JP2019057696A - Light emission diode drive device and illumination for plant cultivation using the same - Google Patents

Light emission diode drive device and illumination for plant cultivation using the same Download PDF

Info

Publication number
JP2019057696A
JP2019057696A JP2017182736A JP2017182736A JP2019057696A JP 2019057696 A JP2019057696 A JP 2019057696A JP 2017182736 A JP2017182736 A JP 2017182736A JP 2017182736 A JP2017182736 A JP 2017182736A JP 2019057696 A JP2019057696 A JP 2019057696A
Authority
JP
Japan
Prior art keywords
led
current
unit
emitting diode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017182736A
Other languages
Japanese (ja)
Other versions
JP7037036B2 (en
Inventor
照雄 渡▲辺▼
Teruo Watanabe
照雄 渡▲辺▼
正男 五味
Masao Gomi
正男 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2017182736A priority Critical patent/JP7037036B2/en
Publication of JP2019057696A publication Critical patent/JP2019057696A/en
Application granted granted Critical
Publication of JP7037036B2 publication Critical patent/JP7037036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Led Devices (AREA)

Abstract

To provide illumination light suitable for plant cultivation.MEANS FOR SOLVING THE PROBLEM: A light emission diode drive device 100 comprises: current restriction means 3 for controlling a power supply amount to a first LED part 11 and a second LED part 12; current detection means 4 for detecting a current detection signal based on a current amount flowing on an output line OL to which the first LED part 11 and the second LED part 12 are serially connected; current control means 30 for outputting an operation control signal to control the operation of first power supply control means 21 and the current restriction means 3 in accordance with the current detection signal detected by the current detection means 4; and forced turning-off means 8 for generating a forced turning-off signal to cause the current control means 30 to operate to forcedly turn off the first LED part 11 and the second LED part 12 in a period in which a voltage value of a rectification voltage rectified by a rectifier circuit 2 is lower than a forced turning-off voltage set to be a value higher than a first forward voltage obtained by adding forward voltages of serially connected LED elements configuring the first LED part 11.SELECTED DRAWING: Figure 5

Description

本発明は、発光ダイオードを点灯駆動させる駆動装置及びこれを用いた植物栽培用照明に関し、特に交流電源を用いて駆動させる発光ダイオード駆動装置に関する。   The present invention relates to a driving device that drives a light emitting diode to light and a lighting for plant cultivation using the same, and more particularly to a light emitting diode driving device that uses an alternating current power source to drive.

近年、植物栽培において、人工照明による育成が、天候などに左右されず、安定した収穫、育成期間が得られることから注目をされている。また、その照明に用いる光源として、発光ダイオード(以下「LED」ともいう。)は、長寿命、省電力、発熱の少なさなどの利点を有し、今後の主力として期待されている。LEDは応答性が速く、例えばPWM駆動方式により、明るさのピークを同等にしながら消灯期間を設けることで省電力を図る方法などの研究が行われている。また、植物栽培施設においては、照明灯具を大量に使用することから、LEDそのものの価格だけでなく、軽量で安価な駆動装置や灯具が望まれている。   In recent years, in plant cultivation, growing by artificial lighting has been attracting attention because a stable harvesting and growing period can be obtained without being influenced by the weather. Further, as a light source used for the illumination, a light emitting diode (hereinafter also referred to as “LED”) has advantages such as long life, power saving, and low heat generation, and is expected as a main force in the future. LEDs are fast in responsiveness. For example, research is being conducted on a method for reducing power consumption by providing a light extinction period while maintaining the same brightness peak by a PWM driving method. In plant cultivation facilities, since a large amount of lighting lamps are used, not only the price of the LED itself but also a light and inexpensive driving device and lamp are desired.

直流駆動されるLEDを、一般の照明用に交流で駆動できるようにしたLEDの駆動回路として、例えば図17に示す回路例が知られている(特許文献1)。このLED駆動回路1700は、駆動装置710と、制御ユニット730と、スイッチM1、M2、M3〜MNと、LEDLFIX、L1、L2、L3〜LN、電流源750を備える。駆動装置10は、四つの直列に接続されたLEDL1、L2、L3〜LNおよび単一の付加的LEDLFIXと接続される。このLED駆動回路1700によれば、LEDは交流電源周期の半分の周期でピークの発光と消灯を繰り返す。   For example, a circuit example shown in FIG. 17 is known as an LED drive circuit in which a direct-current driven LED can be driven with an alternating current for general illumination (Patent Document 1). The LED driving circuit 1700 includes a driving device 710, a control unit 730, switches M1, M2, M3 to MN, LEDs LFIX, L1, L2, L3 to LN, and a current source 750. The driving device 10 is connected with four serially connected LEDs L1, L2, L3-LN and a single additional LED LFIX. According to the LED drive circuit 1700, the LED repeats light emission and extinguishing of the peak at a half cycle of the AC power supply cycle.

しかしながら、植物栽培用の光源においては、通常の照明と異なる特性が求められる。例えば連続波よりもパルス波の方が植物の育成に好適といわれているところ、一般の照明ではパルス波だとちらつきの原因となるため、好まれない。よって、一般照明用のLED駆動回路を植物用にそのまま適用したのでは、植物の育成に必ずしも適合した照明光が得られない。   However, in the light source for plant cultivation, the characteristic different from normal illumination is calculated | required. For example, it is said that a pulse wave is more suitable for growing plants than a continuous wave. However, in general lighting, a pulse wave causes flickering and is not preferred. Therefore, if the LED driving circuit for general illumination is applied to a plant as it is, illumination light suitable for plant growth cannot always be obtained.

米国特許出願公開第2010/0134018号明細書US Patent Application Publication No. 2010/0134018

本発明は、このような背景に鑑みてなされたものであり、その目的の一は、植物栽培に適した照明光を提供可能な発光ダイオード駆動装置及びこれを用いた植物栽培用照明を提供することにある。   This invention is made | formed in view of such a background, One of the objectives provides the light emitting diode drive device which can provide the illumination light suitable for plant cultivation, and the illumination for plant cultivation using the same There is.

以上の目的を達成するために、本発明の一の側面に係る発光ダイオード駆動装置によれば、交流電源に接続可能で、該交流電源の交流電圧を整流した整流電圧を得るための整流回路と、前記整流回路の出力側と直列に接続される、少なくとも一のLED素子を含む第一LED部と、前記第一LED部と直列に接続される、少なくとも一のLED素子を含む第二LED部と、前記第二LED部と並列で、且つ前記第一LED部と直列に接続される、前記第一LED部への通電量を制御するための第一通電制御手段と、前記第一LED部及び第二LED部と直列に接続され、前記第一LED部及び前記第二LED部への通電量を制御するための電流制限手段と、前記第一LED部及び第二LED部が直列に接続される出力ライン上を流れる電流量に基づく電流検出信号を検出するための電流検出手段と、前記電流検出手段によって検出された電流検出信号に応じて、前記第一通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するための電流制御手段と、前記整流回路で整流された整流電圧の電圧値が、前記第一LED部を構成する直列接続されたLED素子の順方向電圧を加算した第一順方向電圧よりも高い値に設定された強制消灯電圧値を下回る期間で、前記第一LED部及び第二LED部を強制的に消灯するよう前記電流制御手段を動作させる強制消灯信号を生成するための強制消灯手段とを備えることができる。   In order to achieve the above object, a light emitting diode driving device according to one aspect of the present invention can be connected to an AC power source, and a rectifier circuit for obtaining a rectified voltage obtained by rectifying the AC voltage of the AC power source, The first LED unit including at least one LED element connected in series with the output side of the rectifier circuit, and the second LED unit including at least one LED element connected in series with the first LED unit A first energization control means for controlling an energization amount to the first LED unit, connected in parallel with the second LED unit and in series with the first LED unit, and the first LED unit And a second LED unit connected in series, a current limiting means for controlling the amount of current supplied to the first LED unit and the second LED unit, and the first LED unit and the second LED unit connected in series. Amount of current flowing on the output line A current detection means for detecting a current detection signal based on the output signal, and an operation control signal for controlling the operation of the first energization control means and the current limiting means according to the current detection signal detected by the current detection means; And the voltage value of the rectified voltage rectified by the rectifier circuit is higher than the first forward voltage obtained by adding the forward voltage of the LED elements connected in series constituting the first LED unit. A forced turn-off means for generating a forced turn-off signal that operates the current control means to forcibly turn off the first LED part and the second LED part in a period lower than the forced turn-off voltage value set to a value; Can be provided.

上記構成により、整流電圧が点灯可能な第一順方向電圧を越えており、本来的に点灯可能な期間であるにも拘わらず、敢えて強制的に消灯させることが可能となる。この結果、特定の用途、例えば植物育成などに適した光源を実現できる。   With the above configuration, the rectified voltage exceeds the first forward voltage that can be turned on, and it is possible to forcibly turn off the light regardless of the period during which the light can be turned on. As a result, it is possible to realize a light source suitable for a specific application, such as plant growth.

比較例に係る交流電源で駆動可能なLED駆動回路を示す回路図である。It is a circuit diagram which shows the LED drive circuit which can be driven with the alternating current power supply which concerns on a comparative example. 図2Aは、図1に係るLED駆動回路の整流電圧の時間変化を示す波形、図2Bは、多段回路を用いた光量の時間変化を示す波形、図2Cは多段回路で消灯期間を長くした場合の光量の時間変化を示す波形を、それぞれ示すグラフである。2A is a waveform showing the time change of the rectified voltage of the LED drive circuit according to FIG. 1, FIG. 2B is a waveform showing the time change of the light amount using the multistage circuit, and FIG. 2C is a case where the turn-off period is extended in the multistage circuit. It is a graph which shows the waveform which shows the time change of the light quantity of each, respectively. 直流駆動の照明と交流駆動の照明で植物栽培を行った結果を示すグラフである。It is a graph which shows the result of having performed plant cultivation by direct current drive illumination and alternating current drive illumination. 直流駆動の照明と、交流駆動で1msec消灯期間を設けた照明と、交流駆動のPWM制御で4msec消灯期間を設けた照明で植物栽培を行った結果を示すグラフである。It is a graph which shows the result of having performed plant cultivation with the illumination which provided the 1 msec light extinction period by direct current drive illumination, the AC drive, and the illumination which provided the 4 msec light extinction period by the AC drive PWM control. 本発明の実施形態1に係る発光ダイオード駆動装置を示すブロック図である。It is a block diagram which shows the light emitting diode drive device which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る発光ダイオード駆動装置を示すブロック図である。It is a block diagram which shows the light emitting diode drive device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る発光ダイオード駆動装置を示すブロック図である。It is a block diagram which shows the light emitting diode drive device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る発光ダイオード駆動装置を示すブロック図である。It is a block diagram which shows the light emitting diode drive device which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る発光ダイオード駆動装置を示すブロック図である。It is a block diagram which shows the light emitting diode drive device which concerns on Embodiment 5 of this invention. 図10Aは、比較例に係る発光ダイオード駆動装置によるLED部の光量の時間変化を示すグラフ、図10Bは実施形態6に係る発光ダイオード駆動装置によるLED部の光量の時間変化を示すグラフである。FIG. 10A is a graph showing a temporal change in the light amount of the LED unit by the light emitting diode driving device according to the comparative example, and FIG. 10B is a graph showing a temporal change in the light amount of the LED unit by the light emitting diode driving device according to Embodiment 6. 実施例1に係る発光ダイオード駆動装置を示す回路図である。1 is a circuit diagram illustrating a light emitting diode driving apparatus according to Embodiment 1. FIG. 図1の比較例に係るLED駆動回路の入力交流電圧、及び第一LED部の電力の時間変化を示す波形を示すグラフである。It is a graph which shows the waveform which shows the time change of the input alternating voltage of the LED drive circuit which concerns on the comparative example of FIG. 1, and the electric power of a 1st LED part. 図11の発光ダイオード駆動装置の入力交流電圧、及び消灯期間をTOFF1に設定した場合の第一LED部の電力の時間変化を示す波形を示すグラフである。It is a graph which shows the waveform which shows the time change of the electric power of the 1st LED part at the time of setting the input alternating voltage of the light emitting diode drive device of FIG. 11, and the light extinction period to TOFF1 . 図11の発光ダイオード駆動装置の入力交流電圧、及び消灯期間をTOFF2に設定した場合の第一LED部の電力の時間変化を示す波形を示すグラフである。It is a graph which shows the waveform which shows the time change of the electric power of the 1st LED part at the time of setting the input alternating voltage of the light emitting diode drive device of FIG. 11, and the light extinction period to TOFF2 . 図11の発光ダイオード駆動装置の入力交流電圧、及び消灯期間をTOFF3に設定した場合の第一LED部の電力の時間変化を示す波形を示すグラフである。It is a graph which shows the waveform which shows the time change of the electric power of the 1st LED part when the input alternating voltage of the light emitting diode drive device of FIG. 11 and a light extinction period are set to TOFF3 . 実施例2に係る発光ダイオード駆動装置を示す回路図である。6 is a circuit diagram illustrating a light emitting diode driving apparatus according to Embodiment 2. FIG. 従来の交流電源で駆動可能なLED駆動回路を示す回路図である。It is a circuit diagram which shows the LED drive circuit which can be driven with the conventional alternating current power supply.

本発明の一実施形態に係る発光ダイオード駆動装置によれば、上述した構成に加えて、さらに前記強制消灯電圧値を、前記第一LED部及び第二LED部を構成する直列接続されたLED素子の順方向電圧を加算した第二順方向電圧よりも低い値に設定することができる。   According to the light emitting diode driving apparatus according to an embodiment of the present invention, in addition to the above-described configuration, the forced turn-off voltage value is further connected to the LED elements connected in series constituting the first LED portion and the second LED portion. The forward voltage can be set to a value lower than the second forward voltage.

また、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、前記強制消灯手段の、前記強制消灯電圧値を可変とすることができる。上記構成により、強制的に消灯する消灯期間を可変とすることが可能となり、用途に応じた微調整が可能となる。   Moreover, according to the light emitting diode drive device which concerns on other embodiment of this invention, in addition to any one of the said structures, the said forced extinction voltage value of the said forced extinction means can be made variable. With the above configuration, it is possible to change the extinguishing period forcibly extinguishing, and fine adjustment according to the application is possible.

さらに、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに前記整流回路から出力される整流電圧に基づいて、高調波抑制電圧を生成するための高調波抑制電圧生成手段を備え、前記電流制御手段が、前記電流検出手段で検出された電流検出信号と、前記高調波抑制電圧生成手段で生成された高調波抑制電圧とを比較して、高調波成分を抑制するように前記第一通電制御手段及び電流制限手段をそれぞれ制御することができる。上記構成により、入力側の高調波成分と実際に得られたLED駆動電流との対比によって、出力波形を調整する制御が可能となり、効果的な高調波成分の抑制が実現できる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, in order to generate a harmonic suppression voltage based on the rectified voltage output from the rectifier circuit. The harmonic suppression voltage generating means, and the current control means compares the current detection signal detected by the current detection means with the harmonic suppression voltage generated by the harmonic suppression voltage generating means, The first energization control means and the current limiting means can be controlled to suppress harmonic components. With the above configuration, it is possible to control the output waveform by comparing the harmonic component on the input side with the LED drive current actually obtained, and effective suppression of the harmonic component can be realized.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、前記電流制御手段は、前記強制消灯手段で生成された強制消灯信号でもって、前記高調波抑制電圧生成手段で生成された高調波抑制電圧を無効化することができる。上記構成により、整流電圧が強制消灯電圧値を下回る区間では高調波抑制電圧を無効化することでLEDを容易に強制的に消灯させることが可能となる。   Furthermore, according to a light emitting diode driving apparatus according to another embodiment of the present invention, in addition to any of the above-described configurations, the current control means includes a forced turn-off signal generated by the forced turn-off means, and The harmonic suppression voltage generated by the harmonic suppression voltage generation means can be invalidated. With the above configuration, the LED can be easily and forcibly turned off by invalidating the harmonic suppression voltage in a section where the rectified voltage is lower than the forced turn-off voltage value.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、前記電流制御手段がオペアンプを含み、前記オペアンプの一方の入力側に、前記強制消灯手段で生成された強制消灯信号と、前記高調波抑制電圧生成手段で生成された高調波抑制電圧を入力させることができる。上記構成により、オペアンプの一方の入力に強制消灯信号と高調波抑制電圧を与えることで、強制消灯信号が作用する区間では高調波抑制電圧を無効化することでLEDを容易に強制的に消灯させることが可能となる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above configurations, the current control unit includes an operational amplifier, and the forced turn-off is provided on one input side of the operational amplifier. The forced extinction signal generated by the means and the harmonic suppression voltage generated by the harmonic suppression voltage generation means can be input. With the above configuration, by applying a forced turn-off signal and a harmonic suppression voltage to one input of the operational amplifier, the LED is easily forcibly turned off by disabling the harmonic suppression voltage in the section where the forced turn-off signal acts. It becomes possible.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、前記電流制御手段が、前記整流回路で整流された整流電圧を基準電圧として、前記第一通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力し、前記高調波抑制電圧生成手段で検出された整流電圧の変動と、前記電流検出手段によって検出された電流検出信号との和に基づいて、前記電流制御手段が、前記第一通電制御手段及び電流制限手段の動作を制御するよう構成できる。   Furthermore, according to a light emitting diode driving apparatus according to another embodiment of the present invention, in addition to any of the above-described configurations, the current control unit uses the rectified voltage rectified by the rectifier circuit as a reference voltage, and An operation control signal for controlling the operations of the first energization control unit and the current limiting unit is output, the fluctuation of the rectified voltage detected by the harmonic suppression voltage generation unit, the current detection signal detected by the current detection unit, Based on the sum, the current control means can be configured to control the operations of the first energization control means and the current limiting means.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに、前記第二LED部と直列に接続される、前記第一LED部及び第二LED部への通電を制御する、前記電流制限手段に通電される電流をバイパスするためのLED駆動手段とを備えており、前記電流制限手段を、前記LED駆動手段と並列に接続することができる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, the first LED unit and the first LED unit connected in series with the second LED unit. LED driving means for bypassing the current supplied to the current limiting means for controlling the current supply to the two LED units, and connecting the current limiting means in parallel with the LED driving means it can.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、前記第一通電制御手段の下流側を、前記電流検出手段と電流制限手段の間に接続することができる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, the downstream side of the first energization control unit is provided between the current detection unit and the current limiting unit. Can be connected to.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに前記第一LED部及び第二LED部が発する光のピーク照度を調整するための可変抵抗器を有するピーク照度調整手段を備えることができる。上記構成により、消灯期間の制御のみならず、ピーク照度すなわち振幅側も調整可能とすることで、消灯期間を維持したまま調光を行うことが可能となる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, in order to further adjust the peak illuminance of light emitted from the first LED unit and the second LED unit. The peak illuminance adjusting means having the variable resistor can be provided. With the above configuration, not only control of the extinguishing period but also adjustment of the peak illuminance, that is, the amplitude side can be performed, so that it is possible to perform light control while maintaining the extinguishing period.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに前記第一LED部及び第二LED部と直列に接続される、少なくとも一のLED素子を含む第三LED部と、前記第三LED部と並列で、且つ前記第一LED部及び第二LED部と直列に接続される、該第一LED部及び前記第二LED部への通電量を制御するための第二通電制御手段とを備えており、前記電流制御手段が、前記電流検出手段で検出された電流検出信号に応じて、前記第一通電制御手段、第二通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するよう構成できる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any one of the above-described configurations, at least one of the first LED unit and the second LED unit connected in series. A third LED part including an LED element, connected to the first LED part and the second LED part in parallel with the third LED part and in series with the first LED part and the second LED part. Second energization control means for controlling the energization amount, wherein the current control means is configured to control the first energization control means and the second energization control according to a current detection signal detected by the current detection means. An operation control signal for controlling the operation of the means and the current limiting means can be output.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに、前記第一LED部、第二LED部及び第三LED部と直列に接続される、少なくとも一のLED素子を含む第四LED部と、前記第四LED部と並列で、且つ前記第一LED部、第二LED部及び第三LED部と直列に接続される、該第一LED部、前記第二LED部及び第三LED部への通電量を制御するための第三通電制御手段とを備えており、前記電流制御手段が、前記電流検出手段で検出された電流検出信号に応じて、前記第一通電制御手段、第二通電制御手段、第三通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するよう構成できる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, the first LED unit, the second LED unit, and the third LED unit are further connected in series. A fourth LED part including at least one LED element; and the fourth LED part connected in parallel with the fourth LED part and in series with the first LED part, the second LED part, and the third LED part. And a third energization control means for controlling the energization amount to one LED section, the second LED section and the third LED section, and the current control means detects the current detected by the current detection means. An operation control signal for controlling operations of the first energization control means, the second energization control means, the third energization control means, and the current limiting means can be output in response to the signal.

さらにまた、本発明の他の実施形態に係る発光ダイオード駆動装置によれば、上記いずれかの構成に加えて、さらに前記強制消灯電圧値を外部機器に出力し、かつ該外部機器からの該強制消灯電圧値に対する評価値を示す評価信号を受信するための通信手段を備え、前記強制消灯手段は、前記通信手段で受信した外部機器からの評価信号に基づき、前記強制消灯電圧値を調整可能に構成できる。上記構成により、外部機器での評価値に基づいて強制消灯電圧値を調整し、消灯期間の長さを用途に応じたより適切な値に微調整することが可能となる。   Furthermore, according to the light emitting diode driving device according to another embodiment of the present invention, in addition to any of the above-described configurations, the forced turn-off voltage value is further output to an external device, and the forced light from the external device is output. Communication means for receiving an evaluation signal indicating an evaluation value with respect to the turn-off voltage value, wherein the forced turn-off means can adjust the forced turn-off voltage value based on an evaluation signal from an external device received by the communication means. Can be configured. With the above configuration, the forced turn-off voltage value can be adjusted based on the evaluation value of the external device, and the length of the turn-off period can be finely adjusted to a more appropriate value according to the application.

さらにまた、本発明の他の実施形態に係る植物栽培用照明によれば、上記何れかの発光ダイオード駆動装置を用いることができる。   Furthermore, according to the plant cultivation illumination according to another embodiment of the present invention, any one of the light emitting diode driving devices described above can be used.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光ダイオード駆動装置及びこれを用いた植物栽培用照明を例示するものであって、本発明は発光ダイオード駆動装置及びこれを用いた植物栽培用照明を以下のものに特定しない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a light emitting diode driving device for embodying the technical idea of the present invention and lighting for plant cultivation using the same, and the present invention is a light emitting diode driving device and The plant cultivation lighting using this is not specified as follows. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

以下、発光ダイオード駆動装置を植物の栽培用の照明として用いる例を説明する。従来より、正弦波の交流電圧を整流して、多段に接続されたLED部に印加して点灯させる正弦波多段駆動回路を用いた照明装置が提案されている。ここで比較例として、正弦波多段駆動回路の一例を図1に示す。このような正弦波多段駆動回路では、全波整流された整流電圧は図2Aのように時間と共に周期的に変化するところ、LED部は直列接続されたLED素子の数で決まる順方向電圧以上でないと点灯しないので、整流電圧の低い区間では消灯する。この結果、図2Bに示すように交流電源の周期の半分の周期でピークの発光と消灯を繰り返すため、ちらつきが発生する。一般的な照明光としては、ちらつきの少ない均一な光が得られるような動作が求められるため、消灯期間が短くなるような機構が必要となる。例えば全波整流した整流電圧を平滑化して、順方向電圧以下に下がらないようにする等の対策が行われている。   Hereinafter, an example in which the light emitting diode driving device is used as illumination for plant cultivation will be described. Conventionally, an illuminating device using a sine wave multistage drive circuit that rectifies a sine wave AC voltage and applies and illuminates the LED units connected in multiple stages has been proposed. Here, as a comparative example, an example of a sinusoidal multistage drive circuit is shown in FIG. In such a sinusoidal multistage drive circuit, the full-wave rectified rectified voltage periodically changes with time as shown in FIG. 2A, but the LED unit is not more than the forward voltage determined by the number of LED elements connected in series. Since it does not light up, it is turned off in the section where the rectified voltage is low. As a result, as shown in FIG. 2B, the peak light emission and extinction are repeated at a half cycle of the AC power supply cycle, and thus flickering occurs. As general illumination light, an operation that can obtain uniform light with little flickering is required, and thus a mechanism that shortens the turn-off period is required. For example, measures are taken such as smoothing the rectified voltage subjected to full-wave rectification so that it does not drop below the forward voltage.

一方、植物の栽培を人工的に行う植物工場が近年普及している。このような植物工場で用いる植物育成用の光源として、低消費電力で長寿命なLEDが利用されている。従来は、直流駆動で照射することが行われていたが、本発明者らの行った試験によれば、直流駆動のLEDと等しい平均照度で、交流電源によりピーク発光と消灯を繰り返すパルス状の点灯パターンの照明を行い、ほうれん草(植物A)と、わさび(植物B)と、かぶ(植物C)の3種類の植物の育成状況を比較したところ、図3のグラフに示すように、パルス点灯の方が有効量子収率が高いという知見が得られた。なお、図3、図4のグラフの縦軸は、クロロフィル蛍光を利用した有効量子収率φII(有効量子収率)を示す。これは光合成に光をどれだけ消費したかを数値化したもので、1が最大値となる。また、グラフの各棒の上位に、最大値と最小値の範囲をそれぞれ付記している。   On the other hand, plant factories that artificially cultivate plants have become popular in recent years. As a light source for plant growth used in such a plant factory, LEDs with low power consumption and long life are used. Conventionally, irradiation was performed by direct current drive. However, according to a test conducted by the present inventors, a pulse-like state in which peak light emission and extinction are repeated by an alternating current power source with an average illuminance equal to that of a direct current drive LED. Illuminating the lighting pattern, and comparing the growth status of three types of plants, spinach (plant A), wasabi (plant B), and turnip (plant C), as shown in the graph of FIG. The knowledge that the effective quantum yield is higher was obtained. In addition, the vertical axis | shaft of the graph of FIG. 3, FIG. 4 shows the effective quantum yield (phi) II (effective quantum yield) using chlorophyll fluorescence. This is a numerical value of how much light is consumed for photosynthesis, with 1 being the maximum value. In addition, the range of the maximum value and the minimum value is added above each bar of the graph.

一般に、植物の栽培に際しては、照明光のピーク照度を高くすることに着目されている。ピーク照度を高くするには、駆動電流を高くすることが考えられるが、その分だけ電力消費量が高くなり、電気代が増すことに加えて、発熱量も増えるため、駆動回路の発熱の影響を考慮した対策も必要となる。ここで本願発明者らは、点灯期間の内、消灯期間に着目して、消灯時間の変化が植物の育成に与える影響を詳細に調べるべく、かぶ(植物C)に対して消灯時間を長くする試験を行った。ここで、交流電源を用いたパルス点灯において、60Hz、100V交流の商用電源で、LEDを四段に等分して直列接続したLEDの全体の順方向電圧Vf_allを120V程度として点灯する場合を考えると、交流電源の一周期1/60s≒16msを全波整流した一周期が8msとなり、この内、約7ms点灯し、約1msの消灯期間が生じる。これに対して、消灯期間をこの4倍の4ms(点灯期間4ms)に長くするように調整した点灯パターン(図2Cに相当)で試験を行った。この結果を、図4のグラフに示す。このグラフでは比較のため、直流駆動のデータも付記している。このグラフから明らかなとおり、消灯期間を図2Bの状態から図2Cに示すように長くすることで、常識的には光量の積分値が低下する分、植物の有効量子量が減少すると予想されるところ、逆に有効量子収率が高くなることが判った。また、消灯期間を長くすることは、LEDの発熱量や消費電力の観点からも好ましい。 In general, in plant cultivation, attention is focused on increasing the peak illuminance of illumination light. In order to increase the peak illuminance, it is conceivable to increase the drive current. However, the power consumption is increased by that amount. Measures that take this into account are also required. Here, the present inventors pay attention to the turn-off period of the turn-on period, and lengthen the turn-off time with respect to the turnip (plant C) in order to examine in detail the effect of changes in the turn-off time on plant growth. A test was conducted. Here, in the case of pulse lighting using an AC power source, the case where the LED is lit with a commercial power source of 60 Hz and 100 V AC, with the LEDs being equally divided into four stages and connected in series with the forward voltage V f_all as a whole of about 120 V. Considering this, one cycle obtained by full-wave rectifying one cycle of the AC power supply 1/60 s≈16 ms is 8 ms, of which about 7 ms is turned on, and about 1 ms is turned off. On the other hand, a test was conducted with a lighting pattern (corresponding to FIG. 2C) adjusted so that the extinguishing period was increased to 4 ms, which is four times as long (lighting period 4 ms). The result is shown in the graph of FIG. For comparison, the graph also includes DC drive data. As is apparent from this graph, by extending the extinguishing period from the state of FIG. 2B as shown in FIG. 2C, it is common knowledge that the effective quantum amount of the plant is expected to decrease as the integrated value of the light amount decreases. However, conversely, the effective quantum yield was found to be high. In addition, it is preferable to lengthen the turn-off period from the viewpoint of the heat generation amount and power consumption of the LED.

このように本発明者らの行った試験によれば、この消灯期間の長さが、植物の光合成に関係する有効量子収率に影響する。よって植物の育成に影響するという知見が得られた。この消灯期間は、植物の品種の違いや、ピークの照度によっても最適な時間が変化すると思われる。したがって本実施形態においては、上記知見に基づき、LED駆動装置に消灯期間を調整可能な機能を追加することで、植物栽培用として好適な光源を提供するものである。具体的には、強制消灯回路を追加することで、消灯期間の長さを、育成対象の植物の種類に応じて、あるいは同じ種類の植物であっても育成の季節や平均気温などの環境に応じて調整可能とすることで、より適切な光を植物に供給することが可能となる。   Thus, according to the tests conducted by the present inventors, the length of this extinction period affects the effective quantum yield related to plant photosynthesis. Therefore, the knowledge that it influences the growth of the plant was obtained. During this extinction period, it seems that the optimal time changes depending on the variety of plant and the illuminance of the peak. Therefore, in this embodiment, a light source suitable for plant cultivation is provided by adding a function capable of adjusting the extinction period to the LED driving device based on the above knowledge. Specifically, by adding a forced light extinction circuit, the length of the light extinction period can be adjusted according to the type of plant to be grown or even in the environment such as the growing season and average temperature even for the same type of plant. By making it possible to adjust accordingly, it becomes possible to supply more appropriate light to the plant.

交流駆動の多段回路で、消灯期間を調整する方法として、以下の2つが挙げられる。
1.点灯開始のタイミングを調整する。例えば、LEDの全体の順方向電圧Vfを調整し、点灯開始電圧を設定する。
2.消灯開始のタイミングを調整する。例えば、AC電圧を検出し、設定された電圧以上の期間のみ点灯させる。
There are the following two methods for adjusting the extinction period in an AC-driven multistage circuit.
1. Adjust the lighting start timing. For example, the overall forward voltage Vf of the LED is adjusted to set the lighting start voltage.
2. Adjust the timing to start turning off. For example, an AC voltage is detected, and the light is lit only for a period that is equal to or higher than a set voltage.

この内、前者の方法によれば、各LEDのVfを調整できないことから、LEDを直列接続する個数を調整することとなって、回路が複雑になる。またLEDの使用数が変わると、照度も変化し、所望の設計値を得ることの制約となる。そこで本実施形態では、後者の方法を採用した。具体的には、AC電圧を整流した整流電圧を検出し、設定された電圧以上の期間のみ点灯させる方式を採用している。
(実施形態1)
Among these, according to the former method, since Vf of each LED cannot be adjusted, the number of LEDs connected in series is adjusted, and the circuit becomes complicated. Also, when the number of LEDs used changes, the illuminance also changes, which is a constraint for obtaining a desired design value. Therefore, in this embodiment, the latter method is adopted. Specifically, a method is employed in which a rectified voltage obtained by rectifying the AC voltage is detected, and the light is lit only for a period longer than the set voltage.
(Embodiment 1)

図5に、本発明の実施形態1に係る発光ダイオード駆動装置100の回路図を示す。この図に示す発光ダイオード駆動装置100は、整流回路2と、LED集合体10と、第一通電制御手段21と、電流制限手段3と、電流検出手段4と、電流制御手段30と、強制消灯手段8を備える。この発光ダイオード駆動装置100は、交流電源APに接続されて、整流回路2で交流電圧を整流した整流電圧を得る。また整流回路2の出力側において、第一LED部11と第二LED部12で構成されたLED集合体10を、出力ラインOL上で直列に接続している。出力ラインOLには、LED集合体10と、電流制限手段3と、電流検出手段4とを直列に接続している。
(整流回路2)
FIG. 5 shows a circuit diagram of the light-emitting diode driving apparatus 100 according to Embodiment 1 of the present invention. The LED driving apparatus 100 shown in this figure includes a rectifier circuit 2, an LED assembly 10, first energization control means 21, current limiting means 3, current detection means 4, current control means 30, and forced extinction. Means 8 are provided. The light emitting diode driving device 100 is connected to an AC power supply AP and obtains a rectified voltage obtained by rectifying an AC voltage by the rectifier circuit 2. Further, on the output side of the rectifier circuit 2, the LED assembly 10 composed of the first LED unit 11 and the second LED unit 12 is connected in series on the output line OL. The LED assembly 10, the current limiting means 3, and the current detection means 4 are connected in series to the output line OL.
(Rectifier circuit 2)

整流回路2は、交流電源APに接続される。この整流回路2は、交流電源APから供給される交流電圧を全波整流して整流電圧を得るための部材である。整流回路2は、ダイオードブリッジが好適に利用できる。ダイオードブリッジで構成される整流回路2を通過させて整流することで、交流電圧は整流された整流電圧が得られる。一般の照明装置では、ちらつきを低減するためこの整流電圧を平滑化する平滑手段として、平滑コンデンサ等を用いる。なお植物栽培用照明においては、一般照明のようなちらつきの低減を求められないことから、このような平滑コンデンサを使用しない構成としてもよい。特に平滑コンデンサとして一般的な電解コンデンサは大容量である反面、電解液の減少などに起因する経時劣化が生じ、寿命がある。よって、電解コンデンサを発光ダイオード駆動装置から排除することで、電解コンデンサの寿命でもって発光ダイオード駆動装置の寿命が決定されるような事態を回避でき、長期間に亘って安定的に使用可能な信頼性の高い発光ダイオード駆動装置が実現される。
(LED集合体10)
The rectifier circuit 2 is connected to an AC power supply AP. The rectifier circuit 2 is a member for obtaining a rectified voltage by full-wave rectifying the AC voltage supplied from the AC power supply AP. The rectifier circuit 2 is preferably a diode bridge. A rectified voltage obtained by rectifying the AC voltage is obtained by passing through the rectifying circuit 2 constituted by a diode bridge and rectifying. In a general lighting device, a smoothing capacitor or the like is used as a smoothing means for smoothing the rectified voltage in order to reduce flicker. In addition, in plant cultivation lighting, since it is not required to reduce flickering as in general lighting, such a smoothing capacitor may not be used. In particular, an electrolytic capacitor generally used as a smoothing capacitor has a large capacity, but has a long life due to deterioration with the passage of time due to a decrease in electrolytic solution. Therefore, by eliminating the electrolytic capacitor from the light emitting diode driving device, it is possible to avoid a situation in which the life of the light emitting diode driving device is determined by the life of the electrolytic capacitor, and the reliability that can be used stably over a long period of time. A highly light-emitting diode driving device is realized.
(LED assembly 10)

LED集合体10は、第一LED部11と、第二LED部12で構成される。第一LED部11は、整流回路2の出力側と直列に接続される。また第二LED部12は、第一LED部11と直列に接続される。これら第一LED部11、第二LED部12等の各LED部は、一以上のLED素子を直列及び/又は並列に接続している。LED素子は、表面実装型(SMD)や砲弾型のLEDが適宜利用できる。またSMDタイプのLED素子のパッケージは、用途に応じて外形を選択でき、平面視が矩形状のタイプ等が利用できる。さらに、複数のLED素子を共通のパッケージ内で直列及び/又は並列に接続したLEDをLED部として使用することも可能であることは言うまでもない。   The LED assembly 10 includes a first LED unit 11 and a second LED unit 12. The first LED unit 11 is connected in series with the output side of the rectifier circuit 2. The second LED unit 12 is connected in series with the first LED unit 11. Each LED unit such as the first LED unit 11 and the second LED unit 12 connects one or more LED elements in series and / or in parallel. As the LED element, a surface mount type (SMD) or a bullet type LED can be used as appropriate. Moreover, the package of the SMD type LED element can select the outer shape according to the application, and a rectangular type in a plan view can be used. Furthermore, it goes without saying that an LED in which a plurality of LED elements are connected in series and / or in parallel in a common package can be used as the LED unit.

また第一LED部11は、複数の第一LED分割部に分割することもできる。例えば第一LED部11を、第一LED分割部と、第二LED分割部とに二分割する。第一LED分割部と第二LED分割部とは、互いに直列に接続されている。なお、第一LED分割部と第二LED分割部との間に、第二LED部12を接続してもよい。このようにすることで、長時間点灯される第一LED部11を分散して配置し、LED集合体10の光分布を均一に近付けることができる。特に長時間点灯する第一LED部11は、点滅する第二LED部12に比べて駆動時間が長い分、発熱量が多くなる。このため、発熱量の大きい第一LED部11を分割して配置することにより、放熱性の点でも有利となる。   Moreover, the 1st LED part 11 can also be divided | segmented into a some 1st LED division part. For example, the first LED unit 11 is divided into two parts: a first LED dividing unit and a second LED dividing unit. The 1st LED division part and the 2nd LED division part are mutually connected in series. In addition, you may connect the 2nd LED part 12 between a 1st LED division part and a 2nd LED division part. By doing in this way, the 1st LED part 11 lighted for a long time can be disperse | distributed, and the light distribution of the LED aggregate | assembly 10 can be closely approached. In particular, the first LED unit 11 that is lit for a long time has a larger amount of heat generation because the driving time is longer than that of the second LED unit 12 that blinks. For this reason, it becomes advantageous also in terms of heat dissipation by dividing and arranging the first LED unit 11 having a large calorific value.

第一LED部11に含まれるLED素子の順方向電圧の加算値である第一順方向電圧Vf1は、直列接続されたLED素子の個数によって決まる。例えば順方向電圧3.6VのLED素子を10個使用する場合の第一順方向電圧は、3.6×10=36.0Vとなる。また第一LED部11と第二LED部12を共に点灯させるための第二順方向電圧Vf2は、この第一順方向電圧Vf1にさらに、第二LED部12に含まれる直列接続されたLED素子の順方向電圧を加えた値となる。
(第一通電制御手段21)
The first forward voltage V f1 that is an added value of the forward voltages of the LED elements included in the first LED unit 11 is determined by the number of LED elements connected in series. For example, the first forward voltage when 10 LED elements having a forward voltage of 3.6V are used is 3.6 × 10 = 36.0V. The second forward voltage V f2 for lighting both the first LED part 11 and the second LED part 12 is further connected in series to the first forward voltage V f1 and included in the second LED part 12. A value obtained by adding a forward voltage of the LED element.
(First energization control means 21)

第一通電制御手段21は、第一LED部11への通電量を制御するための部材である。この第一通電制御手段21は、第二LED部12と並列で、且つ第一LED部11と直列に接続される。また第一通電制御手段21は、一端を第一LED部11の下流側と直列に接続し、他端を電流制限手段3の上流側と接続している。この第一通電制御手段21は、第一LED部11への通電量を調整するバイパス経路を構成する。すなわち、第一通電制御手段21によってバイパスされる電流量を調整できるので、結果的に第一LED部11の通電量を制御できる。図5の例では、第二LED部12と並列に第一通電制御手段21が接続され、第一バイパス経路BP1を形成する。なおここでいう並列接続とは、各LED部の両端と各通電制御手段が接続されていることを要さず、各通電制御手段の一端が各LED部の一端と接続されており、電流が分岐されるように構成されていれば足りる。例えば図5の例では、第一通電制御手段21はその一端を第二LED部12の上流側と接続し、他端を出力ラインOL上で、電流制限手段3の上流側と接続している。このように各通電制御手段の並列接続とは、出力ラインOL上に接続された各LED部の電流を分岐させるような接続形態を指す意味で使用する。   The first energization control means 21 is a member for controlling the energization amount to the first LED unit 11. The first energization control unit 21 is connected in parallel with the second LED unit 12 and in series with the first LED unit 11. The first energization control means 21 has one end connected in series with the downstream side of the first LED unit 11 and the other end connected to the upstream side of the current limiting means 3. The first energization control means 21 constitutes a bypass path that adjusts the energization amount to the first LED unit 11. That is, since the amount of current bypassed by the first energization control means 21 can be adjusted, the energization amount of the first LED unit 11 can be controlled as a result. In the example of FIG. 5, the first energization control means 21 is connected in parallel with the second LED unit 12 to form the first bypass path BP1. The parallel connection here does not require that both ends of each LED unit and each energization control means are connected, and one end of each energization control unit is connected to one end of each LED unit, It is sufficient if it is configured to be branched. For example, in the example of FIG. 5, the first energization control unit 21 has one end connected to the upstream side of the second LED unit 12 and the other end connected to the upstream side of the current limiting unit 3 on the output line OL. . As described above, the parallel connection of the energization control means is used to indicate a connection form in which the current of each LED unit connected on the output line OL is branched.

第一通電制御手段21は、例えば第一LED部11を流れる電流をバイパスさせるバイパス手段と、このバイパス手段の動作を制御する電流制御手段30とで構成できる。通電制御手段は、LED部の電流駆動を行う電流回路の制御用の部材である。例えば、第一通電制御手段21と、この第一通電制御手段21の動作、すなわちON/OFFや電流量連続可変といった動作を制御する電流制限手段3とで、一種の定電流回路が構成される。この定電流回路の制御は、例えば出力ラインOLに接続された電流検出手段4を用いてLED集合体10の電流量をモニタし、この値に基づいて電流制御手段30がバイパス手段の制御量を切り替える。なお、このように第一通電制御手段21を、バイパス手段と電流制御手段30とで構成する他、一体的に第一通電制御手段として構成してもよい。このような第一通電制御手段21は、トランジスタ等の半導体駆動素子で構成できる。
(電流制限手段3)
The 1st electricity supply control means 21 can be comprised by the bypass means which bypasses the electric current which flows through the 1st LED part 11, for example, and the current control means 30 which controls operation | movement of this bypass means. The energization control means is a member for controlling a current circuit that performs current driving of the LED unit. For example, the first energization control unit 21 and the current limiting unit 3 that controls the operation of the first energization control unit 21, that is, the operation such as ON / OFF and continuously variable current amount, form a kind of constant current circuit. . The constant current circuit is controlled by, for example, monitoring the current amount of the LED assembly 10 using the current detection means 4 connected to the output line OL, and the current control means 30 determines the control amount of the bypass means based on this value. Switch. In addition, the first energization control means 21 may be configured integrally with the first energization control means in addition to the bypass means and the current control means 30 as described above. Such first energization control means 21 can be composed of a semiconductor drive element such as a transistor.
(Current limiting means 3)

電流制限手段3は、第一LED部11及び第二LED部12と直列に接続され、第一LED部11及び第二LED部12への通電量を制御するための部材である。
(電流検出手段4)
The current limiting unit 3 is a member that is connected in series with the first LED unit 11 and the second LED unit 12 and controls the amount of current supplied to the first LED unit 11 and the second LED unit 12.
(Current detection means 4)

電流検出手段4は、第一LED部11及び第二LED部12が直列に接続される出力ラインOL上を流れる電流量に基づく電流検出信号を検出するための部材である。発光ダイオード駆動装置100は、電流検出手段4で検出した電流値に基づいて、各LED部に対する通電量の制御を行う。いいかえると、整流電圧の電圧値でなく、現実に通電される電流量に基づいた電流制御であるため、LED素子の順方向電圧のばらつきに左右されず、適切なタイミングで正確なLED部の切り替えが実現され、信頼性の高い安定した動作が見込まれる。この電流値の検出を、電流検出手段4が担う。電流検出手段4には、抵抗器等が好適に利用できる。なお図5の例では、電流検出手段4は電流制限手段3の下流側に接続されているが、この位置に限らず、電流検出手段4は出力ラインOL上のどの位置に設けてもよい。さらに、電流検出手段4は一に限らず、複数設けてもよい。
(電流制御手段30)
The current detection means 4 is a member for detecting a current detection signal based on the amount of current flowing on the output line OL to which the first LED unit 11 and the second LED unit 12 are connected in series. The light emitting diode driving device 100 controls the energization amount for each LED unit based on the current value detected by the current detecting means 4. In other words, current control is based on the amount of current that is actually energized rather than the voltage value of the rectified voltage, so it is not affected by variations in the forward voltage of the LED element, and the LED unit can be accurately switched at an appropriate timing. Is realized and stable operation with high reliability is expected. This current value is detected by the current detection means 4. A resistor or the like can be suitably used for the current detection means 4. In the example of FIG. 5, the current detection unit 4 is connected to the downstream side of the current limiting unit 3. However, the current detection unit 4 is not limited to this position, and may be provided at any position on the output line OL. Furthermore, the current detection means 4 is not limited to one, and a plurality of current detection means 4 may be provided.
(Current control means 30)

電流制御手段30は、電流検出手段4によって検出された電流検出信号に応じて、第一通電制御手段21及び電流制限手段3の動作を制御する動作制御信号を出力するための部材である。この電流制御手段30は、整流回路2で整流された整流電圧を基準電圧として、第一通電制御手段21及び電流制限手段3の動作を制御する動作制御信号を出力する。また第一通電制御手段21の下流側は、電流検出手段4と電流制限手段3の間に接続されている。
(強制消灯手段8)
The current control unit 30 is a member for outputting an operation control signal for controlling operations of the first energization control unit 21 and the current limiting unit 3 in accordance with the current detection signal detected by the current detection unit 4. The current control means 30 outputs an operation control signal for controlling the operations of the first energization control means 21 and the current limiting means 3 using the rectified voltage rectified by the rectifier circuit 2 as a reference voltage. The downstream side of the first energization control means 21 is connected between the current detection means 4 and the current limiting means 3.
(Forced extinguishing means 8)

強制消灯手段8は、整流回路2で整流された整流電圧の電圧値が、第一LED部11を点灯可能とする第一順方向電圧よりも高い値に設定された強制消灯電圧値Voffを下回る期間で、第一LED部11及び第二LED部12を強制的に消灯するよう電流制御手段30を動作させる強制消灯信号を生成するための部材である。これにより、整流電圧が点灯可能な第一順方向電圧を越えており、本来的に点灯可能な期間であるにも拘わらず、敢えて強制的に消灯させることが可能となる。この結果、消灯期間に意義のある特定の用途、例えば植物育成などに適した光源を実現できる。特に、直流駆動の発光ダイオードを交流電圧で駆動する際に発生する消灯期間を逆に活用することで、一般照明としては照明の品質が低くなるところを、逆に有効利用することが可能となる。 The forced extinguishing means 8 sets the compulsory extinguishing voltage value Voff set so that the voltage value of the rectified voltage rectified by the rectifier circuit 2 is higher than the first forward voltage enabling the first LED unit 11 to be lit. It is a member for generating a forced turn-off signal that operates the current control means 30 so that the first LED unit 11 and the second LED unit 12 are turned off forcibly in the period below. As a result, the rectified voltage exceeds the first forward voltage that can be turned on, and it is possible to forcibly turn off the light regardless of the period during which the light can be turned on. As a result, it is possible to realize a light source suitable for a specific application meaningful in the extinguishing period, for example, plant growth. In particular, by reversely using the extinguishing period that occurs when a DC-driven light-emitting diode is driven with an AC voltage, it becomes possible to effectively use a place where the quality of illumination is low as general illumination. .

また強制消灯手段8は、強制消灯電圧値Voffを可変とすることができる。これにより、強制的に消灯する消灯期間の長さを可変とでき、用途に応じた微調整が可能となる。例えば植物育成においては、育成対象の植物の種類や、同じ植物でも育成環境や育成地、個体差に応じた微調整が可能となり、収率の改善や育成の促進、疫病への耐性向上等が図られる。特に、比較的簡易な強制消灯手段8を付加するのみで足りるため、安価で簡便に消灯期間の調整機能を付加できる。
(実施形態2)
In addition, the forced turn-off means 8 can change the forced turn-off voltage value V off . Thereby, the length of the extinguishing period forcibly extinguishing can be made variable, and fine adjustment according to the application can be made. For example, in plant growth, it is possible to make fine adjustments according to the type of plant to be cultivated, the same plant, the growing environment, the growing place, and individual differences, improving yield and promoting growth, improving resistance to diseases, etc. Figured. In particular, since it is only necessary to add a relatively simple forced extinguishing means 8, a function for adjusting the extinguishing period can be easily and inexpensively added.
(Embodiment 2)

また発光ダイオード駆動装置は、高調波抑制電圧生成手段6を備えることもできる。発光ダイオード駆動装置を高調波電流規格に適合させるためには、白熱電球と同様に正弦波の電流波形になるよう設計することが望まれる。そこで、電流制限手段3の基準電圧に正弦波を重畳させることで、LED駆動電流波形を正弦波に近似した波形とし、25W超の高調波電流規格に適合させた安価でコンパクトな発光ダイオード駆動装置を提供できる。このような例を実施形態2に係る発光ダイオード駆動装置200として、図6に示す。この図に示す発光ダイオード駆動装置200は、実施形態1の構成に加えて、さらに高調波抑制電圧生成手段6を備えている。
(高調波抑制電圧生成手段6)
The light emitting diode driving device can also include harmonic suppression voltage generating means 6. In order to make the light emitting diode driving device conform to the harmonic current standard, it is desired to design the sine wave current waveform in the same manner as the incandescent lamp. Therefore, by superimposing a sine wave on the reference voltage of the current limiting means 3, the LED driving current waveform is approximated to a sine wave, and an inexpensive and compact light emitting diode driving device adapted to the harmonic current standard exceeding 25W. Can provide. Such an example is shown in FIG. 6 as a light emitting diode driving apparatus 200 according to the second embodiment. In addition to the configuration of the first embodiment, the light emitting diode driving device 200 shown in this figure further includes harmonic suppression voltage generation means 6.
(Harmonic suppression voltage generating means 6)

電流制御手段30は、高調波抑制電圧生成手段6と接続される。高調波抑制電圧生成手段6は、整流回路2から出力される整流電圧に基づいて、高調波抑制電圧を生成する。ここでは、高調波抑制電圧生成手段6は、整流回路2で整流された整流電圧を適当な大きさに圧縮し、電流制御手段30に送出する。電流制御手段30は、高調波抑制電圧生成手段6から送られた信号を参照信号とし、電流検出手段4で検出された電流検出信号と比較する。電流制御手段30はこの比較結果を基に、それぞれの第一通電制御手段21〜第四通電制御手段24を介して適切なタイミングと電流で、それぞれのLED部を駆動する。これにより、入力側の高調波成分と実際に得られたLED駆動電流との対比によって、出力波形を調整する制御が可能となり、効果的な高調波成分の抑制が実現できる。   The current control unit 30 is connected to the harmonic suppression voltage generation unit 6. The harmonic suppression voltage generator 6 generates a harmonic suppression voltage based on the rectified voltage output from the rectifier circuit 2. Here, the harmonic suppression voltage generation means 6 compresses the rectified voltage rectified by the rectifier circuit 2 to an appropriate magnitude and sends it to the current control means 30. The current control means 30 uses the signal sent from the harmonic suppression voltage generation means 6 as a reference signal and compares it with the current detection signal detected by the current detection means 4. Based on the comparison result, the current control unit 30 drives each LED unit at an appropriate timing and current via each of the first energization control unit 21 to the fourth energization control unit 24. Thereby, the control which adjusts an output waveform is attained by contrast with the harmonic component of an input side, and the LED drive current actually obtained, and suppression of an effective harmonic component is realizable.

また電流制御手段30は、強制消灯手段8で生成された強制消灯信号でもって、高調波抑制電圧生成手段6で生成された高調波抑制電圧を無効化する。これにより、整流電圧が強制消灯電圧値Voffを下回る区間では高調波抑制電圧を無効化することでLED集合体10を強制的に消灯させることが容易となる。特に、高調波抑制電圧生成手段6が備える回路の一部、例えば整流した整流電圧の分圧回路などを利用して、強制消灯手段8を構成できるので、強制消灯手段8の回路構成を簡素化し、また一部の回路を共通化して、発光ダイオード駆動装置全体での部品点数の削減や回路構成の簡素化、低コスト化などを図ることができる。
(実施形態1の動作例)
Further, the current control unit 30 invalidates the harmonic suppression voltage generated by the harmonic suppression voltage generation unit 6 with the forced extinction signal generated by the forced extinction unit 8. Thereby, it becomes easy to forcibly turn off the LED assembly 10 by invalidating the harmonic suppression voltage in a section where the rectified voltage is lower than the forced turn-off voltage value V off . In particular, the forced extinguishing means 8 can be configured by using a part of the circuit included in the harmonic suppression voltage generating means 6, for example, a rectified voltage dividing circuit of the rectified voltage, so that the circuit configuration of the forced extinguishing means 8 is simplified. In addition, by sharing some circuits, it is possible to reduce the number of parts in the entire LED driving device, simplify the circuit configuration, reduce costs, and the like.
(Operation example of Embodiment 1)

次に、図5に示す実施形態1に係る発光ダイオード駆動装置100の動作例を説明する。ここでは、第一LED部11を点灯させるため第一LED部11を構成するLED素子の順方向電圧を加算した第一順方向電圧Vf1よりも高い値に、強制消灯電圧値Voffを予め設定しておく。第一LED部11及び第二LED部12を点灯させるための第二順方向電圧Vf2が、強制消灯電圧値Voffよりも高い値となるように設計してもよい。 Next, an operation example of the light emitting diode driving apparatus 100 according to Embodiment 1 shown in FIG. 5 will be described. Here, the forced extinction voltage value V off is set in advance to a value higher than the first forward voltage V f1 obtained by adding the forward voltages of the LED elements constituting the first LED unit 11 to turn on the first LED unit 11. Set it. You may design so that the 2nd forward voltage Vf2 for lighting the 1st LED part 11 and the 2nd LED part 12 may become a value higher than the forced light extinction voltage value Voff .

整流電圧が0Vから徐々に上昇し、第一順方向電圧Vf1よりも高くなり本来であれば第一LED部が点灯される区間となっても、整流電圧が強制消灯電圧値Voffに至るまでは、第一LED部11は(及び第二LED部12も共に)、消灯状態とされる。具体的には、第一LED部11及び第二LED部12をONしないように、電流制御手段30が第一通電制御手段21及び電流制限手段3をONさせないよう、強制消灯手段8が制御している。 The rectified voltage gradually rises from 0 V, becomes higher than the first forward voltage V f1 , and the rectified voltage reaches the forced turn-off voltage value V off even when the first LED unit is turned on. Until then, the first LED unit 11 (and the second LED unit 12 together) is turned off. Specifically, the forcible turn-off means 8 controls the current control means 30 not to turn on the first energization control means 21 and the current limiting means 3 so that the first LED section 11 and the second LED section 12 are not turned on. ing.

次に整流電圧が強制消灯電圧値Voffを越えると、強制消灯手段8による制限が解除され、第一LED部11の点灯が開始される。整流電圧が第二順方向電圧Vf2よりも低い区間は、第一通電制御手段21でもって第一LED部11の通電が制御される。このとき、第一LED部11のみが点灯し、第二LED部12は消灯された状態となる。 Next, when the rectified voltage exceeds the forced turn-off voltage value V off , the restriction by the forced turn-off means 8 is released, and the first LED unit 11 is turned on. In a section where the rectified voltage is lower than the second forward voltage V f2 , the first LED unit 11 is controlled to be energized by the first energization control means 21. At this time, only the first LED unit 11 is turned on and the second LED unit 12 is turned off.

整流電圧がさらに上昇して、第二順方向電圧Vf2に達した時点で、第二LED部12への通電が開始される。整流電圧が第二順方向電圧Vf2以上の区間では、第一LED部11及び第二LED部12が共に点灯され、電流制限手段3でもって第二LED部12の通電が制御される。 When the rectified voltage further increases and reaches the second forward voltage V f2 , energization to the second LED unit 12 is started. In a section where the rectified voltage is equal to or higher than the second forward voltage V f2 , both the first LED unit 11 and the second LED unit 12 are turned on, and the current limiting unit 3 controls the energization of the second LED unit 12.

一方、整流電圧がピークを越えて低下し始めると、第二順方向電圧Vf2に達した時点で、第二LED部12への通電が停止されて消灯される。整流電圧が第二順方向電圧Vf2以下の区間では、第二LED部12は消灯され、第一LED部11のみが第一通電制御手段21でもって点灯される。 On the other hand, when the rectified voltage starts to decrease beyond the peak, when the second forward voltage V f2 is reached, the energization of the second LED unit 12 is stopped and the light is turned off. In a section where the rectified voltage is equal to or lower than the second forward voltage V f2 , the second LED unit 12 is turned off, and only the first LED unit 11 is turned on by the first energization control unit 21.

そして強制消灯電圧値Voffに至った時点で、強制消灯手段8による強制消灯制御が開始され、第一LED部11及び第二LED部12が共に消灯状態とされる。 When the forced turn-off voltage value V off is reached, forced turn-off control by the forced turn-off means 8 is started, and both the first LED unit 11 and the second LED unit 12 are turned off.

さらに整流電圧が0Vに至った後、再度上昇し始めると、整流電圧が強制消灯電圧値Voffに至るまでは強制消灯手段8による強制消灯制御が維持されて第一LED部11及び第二LED部12が共に消灯され、強制消灯電圧値Voffに至ると、上述の通り第一LED部11の点灯が共用され、同様の動作が繰り返される。
(実施形態3)
When the rectified voltage reaches 0V and then starts to rise again, the forced turn-off control by the forced turn-off means 8 is maintained until the rectified voltage reaches the forced turn-off voltage value V off , and the first LED unit 11 and the second LED. When both units 12 are turned off and the forced turn-off voltage value V off is reached, the lighting of the first LED unit 11 is shared as described above, and the same operation is repeated.
(Embodiment 3)

以上の図5の例では、LED集合体10を構成するLED部を2つ使用して、第一LED部11、第二LED部12を直列に接続した回路構成例を説明した。ただ本発明は、LED部の段数を2個に限定せず、3個以上とすることもできる。このような例を、図7、図8に基づいて説明する。なおこれらの図において、図5と同じ部材については同じ符号を付して詳細説明を適宜省略する。   In the example of FIG. 5 described above, the circuit configuration example in which the two LED units constituting the LED assembly 10 are used and the first LED unit 11 and the second LED unit 12 are connected in series has been described. However, the present invention does not limit the number of LED sections to two, but can be three or more. Such an example will be described with reference to FIGS. In these drawings, the same members as those in FIG. 5 are denoted by the same reference numerals and detailed description thereof is omitted as appropriate.

図7に示す実施形態3に係る発光ダイオード駆動装置300は、さらに第三LED部13と、第二通電制御手段22を備える。第三LED部13は、第一LED部11及び第二LED部12と直列に接続される。この第三LED部13も、第一LED部11や第二LED部12と同様、少なくとも一のLED素子を含む。   The light emitting diode driving device 300 according to the third embodiment shown in FIG. 7 further includes a third LED unit 13 and second energization control means 22. The third LED unit 13 is connected in series with the first LED unit 11 and the second LED unit 12. The third LED unit 13 also includes at least one LED element, like the first LED unit 11 and the second LED unit 12.

第二通電制御手段22は、第一LED部11及び第二LED部12への通電量を制御するための部材である。この第三LED部13と並列で、且つ第一LED部11及び第二LED部12と直列に接続されている。電流制御手段30が、電流検出手段4で検出された電流検出信号に応じて、第一通電制御手段21、第二通電制御手段22及び電流制限手段3の動作を制御する動作制御信号を出力するよう構成される。
(実施形態4)
The second energization control means 22 is a member for controlling the energization amount to the first LED unit 11 and the second LED unit 12. The third LED unit 13 is connected in parallel and in series with the first LED unit 11 and the second LED unit 12. The current control unit 30 outputs an operation control signal for controlling the operations of the first energization control unit 21, the second energization control unit 22, and the current limiting unit 3 in accordance with the current detection signal detected by the current detection unit 4. It is configured as follows.
(Embodiment 4)

また図8に示す実施形態4に係る発光ダイオード駆動装置400は、第三LED部13、第二通電制御手段22に加えてさらに、第四LED部14と、第三通電制御手段23を備える。第四LED部14も、第一LED部11、第二LED部12及び第三LED部13と直列に接続される。この第四LED部14も、第一LED部11等と同様、少なくとも一のLED素子を含む。第一LED部11〜第四LED部14は、同じ個数のLED素子とすることが好ましい。ただ、上述の通り強制消灯電圧値Voffは、Vf1<Voff、さらにはVf1<Vf2とすることが好ましいことから、このような条件を満たすように、特に第一LED部11と第二LED部12とでLED素子の数を適宜調整して、異なる数としてもよい。 In addition to the third LED unit 13 and the second energization control unit 22, the light emitting diode driving device 400 according to Embodiment 4 shown in FIG. 8 further includes a fourth LED unit 14 and a third energization control unit 23. The fourth LED unit 14 is also connected in series with the first LED unit 11, the second LED unit 12, and the third LED unit 13. The fourth LED unit 14 also includes at least one LED element, like the first LED unit 11 and the like. The first LED unit 11 to the fourth LED unit 14 are preferably the same number of LED elements. However, as described above, the forced turn-off voltage value V off is preferably set to V f1 <V off and further V f1 <V f2. The number of LED elements may be adjusted as appropriate between the second LED unit 12 and different numbers.

第三通電制御手段23は、第四LED部14と並列で、且つ第一LED部11、第二LED部12及び第三LED部13と直列に接続される。この第三通電制御手段23は、第一LED部11、第二LED部12及び第三LED部13への通電量を制御する。電流制御手段30が、電流検出手段4で検出された電流検出信号に応じて、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23及び電流制限手段3の動作を制御する動作制御信号を出力するよう構成される。   The third energization control unit 23 is connected in parallel with the fourth LED unit 14 and in series with the first LED unit 11, the second LED unit 12, and the third LED unit 13. The third energization control unit 23 controls the energization amount to the first LED unit 11, the second LED unit 12, and the third LED unit 13. The current control unit 30 controls the operations of the first energization control unit 21, the second energization control unit 22, the third energization control unit 23, and the current limiting unit 3 in accordance with the current detection signal detected by the current detection unit 4. The operation control signal is configured to be output.

また第二LED部12、第三LED部13、第四LED部14には、各々一端に通電量を制御するための第一通電制御手段21、第二通電制御手段22、第三通電制御手段23が接続される。第一通電制御手段21、第二通電制御手段22、第三通電制御手段23は、それぞれLED部に対して並列に設けられ、他端を電流検出手段4の上流側と接続しており、各LED部への通電量を調整するバイパス経路を構成する。すなわち、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23によってバイパスされる電流量を調整できるので、結果的に各LED部の通電量を制御できる。図8の例では、第二LED部12と並列に第一通電制御手段21が接続され、第一バイパス経路BP1を形成する。また第三LED部13と並列に第二通電制御手段22が接続され、第二バイパス経路BP2を形成する。さらに第四LED部14と並列に第三通電制御手段23が接続され、第三バイパス経路BP3を形成する。
(電流制御回路)
The second LED unit 12, the third LED unit 13, and the fourth LED unit 14 each have a first energization control unit 21, a second energization control unit 22, and a third energization control unit for controlling the energization amount at one end. 23 is connected. The first energization control means 21, the second energization control means 22, and the third energization control means 23 are each provided in parallel with the LED unit, and the other end is connected to the upstream side of the current detection means 4, A bypass path for adjusting the energization amount to the LED unit is configured. That is, since the amount of current bypassed by the first energization control unit 21, the second energization control unit 22, and the third energization control unit 23 can be adjusted, the energization amount of each LED unit can be controlled as a result. In the example of FIG. 8, the 1st electricity supply control means 21 is connected in parallel with the 2nd LED part 12, and 1st bypass path BP1 is formed. Moreover, the 2nd electricity supply control means 22 is connected in parallel with the 3rd LED part 13, and forms 2nd bypass path BP2. Further, the third energization control means 23 is connected in parallel with the fourth LED portion 14 to form a third bypass path BP3.
(Current control circuit)

またLED部の電流駆動を行う電流回路の制御用に電流制御回路が設けられる。図8の回路例では、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24と、電流制御手段30、電流制御信号付与手段5とで、一種の定電流回路が構成されており、この電流回路の制御は電流制御手段30と電流制御信号付与手段5とで行われる。   In addition, a current control circuit is provided for controlling a current circuit that performs current driving of the LED portion. In the circuit example of FIG. 8, the first energization control means 21, the second energization control means 22, the third energization control means 23, the fourth energization control means 24, the current control means 30, and the current control signal applying means 5 A kind of constant current circuit is configured, and this current circuit is controlled by the current control means 30 and the current control signal applying means 5.

電流制御手段30は、電流制御信号付与手段5を介して第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24と接続されている。この電流制御手段30は、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24のON/OFFや電流量連続可変といった動作を制御する。電流制御手段30は、電流検出手段4に接続されてLED集合体10の電流量をモニタし、その値に基づいて第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24の制御量を切り替える。   The current control means 30 is connected to the first energization control means 21, the second energization control means 22, the third energization control means 23, and the fourth energization control means 24 via the current control signal applying means 5. The current control means 30 controls operations such as ON / OFF of the first energization control means 21, the second energization control means 22, the third energization control means 23, and the fourth energization control means 24, and continuously varying the amount of current. The current control means 30 is connected to the current detection means 4 and monitors the current amount of the LED assembly 10, and based on the value, the first energization control means 21, the second energization control means 22, and the third energization control means 23. The control amount of the fourth energization control means 24 is switched.

図8の例では、電流制御手段30が第一LED部11の通電量に基づいて、第一通電制御手段21による第一LED部11への通電制限量を制御する。具体的には、第一通電制御手段21及び第二通電制御手段22、第三通電制御手段23、第四通電制御手段24がONの状態で、通電量に応じて、第一通電制御手段21は第一LED部11を電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12を共に駆動できる電圧に達すると、第二LED部12に電流が流れ始め、さらにその電流値が一定量を超えると、第一通電制御手段21はOFFとなる。さらに電流制御手段30が第一LED部11及び第二LED部12の通電量に基づいて、第二通電制御手段22による第一LED部11及び第二LED部12への通電制限量を制御する。具体的には、通電量に応じて第二通電制御手段22は第一LED部11と第二LED部12を電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12と第三LED部13とを共に駆動できる電圧に達すると、第三LED部13に電流が流れ始め、さらにその電流値が一定量を超えると、第二通電制御手段22はOFFとなる。   In the example of FIG. 8, the current control unit 30 controls the energization limit amount to the first LED unit 11 by the first energization control unit 21 based on the energization amount of the first LED unit 11. Specifically, the first energization control means 21, the second energization control means 22, the third energization control means 23, and the fourth energization control means 24 are in an ON state, and the first energization control means 21 is determined according to the energization amount. Drives the first LED unit 11 with current. Thereafter, when the input voltage rises and reaches a voltage that can drive both the first LED unit 11 and the second LED unit 12, current starts to flow through the second LED unit 12, and when the current value exceeds a certain amount, The first energization control means 21 is turned off. Furthermore, the current control unit 30 controls the energization limit amount to the first LED unit 11 and the second LED unit 12 by the second energization control unit 22 based on the energization amounts of the first LED unit 11 and the second LED unit 12. . Specifically, the second energization control unit 22 drives the first LED unit 11 and the second LED unit 12 in accordance with the energization amount. Thereafter, when the input voltage rises and reaches a voltage that can drive the first LED unit 11, the second LED unit 12, and the third LED unit 13, a current starts to flow through the third LED unit 13. Exceeds a certain amount, the second energization control means 22 is turned off.

さらに電流制御手段30が第一LED部11、第二LED部12、第三LED部13の通電量に基づいて、第三通電制御手段23による第一LED部11、第二LED部12、第三LED部13への通電制限量を制御する。具体的には、通電量に応じて第三通電制御手段23は第一LED部11と第二LED部12と第三LED部13とを電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12と第三LED部13と第四LED部14を共に駆動できる電圧に達すると、第四LED部14に電流が流れ始め、さらにその電流値が一定量を超えると、第三通電制御手段23はOFFとなる。最後に第四通電制御手段24及び電流制御手段30は、第一LED部11、第二LED部12、第三LED部13、第四LED部14を通電量に応じて電流駆動させる。   Furthermore, the current control means 30 is based on the energization amounts of the first LED part 11, the second LED part 12, and the third LED part 13, and the first LED part 11, the second LED part 12, The energization limit amount to the three LED units 13 is controlled. Specifically, the third energization control unit 23 drives the first LED unit 11, the second LED unit 12, and the third LED unit 13 in accordance with the energization amount. Thereafter, when the input voltage rises and reaches a voltage that can drive the first LED unit 11, the second LED unit 12, the third LED unit 13, and the fourth LED unit 14, current starts to flow through the fourth LED unit 14. If the current value exceeds a certain amount, the third energization control means 23 is turned off. Finally, the fourth energization control unit 24 and the current control unit 30 drive the first LED unit 11, the second LED unit 12, the third LED unit 13, and the fourth LED unit 14 in accordance with the energization amount.

以上のように発光ダイオード駆動装置400は、家庭用電源等の交流電源APを用いて、その交流を整流した後に得られる周期的に変化する脈流電圧に合わせて、直列に配置されたLED素子を適切な個数だけ点灯させるように構成した複数のバイパス回路を備えており、各バイパス回路を各々適切に動作させるように電流制御手段30を動作させることができる。   As described above, the LED driving device 400 uses the AC power supply AP such as a household power supply, and the LED elements arranged in series according to the periodically changing pulsating voltage obtained after rectifying the AC. A plurality of bypass circuits configured to light up an appropriate number of each are provided, and the current control means 30 can be operated so that each bypass circuit operates appropriately.

この発光ダイオード駆動装置400は、電流値の上昇に伴って第一LED部11、第二LED部12、第三LED部13、第四LED部14を順次通電させる。特に各LED部への通電量を電流制御によって制限することで、電流量に応じてLED部の通電量の制御を行うことができ、脈流電圧に対して効率よくLEDを点灯駆動できる。   The light emitting diode driving device 400 sequentially energizes the first LED unit 11, the second LED unit 12, the third LED unit 13, and the fourth LED unit 14 as the current value increases. In particular, by restricting the energization amount to each LED unit by current control, the energization amount of the LED unit can be controlled according to the current amount, and the LED can be driven to be driven efficiently with respect to the pulsating voltage.

さらに図8の例では、第四通電制御手段24と並列にLED駆動手段3’が接続されており、第四通電制御手段24に流れる電流の一部をLED駆動手段3’で分岐させることによってLED駆動手段3’が第四通電制御手段24の負荷を低減している。
(実施形態5)
(通信手段9)
Further, in the example of FIG. 8, the LED driving means 3 ′ is connected in parallel with the fourth energization control means 24, and a part of the current flowing through the fourth energization control means 24 is branched by the LED driving means 3 ′. The LED driving means 3 ′ reduces the load on the fourth energization control means 24.
(Embodiment 5)
(Communication means 9)

さらに発光ダイオード駆動装置は、通信手段9を設けてもよい。このような例を実施形態5に係る発光ダイオード駆動装置500として、図9に示す。この通信手段9は、強制消灯電圧値Voffを外部機器に出力し、かつこの外部機器からの強制消灯電圧値Voffに対する評価値を示す評価信号を受信する。強制消灯手段8は、通信手段9で受信した外部機器からの評価信号に基づき、強制消灯電圧値Voffを調整する。これにより、外部機器での評価値に基づいて強制消灯電圧値Voffを調整し、消灯期間の長さを用途に応じたより適切な値に微調整することが可能となる。
(実施形態6)
(光量パターン調整)
Furthermore, the light emitting diode driving device may be provided with a communication means 9. Such an example is shown in FIG. 9 as a light emitting diode driving apparatus 500 according to the fifth embodiment. The communication means 9 outputs a forced turn-off voltage value V off to an external device and receives an evaluation signal indicating an evaluation value for the forced turn-off voltage value V off from the external device. The forced turn-off means 8 adjusts the forced turn-off voltage value V off based on the evaluation signal from the external device received by the communication means 9. As a result, the forced extinction voltage value V off can be adjusted based on the evaluation value of the external device, and the length of the extinction period can be finely adjusted to a more appropriate value according to the application.
(Embodiment 6)
(Light intensity pattern adjustment)

また本発明の実施形態6に係る発光ダイオード駆動装置によれば、LED部の光量が時間変化するパターンを調整することもできる。比較例に係る発光ダイオード駆動装置1000によるLED部の光量を、図10Aに示すように、OFF状態からON状態に切り替わる際、急峻に光量が上がるように設計した。一方、実施形態6に係る発光ダイオード駆動装置では、図10Bに示すように、立ち上がりの光量は、最大光量よりも低い初期値まで急峻に上昇した後、曲線状あるいは円弧状に最大光量に至った後、同様のカーブで初期値と同じ光量にまで徐々に低下した後、急峻にOFFとなるように設計した。本発明者らが植物育成用光源としてこれらの光源を用いて比較試験を行った結果、図10Bのような光量パターンを採用することで、植物が疾病(特にチップバーン)になり難い傾向があることが判明した。その機序は明確でないものの、点灯と消灯を繰り返す点灯パターンにおいても、点灯と消灯の切り替えを急峻な変化でなく光量変化を緩やかにしたことで、負荷を軽減して植物の免疫力を高めることに資するものと推察される。
<実施例1>
Moreover, according to the light emitting diode drive device which concerns on Embodiment 6 of this invention, the pattern in which the light quantity of a LED part changes with time can also be adjusted. As shown in FIG. 10A, the light quantity of the LED unit by the light emitting diode driving apparatus 1000 according to the comparative example was designed so that the light quantity increases sharply when switching from the OFF state to the ON state. On the other hand, in the light emitting diode driving device according to Embodiment 6, as shown in FIG. 10B, the rising light amount sharply increased to an initial value lower than the maximum light amount, and then reached the maximum light amount in a curved shape or an arc shape. After that, it was designed so that the light intensity gradually decreased to the same light amount as the initial value with a similar curve, and then suddenly turned off. As a result of performing comparative tests using these light sources as light sources for plant growth by the present inventors, plants tend not to become diseased (especially chipburn) by adopting a light quantity pattern as shown in FIG. 10B. It has been found. Although the mechanism is not clear, even in the lighting pattern that repeatedly turns on and off, switching the lighting and turning off is not a steep change, but the light quantity change is made gentle, thereby reducing the load and increasing the immunity of the plant It is assumed that it contributes to
<Example 1>

次に、実施形態4に係る発光ダイオード駆動装置400の具体的な回路構成の例を、実施例1として図11の回路図に示す。この図に示す発光ダイオード駆動装置400’は、交流電源APに接続された整流回路2としてダイオードブリッジを用いている。また交流電源APと整流回路2との間には、過電流阻止のためのヒューズFSが設けられる。さらに整流回路2の出力側には、バイパスコンデンサBCが接続される。なお交流電源APと整流回路2との間には、図示しないが保護抵抗やサージ防護回路を設けてもよい。
(交流電源AP)
Next, an example of a specific circuit configuration of the light-emitting diode driving apparatus 400 according to the fourth embodiment is shown as a first example in the circuit diagram of FIG. The light emitting diode driving device 400 ′ shown in this figure uses a diode bridge as the rectifier circuit 2 connected to the AC power supply AP. A fuse FS for preventing overcurrent is provided between the AC power supply AP and the rectifier circuit 2. Further, a bypass capacitor BC is connected to the output side of the rectifier circuit 2. Although not shown, a protective resistor or a surge protection circuit may be provided between the AC power supply AP and the rectifier circuit 2.
(AC power supply AP)

交流電源APは、100Vや200Vの商用電源が好適に利用できる。この商用電源の100V又は200Vは実効値であり、整流された整流波形の最大電圧は約141V又は282Vとなる。
(LED集合体10)
As the AC power supply AP, a commercial power supply of 100V or 200V can be suitably used. 100V or 200V of the commercial power supply is an effective value, and the maximum voltage of the rectified rectified waveform is about 141V or 282V.
(LED assembly 10)

LED集合体10を構成する各LED部は、相互に直列に接続すると共に、複数のブロックに分け、ブロック同士の境界からは端子を引き出して、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24と接続している。図11の例では、第一LED部11、第二LED部12、第三LED部13、第四LED部14の4つのグループでLED集合体10を構成している。   The LED units constituting the LED assembly 10 are connected in series with each other, divided into a plurality of blocks, and a terminal is drawn out from the boundary between the blocks, and the first energization control unit 21 and the second energization control unit 22. The third energization control means 23 and the fourth energization control means 24 are connected. In the example of FIG. 11, the LED assembly 10 is configured by four groups of a first LED unit 11, a second LED unit 12, a third LED unit 13, and a fourth LED unit 14.

図11に示す各LED部11〜14は、一のLEDシンボルが複数のLEDチップを実装したLEDパッケージ1を表している。この例では、各LEDパッケージ1は、10個のLEDチップを実装している。各LED部の発光ダイオード接続数、あるいはLED部の接続数は、順方向電圧の加算値、すなわち直列接続されたLED素子の総数と、使用する電源電圧とで決定される。例えば商用電源を使用する場合は、各LED部のVfの合計である合計順方向電圧Vfallが、141V程度、又はそれ以下となるように設定される。 Each LED part 11-14 shown in FIG. 11 represents the LED package 1 in which one LED symbol mounts a plurality of LED chips. In this example, each LED package 1 has 10 LED chips mounted thereon. The number of light emitting diodes connected to each LED unit or the number of LED units connected is determined by the added value of forward voltages, that is, the total number of LED elements connected in series and the power supply voltage to be used. For example, when a commercial power source is used, the total forward voltage V fall that is the sum of V f of each LED unit is set to about 141 V or less.

なおLED部は、一以上の任意の数のLED素子を備えている。LED素子は、一個のLEDチップや、複数個のLEDチップを一パッケージに纏めたものを利用できる。この例では、図示する一のLED素子として、それぞれ10個のLEDチップを含むLEDパッケージ1を使用している。   The LED unit includes one or more arbitrary numbers of LED elements. As the LED element, one LED chip or a plurality of LED chips combined in one package can be used. In this example, an LED package 1 including 10 LED chips is used as one LED element shown in the figure.

また図11の例では、4つのLED部のVfを同一となるように設計している。ただこの例に限られず、上述の通りLED部数を3以下、あるいは5以上としてもよい。LED部数を増やすことで、電流制御の数を増やしてより細かなLED部間の点灯切り替え制御が可能となる。さらに各LED部のVfは同一としなくとも良い。
(第一通電制御手段21〜第四通電制御手段24)
In the example of FIG. 11, the four LED units are designed to have the same V f . However, the present invention is not limited to this example, and as described above, the number of LED units may be 3 or less, or 5 or more. By increasing the number of LED units, it is possible to increase the number of current controls and perform more detailed lighting switching control between the LED units. Furthermore, the V f of each LED unit may not be the same.
(First energization control means 21 to fourth energization control means 24)

第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24は、各LED部に対応して、電流駆動するための部材である。このような第一通電制御手段21〜第四通電制御手段24としては、トランジスタ等のスイッチング素子で構成される。特にFETは、ソース−ドレイン間飽和電圧がほぼゼロであるため、LED部への通電量を阻害することがなく好ましい。ただ、第一通電制御手段21〜第四通電制御手段24はFETに限定されるものでなく、バイポーラトランジスタ等でも構成できることはいうまでもない。   The 1st electricity supply control means 21, the 2nd electricity supply control means 22, the 3rd electricity supply control means 23, and the 4th electricity supply control means 24 are members for carrying out an electric current corresponding to each LED part. Such first energization control means 21 to fourth energization control means 24 are constituted by switching elements such as transistors. In particular, FETs are preferable because the saturation voltage between the source and the drain is almost zero, and the amount of current supplied to the LED portion is not hindered. However, it goes without saying that the first energization control means 21 to the fourth energization control means 24 are not limited to FETs, and can be constituted by bipolar transistors or the like.

図11の例では、第一通電制御手段21〜第四通電制御手段24として、LED電流制御トランジスタを利用している。具体的には、第二LED部12、第三LED部13、第四LED部14、LED駆動手段3’には、それぞれ第一通電制御手段21〜第四通電制御手段24である第一LED電流制御トランジスタ21B、第二LED電流制御トランジスタ22B、第三LED電流制御トランジスタ23Bが接続される。各LED電流制御トランジスタは、その前段のLED部の電流量に応じて、ON状態や電流制御が切り替わる。LED電流制御トランジスタがOFFになると、バイパス経路に電流が流れなくなって、LED部に通電される。すなわち、各第一通電制御手段21〜第四通電制御手段24によってバイパスされる電流量を調整できるので、結果的に各LED部の通電量を制御できることになる。図11の例では、第二LED部12と並列に第一通電制御手段21が接続され、第一バイパス経路BP1を形成する。また第三LED部13と並列に第二通電制御手段22が接続され、第二バイパス経路BP2を形成する。さらに第四LED部14と並列に第三通電制御手段23が接続され、第三バイパス経路BP3を形成する。さらにまた第四LED電流制御トランジスタ24BがLED駆動手段3’と並列に接続され、第四バイパス経路BP4を形成し、第一LED部11、第二LED部12、第三LED部13及び第四LED部14への通電量を制御する。
(逆流防止ダイオード)
In the example of FIG. 11, LED current control transistors are used as the first energization control means 21 to the fourth energization control means 24. Specifically, the second LED unit 12, the third LED unit 13, the fourth LED unit 14, and the LED driving unit 3 ′ are the first LED that is the first energization control unit 21 to the fourth energization control unit 24, respectively. The current control transistor 21B, the second LED current control transistor 22B, and the third LED current control transistor 23B are connected. Each LED current control transistor is switched between ON state and current control in accordance with the current amount of the LED section in the previous stage. When the LED current control transistor is turned off, no current flows through the bypass path, and the LED portion is energized. That is, since the amount of current bypassed by each of the first energization control means 21 to the fourth energization control means 24 can be adjusted, the energization amount of each LED unit can be controlled as a result. In the example of FIG. 11, the 1st electricity supply control means 21 is connected in parallel with the 2nd LED part 12, and 1st bypass path BP1 is formed. Moreover, the 2nd electricity supply control means 22 is connected in parallel with the 3rd LED part 13, and forms 2nd bypass path BP2. Further, the third energization control means 23 is connected in parallel with the fourth LED portion 14 to form a third bypass path BP3. Furthermore, the fourth LED current control transistor 24B is connected in parallel with the LED driving means 3 ′ to form a fourth bypass path BP4, and the first LED unit 11, the second LED unit 12, the third LED unit 13 and the fourth LED unit. The amount of energization to the LED unit 14 is controlled.
(Backflow prevention diode)

また各バイパス経路には、逆流防止ダイオードが設けられている。具体的には、第一バイパス経路BP1には第一逆流防止ダイオード121が、第二バイパス経路BP2には第二逆流防止ダイオード122が、第三バイパス経路BP3には第三逆流防止ダイオード123が、第四バイパス経路BP4には第四逆流防止ダイオード124が、それぞれ設けられる。   Each bypass path is provided with a backflow prevention diode. Specifically, the first backflow prevention diode 121 is provided in the first bypass path BP1, the second backflow prevention diode 122 is provided in the second bypass path BP2, and the third backflow prevention diode 123 is provided in the third bypass path BP3. A fourth backflow prevention diode 124 is provided in each of the fourth bypass paths BP4.

ここで第一LED部11は、並列に接続されたバイパス経路や通電制御手段を設けていない。第二LED部12と並列に接続された第一通電制御手段21が、第一LED部11の電流量を制御するからである。また第四LED部14については、第四LED電流制御トランジスタ24Bが電流制御を行う。   Here, the first LED unit 11 is not provided with a bypass path or an energization control unit connected in parallel. This is because the first energization control means 21 connected in parallel with the second LED unit 12 controls the current amount of the first LED unit 11. For the fourth LED unit 14, the fourth LED current control transistor 24B performs current control.

図11の発光ダイオード駆動装置400’は、LED駆動手段3’として抵抗器を備えている。抵抗器は、電流制限手段3と並列に接続され、また第四LED部14と直列に接続されている。なお図11の例では、電流制限手段3を第四LED電流制御トランジスタ24Bと兼用している。並列接続された電流制限手段3である第四LED電流制御トランジスタ24Bと、LED駆動手段3’である抵抗器とで、LED駆動回路を構成し、第一LED部11〜第四LED部14への通電を制御する。図11の例では、第四通電制御手段24である第四LED電流制御トランジスタ24Bと並列にLED駆動回路として抵抗器を接続することで、電流量が大きくなる際に第四通電制御手段24に通電される電流を抵抗器にバイパスして、第四通電制御手段24への負荷を軽減するよう構成している。ただ、第四通電制御手段24に十分な電流耐性を持たせた場合は、LED駆動回路を省略してもよい。
(電流制御手段30B)
The LED driving device 400 ′ of FIG. 11 includes a resistor as the LED driving means 3 ′. The resistor is connected in parallel with the current limiting means 3 and is connected in series with the fourth LED unit 14. In the example of FIG. 11, the current limiting means 3 is also used as the fourth LED current control transistor 24B. The fourth LED current control transistor 24B, which is the current limiting means 3 connected in parallel, and the resistor, which is the LED driving means 3 ′, form an LED drive circuit, and go to the first LED section 11 to the fourth LED section 14. Control energization. In the example of FIG. 11, by connecting a resistor as an LED drive circuit in parallel with the fourth LED current control transistor 24 </ b> B that is the fourth energization control unit 24, when the amount of current increases, By bypassing the energized current to the resistor, the load on the fourth energization control means 24 is reduced. However, if the fourth energization control means 24 has sufficient current resistance, the LED drive circuit may be omitted.
(Current control means 30B)

電流制御手段30Bは、各LED部と対応する第一通電制御手段21〜第四通電制御手段24が、適切なタイミングで電流駆動を行うよう制御する部材である。この電流制御手段30Bは、整流回路2で整流された整流電圧を基準電圧として、通電制御手段の動作を制御する動作制御信号を出力する。これにより、電流検出手段4で検出する出力ラインOL上の電流量を、整流電圧と比例した値に制御できる。この結果、回路全体の入力電流は交流入力電圧に比例した波形となり、高調波の抑制が可能となる。   The current control unit 30B is a member that controls the first energization control unit 21 to the fourth energization control unit 24 corresponding to each LED unit to perform current drive at an appropriate timing. The current control means 30B outputs an operation control signal for controlling the operation of the energization control means using the rectified voltage rectified by the rectifier circuit 2 as a reference voltage. Thereby, the amount of current on the output line OL detected by the current detection means 4 can be controlled to a value proportional to the rectified voltage. As a result, the input current of the entire circuit becomes a waveform proportional to the AC input voltage, and harmonics can be suppressed.

図11の電流制御手段30Bにも、トランジスタ等のスイッチング素子が利用できる。特にバイポーラトランジスタは、電流量の検出に好適に利用できる。この例では電流制御手段30Bを、オペアンプ30Bで構成している。なお電流制御手段は、オペアンプに限定されるものでなく、コンパレータ、バイポーラトランジスタ、MOSFET等でも構成可能であるのはいうまでもない。   A switching element such as a transistor can also be used for the current control means 30B of FIG. In particular, the bipolar transistor can be suitably used for detecting the amount of current. In this example, the current control means 30B is composed of an operational amplifier 30B. Needless to say, the current control means is not limited to an operational amplifier, and can be constituted by a comparator, a bipolar transistor, a MOSFET, or the like.

図11の例では、電流制御手段30Bは、各LED電流制御トランジスタ21B〜24Bの動作を制御する。すなわち、各電流検出オペアンプが通電量の制御を行うことで、LED電流制御トランジスタをOFF/電流制御/ONにそれぞれ切り替える。   In the example of FIG. 11, the current control means 30B controls the operation of the LED current control transistors 21B to 24B. That is, each current detection operational amplifier controls the energization amount to switch the LED current control transistor to OFF / current control / ON.

オペアンプで構成される図11の電流制御手段30Bは、このオペアンプの一方の入力である非反転入力端子に、強制消灯手段8で生成された強制消灯信号と、高調波抑制電圧生成手段6で生成された高調波抑制電圧を入力させている。また反転入力端子には、電流検出手段4から、出力ラインOL上を流れる電流量に基づく電流検出信号を入力している。この電流制御手段30Bは、高調波抑制電圧生成手段6で検出された整流電圧の変動と、電流検出手段4によって検出された電流検出信号との和に基づいて、電流制御手段30Bが、第一通電制御手段21及び電流制限手段3の動作を制御する。   The current control means 30B of FIG. 11 composed of an operational amplifier is generated by the forced turn-off signal generated by the forced turn-off means 8 and the harmonic suppression voltage generation means 6 at the non-inverting input terminal which is one input of the operational amplifier. Input harmonic suppression voltage. In addition, a current detection signal based on the amount of current flowing on the output line OL is input from the current detection means 4 to the inverting input terminal. Based on the sum of the fluctuation of the rectified voltage detected by the harmonic suppression voltage generation means 6 and the current detection signal detected by the current detection means 4, the current control means 30B The operations of the energization control means 21 and the current limiting means 3 are controlled.

このように、オペアンプの一方の入力に強制消灯信号と高調波抑制電圧を与えることで、強制消灯信号が作用する区間では高調波抑制電圧を無効化することでLEDを容易に強制的に消灯させることが可能となる。この電流制御手段30Bは、出力を指示する信号を0Vに落とすことで、無効化する回路動作となっている。
(電流検出手段4)
In this way, by applying a forced turn-off signal and a harmonic suppression voltage to one input of the operational amplifier, the LED is easily forcibly turned off by disabling the harmonic suppression voltage in a section where the forced turn-off signal acts. It becomes possible. The current control means 30B has a circuit operation to be invalidated by dropping a signal instructing output to 0V.
(Current detection means 4)

電流検出手段4は、LED部を直列接続したLED集合体10に通電される電流を電圧降下等により検出するための部材である。電流検出手段4で電流検出を行うことで、LED集合体10を構成する各LED部の電流駆動を行う。またこの電流検出手段4は、LEDの保護抵抗としても機能する。さらに電流検出手段4で検出された電流検出信号に基づいて電流駆動を行うため、電流検出手段4は、電流回路の制御を行う電流制御手段30Bであるオペアンプ30Bと接続されている。この回路例では、第一通電制御手段21、第二通電制御手段22、第三通電制御手段23、第四通電制御手段24と電流制御手段30Bで、一種の定電流回路が構成される。
(電流制御信号付与手段5)
The current detection means 4 is a member for detecting a current supplied to the LED assembly 10 in which the LED units are connected in series by a voltage drop or the like. By performing current detection with the current detection means 4, current driving of each LED unit constituting the LED assembly 10 is performed. The current detecting means 4 also functions as a protective resistor for the LED. Further, in order to drive the current based on the current detection signal detected by the current detection means 4, the current detection means 4 is connected to an operational amplifier 30B which is a current control means 30B for controlling the current circuit. In this circuit example, the first energization control means 21, the second energization control means 22, the third energization control means 23, the fourth energization control means 24, and the current control means 30B constitute a kind of constant current circuit.
(Current control signal applying means 5)

さらに電流制御手段30Bと各通電制御手段との間には、電流制御信号付与手段5が介在されている。例えば第一通電制御手段21に付与する動作制御信号と第四通電制御手段24に付与する動作制御信号間には電位差が生じるので、電流制御信号付与手段5を設けることで第一通電制御手段21と第四通電制御手段24の動作の切り替えを確実に行うことが可能となる。各電流制御信号付与手段5は、各LED電流制御トランジスタのON/OFFをどの電流のタイミングで行うかを規定する。ここでは、入力電圧の上昇に伴い、第一〜第四LED電流制御トランジスタ21B〜24Bの順でOFFされるよう、各電流制御信号付与手段5として電流制御信号付与ツェナーダイオード5E、5F、5Gが設定、配置されている。なお図11の例では、電流制御信号付与手段5をツェナーダイオードで構成しているが、抵抗器、ダイオード等で構成することもできる。   Further, a current control signal applying means 5 is interposed between the current control means 30B and each energization control means. For example, since a potential difference is generated between the operation control signal applied to the first energization control unit 21 and the operation control signal applied to the fourth energization control unit 24, the first energization control unit 21 is provided by providing the current control signal applying unit 5. It is possible to reliably switch the operation of the fourth energization control means 24. Each current control signal applying means 5 defines at which current timing each LED current control transistor is turned on / off. Here, as the input voltage increases, the current control signal applying Zener diodes 5E, 5F, and 5G are provided as the current control signal applying means 5 so that the first to fourth LED current control transistors 21B to 24B are turned off in this order. Set and arranged. In the example of FIG. 11, the current control signal applying unit 5 is configured by a Zener diode, but may be configured by a resistor, a diode, or the like.

図11の回路例では、整流回路2で整流された入力電圧の上昇に伴い、第一LED部11から第二LED部12、第三LED部13、第四LED部14への順で、通電量の制御を行うことができる。また入力電圧の下降時には、逆の順序でLEDが消灯される。
(高調波抑制信号生成回路)
In the circuit example of FIG. 11, energization is performed in the order from the first LED unit 11 to the second LED unit 12, the third LED unit 13, and the fourth LED unit 14 as the input voltage rectified by the rectifier circuit 2 increases. The amount can be controlled. When the input voltage decreases, the LEDs are turned off in the reverse order.
(Harmonic suppression signal generation circuit)

一方図11の回路例では、電流制御手段30Bをオペアンプ30Bで構成しており、このオペアンプ30Bは、高調波抑制電圧生成手段6により制御される。高調波抑制電圧生成手段6は、高調波抑制信号生成回路で構成される。高調波抑制信号生成回路は、高調波抑制信号生成抵抗60、61と、高調波抑制信号生成抵抗61と並列に接続された高調波抑制信号生成コンデンサ62で構成される。この高調波抑制信号生成回路は、整流回路2で整流された整流電圧を分圧する。いいかえると、整流電圧を適当な大きさに圧縮する。また電流制御手段30Bであるオペアンプ30Bの非反転入力端子には、高調波抑制信号生成回路で圧縮された正弦波である高調波抑制信号が入力される。
(強制消灯回路8B)
On the other hand, in the circuit example of FIG. 11, the current control unit 30 </ b> B is configured by an operational amplifier 30 </ b> B, and the operational amplifier 30 </ b> B is controlled by the harmonic suppression voltage generation unit 6. The harmonic suppression voltage generation means 6 includes a harmonic suppression signal generation circuit. The harmonic suppression signal generation circuit includes harmonic suppression signal generation resistors 60 and 61 and a harmonic suppression signal generation capacitor 62 connected in parallel with the harmonic suppression signal generation resistor 61. The harmonic suppression signal generation circuit divides the rectified voltage rectified by the rectifier circuit 2. In other words, the rectified voltage is compressed to an appropriate level. A harmonic suppression signal which is a sine wave compressed by the harmonic suppression signal generation circuit is input to the non-inverting input terminal of the operational amplifier 30B which is the current control means 30B.
(Forced turn-off circuit 8B)

さらに図11の発光ダイオード駆動装置400’は、強制消灯手段8として強制消灯回路8Bを備えている。強制消灯回路8Bは、整流回路2の出力側と電流制御手段30Bであるオペアンプ30Bの非反転入力端子との間で、高調波抑制信号生成回路と並列に接続される。この強制消灯回路8Bは、可変抵抗器と、複数のツェナーダイオードと、複数の抵抗器と、複数のトランジスタで構成される。トランジスタは、第一強制消灯トランジスタと第二強制消灯トランジスタを含み、ここでは第一強制消灯FET81、第二強制消灯FET82で構成される。第一強制消灯FET81のドレイン側は、第一ドレイン側抵抗器83を介して整流回路2の出力側に接続される。また第一強制消灯FET81のゲート側は、ゲート側ツェナーダイオード84を介して接地されている。また第一強制消灯FET81のゲート側には、強制消灯可変抵抗器85が接続される。この強制消灯可変抵抗器85の一端(図11において上端)は、抵抗器86と第一ツェナーダイオード87を介して整流回路2の出力側に接続され、他端(図11において下端)は接地抵抗器88を介して接地されている。さらに第一強制消灯FET81のソース側は、第二ツェナーダイオード89を介して接地されると共に、第二強制消灯FET82のゲート側に接続される。第二強制消灯FET82のドレイン側は、第二ドレイン側抵抗器99を介してオペアンプ30Bの非反転入力端子と接続される。さらに第二強制消灯FET82のソース側は接地されている。   Further, the light emitting diode driving device 400 ′ of FIG. 11 includes a forced light-off circuit 8 </ b> B as the forced light-off means 8. The forced extinction circuit 8B is connected in parallel with the harmonic suppression signal generation circuit between the output side of the rectifier circuit 2 and the non-inverting input terminal of the operational amplifier 30B that is the current control means 30B. The forced extinguishing circuit 8B includes a variable resistor, a plurality of Zener diodes, a plurality of resistors, and a plurality of transistors. The transistors include a first forced turn-off transistor and a second forced turn-off transistor, and here are constituted by a first forced turn-off FET 81 and a second forced turn-off FET 82. The drain side of the first forced extinguishing FET 81 is connected to the output side of the rectifier circuit 2 via the first drain side resistor 83. The gate side of the first forced extinguishing FET 81 is grounded via the gate side Zener diode 84. Further, a forced turn-off variable resistor 85 is connected to the gate side of the first forced turn-off FET 81. One end (upper end in FIG. 11) of the forced turn-off variable resistor 85 is connected to the output side of the rectifier circuit 2 via the resistor 86 and the first Zener diode 87, and the other end (lower end in FIG. 11) is ground resistance. It is grounded via a device 88. Further, the source side of the first forced-off FET 81 is grounded via the second Zener diode 89 and is connected to the gate side of the second forced-off FET 82. The drain side of the second forced extinguishing FET 82 is connected to the non-inverting input terminal of the operational amplifier 30B via the second drain side resistor 99. Further, the source side of the second forced extinguishing FET 82 is grounded.

この強制消灯回路8Bの動作原理を、説明する。整流電圧が低い状態では、整流回路2の出力側と、第一ツェナーダイオード87、抵抗器86を介して接続された強制消灯可変抵抗器85の中点の電圧も低く、特に第一強制消灯FET81のゲート−ソース間電圧Vgsのゲートしきい値電圧(約4V)よりも低い状態では、第一強制消灯FET81がOFF状態に維持される。この結果、第一ドレイン側抵抗器83には通電されず、第二強制消灯FET82はON状態となり、結果としてオペアンプ30Bの非反転入力端子には低い電圧が入力されて、OFF状態となって、第一LED電流制御トランジスタ21B等はOFFされる。 The operating principle of the forced extinction circuit 8B will be described. When the rectified voltage is low, the voltage at the midpoint of the forced turn-off variable resistor 85 connected to the output side of the rectifier circuit 2 via the first Zener diode 87 and the resistor 86 is also low. When the gate-source voltage V gs is lower than the gate threshold voltage (about 4 V), the first forced extinction FET 81 is maintained in the OFF state. As a result, the first drain side resistor 83 is not energized, the second forced extinction FET 82 is turned on, and as a result, a low voltage is input to the non-inverting input terminal of the operational amplifier 30B, and the first drain side resistor 83 is turned off. The first LED current control transistor 21B and the like are turned off.

一方、強制消灯可変抵抗器85の中点の電圧が、第一強制消灯FET81のゲート−ソース間電圧Vgsの閾値電圧(例えば約4V)を超えると、第一強制消灯FET81がONされる。これにより、第一強制消灯FET81のゲート−ソース間電圧が低下し、第一強制消灯FET81のドレイン側と接続された第二強制消灯FET82がOFF状態に切り替えられる。この結果、第二強制消灯FET82のドレイン−ソース間電圧が低下して、オペアンプ30Bの非反転入力端子の電位が高くなり、ON状態となって、第一LED電流制御トランジスタ21B等はONされる。 On the other hand, when the voltage at the midpoint of the forced turn-off variable resistor 85 exceeds the threshold voltage (for example, about 4 V) of the gate-source voltage V gs of the first forced turn-off FET 81, the first forced turn-off FET 81 is turned on. As a result, the gate-source voltage of the first forced turn-off FET 81 decreases, and the second forced turn-off FET 82 connected to the drain side of the first forced turn-off FET 81 is switched to the OFF state. As a result, the drain-source voltage of the second forced extinguishing FET 82 decreases, the potential of the non-inverting input terminal of the operational amplifier 30B increases, and the first LED current control transistor 21B and the like are turned on. .

図11の回路例においては、強制消灯回路8Bは整流電圧をツェナーダイオードと抵抗分圧で検出し、抵抗分圧比を強制消灯可変抵抗器85で調整している。このように強制消灯可変抵抗器85でもって、強制消灯電圧値を調整できるため、消灯期間を開始するタイミングを強制消灯可変抵抗器85でもって変更できる。ここで、強制消灯回路8Bの強制消灯可変抵抗器85でもって消灯期間を調整する様子を、図12〜図15に基づいて説明する。これらの図において、図12は図1の比較例に係るLED駆動回路の入力交流電圧、及び第一LED部11の電力の時間変化を示す波形を示すグラフ、図13は図11の発光ダイオード駆動装置400’の入力交流電圧、及び消灯期間をTOFF1に設定した場合の第一LED部11の電力の時間変化を示す波形を示すグラフ、図14は図11の発光ダイオード駆動装置400’の入力交流電圧、及び消灯期間をTOFF2に設定した場合の第一LED部11の電力の時間変化を示す波形を示すグラフ、図15は図11の発光ダイオード駆動装置400’の入力交流電圧、及び消灯期間をTOFF3に設定した場合の第一LED部11の電力の時間変化を示す波形を示すグラフを、それぞれ示している。これらのグラフから明らかなとおり、比較例に係るLED駆動回路では消灯期間TOFF0が短く、一般照明としては消灯期間をできるだけ短くしてちらつきを抑えようとするのに対し、実施例1では、これよりも消灯期間を長く設定することが可能となる。消灯期間を長くするにつれて点灯期間も短くなり、照度の累積的な値すなわち積分値は低下するものの、植物の育成においては有利となることが本発明者らの試験により確認された(図4参照)。
(定電圧電源7)
In the circuit example of FIG. 11, the forced turn-off circuit 8B detects the rectified voltage with a Zener diode and a resistance voltage divider, and adjusts the resistance voltage dividing ratio with the forced turn-off variable resistor 85. Since the forced turn-off variable resistor 85 can adjust the forced turn-off voltage value in this way, the timing for starting the turn-off period can be changed with the forced turn-off variable resistor 85. Here, how the extinction period is adjusted with the forced extinction variable resistor 85 of the forced extinction circuit 8B will be described with reference to FIGS. In these figures, FIG. 12 is a graph showing a waveform showing a time change of the input AC voltage of the LED drive circuit and the power of the first LED unit 11 according to the comparative example of FIG. 1, and FIG. FIG. 14 is a graph showing a waveform showing a time change of the power of the first LED unit 11 when the input AC voltage of the device 400 ′ and the extinguishing period are set to T OFF1 , and FIG. 14 is an input of the LED driving device 400 ′ of FIG. FIG. 15 is a graph showing a waveform showing a temporal change in power of the first LED unit 11 when the AC voltage and the OFF period are set to T OFF2 , and FIG. 15 is an input AC voltage of the LED driving device 400 ′ in FIG. The graph which shows the waveform which shows the time change of the electric power of the 1st LED part 11 at the time of setting a period to TOFF3 is shown, respectively. As is apparent from these graphs, the LED driving circuit according to the comparative example has a short extinction period T OFF0 , and in general lighting, the extinguishing period is shortened as much as possible to suppress flicker. It is possible to set a longer light extinction period. As the turn-off period is lengthened, the turn-on period is also shortened, and the cumulative value of the illuminance, that is, the integrated value is reduced, but it has been confirmed by the present inventors' test that it is advantageous in plant growth (see FIG. 4). ).
(Constant voltage power supply 7)

オペアンプ30Bは、定電圧電源7により駆動される。定電圧電源7は、オペアンプ電源用トランジスタ70、ツェナーダイオード71、ツェナー電圧設定抵抗72で構成される。この定電圧電源7は、交流電源APを整流回路2で整流した後の整流電圧が、ツェナーダイオード71のツェナー電圧を超えている期間だけ、オペアンプ30Bに電源を供給する。この期間は、LED集合体10の点灯期間を包含するよう設定される。すなわち、LED集合体10の点灯中にオペアンプ30Bを動作させて、点灯を制御する。   The operational amplifier 30 </ b> B is driven by the constant voltage power supply 7. The constant voltage power supply 7 includes an operational amplifier power supply transistor 70, a Zener diode 71, and a Zener voltage setting resistor 72. The constant voltage power supply 7 supplies power to the operational amplifier 30B only during a period in which the rectified voltage after the AC power supply AP is rectified by the rectifier circuit 2 exceeds the Zener voltage of the Zener diode 71. This period is set to include the lighting period of the LED assembly 10. In other words, the operational amplifier 30B is operated during the lighting of the LED assembly 10 to control the lighting.

一方、各オペアンプ30Bの反転入力端子には、電流検出抵抗4で検出された電流検出信号である電圧が入力される。電流検出抵抗4の電圧は、オペアンプ30Bの非反転入力端子に印加される正弦波に沿って電流制御されるよう制御される。このように、正弦波に沿って電流制御動作を行うため、LED駆動電流が正弦波に近似された波形となる。   On the other hand, a voltage which is a current detection signal detected by the current detection resistor 4 is input to the inverting input terminal of each operational amplifier 30B. The voltage of the current detection resistor 4 is controlled such that the current is controlled along a sine wave applied to the non-inverting input terminal of the operational amplifier 30B. Thus, since the current control operation is performed along the sine wave, the LED drive current has a waveform approximated to a sine wave.

なおLED部はそれぞれ、複数の発光ダイオード素子を相互に直列に接続して構成できる。これにより、整流電圧を複数の発光ダイオード素子で効果的に分圧できる上、発光ダイオード素子毎の順方向電圧Vfや温度特性のばらつきをある程度吸収して、ブロック単位での制御を均一化できる。ただ、LED部の数や各LED部を構成する発光ダイオード素子数等は、要求される明るさや入力電圧等によって任意に設定でき、例えばLED部を一の発光ダイオード素子で構成したり、LED部の数を多くしてより細かな制御を行うこと、あるいは逆にLED部を2つのみとして制御をシンプルにすることも可能であることは言うまでもない。 Each LED section can be configured by connecting a plurality of light emitting diode elements in series with each other. As a result, the rectified voltage can be effectively divided by a plurality of light emitting diode elements, and variations in forward voltage V f and temperature characteristics for each light emitting diode element can be absorbed to some extent, and control in units of blocks can be made uniform. . However, the number of LED units and the number of light emitting diode elements constituting each LED unit can be arbitrarily set according to required brightness, input voltage, etc., for example, the LED unit can be configured with one light emitting diode element, It goes without saying that finer control can be performed by increasing the number of LEDs, or conversely, the control can be simplified by using only two LED units.

また、上記構成ではLED部の構成数を4としたが、上述の通りLED部の数を2又は3としたり、又は5以上とすることもできることはいうまでもない。特に、LED部の数を増やすことで、正弦波状の電流波形をより低い電源電圧から形成することが可能となり、一層の高調波成分の抑制が可能となる。また図11の例では、各LED部がON/OFFされる切り替え動作を、入力電流に対してほぼ均等に分割しているが、均等にする必要は必ずしも無く、異なる電流でLED部を切り替えてもよい。   In the above configuration, the number of LED units is four, but it goes without saying that the number of LED units can be two, three, or five or more as described above. In particular, by increasing the number of LED portions, a sinusoidal current waveform can be formed from a lower power supply voltage, and harmonic components can be further suppressed. In the example of FIG. 11, the switching operation in which each LED unit is turned ON / OFF is divided almost evenly with respect to the input current. However, it is not necessarily equal, and the LED unit is switched with a different current. Also good.

さらに上記の例では、LEDを4つのLED部に分け、各LED部がそれぞれ同一のVfとなるよう構成しているが、同一のVfでなくても良い。例えばLED部1のVfをできるだけ低く、すなわちLED一個分の3.6V程度に設定できれば、電流の立ち上がりタイミングを早く、立下りタイミングを遅くできる。このことは、高調波を減少させるのにさらに有利となる。またこの方法を使用すれば、LED部の数とVf設定を自由に選択でき、さらに電流波形を正弦波に近似できるため、より柔軟性を高めて高調波抑制を実現することが容易となる。
<実施例2>
(ピーク照度可変回路)
In yet above example, divided LED into four LED unit, each LED unit is configured to respectively the same V f, it may not be the same for V f. For example, if V f of the LED unit 1 can be set as low as possible, that is, about 3.6 V for one LED, the current rise timing can be advanced and the fall timing can be delayed. This is further advantageous for reducing harmonics. If this method is used, the number of LED units and the V f setting can be freely selected, and the current waveform can be approximated to a sine wave, so that it is easy to realize higher harmonics and suppression of harmonics. .
<Example 2>
(Peak illumination variable circuit)

また本発明は、照明光のピーク照度を固定とする構成の他、可変機能を付加しても良い。これにより、消灯期間の制御のみならず、ピーク照度すなわち振幅側も調整可能とすることで、消灯期間を維持したまま調光を行うことが可能となる。このような回路例を、実施例2に係る発光ダイオード駆動装置700として図16に示す。この図に示す発光ダイオード駆動装置700は、図11の構成に加えて、ピーク照度調整手段90を備えている。ピーク照度調整手段90は、図11の回路例では固定抵抗器であった高調波抑制信号生成抵抗61に代えて、第一LED部11や第二LED部12が発等のLED部が発する光のピーク照度を調整するためのピーク照度可変抵抗器91を有する。これにより、ピーク照度を可変として、消灯期間のタイミングを調整可能としながら、すなわちOFFデューティを可変としつつ、これと独立して調光を行うことが可能となる。   Further, the present invention may add a variable function in addition to the configuration in which the peak illuminance of the illumination light is fixed. Thereby, not only control of the light extinction period but also adjustment of the peak illuminance, that is, the amplitude side can be performed, so that it is possible to perform light control while maintaining the light extinction period. An example of such a circuit is shown in FIG. 16 as a light emitting diode driving apparatus 700 according to the second embodiment. The light emitting diode driving device 700 shown in this figure includes a peak illuminance adjusting means 90 in addition to the configuration of FIG. The peak illuminance adjusting means 90 replaces the harmonic suppression signal generating resistor 61 which is a fixed resistor in the circuit example of FIG. 11, and the light emitted from the LED unit such as the first LED unit 11 or the second LED unit 12 emits light. The peak illuminance variable resistor 91 for adjusting the peak illuminance is provided. This makes it possible to adjust the light intensity independently while making the peak illuminance variable and adjusting the timing of the extinction period, that is, making the OFF duty variable.

以上の実施例では、LED部の消灯開始のタイミングを調整する方法として、交流電圧を整流した整流電圧を検出して、設定された電圧以上の期間で点灯させる構成を採用した。ただ本発明は、消灯のタイミングを調整する方法を上記に限定せず、他の方法を採用することもできる。例えば、トライアック、サイリスタやIGBT等により交流の通電時間を制御する方法や、これらの素子を使った市販の調光器を交流AC入力側に挿入する等の方法が利用できる。   In the above embodiment, as a method for adjusting the timing of starting the turn-off of the LED unit, a configuration in which a rectified voltage obtained by rectifying an AC voltage is detected and turned on in a period longer than a set voltage is employed. However, the present invention does not limit the method for adjusting the turn-off timing to the above, and other methods can also be adopted. For example, a method of controlling the AC energization time using a triac, a thyristor, an IGBT, or the like, or a method of inserting a commercially available dimmer using these elements into the AC AC input side can be used.

以上の発光ダイオード駆動装置及びこれを用いた植物栽培用照明は、消灯期間の調整が要求される用途、例えば植物栽培用照明として好適に利用できる。また、植物栽培用に限らず、消灯期間の調整が求められる他の用途、例えば魚を集める集魚灯や昆虫の誘引や忌避のための照明等にも適用可能である。   The light emitting diode driving device and the plant cultivation illumination using the light emitting diode drive device described above can be suitably used as an application requiring adjustment of the extinguishing period, for example, plant cultivation illumination. Further, the present invention is not limited to plant cultivation, but can be applied to other uses that require adjustment of the light extinction period, such as a fishing light for collecting fish and lighting for attracting or avoiding insects.

100、200、300、400、400’、500、700、1000…発光ダイオード駆動装置
2…整流回路
3…電流制限手段;3’…LED駆動手段
4…電流検出手段
5…電流制御信号付与手段;5E、5F、5G…電流制御信号付与ツェナーダイオード
6…高調波抑制電圧生成手段
7…定電圧電源
8…強制消灯手段;8B…強制消灯回路
9…通信手段
10…LED集合体
11…第一LED部
12…第二LED部
13…第三LED部
14…第四LED部
21…第一通電制御手段;21B…第一LED電流制御トランジスタ
22…第二通電制御手段;22B…第二LED電流制御トランジスタ
23…第三通電制御手段;23B…第三LED電流制御トランジスタ
24…第四通電制御手段;24B…第四LED電流制御トランジスタ
30…電流制御手段;30B…電流制御手段(オペアンプ)
60、61…高調波抑制信号生成抵抗
62…高調波抑制信号生成コンデンサ
70…オペアンプ電源用トランジスタ
71…ツェナーダイオード
72…ツェナー電圧設定抵抗
81…第一強制消灯FET
82…第二強制消灯FET
83…第一ドレイン側抵抗器
84…ゲート側ツェナーダイオード
85…強制消灯可変抵抗器
86…抵抗器
87…第一ツェナーダイオード
88…接地抵抗器
89…第二ツェナーダイオード
90…ピーク照度調整手段
91…ピーク照度可変抵抗器
99…第二ドレイン側抵抗器
1700…LED駆動回路
710…駆動装置
730…制御ユニット
750…電流源
M1、M2、M3〜MN…スイッチ
LFIX、L1、L2、L3〜LN…LED
BC…バイパスコンデンサ;FS…ヒューズ
AP…交流電源
BP1…第一バイパス経路;BP2…第二バイパス経路;BP3…第三バイパス経路
BP4…第四バイパス経路
OL…出力ライン
100, 200, 300, 400, 400 ′, 500, 700, 1000... LED driving device 2... Rectifier circuit 3 .. current limiting means; 3 '.. LED driving means 4 ... current detecting means 5. 5E, 5F, 5G ... Zener diode 6 with current control signal applied ... Harmonic suppression voltage generating means 7 ... Constant voltage power supply 8 ... Forced turn-off means; 8B ... Forced turn-off circuit 9 ... Communication means 10 ... LED assembly 11 ... First LED Part 12 ... Second LED part 13 ... Third LED part 14 ... Fourth LED part 21 ... First energization control means; 21B ... First LED current control transistor 22 ... Second energization control means; 22B ... Second LED current control Transistor 23 ... third energization control means; 23B ... third LED current control transistor 24 ... fourth energization control means; 24B ... fourth LED current control transistor 30 ... electricity Control means; 30B ... current control means (operational amplifier)
60, 61 ... Harmonic suppression signal generation resistor 62 ... Harmonic suppression signal generation capacitor 70 ... Operational amplifier power supply transistor 71 ... Zener diode 72 ... Zener voltage setting resistor 81 ... First forced extinction FET
82 ... Second forced extinguishing FET
83 ... First drain side resistor 84 ... Gate side Zener diode 85 ... Forced extinction variable resistor 86 ... Resistor 87 ... First Zener diode 88 ... Ground resistor 89 ... Second Zener diode 90 ... Peak illuminance adjusting means 91 ... Peak illuminance variable resistor 99 ... second drain side resistor 1700 ... LED drive circuit 710 ... drive device 730 ... control unit 750 ... current source M1, M2, M3-MN ... switch LFIX, L1, L2, L3-LN ... LED
BC ... bypass capacitor; FS ... fuse AP ... AC power supply BP1 ... first bypass route; BP2 ... second bypass route; BP3 ... third bypass route BP4 ... fourth bypass route OL ... output line

Claims (14)

交流電源に接続可能で、該交流電源の交流電圧を整流した整流電圧を得るための整流回路と、
前記整流回路の出力側と直列に接続される、少なくとも一のLED素子を含む第一LED部と、
前記第一LED部と直列に接続される、少なくとも一のLED素子を含む第二LED部と、
前記第二LED部と並列で、且つ前記第一LED部と直列に接続される、前記第一LED部への通電量を制御するための第一通電制御手段と、
前記第一LED部及び第二LED部と直列に接続され、前記第一LED部及び前記第二LED部への通電量を制御するための電流制限手段と、
前記第一LED部及び第二LED部が直列に接続される出力ライン上を流れる電流量に基づく電流検出信号を検出するための電流検出手段と、
前記電流検出手段によって検出された電流検出信号に応じて、前記第一通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するための電流制御手段と、
前記整流回路で整流された整流電圧の電圧値が、前記第一LED部を構成する直列接続されたLED素子の順方向電圧を加算した第一順方向電圧よりも高い値に設定された強制消灯電圧値を下回る期間で、前記第一LED部及び第二LED部を強制的に消灯するよう前記電流制御手段を動作させる強制消灯信号を生成するための強制消灯手段と
を備える発光ダイオード駆動装置。
A rectifier circuit that can be connected to an AC power source and obtains a rectified voltage obtained by rectifying the AC voltage of the AC power source;
A first LED unit including at least one LED element connected in series with the output side of the rectifier circuit;
A second LED unit including at least one LED element connected in series with the first LED unit;
A first energization control means for controlling the energization amount to the first LED unit, connected in parallel with the second LED unit and in series with the first LED unit;
Current limiting means connected in series with the first LED part and the second LED part, and for controlling the amount of electricity to the first LED part and the second LED part,
A current detection means for detecting a current detection signal based on an amount of current flowing on an output line in which the first LED portion and the second LED portion are connected in series;
Current control means for outputting an operation control signal for controlling the operation of the first energization control means and the current limiting means according to the current detection signal detected by the current detection means;
Forced extinction in which the voltage value of the rectified voltage rectified by the rectifier circuit is set to a value higher than the first forward voltage obtained by adding the forward voltages of the series-connected LED elements constituting the first LED unit A light emitting diode driving device comprising: a forced turn-off means for generating a forced turn-off signal that operates the current control means to force the first LED part and the second LED part to be turned off for a period lower than the voltage value.
請求項1に記載の発光ダイオード駆動装置であって、
前記強制消灯電圧値が、前記第一LED部及び第二LED部を構成する直列接続されたLED素子の順方向電圧を加算した第二順方向電圧よりも低い値に設定されてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 1,
The light emitting diode drive in which the forced turn-off voltage value is set to a value lower than a second forward voltage obtained by adding forward voltages of series-connected LED elements constituting the first LED unit and the second LED unit apparatus.
請求項1又は2に記載の発光ダイオード駆動装置であって、
前記強制消灯手段が、前記強制消灯電圧値を可変としてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 1 or 2,
A light-emitting diode driving device in which the forced turn-off means makes the forced turn-off voltage value variable.
請求項1〜3のいずれか一項に記載の発光ダイオード駆動装置であって、さらに、
前記整流回路から出力される整流電圧に基づいて、高調波抑制電圧を生成するための高調波抑制電圧生成手段(6)を備え、
前記電流制御手段が、前記電流検出手段で検出された電流検出信号と、前記高調波抑制電圧生成手段で生成された高調波抑制電圧とを比較して、高調波成分を抑制するように前記第一通電制御手段及び電流制限手段をそれぞれ制御してなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 3, further comprising:
Based on the rectified voltage output from the rectifier circuit, comprising harmonic suppression voltage generating means (6) for generating a harmonic suppression voltage,
The current control unit compares the current detection signal detected by the current detection unit with the harmonic suppression voltage generated by the harmonic suppression voltage generation unit, and suppresses the harmonic component. A light-emitting diode driving device which controls one energization control means and a current limiting means.
請求項4に記載の発光ダイオード駆動装置であって、
前記電流制御手段は、前記強制消灯手段で生成された強制消灯信号でもって、前記高調波抑制電圧生成手段で生成された高調波抑制電圧を無効化してなる発光ダイオード駆動装置。
The light emitting diode driving device according to claim 4,
The current control means is a light emitting diode driving device in which the harmonic suppression voltage generated by the harmonic suppression voltage generation means is invalidated by the forced extinction signal generated by the forced extinction means.
請求項5に記載の発光ダイオード駆動装置であって、
前記電流制御手段がオペアンプを含み、
前記オペアンプの一方の入力側に、前記強制消灯手段で生成された強制消灯信号と、前記高調波抑制電圧生成手段で生成された高調波抑制電圧を入力させてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 5,
The current control means includes an operational amplifier;
A light-emitting diode driving device in which a forced turn-off signal generated by the forced turn-off means and a harmonic suppression voltage generated by the harmonic suppression voltage generation means are input to one input side of the operational amplifier.
請求項1〜6のいずれか一項に記載の発光ダイオード駆動装置であって、
前記電流制御手段が、前記整流回路で整流された整流電圧を基準電圧として、前記第一通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力し、
前記高調波抑制電圧生成手段で検出された整流電圧の変動と、前記電流検出手段によって検出された電流検出信号との和に基づいて、前記電流制御手段が、前記第一通電制御手段及び電流制限手段の動作を制御するよう構成されてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 6,
The current control means outputs an operation control signal for controlling operations of the first energization control means and the current limiting means, using the rectified voltage rectified by the rectifier circuit as a reference voltage.
Based on the sum of the fluctuation of the rectified voltage detected by the harmonic suppression voltage generation means and the current detection signal detected by the current detection means, the current control means includes the first energization control means and the current limiter. A light emitting diode driving device configured to control the operation of the means.
請求項1〜7のいずれか一に記載の発光ダイオード駆動装置であって、さらに、
前記第二LED部と直列に接続される、前記第一LED部及び第二LED部への通電を制御する、前記電流制限手段に通電される電流をバイパスするためのLED駆動手段とを備えており、
前記電流制限手段が、前記LED駆動手段と並列に接続されてなることを特徴とする発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 1, further comprising:
LED driving means for controlling the energization to the first LED section and the second LED section, connected in series with the second LED section, and for bypassing the current energized to the current limiting means. And
The light emitting diode driving device, wherein the current limiting means is connected in parallel with the LED driving means.
請求項1〜8のいずれか一に記載の発光ダイオード駆動装置であって、
前記第一通電制御手段の下流側が、前記電流検出手段と電流制限手段の間に接続されてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 8,
A light-emitting diode driving device in which a downstream side of the first energization control unit is connected between the current detection unit and the current limiting unit.
請求項1〜9のいずれか一に記載の発光ダイオード駆動装置であって、さらに、
前記第一LED部及び第二LED部が発する光のピーク照度を調整するための可変抵抗器を有するピーク照度調整手段を備えてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 9, further comprising:
A light emitting diode driving device comprising peak illuminance adjusting means having a variable resistor for adjusting the peak illuminance of light emitted from the first LED unit and the second LED unit.
請求項1〜10のいずれか一に記載の発光ダイオード駆動装置であって、さらに、
前記第一LED部及び第二LED部と直列に接続される、少なくとも一のLED素子を含む第三LED部と、
前記第三LED部と並列で、且つ前記第一LED部及び第二LED部と直列に接続される、該第一LED部及び前記第二LED部への通電量を制御するための第二通電制御手段と
を備えており、
前記電流制御手段が、前記電流検出手段で検出された電流検出信号に応じて、前記第一通電制御手段、第二通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するよう構成してなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 10, further comprising:
A third LED unit including at least one LED element connected in series with the first LED unit and the second LED unit;
Second energization for controlling the energization amount to the first LED part and the second LED part, which is connected in parallel with the third LED part and in series with the first LED part and the second LED part. Control means,
The current control unit is configured to output an operation control signal for controlling operations of the first energization control unit, the second energization control unit, and the current limiting unit in accordance with a current detection signal detected by the current detection unit. A light emitting diode driving device.
請求項11に記載の発光ダイオード駆動装置であって、さらに、
前記第一LED部、第二LED部及び第三LED部と直列に接続される、少なくとも一のLED素子を含む第四LED部と、
前記第四LED部と並列で、且つ前記第一LED部、第二LED部及び第三LED部と直列に接続される、該第一LED部、前記第二LED部及び第三LED部への通電量を制御するための第三通電制御手段と
を備えており、
前記電流制御手段が、前記電流検出手段で検出された電流検出信号に応じて、前記第一通電制御手段、第二通電制御手段、第三通電制御手段及び電流制限手段の動作を制御する動作制御信号を出力するよう構成してなる発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 11, further comprising:
A fourth LED unit including at least one LED element connected in series with the first LED unit, the second LED unit, and the third LED unit;
Connected to the first LED unit, the second LED unit, and the third LED unit in parallel with the fourth LED unit and in series with the first LED unit, the second LED unit, and the third LED unit. A third energization control means for controlling the energization amount,
Operation control for controlling the operations of the first energization control unit, the second energization control unit, the third energization control unit and the current limiting unit according to the current detection signal detected by the current detection unit. A light emitting diode driving device configured to output a signal.
請求項1〜12のいずれか一項に記載の発光ダイオード駆動装置であって、さらに、
前記強制消灯電圧値を外部機器に出力し、かつ該外部機器からの該強制消灯電圧値に対する評価値を示す評価信号を受信するための通信手段を備え、
前記強制消灯手段は、前記通信手段で受信した外部機器からの評価信号に基づき、前記強制消灯電圧値を調整可能に構成してなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 12, further comprising:
A communication means for outputting the forced turn-off voltage value to an external device and receiving an evaluation signal indicating an evaluation value for the forced turn-off voltage value from the external device;
The light-emitting diode driving device, wherein the forced turn-off means is configured to be able to adjust the forced turn-off voltage value based on an evaluation signal from an external device received by the communication means.
請求項1〜13のいずれか一項に記載の発光ダイオード駆動装置を用いた植物栽培用照明。   Lighting for plant cultivation using the light emitting diode driving device according to any one of claims 1 to 13.
JP2017182736A 2017-09-22 2017-09-22 Light emitting diode drive device and lighting for plant cultivation using it Active JP7037036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182736A JP7037036B2 (en) 2017-09-22 2017-09-22 Light emitting diode drive device and lighting for plant cultivation using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182736A JP7037036B2 (en) 2017-09-22 2017-09-22 Light emitting diode drive device and lighting for plant cultivation using it

Publications (2)

Publication Number Publication Date
JP2019057696A true JP2019057696A (en) 2019-04-11
JP7037036B2 JP7037036B2 (en) 2022-03-16

Family

ID=66107904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182736A Active JP7037036B2 (en) 2017-09-22 2017-09-22 Light emitting diode drive device and lighting for plant cultivation using it

Country Status (1)

Country Link
JP (1) JP7037036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000012064A1 (en) * 2020-05-22 2021-11-22 Lightcube S R L LIGHTING DEVICE FOR INDUSTRIAL FISHING

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115219A (en) * 1988-12-12 1993-05-14 Autom Agricult Assoc Inc Method and device for plant radiation using photoelectric element
JPH08242694A (en) * 1995-03-09 1996-09-24 Mitsubishi Chem Corp Method for culturing plant
JP2011019389A (en) * 2009-06-22 2011-01-27 Richard Landry Gray Power reforming method and associated lighting device
JP2011040701A (en) * 2009-07-14 2011-02-24 Nichia Corp Light emitting diode driving circuit, and illumination control method of light emitting diode
JP2012227181A (en) * 2011-04-14 2012-11-15 Nichia Chem Ind Ltd Light emission diode drive device
JP2013020929A (en) * 2011-06-13 2013-01-31 Brintz Technologie Co Ltd Led drive circuit
JP2013045768A (en) * 2011-08-26 2013-03-04 O2 Micro Inc Circuit and method for driving light source
JP2014516452A (en) * 2011-01-21 2014-07-10 ワンス イノヴェイションズ,インコーポレイテッド Driving circuit for LED lighting with reduced total harmonic distortion
US20150312977A1 (en) * 2011-01-28 2015-10-29 Seoul Semiconductor Co., Ltd. Led luminescence apparatus and method of driving the same
JP2016015473A (en) * 2014-07-03 2016-01-28 アイエムエル インターナショナルIML International Light-emitting diode lighting device having a plurality of drive stage and line/load regulation control
CN105323911A (en) * 2014-07-09 2016-02-10 硅工厂股份有限公司 LED lighting apparatus
JP2017521087A (en) * 2014-07-21 2017-08-03 ワンス イノヴェイションズ, インコーポレイテッドOnce Innovations, Inc. Light engine system for operating photosynthetic electron transport system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115219A (en) * 1988-12-12 1993-05-14 Autom Agricult Assoc Inc Method and device for plant radiation using photoelectric element
JPH08242694A (en) * 1995-03-09 1996-09-24 Mitsubishi Chem Corp Method for culturing plant
JP2011019389A (en) * 2009-06-22 2011-01-27 Richard Landry Gray Power reforming method and associated lighting device
JP2011040701A (en) * 2009-07-14 2011-02-24 Nichia Corp Light emitting diode driving circuit, and illumination control method of light emitting diode
JP2014516452A (en) * 2011-01-21 2014-07-10 ワンス イノヴェイションズ,インコーポレイテッド Driving circuit for LED lighting with reduced total harmonic distortion
US20150312977A1 (en) * 2011-01-28 2015-10-29 Seoul Semiconductor Co., Ltd. Led luminescence apparatus and method of driving the same
JP2012227181A (en) * 2011-04-14 2012-11-15 Nichia Chem Ind Ltd Light emission diode drive device
JP2013020929A (en) * 2011-06-13 2013-01-31 Brintz Technologie Co Ltd Led drive circuit
JP2013045768A (en) * 2011-08-26 2013-03-04 O2 Micro Inc Circuit and method for driving light source
JP2016015473A (en) * 2014-07-03 2016-01-28 アイエムエル インターナショナルIML International Light-emitting diode lighting device having a plurality of drive stage and line/load regulation control
CN105323911A (en) * 2014-07-09 2016-02-10 硅工厂股份有限公司 LED lighting apparatus
JP2017521087A (en) * 2014-07-21 2017-08-03 ワンス イノヴェイションズ, インコーポレイテッドOnce Innovations, Inc. Light engine system for operating photosynthetic electron transport system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000012064A1 (en) * 2020-05-22 2021-11-22 Lightcube S R L LIGHTING DEVICE FOR INDUSTRIAL FISHING

Also Published As

Publication number Publication date
JP7037036B2 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11284491B2 (en) Color temperature controlled and low THD LED lighting devices and systems and methods of driving the same
US7994725B2 (en) Floating switch controlling LED array segment
US9967933B2 (en) Electronic control to regulate power for solid-state lighting and methods thereof
JP5720392B2 (en) Light emitting diode drive device
JP5821279B2 (en) Light emitting diode drive device
TWI532412B (en) Light-emitting diode driving apparatus
US8810135B2 (en) LED drive circuit, LED illumination component, LED illumination device, and LED illumination system
JP4796849B2 (en) DC power supply, light-emitting diode power supply, and lighting device
JP2009004483A (en) Light-emitting diode drive circuit
JP2014513383A5 (en)
CN104661400B (en) Drive the system and method for multiple outputs
JP2012099337A (en) Light source lighting device and lighting system
JP2010056314A (en) Driving circuit of light-emitting diode, light-emitting device using the same, and lighting device
KR101160154B1 (en) Unidirectional lighting emitting diode module device with reduction to harmonics distortion
JP7037036B2 (en) Light emitting diode drive device and lighting for plant cultivation using it
KR102013971B1 (en) Lighting device including a drive device configured for dimming light - emitting diodes in response to voltage and temperature
KR102344128B1 (en) Led light unit with reduced flicker phenomenon
US11445586B2 (en) Adaptive power balancing in LED lamps
KR101326988B1 (en) Bleed circuit, lighting control circuit and method thereof
KR100878852B1 (en) Dimmer for ac driven light emitting diode
US10492250B2 (en) Lighting system, and related lighting module
KR101537990B1 (en) LED Lighting Apparatus
KR100975353B1 (en) Light emitting diode circuit and light emitting diode lighting apparatus having the same
JP2017027748A (en) Illumination apparatus including dc luminous load
JPWO2012153594A1 (en) Lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7037036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150