曲げ予定領域VEが始まっており、その幅はL2に設定されている。
First Embodiment
A fiber-reinforced resin tubular body according to a first embodiment of the present invention will be described with reference to the drawings.
The fiber-reinforced resin tubular body of this embodiment is formed of CFRTP, and the orientation angle of the continuous carbon fiber with respect to the axis of the fiber-reinforced resin tubular body is continuous with the planned bending area larger than the area other than the planned bending area. It is characterized by having an arrangement structure of reinforcing fibers.
As shown in FIG. 1, the fiber-reinforced resin tubular body 1 of the present embodiment is formed in a cylindrical shape (hollow pipe shape) having a circular longitudinal cross-sectional shape. The total length of the fiber-reinforced resin tubular body 1 is L, the outer diameter is φ1, and the inner diameter is φ2. In the fiber-reinforced resin tubular body 1, an area to be subjected to bending, that is, an area to be bent VE is set. The point indicated by the symbol C is the center of the bending radius. The bending planned area VE starts from the position where the fiber reinforced resin tubular body 1 has moved L1 from the left end to the right end, and the width thereof is set to L2.

繊維強化樹脂管状体1は、公知のフィラメントワインディングによって形成されている。本実施形態においてフィラメントワインディングに用いるフィラメントは、複数本の連続炭素繊維がマトリックス樹脂である熱可塑性樹脂によって被覆されたもの、もしくは、連続炭素繊維および熱可塑性樹脂繊維が混繊されたものである。管状体は、フィラメントワインダーに設けられた加熱装置を使ってフィラメントの樹脂部分を溶融させながらワインディング成形される。これにより、CFRTP(Carbon Fiber Reinforced Thermo Plastics:炭素繊維強化熱可塑性樹脂)製の管状体が形成される。
図2(a)は、本実施形態の繊維強化樹脂管状体1の説明図であるが、フィラメントの捲回状態が分かるように模式的に表されている。図2において、符号θ1,θ2は、繊維強化樹脂管状体1を形成する連続炭素繊維の配向角度を示す。ここで、配向角度とは、繊維強化樹脂管状体1の軸線G(繊維強化樹脂管状体1の長手方向に沿った中心軸)に対する連続炭素繊維の角度である。図2(b),(c)は、それぞれ曲げ予定領域VEにおける配向角度を示し、図2(d),(e)は、それぞれ曲げ予定領域以外の領域E1,E2における配向角度を示す。なお、フィラメントをマンドレルにヘリカル巻きする場合、フィラメントはマンドレルの軸線に沿って両端を往復するため、マンドレルの左端から右端に向けて巻くとき(往路)の角度をθ1,θ2で示し、右端から左端に向けて巻くとき(復路)の角度を−θ1,−θ2で示す。図示のように、曲げ予定領域VEに捲回された連続炭素繊維の配向角度θ1は、曲げ予定領域VE以外の領域E1,E2に捲回された連続炭素繊維の配向角度θ2よりも大きい。たとえば、配向角度θ1は45度であり、配向角度θ2は20度である。
The fiber-reinforced resin tubular body 1 is formed by known filament winding. The filaments used for filament winding in the present embodiment are those in which a plurality of continuous carbon fibers are coated with a thermoplastic resin which is a matrix resin, or those in which continuous carbon fibers and thermoplastic resin fibers are mixed. The tubular body is wound and formed while melting the resin portion of the filament using a heating device provided in the filament winder. As a result, a tubular body made of CFRTP (Carbon Fiber Reinforced Thermo Plastics: carbon fiber reinforced thermoplastic resin) is formed.
Fig.2 (a) is explanatory drawing of the fiber reinforced resin tubular body 1 of this embodiment, However, It is represented typically so that the winding state of a filament may be known. In FIG. 2, reference symbols θ 1 and θ 2 indicate orientation angles of continuous carbon fibers forming the fiber reinforced resin tubular body 1. Here, the orientation angle is the angle of the continuous carbon fiber with respect to the axis G of the fiber-reinforced resin tubular body 1 (the central axis along the longitudinal direction of the fiber-reinforced resin tubular body 1). 2 (b) and 2 (c) show the orientation angle in the planned bending region VE, and FIGS. 2 (d) and 2 (e) show the orientation angles in the regions E1 and E2 other than the planned bending region. When the filament is helically wound on the mandrel, the filament reciprocates both ends along the axis of the mandrel, and the angle (outward path) when winding from the left end to the right end of the mandrel is indicated by θ1 and θ2, and from the right end to the left end The angles of (winding back) when winding toward are indicated by -.theta.1 and -.theta.2. As illustrated, the orientation angle θ1 of continuous carbon fibers wound in the planned bending region VE is larger than the orientation angle θ2 of continuous carbon fibers wound in the regions E1 and E2 other than the planned bending region VE. For example, the orientation angle θ1 is 45 degrees, and the orientation angle θ2 is 20 degrees.

[実験1]
本願発明者らは、連続炭素繊維の配向角度が曲げ加工に及ぼす影響を調べる実験を行った。
(実験内容)
本実験では、繊維強化樹脂管状体1を形成するフィラメントとして、連続PAN(ポリアクリロニトリル)系炭素繊維がポリアミド樹脂繊維と混繊されたフィラメントを使用した。連続強化繊維およびポリアミド樹脂の体積含有率は、それぞれ50%である。フィラメントの幅は5〜6mmであり、厚さは0.3〜0.4mmである。また、旭化成エンジニアリング株式会社製のフィラメントワインディング装置を使用した。
フィラメントワインディングでは、加熱によりフィラメントに含まれるポリアミド樹脂を溶融させながら、ヘリカル巻きによりマンドレルに4層捲回し、自然冷却によりポリアミド樹脂を固化させ、繊維強化樹脂管状体1を作成した。
作成した繊維強化樹脂管状体1は、全長Lが510mm、外径φ1が31.0mm、内径φ2が27.2mmの中空パイプ形状である。また、繊維強化樹脂管状体1の縦断面形状は真円であり、扁平度は1である。また、図1(a)に示したL1=210〜220mmであり、L2=約150mmである。また、曲げ加工時に繊維強化樹脂管状体1の変形を防止するため、芯材(中子)を繊維強化樹脂管状体1に充填した。本実験では、芯材として、PEEK(ポリエーテルエーテルケトン)樹脂製で直径が1mm前後で縦断面形状が円形の線状の素材を束ねたものを芯材として使用した。
また、本実験では、連続炭素繊維の配向角度が曲げ予定領域VEおよび曲げ予定領域以外の領域E1,E2の総てにおいて20度の繊維強化樹脂管状体(第1実施形態(1))と、曲げ予定領域VEにおける配向角度θ1が45度であり、曲げ予定領域以外の領域E1,E2における各配向角度θ2がそれぞれ20度の繊維強化樹脂管状体(第1実施形態(2))とを使用した。
[Experiment 1]
The present inventors conducted experiments to investigate the influence of the orientation angle of continuous carbon fibers on bending.
(Contents of experiment)
In this experiment, a filament in which continuous PAN (polyacrylonitrile) carbon fiber is mixed with polyamide resin fiber was used as the filament forming the fiber reinforced resin tubular body 1. The volume content of the continuous reinforcing fiber and the polyamide resin is 50% respectively. The width of the filaments is 5 to 6 mm and the thickness is 0.3 to 0.4 mm. In addition, a filament winding apparatus manufactured by Asahi Kasei Engineering Corporation was used.
In the filament winding, while the polyamide resin contained in the filament is melted by heating, four layers are wound around the mandrel by helical winding, and the polyamide resin is solidified by natural cooling, and the fiber reinforced resin tubular body 1 is formed.
The fiber-reinforced resin tubular body 1 thus prepared is in the form of a hollow pipe having a total length L of 510 mm, an outer diameter φ1 of 31.0 mm, and an inner diameter φ2 of 27.2 mm. The longitudinal cross-sectional shape of the fiber-reinforced resin tubular body 1 is a true circle, and the flatness is 1. Moreover, it is L1 = 210-220 mm shown to Fig.1 (a), and it is L2 = about 150 mm. Moreover, in order to prevent deformation of the fiber reinforced resin tubular body 1 at the time of bending, the core material (core) was filled in the fiber reinforced resin tubular body 1. In this experiment, a core material made of PEEK (polyether ether ketone) resin, which is a bundle of linear material having a diameter of about 1 mm and a circular longitudinal cross-section, was used as the core material.
In this experiment, a fiber-reinforced resin tubular body (first embodiment (1)) in which the orientation angle of the continuous carbon fiber is 20 degrees in all of the areas E1 and E2 other than the planned bending area VE and the planned bending area A fiber reinforced resin tubular body (first embodiment (2)) in which the orientation angle θ1 in the planned bending area VE is 45 degrees and the orientation angles θ2 in the areas E1 and E2 other than the planned bending area is 20 degrees respectively did.

また、曲げ加工装置として、図3に示すものを使用した。この曲げ加工装置2は、金型3と、固定クランプ4と、移動クランプ5と、スライド装置(図示省略)とを備える。本実験では、曲げ加工対象を金型に巻き付けて曲げ加工するストレッチベンド方式を用いた。繊維強化樹脂管状体1の左端は固定クランプ4に、右端は移動クランプ5によってそれぞれ保持される。固定クランプ4および移動クランプ5は、前後に移動可能な独立したスライド装置にそれぞれ設けられている。金型3のR部3aの曲率半径は284mmである。また、繊維強化樹脂管状体1の曲げ条件は、曲げ角度θ3(図7(a))が10度、曲げ方向の内側の曲げ半径r、つまり、曲げ中心C(図7(a))の曲率半径が300mmである。   Moreover, as a bending apparatus, what was shown in FIG. 3 was used. The bending apparatus 2 includes a mold 3, a fixed clamp 4, a movable clamp 5, and a slide device (not shown). In this experiment, a stretch bend method was used in which the object to be bent was wound around a die and bent. The left end of the fiber-reinforced resin tubular body 1 is held by the fixed clamp 4, and the right end is held by the movable clamp 5. The fixed clamp 4 and the movable clamp 5 are respectively provided on independent slide devices movable back and forth. The radius of curvature of the R portion 3a of the mold 3 is 284 mm. The bending condition of the fiber-reinforced resin tubular body 1 is that the bending angle θ3 (FIG. 7 (a)) is 10 degrees, and the inner bending radius r in the bending direction, that is, the curvature of the bending center C (FIG. 7 (a)) The radius is 300 mm.

先ず、繊維強化樹脂管状体1の左端を固定クランプ4に右端を移動クランプ5にそれぞれ取付け、繊維強化樹脂管状体1の曲げ予定領域VEを加熱装置(図示省略)によって加熱する。そして、曲げ予定領域VEが240℃に達し、曲げ予定領域VEを形成しているポリアミド樹脂が溶融してからスライド装置を前方(図3において矢印F1で示す方向)、つまり金型3の方へ移動させる。そして、図4に示すように、繊維強化樹脂管状体1が金型3に当接すると、左側の固定クランプ4が取付けられたスライド装置が停止する。一方、右側の移動クランプ5が取付けられたスライド装置は前進し、繊維強化樹脂管状体1には矢印F2で示す方向に引張荷重が掛かり、曲げ予定領域VEが金型3のR部3aに沿って曲がる。本実験では、移動クランプ5を介して繊維強化樹脂管状体1の右端に3500Nの引張荷重を掛けて曲げ加工を行った。そして、自然冷却後、固定クランプ4および移動クランプ5から繊維強化樹脂管状体1を外した。   First, the left end of the fiber-reinforced resin tubular body 1 is attached to the fixed clamp 4 and the right end thereof is attached to the moving clamp 5, and the bending scheduled area VE of the fiber-reinforced resin tubular body 1 is heated by a heating device (not shown). Then, after the bending planned area VE reaches 240 ° C. and the polyamide resin forming the bending planned area VE is melted, the slide device is moved forward (in the direction indicated by the arrow F1 in FIG. 3), that is, toward the mold 3 Move it. Then, as shown in FIG. 4, when the fiber-reinforced resin tubular body 1 abuts on the mold 3, the slide device to which the left fixed clamp 4 is attached is stopped. On the other hand, the slide device to which the movable clamp 5 on the right side is attached advances, and a tensile load is applied to the fiber reinforced resin tubular body 1 in the direction shown by the arrow F2, and the bending planned area VE follows the R portion 3a of the mold 3. Turn. In this experiment, a bending load of 3500 N was applied to the right end of the fiber-reinforced resin tubular body 1 via the movable clamp 5 to perform bending. Then, after natural cooling, the fiber reinforced resin tubular body 1 was removed from the fixed clamp 4 and the movable clamp 5.

(実験結果)
本願発明者らは、上述した手法によって曲げ加工された繊維強化樹脂管状体1の曲げ方向の内外方向の外径Aと、曲げ方向の上下方向の外径B(図7(b))と、曲げ半径rとを測定した。また、扁平度(=B/A)を計算した。また、曲がった領域にシワ、座屈および破断などが発生しているか否かを調べた。扁平度は、図7に示すように、繊維強化樹脂管状体1の曲がった領域の曲げ中心Cを縦方向に切断し、内外方向の外径Aと、上下方向の外径Bとの比(B/A)を扁平度として計算した。曲げ加工を行う前の繊維強化樹脂管状体1は、潰れていないため、扁平度は1である。
そして、曲がった領域が座屈または破断しているか否かを検査した結果に基づいて各実験結果を評価した。つまり、曲がった領域に座屈および破断が無い場合は、曲げ加工状態が良好であると判定し、曲げ性の判定結果として○を記した。また、曲がった領域に座屈または破断が発生した場合、規定の引張荷重を掛けても曲がらなかった場合、および曲げ半径rが300mm以上だった場合のいずれかに該当する場合は曲げ性の判定結果として×を記した。
(Experimental result)
The inventors of the present invention, the outer diameter A in the inward and outward directions of the bending direction of the fiber-reinforced resin tubular body 1 bent by the above-described method, and the outer diameter B in the vertical direction of the bending direction (FIG. 7 (b)) The bending radius r was measured. In addition, the flatness (= B / A) was calculated. In addition, it was examined whether or not wrinkles, buckling and breakage occurred in the bent area. As shown in FIG. 7, the flatness is obtained by cutting the bending center C of the bent region of the fiber-reinforced resin tubular body 1 in the longitudinal direction, and the ratio of the outer diameter A in the inner and outer directions to the outer diameter B in the vertical direction B / A) was calculated as flatness. The flatness of the fiber-reinforced resin tubular body 1 before bending is 1 because the fiber-reinforced resin tubular body 1 is not crushed.
And each experimental result was evaluated based on the result of having examined whether the crooked area was buckling or breaking. That is, when there was no buckling and breakage in the bent region, it was judged that the bending state was good, and a circle was written as a judgment result of the bending property. In addition, when buckling or breakage occurs in a bent area, no bending occurs under a specified tensile load, and bending radius r is 300 mm or more, the determination of bendability is applicable. As a result, it marked x.

その結果、図8に示すように、連続炭素繊維の配向角度が曲げ予定領域VEおよび曲げ予定領域以外の領域E1,E2の総てにおいて20度の繊維強化樹脂管状体(1)は、曲げることができず、曲げ性の判定結果は×である。
一方、曲げ予定領域VEが45度であり、曲げ予定領域以外の領域E1,E2が20度の繊維強化樹脂管状体(2)は、曲げ条件に沿って曲げることができ、曲がった領域に座屈および破断が発生しなかったため、曲げ性の判定結果は○である。また、曲がった領域においてシワも殆ど発生しなかった。
As a result, as shown in FIG. 8, the fiber reinforced resin tubular body (1) in which the orientation angle of the continuous carbon fiber is 20 degrees in all of the areas E1, E2 other than the planned bending area VE and the planned bending area Can not be made, and the determination result of bendability is x.
On the other hand, the fiber-reinforced resin tubular body (2) in which the planned bending area VE is 45 degrees and the areas E1 and E2 other than the planned bending area is 20 degrees can be bent along the bending conditions and is seated in the bent area. Since no bending and breakage occurred, the determination result of bendability is ○. In addition, almost no wrinkles occurred in the bent area.

(考察)
本願発明者らは、上述した実験結果に基づき、連続炭素繊維の配向角度と曲げ性との関係について考察した。
本実施形態の繊維強化樹脂管状体1を曲げ加工する際は、曲げ予定領域VEが塑性変形可能な状態になるまで曲げ予定領域VEを加熱する。具体的には、曲げ予定領域VEに捲回されているフィラメントのポリアミド樹脂が溶融した状態になるまで曲げ予定領域VEを加熱する。このため、曲げ予定領域VEを形成するポリアミド樹脂が溶融した状態になると、曲げ予定領域VEを形成する連続炭素繊維は、溶融したポリアミド樹脂の中を動く(滑る)ことが可能な状態になる。換言すると、曲げ予定領域VEを形成する連続炭素繊維間は、溶融したポリアミド樹脂の中で相対変位可能な状態になる。その結果、溶融したポリアミド樹脂の中では、連続炭素繊維は配向角度が大きい方が曲げ加工するときの曲げ荷重に追従して動き易く、連続炭素繊維の伸びやせん断変形が小さく抑制されるために破断し難いと推測した。また、曲げ加工を行うと、曲げ予定領域VEの外側では連続炭素繊維に対する引張方向への荷重が大きくなるが、曲げ予定領域VEにおける連続炭素繊維の配向角度が大きいため、連続炭素繊維は配向角度を小さくなる様に変位させることにより、その荷重に追従することができるので、破断にまで至らないと推測した。また、曲げ予定領域VEの内側でも同様に荷重に追従して連続炭素繊維が変位しやすくなることが、連続炭素繊維の折れ、座屈および破断を妨げたと推測した。
つまり、連続炭素繊維の配向角度が大きい方が連続炭素繊維間が相対変位し易いために破断し難く、よって曲げ予定領域に座屈や破断が発生し難く、かつ、シワも発生し難いと推測した。
(Discussion)
The present inventors considered the relationship between the orientation angle of the continuous carbon fiber and the bendability based on the above-described experimental results.
When bending the fiber-reinforced resin tubular body 1 of the present embodiment, the planned bending area VE is heated until the planned bending area VE becomes plastically deformable. Specifically, the bending planned area VE is heated until the polyamide resin of the filament wound in the bending planned area VE is in a molten state. For this reason, when the polyamide resin forming the bending expected area VE is in a molten state, the continuous carbon fibers forming the bending expected area VE can move (slip) in the molten polyamide resin. In other words, between the continuous carbon fibers forming the bending intended area VE, relative displacement is possible among the molten polyamide resin. As a result, in the molten polyamide resin, continuous carbon fibers with a large orientation angle tend to move following the bending load during bending, and elongation and shear deformation of the continuous carbon fibers are suppressed to a small extent. It was guessed that it was hard to break. In addition, when bending is performed, the load in the tensile direction for continuous carbon fibers increases outside the planned bending area VE, but the orientation angle of the continuous carbon fibers in the planned bending area VE is large, so the continuous carbon fibers have an orientation angle Since the load can be followed by displacing so as to be smaller, it was inferred that breakage did not occur. In addition, it was presumed that the continuous carbon fiber was likely to be displaced following the load in the same manner as the inside of the bending planned area VE, thus preventing the continuous carbon fiber from breaking, buckling and breaking.
That is, if the orientation angle of the continuous carbon fiber is large, the relative displacement between the continuous carbon fibers is likely to cause relative breakage, and therefore, it is presumed that buckling or breakage is less likely to occur in the planned bending region and wrinkles are less likely to occur. did.

(結論)
本願発明者らは、上述した実験結果および考察から、曲げ予定領域における強化繊維の配置構造が、強化繊維間が前記曲げ予定領域以外の領域よりも曲げ加工に対して相対変位し易くなっている配置構造を有する繊維強化樹脂管状体を作成すれば、曲げ予定領域に座屈および破断が発生し難い繊維強化樹脂管状体を提供することができると結論した。
(Conclusion)
The inventors of the present application have found that the arrangement structure of the reinforcing fibers in the planned bending region is more likely to be displaced relative to bending between the reinforcing fibers than in the region other than the planned bending region, from the above-described experimental results and discussion. It was concluded that if a fiber-reinforced resin tubular body having an arrangement structure is produced, it is possible to provide a fiber-reinforced resin tubular body in which buckling and breakage are less likely to occur in a region to be bent.

〈第2実施形態〉
次に、本発明の第2実施形態に係る繊維強化樹脂管状体について図を参照しつつ説明する。
本実施形態の繊維強化樹脂管状体は、CFRTPにより形成されており、連続炭素繊維の体積含有率が、曲げ予定領域以外の領域よりも曲げ予定領域の方が小さい連続強化繊維の配置構造を有することを特徴とする。
Second Embodiment
Next, a fiber-reinforced resin tubular body according to a second embodiment of the present invention will be described with reference to the drawings.
The fiber-reinforced resin tubular body according to the present embodiment is formed of CFRTP, and has a continuous reinforcing fiber arrangement structure in which the volume fraction of continuous carbon fibers is smaller in the planned bending area than in the area other than the planned bending area. It is characterized by

[実験2]
本願発明者らは、連続炭素繊維の体積含有率が曲げ加工に及ぼす影響を調べる実験を行った。
(実験内容)
本実験では、実験1において使用したフィラメントと同じフィラメントを使用し、実験1と同じ寸法の繊維強化樹脂管状体を作成した。
また、本実験では、総ての領域における連続強化繊維の配向角度が20度であり、連続炭素繊維の体積含有率が曲げ予定領域VEおよび曲げ予定領域以外の領域E1,E2の各領域においてそれぞれ50%の繊維強化樹脂管状体(第2実施形態(1))と、総ての領域における連続強化繊維の配向角度が20度であり、連続炭素繊維の体積含有率が曲げ予定領域VEにおいて40%であり、曲げ予定領域以外の領域E1,E2においてそれぞれ50%の繊維強化樹脂管状体(第2実施形態(2))と、総ての領域における連続強化繊維の配向角度が20度であり、連続炭素繊維の体積含有率が曲げ予定領域VEにおいて30%であり、曲げ予定領域以外の領域E1,E2においてそれぞれ50%の繊維強化樹脂管状体(第2実施形態(3))とを使用した。また、本実験は、実験1と同じ実験装置および手順にて行った。
[Experiment 2]
The present inventors conducted experiments to investigate the influence of the volume content of continuous carbon fibers on bending.
(Contents of experiment)
In this experiment, using the same filament as that used in Experiment 1, a fiber-reinforced resin tubular body having the same size as that of Experiment 1 was produced.
Further, in this experiment, the orientation angle of the continuous reinforcing fibers in all the regions is 20 degrees, and the volume content of the continuous carbon fibers is in each of the regions E1 and E2 other than the planned bending region VE and the planned bending region. In the 50% fiber-reinforced resin tubular body (the second embodiment (1)), the orientation angle of the continuous reinforcing fibers in all the regions is 20 degrees, and the volume content of the continuous carbon fibers is 40 in the bending planned region VE %, And in each of the regions E1 and E2 other than the region to be bent, the fiber reinforced resin tubular body (second embodiment (2)) and the orientation angle of continuous reinforcing fibers in all the regions are 20 degrees. And a fiber-reinforced resin tubular body having a continuous carbon fiber volume content of 30% in the planned bending area VE and 50% in each of the areas E1 and E2 other than the planned bending area (second embodiment (3)) It was used. Also, this experiment was performed in the same experimental apparatus and procedure as in Experiment 1.

(実験結果)
図8に記載したとおり、第2実施形態(1)および第2実施形態(2)の各繊維強化樹脂管状体は、いずれも規定の引張荷重を掛けても曲がらなかったが(曲げ性の判定が×)、第2実施形態(3)の繊維強化樹脂管状体は曲がり、曲げ性の判定は○であった。
(Experimental result)
As described in FIG. 8, each fiber reinforced resin tubular body of the second embodiment (1) and the second embodiment (2) did not bend even when subjected to a prescribed tensile load (determination of bendability) However, the fiber-reinforced resin tubular body of the second embodiment (3) was bent, and the bendability was evaluated as ○.

(考察)
本願発明者らは、上述した実験結果に基づき、連続炭素繊維の体積含有率と曲げ性との関係ついて考察した。
本実施形態の繊維強化樹脂管状体1を曲げ加工する際は、曲げ予定領域VEが塑性変形可能な状態になるまで曲げ予定領域VEを加熱する。具体的には、曲げ予定領域VEに捲回されているフィラメントのポリアミド樹脂が溶融した状態になるまで曲げ予定領域VEを加熱する。このため、曲げ予定領域VEを形成するポリアミド樹脂が溶融した状態になると、曲げ予定領域VEを形成する連続炭素繊維は、溶融したポリアミド樹脂の中を動く(滑る)ことが可能な状態になる。換言すると、曲げ予定領域VEを形成する連続炭素繊維間は、溶融したポリアミド樹脂の中で相対変位可能な状態になる。その結果、溶融したポリアミド樹脂の中では、連続炭素繊維の体積含有率が小さい方が、曲げ加工するときの曲げ荷重に追従して相対変位する際に干渉し合う(相対変位の妨げとなる)連続炭素繊維が少ないために相対変位し易く破断し難いと推測した。つまり、連続炭素繊維の体積含有率が小さい方が連続炭素繊維間が相対変位し易いために破断し難く、よって曲げ予定領域に座屈や破断が発生し難いと推測した。
(Discussion)
The present inventors considered the relationship between the volume fraction of continuous carbon fibers and the bendability based on the above-described experimental results.
When bending the fiber-reinforced resin tubular body 1 of the present embodiment, the planned bending area VE is heated until the planned bending area VE becomes plastically deformable. Specifically, the bending planned area VE is heated until the polyamide resin of the filament wound in the bending planned area VE is in a molten state. For this reason, when the polyamide resin forming the bending expected area VE is in a molten state, the continuous carbon fibers forming the bending expected area VE can move (slip) in the molten polyamide resin. In other words, between the continuous carbon fibers forming the bending intended area VE, relative displacement is possible among the molten polyamide resin. As a result, in the melted polyamide resin, when the volume content of the continuous carbon fiber is smaller, interference occurs when the relative displacement is performed following the bending load at the time of bending (which causes the relative displacement to be disturbed) It was estimated that relative displacement is likely to occur and breakage is difficult because there are few continuous carbon fibers. That is, it was presumed that the smaller the volume content of the continuous carbon fiber, the relative displacement between the continuous carbon fibers would make it difficult to break, and therefore the buckling and the break would not easily occur in the planned bending region.

(結論)
本願発明者らは、上述した実験結果および考察から、曲げ予定領域の方が曲げ予定領域以外の領域よりも、連続炭素繊維の体積含有率が小さい連続炭素繊維の配置構造を有する繊維強化樹脂管状体を作成すれば、曲げ予定領域に座屈や破断が発生し難い繊維強化樹脂管状体を提供することができると結論した。
(Conclusion)
The inventors of the present application have found from the above experimental results and discussion that a fiber-reinforced resin tube having a continuous carbon fiber arrangement structure in which the volume fraction of continuous carbon fibers is smaller in the area to be bent than in the area other than the area to be bent. It was concluded that if a body is made, it is possible to provide a fiber-reinforced resin tubular body in which buckling or breakage is unlikely to occur in a region to be bent.

〈第3実施形態〉
本発明の第3実施形態に係る繊維強化樹脂管状体について図を参照しつつ説明する。
本実施形態の繊維強化樹脂管状体は、CFRTP製のテープが、その一部が重なるように螺旋状に捲回された炭素繊維の配置構造を有することを特徴とする。
Third Embodiment
A fiber-reinforced resin tubular body according to a third embodiment of the present invention will be described with reference to the drawings.
The fiber-reinforced resin tubular body of the present embodiment is characterized in that the CFRTP tape has an arrangement structure of carbon fibers spirally wound so that a part of the tape overlaps.

図5(a)に示すように、本実施形態の繊維強化樹脂管状体1は、CFRTP製のテープTが、その一部が重なるように螺旋状に捲回されることにより形成されている。繊維強化樹脂管状体1は、テープTをフープ巻きによりマンドレルに熱可塑性樹脂を加熱溶融させながら捲回し、冷却して固化させることにより形成されている。図5(b)に示すように、テープTは、緯糸weおよび経糸waを交互に浮き沈みさせて織る、いわゆる平織りにより形成されている。緯糸weおよび経糸waは、マトリックス樹脂として熱可塑性エポキシ樹脂を使ったPAN系炭素繊維フィラメントである。図5(c)に示すように、緯糸weは、テープTの幅相当の長さであるのに対して、経糸waは、テープTの長さ相当の長さであり、捲回開始から捲回終了まで連続している。つまり、経糸waを形成する炭素繊維は連続炭素繊維であり、緯糸weを形成する炭素繊維は短繊維である。
図5(d)に示すように、テープTの幅をdとすると、テープTは、幅d1にて重なっており、幅Δdにてずれている。つまり、テープTは、1回(マンドレル1周)の捲回につき、幅Δdずらしながら捲回されている。
As shown in FIG. 5A, the fiber-reinforced resin tubular body 1 of the present embodiment is formed by spirally winding a tape T made of CFRTP so that a part thereof is overlapped. The fiber-reinforced resin tubular body 1 is formed by winding and winding a thermoplastic resin on a mandrel by hoop-wrapping a tape T, and cooling and solidifying the thermoplastic resin. As shown in FIG. 5B, the tape T is formed by so-called plain weave in which wefts we and warps wa are alternately ups and downs and woven. The weft yarn we and the warp yarn wa are PAN-based carbon fiber filaments using a thermoplastic epoxy resin as a matrix resin. As shown in FIG. 5 (c), the weft we has a length corresponding to the width of the tape T, while the warp wa has a length corresponding to the length of the tape T, and It is continuous until the end of the session. That is, the carbon fibers forming the warp yarn wa are continuous carbon fibers, and the carbon fibers forming the weft yarn we are short fibers.
As shown in FIG. 5D, assuming that the width of the tape T is d, the tapes T overlap at the width d1 and deviate at the width Δd. That is, the tape T is wound while being shifted by the width Δd in one turn (one rotation of the mandrel).

[実験3]
本願発明者らは、繊維強化樹脂管状体を形成するテープの幅および重なり幅が曲げ加工に及ぼす影響を調べる実験を行った。
(実験内容)
本実験では、前述したテープTを使用して実験1と同じ寸法の繊維強化樹脂管状体を作成した。
また、本実験では、テープTを、完成される繊維強化樹脂管状体の軸線G(マンドレルの軸線)に対する捲回角度が約80度となるように捲回した。そして、テープ幅dが10mmのテープTを重なり幅d1が5mm(ずらし幅Δdが5mm)にて捲回して作成した繊維強化樹脂管状体(第3実施形態(1))と、テープ幅dが15mmのテープTを重なり幅d1が10mm(ずらし幅Δdが5mm)にて捲回して作成した繊維強化樹脂管状体(第3実施形態(2))と、テープ幅dが15mmのテープTを重なり幅d1が5mm(ずらし幅Δdが10mm)にて捲回して作成した繊維強化樹脂管状体(第3実施形態(3))と、テープ幅dが20mmのテープTを重なり幅d1が15mm(ずらし幅Δdが5mm)にて捲回して作成した繊維強化樹脂管状体(第3実施形態(4))と、テープ幅dが20mmのテープTを重なり幅d1が10mm(ずらし幅Δdが10mm)にて捲回して作成した繊維強化樹脂管状体(第3実施形態(5))とを使用した。また、本実験は、実験1と同じ実験装置および手順にて行った。
[Experiment 3]
The inventors of the present invention conducted experiments to investigate the influence of the width of the tape forming the fiber-reinforced resin tubular body and the overlapping width on bending.
(Contents of experiment)
In this experiment, a fiber-reinforced resin tubular body having the same size as that of Experiment 1 was produced using the tape T described above.
Further, in this experiment, the tape T was wound such that the winding angle with respect to the axis G (axis of the mandrel) of the fiber-reinforced resin tubular body to be completed was about 80 degrees. Then, a fiber-reinforced resin tubular body (third embodiment (1)) prepared by overlapping a tape T having a tape width d of 10 mm and winding it at an overlapping width d1 of 5 mm (a shift width Δd of 5 mm) A fiber-reinforced resin tubular body (third embodiment (2)) prepared by winding a 15 mm tape T at an overlapping width d1 of 10 mm (shift width Δd 5 mm) and a tape T having a tape width d of 15 mm are overlapped A fiber-reinforced resin tubular body (third embodiment (3)) prepared by winding with a width d1 of 5 mm (a displacement width Δd of 10 mm) and a tape T having a tape width d of 20 mm overlap a width d1 of 15 mm (a displacement) The fiber-reinforced resin tubular body (third embodiment (4)) wound with a width Δd of 5 mm and a tape T having a tape width d of 20 mm are overlapped so that the width d1 is 10 mm (displacement width Δd is 10 mm) Create it The fiber-reinforced resin tubular body (third embodiment (5)) was used. Also, this experiment was performed in the same experimental apparatus and procedure as in Experiment 1.

(実験結果)
図8の実験結果に示すように、第3実施形態(1)の繊維強化樹脂管状体は、曲げ予定領域が折れたが(曲げ性判定が×)、第3実施形態(2)〜(5)の繊維強化樹脂管状体はそれぞれ曲がった(曲げ性の判定が○)。
(Experimental result)
As shown in the experimental results of FIG. 8, in the fiber-reinforced resin tubular body of the third embodiment (1), although the bending planned region is broken (the bendability determination is x), the third embodiments (2) to (5) Each of the fiber-reinforced resin tubular bodies of the above was bent (judgement of bendability is ○).

(考察)
本願発明者らは、上述した実験結果に基づき、テープの幅および重なり幅と曲げ性との関係ついて考察した。
本実験において曲げ加工に成功した第3実施形態(2)〜(5)の繊維強化樹脂管状体を形成するテープTを観察したところ、曲げ加工により、テープT間が相対変位していることが分かった。図6は、図5(a)に示す繊維強化樹脂管状体を形成するテープの変位を説明するための説明図であり、(a)は変位前のテープの説明図、(b)は変位後のテープの説明図である。なお、図6において符号T1〜T3は、捲回されたテープTの1巻き分を示す。また、図6は、テープTの変位状態を分かり易くするため、実際の変位量よりも大きい変位量にて記載されている。図6(a)に示すように、曲げ加工を行う前のテープT(T2,T3)の重なり幅をd1とすると、図6(b)に示すように、曲げ加工を行った後では、曲げた領域の曲げ方向の外側におけるテープT(T2,T3)の重なり幅d2は、曲げ加工前の重なり幅d1よりも小さくなっていた(d2<d1)。また、曲げた領域の曲げ方向の内側におけるテープTの重なり幅d3は、曲げ加工前の重なり幅d1よりも大きくなっていた(d3>d1)。
本願発明者らは、上記の観察結果から、テープT間は、繊維強化樹脂管状体1に矢印F2で示す方向の引張荷重が掛かったときに相対変位することで、曲げ荷重が吸収され、曲げ予定領域VEを形成する炭素繊維が破断しなかったため、曲げ予定領域VEに座屈や破断が発生しなかったと推測した。
(Discussion)
The present inventors considered the relationship between the width and overlap width of the tape and the bendability based on the above-described experimental results.
When the tape T forming the fiber-reinforced resin tubular body of the third embodiment (2) to (5) which succeeded in bending in this experiment was observed, relative displacement between the tapes T was caused by bending. I understood. FIG. 6 is an explanatory view for explaining the displacement of the tape forming the fiber reinforced resin tubular body shown in FIG. 5 (a), where (a) is an explanatory view of the tape before displacement, and (b) is after displacement It is explanatory drawing of the tape. In FIG. 6, reference symbols T1 to T3 indicate one winding of the wound tape T. Moreover, in order to make the displacement state of tape T intelligible, FIG. 6 is described by the displacement amount larger than the actual displacement amount. As shown in FIG. 6 (a), assuming that the overlapping width of the tape T (T2, T3) before bending is d1, as shown in FIG. 6 (b), bending is performed after bending. The overlapping width d2 of the tape T (T2, T3) outside the bending direction of the area is smaller than the overlapping width d1 before bending (d2 <d1). Further, the overlapping width d3 of the tape T on the inner side in the bending direction of the bent region was larger than the overlapping width d1 before bending (d3> d1).
From the above observation results, the inventors of the present invention absorb the bending load by relative displacement between the tapes T when the fiber reinforced resin tubular body 1 is subjected to a tensile load in the direction indicated by the arrow F2. Since the carbon fiber forming the planned area VE did not break, it was estimated that no buckling or breakage occurred in the planned bending area VE.

また、曲げ予定領域VEを形成する熱可塑性エポキシ樹脂が溶融した状態になると、曲げ予定領域VEを形成する緯糸weおよび経糸waは、溶融した熱可塑性エポキシ樹脂の中を動く(滑る)ことが可能な状態になる。換言すると、曲げ予定領域VEを形成する緯糸we間および経糸wa間は、溶融した熱可塑性エポキシ樹脂の中で相対変位可能な状態になる。前述したように、完成される繊維強化樹脂管状体の軸線Gに対してテープTの捲回角度が45度以上であるため、経糸waの配向角度は、45度以上になっていると推測できる。このため、実験1の考察において述べたように、連続炭素繊維である経糸waは、配向角度が大きいほど、曲げ加工するときの曲げ荷重に追従して動き易いために破断し難いと推測した。一方、緯糸weは、テープ幅の長さしかなく、不連続であり、緯糸we間の繋がりが殆ど無いため、曲げ荷重によっては破断していないと推測した。   Also, when the thermoplastic epoxy resin forming the bending expected area VE is in a molten state, the weft yarn we and the warp yarn wa forming the bending expected area VE can move (slip) in the molten thermoplastic epoxy resin It will be In other words, relative displacement is possible among the molten thermoplastic epoxy resin between the weft yarns we and the warp yarns wa which form the planned bending region VE. As described above, since the winding angle of the tape T is 45 degrees or more with respect to the axis G of the fiber-reinforced resin tubular body to be completed, it can be inferred that the orientation angle of the warp yarn wa is 45 degrees or more . For this reason, as described in the discussion of Experiment 1, it was presumed that as the orientation angle is larger, warps wa which are continuous carbon fibers are more likely to break because they tend to move following the bending load at the time of bending. On the other hand, weft we had only the length of the tape width, was discontinuous, and there was almost no connection between wefts we, so it was presumed that it was not broken by the bending load.

(結論)
本願発明者らは、上述した実験結果および考察から、熱可塑性樹脂を伴った炭素繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回された配置構造を有する繊維強化樹脂管状体を作成すれば、曲げ予定領域に座屈や破断が発生し難い繊維強化樹脂管状体を提供することができると結論した。
(Conclusion)
From the experimental results and discussion described above, the inventors of the present invention have found that the tape formed by weaving the carbon fiber with the thermoplastic resin has a configuration structure in which the tape is spirally wound so as to partially overlap. It was concluded that if a reinforced resin tubular body is produced, it is possible to provide a fiber reinforced resin tubular body in which buckling or breakage is unlikely to occur in a region to be bent.

〈第4実施形態〉
本発明の第4実施形態に係る繊維強化樹脂管状体について図を参照しつつ説明する。
本実施形態の繊維強化樹脂管状体は、前述した第1実施形態の繊維強化樹脂管状体に対して、熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されたことを特徴とする。
Fourth Embodiment
A fiber-reinforced resin tubular body according to a fourth embodiment of the present invention will be described with reference to the drawings.
In the fiber-reinforced resin tubular body of this embodiment, a tape formed by weaving reinforcing fibers with a thermoplastic resin is partially overlapped with the fiber-reinforced resin tubular body of the first embodiment described above. It is characterized in that it is spirally wound.

[実験4]
本願発明者らは、本実施形態の繊維強化樹脂管状体の曲げ性を調べる実験を行った。
(実験内容)
本実験では、前述した第1実施形態と同じ方法により、曲げ予定領域VEおよび曲げ予定領域VE以外の領域E1,E2を形成する連続炭素繊維の配向角度をそれぞれ45度に設定された繊維強化樹脂管状体を作成した。そしてさらに、前述した第3実施形態において使用したテープTを、完成される繊維強化樹脂管状体の軸線G(マンドレルの軸線)に対する捲回角度が約80度となるように捲回した(第4実施形態(1))。使用したテープTのテープ幅dは20mmであり、重なり幅d1は10mm(ずらし幅Δdが10mm)である。そして、前述した実験1と同じ装置および方法により、曲げ加工を行った。
[Experiment 4]
The inventors of the present invention conducted an experiment to investigate the bendability of the fiber-reinforced resin tubular body of the present embodiment.
(Contents of experiment)
In this experiment, a fiber reinforced resin in which the orientation angles of the continuous carbon fibers forming the areas E1 and E2 other than the bending planned area VE and the bending planned area VE are set to 45 degrees by the same method as the first embodiment described above. A tubular body was created. Furthermore, the tape T used in the third embodiment described above is wound such that the winding angle with respect to the axis G (axis of the mandrel) of the fiber-reinforced resin tubular body to be completed is about 80 degrees (fourth Embodiment (1)). The tape width d of the tape T used is 20 mm, and the overlapping width d1 is 10 mm (displacement width Δd is 10 mm). And bending was performed by the same apparatus and method as Experiment 1 mentioned above.

(実験結果)
図8の実験結果に示すように、第4実施形態(1)の繊維強化樹脂管状体は曲がった(曲げ性の判定が○)。
(Experimental result)
As shown in the experimental result of FIG. 8, the fiber-reinforced resin tubular body of the fourth embodiment (1) was bent (the determination of bendability is ○).

(考察)
本願発明者らは、上述した実験結果に基づき、本実施形態の繊維強化樹脂管状体の構造と曲げ性との関係について考察した。
第4実施形態(1)の繊維強化樹脂管状体は、曲げ予定領域VEを形成する連続炭素繊維の配向角度が45度であることに加え、さらに曲げ予定領域VEに捲回されたテープTの捲回角度が約80度、つまり、テープTを形成する連続炭素繊維の配向角度が約80度であるため、曲げ予定領域VEを形成する連続強化繊維は総て45度以上になっている。このため、曲げ予定領域VEを形成する連続炭素繊維間は、溶融した熱可塑性樹脂の中で曲げ荷重に追従して相対変位し易いために破断し難く、よって曲げ予定領域VEに座屈や破断が発生しないと推測した。さらに、曲げ予定領域VEには、捲回されたテープTにより、軸線Gの方向に沿った緯糸we(図5(c))が配置されているため、曲げ予定領域VEにおける曲げ強度(剛性)を高めることができたと推測した。さらに、曲げ予定領域VE以外の領域E1,E2を形成している連続炭素繊維の配向角度も45度であり、配向角度を45度よりも小さい、たとえば20度とした場合と比較すると、曲げ強度(剛性)の点では劣るものの、曲げ予定領域VE以外の領域E1,E2にはテープTが捲回されているため、曲げ強度の低下を抑制できたと推測した。
(Discussion)
The present inventors considered the relationship between the structure and bendability of the fiber-reinforced resin tubular body of the present embodiment based on the above-described experimental results.
In the fiber-reinforced resin tubular body of the fourth embodiment (1), in addition to the fact that the orientation angle of the continuous carbon fiber forming the bending expected area VE is 45 degrees, the tape T wound further in the bending expected area VE Since the winding angle is about 80 degrees, that is, the orientation angle of the continuous carbon fibers forming the tape T is about 80 degrees, all continuous reinforcing fibers forming the scheduled bending area VE are 45 degrees or more. For this reason, continuous carbon fibers forming the bending planned area VE are difficult to be broken because they are relatively displaced following the bending load in the melted thermoplastic resin, and hence it is difficult to break or bend in the bending planned area VE Guessed that would not occur. Furthermore, since wefts we (FIG. 5C) are arranged in the direction of the axis G by the wound tape T in the planned bending area VE, bending strength (rigidity) in the planned bending area VE I guess I was able to boost. Furthermore, the orientation angle of the continuous carbon fibers forming the regions E1 and E2 other than the planned bending region VE is also 45 degrees, and the bending strength is compared with the case where the orientation angle is smaller than 45 degrees, for example 20 degrees. Although it is inferior in (rigidity), since the tape T is wound in the areas E1 and E2 other than the planned bending area VE, it was presumed that the reduction in bending strength could be suppressed.

(結論)
本願発明者らは、上述した実験結果および考察から、曲げ加工に対して強化繊維間が相対変位し易くなる配向角度にて連続炭素繊維を捲回して繊維強化樹脂管状体の母体を形成し、さらに、フィラメントを平織りしたテープを母体の上に捲回することにより、繊維強化樹脂管状体を作成すれば、曲げ予定領域に座屈や破断が発生し難く、かつ、曲げ強度(剛性)の高い繊維強化樹脂管状体を提供することができると結論した。
(Conclusion)
From the above experimental results and discussion, the inventors of the present invention wound continuous carbon fibers at an orientation angle at which relative reinforcing fibers are easily displaced relative to bending to form a matrix of a fiber reinforced resin tubular body, Furthermore, if a fiber-reinforced resin tubular body is produced by winding a plain-woven tape of a filament on a matrix, buckling or breakage is unlikely to occur in a region to be bent, and the bending strength (rigidity) is high. It was concluded that fiber reinforced resin tubular body can be provided.

〈他の実施形態〉
(1)第1実施形態において作成した繊維強化樹脂管状体を母体とし、その母体にテープTを捲回することにより繊維強化樹脂管状体を作成することもできる。この繊維強化樹脂管状体を実施すれば、曲げ予定領域VEに座屈や破断が発生し難く、かつ、圧縮強度の高い繊維強化樹脂管状体を提供することができる。また、曲げ予定領域VEだけにテープTを捲回しても良い。
(2)第2実施形態において作成した繊維強化樹脂管状体を母体とし、その母体にテープTを捲回することにより繊維強化樹脂管状体を作成することもできる。この繊維強化樹脂管状体を実施すれば、曲げ予定領域VEに座屈や破断が発生し難く、かつ、圧縮強度の高い繊維強化樹脂管状体を提供することができる。また、曲げ予定領域VEだけにテープTを捲回しても良い。
Other Embodiments
(1) A fiber-reinforced resin tubular body can also be produced by using the fiber-reinforced resin tubular body prepared in the first embodiment as a matrix and winding the tape T on the matrix. If this fiber-reinforced resin tubular body is implemented, it is possible to provide a fiber-reinforced resin tubular body which is unlikely to cause buckling or breakage in the planned bending region VE and which has high compressive strength. In addition, the tape T may be wound only in the planned bending region VE.
(2) A fiber-reinforced resin tubular body can also be produced by using the fiber-reinforced resin tubular body prepared in the second embodiment as a matrix and winding the tape T on the matrix. If this fiber-reinforced resin tubular body is implemented, it is possible to provide a fiber-reinforced resin tubular body which is unlikely to cause buckling or breakage in the planned bending region VE and which has high compressive strength. In addition, the tape T may be wound only in the planned bending region VE.

(3)PAN系炭素繊維に代えてピッチ系炭素繊維を用いることもできる。
(4)熱可塑性樹脂として、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミド、ポリカーボネート、ポリオキシメチレン、ABS、PES、PEEK、ポリイミド、PMMAなどを用いることもできる。
(5)炭素繊維に代えてガラス繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリアリレート繊維、アラミド繊維、ポリイミド繊維、ポリフェニレンサルファイド(PPS)繊維、フッ素繊維、鉱物繊維などを用いることもできる。
(6)繊維強化樹脂管状体の曲げ方式としてストレッチベンド方式に代えて、曲げ加工対象に金型を押し当てて曲げる、いわゆるスライドベンド方式を用いることもできる。
(7)繊維強化樹脂管状体の両端に引張荷重を掛けて曲げ加工する方法を用いることもできる。
(3) It is also possible to use pitch-based carbon fiber instead of PAN-based carbon fiber.
(4) As the thermoplastic resin, polypropylene, polyethylene, polyester, polyamide, polycarbonate, polyoxymethylene, ABS, PES, PEEK, polyimide, PMMA or the like can also be used.
(5) Instead of carbon fiber, glass fiber, PBO (polyparaphenylene benzoxazole) fiber, polyarylate fiber, aramid fiber, polyimide fiber, polyphenylene sulfide (PPS) fiber, fluorine fiber, mineral fiber or the like can be used.
(6) As a bending method of the fiber-reinforced resin tubular body, it is possible to use a so-called slide bending method in which a die is pressed against a bending object and bent instead of the stretch bending method.
(7) A method may be used in which a tensile load is applied to both ends of the fiber-reinforced resin tubular body for bending.

[特許請求の範囲と実施形態との対応関係]
CFRTPが請求項1に記載の繊維強化熱可塑性樹脂に対応し、ポリアミド樹脂または熱可塑性エポキシ樹脂が熱可塑性樹脂に対応し、炭素繊維が強化繊維に対応する。
[Correspondence between claim and embodiment]
The CFRTP corresponds to the fiber reinforced thermoplastic resin according to claim 1, the polyamide resin or the thermoplastic epoxy resin corresponds to the thermoplastic resin, and the carbon fiber corresponds to the reinforcing fiber.

1 繊維強化樹脂管状体
2 曲げ加工装置
3 金型
3a R部
4 固定クランプ
5 移動クランプ
E1,E2 曲げ予定領域以外の領域
S 連続炭素繊維
T テープ
VE 曲げ予定領域
wa 経糸
we 緯糸
θ1,θ2 配向角度
θ3 曲げ角度
Reference Signs List 1 fiber reinforced resin tubular body 2 bending apparatus 3 mold 3a R part 4 fixed clamp 5 moving clamp E1, E2 area other than planned bending area S continuous carbon fiber T tape VE planned bending area wa warp we weft θ1, θ2 orientation angle θ3 bending angle

Claims (6)

繊維強化熱可塑性樹脂により形成されており、曲げ予定領域の熱可塑性樹脂が加熱により塑性変形が可能となった状態で前記曲げ予定領域の曲げ加工が可能になる繊維強化樹脂管状体であって、
前記曲げ予定領域における強化繊維の配置構造は、強化繊維間が前記曲げ予定領域以外の領域よりも曲げ加工に対して相対変位し易くなっている配置構造であることを特徴とする繊維強化樹脂管状体。
A fiber-reinforced resin tubular body, which is formed of a fiber-reinforced thermoplastic resin, and in which the thermoplastic resin in the region to be bent can be plastically deformed by heating so that the bending region can be bent.
The arrangement structure of reinforcing fibers in the planned bending area is a configuration structure in which the reinforcing fibers are more easily displaced relative to bending than the area other than the planned bending area. body.
前記繊維強化熱可塑性樹脂は、
連続強化繊維と熱可塑性樹脂とから少なくとも形成されており、
前記配置構造は、
当該繊維強化樹脂管状体の軸線に対する前記連続強化繊維の配向角度が、前記曲げ予定領域以外の領域よりも前記曲げ予定領域の方が大きい配置構造であることを特徴とする請求項1に記載の繊維強化樹脂管状体。
The fiber reinforced thermoplastic resin is
At least formed of continuous reinforcing fiber and thermoplastic resin,
The arrangement structure is
The orientation structure of the continuous reinforcing fiber with respect to the axis of the fiber reinforced resin tubular body is an arrangement structure in which the bending expected area is larger than the area other than the bending expected area. Fiber reinforced resin tubular body.
前記繊維強化熱可塑性樹脂は、
連続強化繊維と熱可塑性樹脂とから少なくとも形成されており、
前記配置構造は、
前記連続強化繊維の体積含有率が、前記曲げ予定領域以外の領域よりも前記曲げ予定領域の方が小さい配置構造であることを特徴とする請求項1または請求項2に記載の繊維強化樹脂管状体。
The fiber reinforced thermoplastic resin is
At least formed of continuous reinforcing fiber and thermoplastic resin,
The arrangement structure is
The fiber reinforced resin tubular body according to claim 1 or 2, wherein the volume reinforcing ratio of the continuous reinforcing fibers is smaller in the bending expected area than in the area other than the bending expected area. body.
前記配置構造は、
前記熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回された配置構造であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の繊維強化樹脂管状体。
The arrangement structure is
The tape according to any one of claims 1 to 3, characterized in that the tape formed by weaving the reinforcing fiber with the thermoplastic resin has an arrangement structure in which the tape is spirally wound so that a part thereof overlaps. The fiber reinforced resin tubular body according to claim 1.
請求項2に記載の繊維強化樹脂管状体に対して、前記熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されたことを特徴とする繊維強化樹脂管状体。   A tape formed by weaving reinforcing fibers with the thermoplastic resin is spirally wound on a portion of the fiber-reinforced resin tubular body according to claim 2 so that a part thereof is overlapped. Fiber reinforced resin tubular body. 請求項3に記載の繊維強化樹脂管状体に対して、前記熱可塑性樹脂を伴った強化繊維を織って形成されたテープが、その一部が重なるように螺旋状に捲回されたことを特徴とする繊維強化樹脂管状体。   A tape formed by weaving reinforcing fibers with the thermoplastic resin is spirally wound on a portion of the fiber-reinforced resin tubular body according to claim 3 so that the tape partially overlaps. Fiber reinforced resin tubular body.
JP2017183554A 2017-09-25 2017-09-25 Fiber reinforced plastic tubular body Active JP7024959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183554A JP7024959B2 (en) 2017-09-25 2017-09-25 Fiber reinforced plastic tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183554A JP7024959B2 (en) 2017-09-25 2017-09-25 Fiber reinforced plastic tubular body

Publications (2)

Publication Number Publication Date
JP2019059808A true JP2019059808A (en) 2019-04-18
JP7024959B2 JP7024959B2 (en) 2022-02-24

Family

ID=66176280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183554A Active JP7024959B2 (en) 2017-09-25 2017-09-25 Fiber reinforced plastic tubular body

Country Status (1)

Country Link
JP (1) JP7024959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226122A1 (en) 2019-05-07 2020-11-12 国立大学法人金沢大学 Composite molded body molding system and production method
JP2022072323A (en) * 2020-10-29 2022-05-17 本田技研工業株式会社 Vehicle control device, vehicle control method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296634A (en) * 1993-04-19 1994-10-25 Teijin Ltd Prosthetic leg
JPH07290591A (en) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd Manufacture of fiber reinforced thermoplastic resin composite tube
JP2005007657A (en) * 2003-06-17 2005-01-13 Mamiya Op Co Ltd Curved tubular body and its molding method
JP2018038463A (en) * 2016-09-05 2018-03-15 美津濃株式会社 Hollow cylindrical body, cylindrical molding with bent part, and manufacturing method of cylindrical molding with bent part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296634A (en) * 1993-04-19 1994-10-25 Teijin Ltd Prosthetic leg
JPH07290591A (en) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd Manufacture of fiber reinforced thermoplastic resin composite tube
JP2005007657A (en) * 2003-06-17 2005-01-13 Mamiya Op Co Ltd Curved tubular body and its molding method
JP2018038463A (en) * 2016-09-05 2018-03-15 美津濃株式会社 Hollow cylindrical body, cylindrical molding with bent part, and manufacturing method of cylindrical molding with bent part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226122A1 (en) 2019-05-07 2020-11-12 国立大学法人金沢大学 Composite molded body molding system and production method
JP2022072323A (en) * 2020-10-29 2022-05-17 本田技研工業株式会社 Vehicle control device, vehicle control method and program

Also Published As

Publication number Publication date
JP7024959B2 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
EP3170645B1 (en) Tank manufacturing method and tank
US10730246B2 (en) Fiber-reinforced member and method for manufacturing same
JP6571582B2 (en) Tank manufacturing method
US7566376B2 (en) Pressure container manufacturing method
ES2901751T3 (en) Fiber Reinforced Polymer Matrix Composite Pipes
JP6164591B2 (en) Reinforcing fiber / resin fiber composite for producing continuous fiber reinforced thermoplastic resin composite material and method for producing the same
EP3608580A1 (en) Pressure vessel and manufacturing method thereof
ES2685599T3 (en) A flexible pipe body and manufacturing method
JP2019059808A (en) Fiber reinforced resin tubular body
JP6021343B2 (en) Impregnated yarn cloth and method for producing impregnated yarn cloth
JP6196838B2 (en) Optical fiber cable and intermediate post-branching method of optical fiber cable
CN110513546A (en) Double modelings or more modeling ribbing spiral winding pipes
JP6984821B2 (en) Core material for bending
JP5578537B2 (en) Laminated reinforcement hose
KR101914705B1 (en) Three-dimensional product manufacturing robot system using polymer composite material
WO2013179442A1 (en) Lining material, method for manufacturing lining material, and lining method
JP2009270608A (en) Synthetic resin pipe and its connection structure
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
US20230175202A1 (en) Fiber-reinforced composite cable with tow and power transmission line
CN109788746B (en) Fishing rod
JP2005014346A (en) Frp spring cable
JP2022176187A (en) Pressure vessel and its manufacturing method
JPH01207552A (en) Concrete reinforcing member
TW202003648A (en) Method of producing carbon-resin composite material, and composite structure for producing carbon-resin composite material
JP2010053255A (en) Fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7024959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150