JP2019057034A - Learning apparatus, generation device, learning method, generation method, learning program, generation program, and model - Google Patents

Learning apparatus, generation device, learning method, generation method, learning program, generation program, and model Download PDF

Info

Publication number
JP2019057034A
JP2019057034A JP2017180167A JP2017180167A JP2019057034A JP 2019057034 A JP2019057034 A JP 2019057034A JP 2017180167 A JP2017180167 A JP 2017180167A JP 2017180167 A JP2017180167 A JP 2017180167A JP 2019057034 A JP2019057034 A JP 2019057034A
Authority
JP
Japan
Prior art keywords
text
input
model
information
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017180167A
Other languages
Japanese (ja)
Other versions
JP6982444B2 (en
Inventor
隼人 小林
Hayato Kobayashi
隼人 小林
一真 村尾
Kazuma Murao
一真 村尾
毅司 増山
Takeshi Masuyama
毅司 増山
村上 直也
Naoya Murakami
直也 村上
小林 健
Takeshi Kobayashi
健 小林
太一 谷塚
Taichi Tanizuka
太一 谷塚
立 日暮
Ritsu Higure
立 日暮
学 明神
Manabu Myojin
学 明神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahoo Japan Corp
Original Assignee
Yahoo Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahoo Japan Corp filed Critical Yahoo Japan Corp
Priority to JP2017180167A priority Critical patent/JP6982444B2/en
Publication of JP2019057034A publication Critical patent/JP2019057034A/en
Application granted granted Critical
Publication of JP6982444B2 publication Critical patent/JP6982444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

To provide a learning apparatus capable of generating a precise text.SOLUTION: Disclosed a learning apparatus comprises an acquisition part and a learning part. The acquisition part is configured to acquire a piece of information relevant to a first text and a second text which is a text corresponding to the first text and satisfies predetermined conditions. The learning part is configured to learn a first model for generating an output text satisfying predetermined conditions from the information relevant to an input text on the basis of a piece of information relevant to a piece of first relationship information representing a relationship among multiple words included in the first text and the second text.SELECTED DRAWING: Figure 1

Description

本発明は、学習装置、生成装置、学習方法、生成方法、学習プログラム、生成プログラム、及びモデルに関する。   The present invention relates to a learning device, a generation device, a learning method, a generation method, a learning program, a generation program, and a model.

テキストを装置に生成させる技術が知られている。例えば、装置に文書の要約文を生成させる技術が知られている。装置にテキストを生成させることで、人がテキストを生成する手間を省くことができる。   Techniques for generating text on a device are known. For example, a technique for causing a device to generate a summary sentence of a document is known. By causing the device to generate text, it is possible to save the person from generating text.

特開2005−92616号公報JP 2005-92616 A

近年、機械学習が注目されている。テキストの生成は、例えば、複数組のテキストを学習データとして学習した学習モデル(以下、単にモデルという。)を使用することで実現可能である。しかしながら、モデルを使用して生成されたテキストは精度(例えば、正確性)が低いことがある。例えば、モデルを使用して生成されたテキストは、元の文書が「警察が犯人を逮捕」を意味する文書であったにも関わらず、出力される文書が「警察を犯人が逮捕」となる等、明らかに不自然な場合がある。   In recent years, machine learning has attracted attention. The generation of the text can be realized, for example, by using a learning model (hereinafter simply referred to as a model) obtained by learning a plurality of sets of text as learning data. However, text generated using a model may be less accurate (eg, accurate). For example, the text generated using the model is the document that means "the police arrested the criminal", but the output document is "the police criminal arrested" even though the original document was a document that meant "the police arrested the criminal" In some cases, it is clearly unnatural.

本願は、上記に鑑みてなされたものであって、精度が高いテキストを生成できるようにすることを目的とする。   The present application has been made in view of the above, and an object thereof is to enable generation of highly accurate text.

本願に係る学習装置は、第1のテキストに関する情報と、第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得部と、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第2のテキストとに基づいて、入力テキストに関する情報から所定の条件を満たす出力テキストを生成する第1のモデルの学習を行う学習部と、を備える。   The learning device according to the present application includes an acquisition unit that acquires information about the first text, and a second text that corresponds to the first text and satisfies a predetermined condition, and is included in the first text Learning a first model for generating an output text satisfying a predetermined condition from information on the input text based on the information on the first relation information indicating the relation between the words of the plurality of words and the second text. And a learning unit for performing.

実施形態の一態様によれば、精度が高いテキストを生成できるようにすることができる。   According to one aspect of the embodiment, it is possible to generate text with high accuracy.

図1は、実施形態に係る情報処理装置が実行する処理の一例を示す図である。FIG. 1 is a diagram illustrating an example of processing executed by the information processing apparatus according to the embodiment. 図2は、コンテンツが表示された端末装置を示す図である。FIG. 2 is a diagram illustrating a terminal device on which content is displayed. 図3は、学習データデータベースに登録される学習データの一例を示す図である。FIG. 3 is a diagram illustrating an example of learning data registered in the learning data database. 図4は、情報処理装置が関係情報を生成する様子を示す図である。FIG. 4 is a diagram illustrating a state in which the information processing apparatus generates related information. 図5は、モデルの一例を示す図である。FIG. 5 is a diagram illustrating an example of a model. 図6は、実施形態に係る情報処理装置が実行する処理の他の例を示す図である。FIG. 6 is a diagram illustrating another example of processing executed by the information processing apparatus according to the embodiment. 図7は、モデルの一例を示す図である。FIG. 7 is a diagram illustrating an example of a model. 図8は、モデルの一例を示す図である。FIG. 8 is a diagram illustrating an example of a model. 図9は、実施形態に係る情報処理装置が実行する処理の他の例を示す図である。FIG. 9 is a diagram illustrating another example of processing executed by the information processing apparatus according to the embodiment. 図10は、モデルの一例を示す図である。FIG. 10 is a diagram illustrating an example of a model. 図11は、実施形態に係る情報処理装置の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of the information processing apparatus according to the embodiment. 図12は、学習データデータベースに登録される情報の一例を示す図である。FIG. 12 is a diagram illustrating an example of information registered in the learning data database. 図13は、モデルデータベースに登録される情報の一例を示す図である。FIG. 13 is a diagram illustrating an example of information registered in the model database. 図14は、コンテンツ情報データベースに登録される情報の一例を示す図である。FIG. 14 is a diagram illustrating an example of information registered in the content information database. 図15は、学習処理の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of the learning process. 図16は、生成処理の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of the generation process. 図17は、情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。FIG. 17 is a hardware configuration diagram illustrating an example of a computer that implements the functions of the information processing apparatus.

以下に、本願に係る学習装置、生成装置、学習方法、生成方法、学習プログラム、生成プログラム、及びモデルを実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、以下の実施形態により本願に係る学習装置、生成装置、学習方法、生成方法、学習プログラム、生成プログラム、及びモデルが限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。   Hereinafter, a learning device, a generation device, a learning method, a generation method, a learning program, a generation program, and a form for implementing a model (hereinafter referred to as “embodiment”) according to the present application will be described in detail with reference to the drawings. explain. Note that the learning device, the generation device, the learning method, the generation method, the learning program, the generation program, and the model according to the present application are not limited to the following embodiments. In the following embodiments, the same portions are denoted by the same reference numerals, and redundant description is omitted.

〔1−1.情報処理装置の一例〕
最初に、生成装置および学習装置の一例である情報処理装置が実行する学習処理および生成処理の一例について説明する。図1は、実施形態に係る情報処理装置が実行する処理の一例を示す図である。情報処理装置10は、インターネット等の所定のネットワークを介して、所定のクライアントが使用するデータサーバ20および端末装置30と通信可能である。
[1-1. Example of information processing apparatus]
First, an example of a learning process and a generation process executed by an information processing apparatus that is an example of a generation apparatus and a learning apparatus will be described. FIG. 1 is a diagram illustrating an example of processing executed by the information processing apparatus according to the embodiment. The information processing apparatus 10 can communicate with a data server 20 and a terminal device 30 used by a predetermined client via a predetermined network such as the Internet.

情報処理装置10は、後述の学習処理及び生成処理を実行する装置である。情報処理装置10は、サーバ装置やクラウドシステム等により実現される。   The information processing apparatus 10 is an apparatus that executes learning processing and generation processing described later. The information processing device 10 is realized by a server device, a cloud system, or the like.

データサーバ20は、情報処理装置10が後述する学習処理を実行する際に用いる学習データや、情報処理装置10が後述する生成処理を実行する際に出力する配信コンテンツを管理する情報処理装置である。データサーバ20は、サーバ装置やクラウドシステム等により実現される。データサーバ20は、例えば、端末装置30に対してニュースや、利用者によって投稿された各種のコンテンツを配信する配信サービスを実行する。このような配信サービスは、例えば、各種ニュースの配信サイトやSNS(Social Networking Service)等により実現される。   The data server 20 is an information processing apparatus that manages learning data used when the information processing apparatus 10 executes learning processing described later, and distribution content output when the information processing apparatus 10 executes generation processing described later. . The data server 20 is realized by a server device, a cloud system, or the like. For example, the data server 20 executes a distribution service that distributes news and various contents posted by the user to the terminal device 30. Such a distribution service is realized by, for example, various news distribution sites or SNS (Social Networking Service).

端末装置30は、スマートフォンやタブレット等のスマートデバイスであり、3G(3rd Generation)やLTE(Long Term Evolution)等の無線通信網を介して任意のサーバ装置と通信を行うことができる携帯端末装置である。なお、端末装置30は、スマートデバイスのみならず、デスクトップPC(Personal Computer)やノートPC等の情報処理装置であってもよい。   The terminal device 30 is a smart device such as a smartphone or a tablet, and is a mobile terminal device that can communicate with an arbitrary server device via a wireless communication network such as 3G (3rd Generation) or LTE (Long Term Evolution). is there. The terminal device 30 may be not only a smart device but also an information processing device such as a desktop PC (Personal Computer) or a notebook PC.

〔1−2.要約コンテンツの配信について〕
ここで、データサーバ20は、配信対象となる配信コンテンツが複数存在する場合には、各コンテンツを全て配信するのではなく、各コンテンツの要約となるテキストが含まれる要約コンテンツを端末装置30へと配信することがある。配信コンテンツは、例えば、情報媒体或いは情報の配信主体から取得したニュース記事である。一例として、要約コンテンツは、配信コンテンツへのリンクが張られたポータルサイトのトップページである。
[1-2. About distribution of summary content)
Here, when there are a plurality of distribution contents to be distributed, the data server 20 does not distribute all of the contents, but sends the summary contents including the text that is a summary of each content to the terminal device 30. May be delivered. The distribution content is, for example, a news article acquired from an information medium or an information distribution entity. As an example, the summary content is a top page of a portal site with a link to distribution content.

なお、情報媒体とは、情報の配信媒体或いは掲載媒体を示す情報であり、例えば、“新聞”、“雑誌”等を示す情報である。また、配信主体とは、ニュース記事等の情報を配信する組織或いは個人である。例えば、配信主体は、新聞社、出版社、放送局(テレビ局、ラジオ局)等のマスメディアである。勿論、配信主体はマスメディアに限定されない。配信主体は、ポータルサイトの運営者であってもよいし、携帯電話会社であってもよい。配信主体は、情報処理装置10の運営者自身であってもよい。   The information medium is information indicating an information distribution medium or a posting medium, for example, information indicating “newspaper”, “magazine”, or the like. The distribution subject is an organization or an individual that distributes information such as news articles. For example, the distribution subject is a mass media such as a newspaper company, a publisher, a broadcasting station (a television station, a radio station), or the like. Of course, the distribution subject is not limited to mass media. The distribution subject may be a portal site operator or a mobile phone company. The distribution subject may be the operator of the information processing apparatus 10 itself.

図2は、コンテンツが表示された端末装置30を示す図である。図2の状態J1は、ポータルサイトのトップページが表示された様子を示す図であり、図2の状態J2は、配信コンテンツC11を含むページが表示された様子を示す図である。配信コンテンツC11は、例えば、所定の配信主体から情報処理装置10の運営者(例えば、ポータルサイトの運営者)が取得したニュース記事である。状態J1に示す端末装置30には、記事へのリンクが張られたタイルが複数配置されたページが表示されている。各タイルには、配信コンテンツの内容を示すテキスト(以下、見出しという。)が表示されている。例えば、縦一列に並ぶ複数のタイルの一番上のタイルには、見出しU11が表示されている。見出しU11は配信コンテンツC11の内容に対応するテキストである。ユーザが見出しU11が表示されたタイルをタップすると、端末装置30には、配信コンテンツC11を含む画面が表示される。配信コンテンツC11には、記事の本文K11と、記事のタイトルT11が含まれている。   FIG. 2 is a diagram illustrating the terminal device 30 on which content is displayed. A state J1 in FIG. 2 is a diagram illustrating a state in which a top page of the portal site is displayed, and a state J2 in FIG. 2 is a diagram illustrating a state in which a page including the distribution content C11 is displayed. The distribution content C11 is, for example, a news article acquired by an operator of the information processing apparatus 10 (for example, an administrator of a portal site) from a predetermined distribution subject. The terminal device 30 shown in the state J1 displays a page on which a plurality of tiles with links to articles are arranged. In each tile, text indicating the content of the distribution content (hereinafter referred to as a headline) is displayed. For example, the heading U11 is displayed on the top tile of the plurality of tiles arranged in a vertical row. The heading U11 is text corresponding to the content of the distribution content C11. When the user taps the tile on which the heading U11 is displayed, a screen including the distribution content C11 is displayed on the terminal device 30. The distribution content C11 includes an article body K11 and an article title T11.

配信コンテンツに対応付けられるテキスト(例えば、ポータルサイトのトップページに掲載される見出し)は、配信コンテンツの内容に基づいて人が作成する。例えば、見出しU11は、配信コンテンツC11に含まれるタイトルT11をポータルサイトの運営者の従業員が読んで要約することにより作成される。しかしながら、配信コンテンツごとに、人手で見出しを生成するのは、手間がかかる。   Text associated with the distribution content (for example, a headline posted on the top page of the portal site) is created by a person based on the content of the distribution content. For example, the headline U11 is created by reading and summarizing the title T11 included in the distribution content C11 by an employee of the portal site operator. However, it is troublesome to manually generate a headline for each distribution content.

そこで、各種情報が有する特徴を学習した学習モデル(以下、単にモデルという。)を用いて、配信コンテンツから見出しを自動的に生成することが考えらえる。例えば、配信コンテンツに含まれるテキスト(例えば、タイトル)から、見出しとなるタイトルを自動的に生成することが考えられる。しかしながら、モデルを使用して生成されたテキストは精度(例えば、正確性)が低いことがある。例えば、モデルを使用して生成されたテキストは、文章としては正しいが、元文書の内容を正しく表していないテキストとなる場合がある。例えば、モデルを使用して生成されたテキストは、元の文書が「警察が犯人を逮捕」を意味する文書であったにも関わらず、出力される文書が「警察を犯人が逮捕」となる等、明らかに不自然な場合がある。   Thus, it is conceivable to automatically generate a headline from the distribution content using a learning model (hereinafter simply referred to as a model) in which features of various information are learned. For example, it is conceivable to automatically generate a title as a headline from text (for example, a title) included in the distribution content. However, text generated using a model may be less accurate (eg, accurate). For example, text generated using a model may be text that is correct as a sentence but does not correctly represent the contents of the original document. For example, the text generated using the model is the document that means "the police arrested the criminal", but the output document is "the police criminal arrested" even though the original document was a document that meant "the police arrested the criminal" In some cases, it is clearly unnatural.

〔1−3.関係情報を使った処理の一例〕
〔1−3−1.学習処理について〕
そこで、情報処理装置10は、以下の学習処理を実行することで、配信コンテンツに含まれるテキスト(例えば、タイトル)から見出しとなるテキストを生成するためのモデルの学習を行う。以下、図1を参照しながら情報処理装置10が実行する学習処理の一例について説明する。
[1-3. Example of processing using relationship information)
[1-3-1. About the learning process)
Therefore, the information processing apparatus 10 learns a model for generating a headline text from text (for example, a title) included in the distribution content by executing the following learning process. Hereinafter, an example of the learning process executed by the information processing apparatus 10 will be described with reference to FIG.

まず、情報処理装置10は、データサーバ20から学習データとなる情報を取得する(ステップS11)。例えば、情報処理装置10は、データサーバ20から、過去、ユーザに配信された配信コンテンツを取得する。そして、情報処理装置10は、データサーバ20から取得した情報を学習データデータベースに登録する。   First, the information processing apparatus 10 acquires information serving as learning data from the data server 20 (step S11). For example, the information processing apparatus 10 acquires the distribution content distributed to the user in the past from the data server 20. Then, the information processing apparatus 10 registers the information acquired from the data server 20 in the learning data database.

図3は、学習データデータベースに登録される学習データの一例を示す図である。学習データデータベースには、学習データとして、本文、タイトル、および見出しを関連付けた情報が登録される。本文、タイトル、および見出しの組には、それぞれ、学習データID(Identifier)が付されている。「本文」及び「タイトル」は、配信コンテンツに含まれるテキストである。   FIG. 3 is a diagram illustrating an example of learning data registered in the learning data database. In the learning data database, information associating the text, title, and heading is registered as learning data. A learning data ID (Identifier) is assigned to each set of a text, a title, and a heading. “Body” and “Title” are texts included in the distribution content.

「見出し」は、配信コンテンツの内容をユーザが容易に把握するためのテキストである。見出しは、配信コンテンツに含まれるテキスト(例えば、本文或いはタイトル)に対応するテキストである。学習データとなる見出しは、配信コンテンツに含まれるテキストを所定の者(例えば、ポータルサイトの運営者の従業員)が読んで要約することにより作成される。なお、見出しは、所定の条件を満たすよう生成される。例えば、見出しは、所定の文字数以下となるよう生成される。一例として、見出しは、13.5文字以下となるよう生成される。このとき、13.5文字は、全角文字1個を1文字とした文字数である。半角文字1文字は0.5文字である。以下の説明では、所定の条件のことを「生成条件」という。生成条件は、13.5文字以下に限定されない。生成条件となる文字数は、13.5文字より多くてもよいし少なくてもよい。勿論、生成条件は文字数に限定されない。   “Heading” is text for the user to easily grasp the contents of the distribution content. The headline is text corresponding to text (for example, a body or a title) included in the distribution content. A headline serving as learning data is created by a predetermined person (for example, an employee of a portal site operator) reading and summarizing text included in the distribution content. The headline is generated so as to satisfy a predetermined condition. For example, the heading is generated so as to be a predetermined number of characters or less. As an example, headings are generated to be 13.5 characters or less. At this time, 13.5 characters is the number of characters with one double-byte character as one character. One half-width character is 0.5 character. In the following description, the predetermined condition is referred to as “generation condition”. The generation conditions are not limited to 13.5 characters or less. The number of characters as a generation condition may be more or less than 13.5 characters. Of course, the generation condition is not limited to the number of characters.

なお、「見出し」は、要約、タイトル、短縮タイトル、トピック、トピック見出し等と言い換えることができる。同様に、配信コンテンツに含まれる「タイトル」も、要約等と言い換えることができる。本実施形態では、「見出し」は、配信コンテンツに含まれる「タイトル」に基づき作成される短縮テキストであるものとする。勿論、「見出し」は本文に基づき作成された短縮テキストであってもよい。なお、構文上は文が短縮されていても、「見出し」の文字数が「タイトル」の文字数より多くなることがあり得る。例えば、「タイトル」に含まれる略語を正式名称に置き換えた場合は、構文上は文が短縮されていても、結果として文字数が増えることがある。このような場合も、「見出し」は「タイトル」の短縮テキストである。   “Heading” can be rephrased as a summary, title, abbreviated title, topic, topic heading, or the like. Similarly, the “title” included in the distribution content can also be called a summary or the like. In the present embodiment, it is assumed that the “headline” is a shortened text created based on the “title” included in the distribution content. Of course, the “headline” may be a shortened text created based on the text. Note that even if the sentence is shortened syntactically, the number of characters of the “heading” may be larger than the number of characters of the “title”. For example, when an abbreviation included in the “title” is replaced with a formal name, the number of characters may increase as a result even if the sentence is shortened syntactically. In such a case, “heading” is a shortened text of “title”.

図1に戻り、情報処理装置10は、学習データデータベースに登録されたデータの中から、タイトルと見出しとの組を複数組取得する。そして、情報処理装置10は、タイトルと見出しとに基づいて、モデルM1(第1のモデル)の学習を行う。モデルM1は、モデルに入力されるデータから生成条件を満たすテキストを生成するモデルである。   Returning to FIG. 1, the information processing apparatus 10 acquires a plurality of sets of titles and headings from the data registered in the learning data database. Then, the information processing apparatus 10 learns the model M1 (first model) based on the title and the headline. The model M1 is a model that generates text satisfying a generation condition from data input to the model.

上述したように、モデルを使用して生成されたテキストは精度(例えば、正確性)が低いことがある。例えば、モデルを使用して生成されたテキストは、元の文書が「警察が犯人を逮捕」を意味する文書であったにも関わらず、出力される文書が「警察を犯人が逮捕」となる等、明らかに不自然な場合がある。そこで、本実施形態では、情報処理装置10は、タイトルを入力データとするのではなく、第1のテキストに関する情報を入力データとしてモデルMの学習を行う。より具体的には、情報処理装置10は、第1のテキストの関係情報を入力データとしてモデルMの学習を行う。関係情報は、テキストに含まれる複数のワードのワード間の関係を示す情報である。例えば、関係情報は、テキストに含まれる複数のワードの係り受け構造を示す情報(以下、係り受け情報)である。なお、以下の説明では、学習時、関係情報の生成対象となるテキストのことを「第1のテキスト」と呼ぶことがある。第1のテキストはタイトルに限られない。第1のテキストは本文であってもよい。   As described above, text generated using a model may be less accurate (eg, accurate). For example, the text generated using the model is the document that means "the police arrested the criminal", but the output document is "the police criminal arrested" even though the original document was a document that meant "the police arrested the criminal" In some cases, it is clearly unnatural. Therefore, in this embodiment, the information processing apparatus 10 does not use the title as input data, but learns the model M using information related to the first text as input data. More specifically, the information processing apparatus 10 learns the model M using the relationship information of the first text as input data. The relationship information is information indicating a relationship between words of a plurality of words included in the text. For example, the relationship information is information indicating a dependency structure of a plurality of words included in the text (hereinafter referred to as dependency information). In the following description, a text for which relation information is generated during learning may be referred to as a “first text”. The first text is not limited to the title. The first text may be a body text.

情報処理装置10は、第1のテキストの関係情報を生成する(ステップS12)。図4は、情報処理装置10が関係情報を生成する様子を示す図である。例えば、第1のテキストであるタイトルが“俳優Aが妻が妊娠中であることを発表した”であるとする。この場合、情報処理装置10は、第1のテキストを構文解析(例えば、係り受け解析)し、例えば、図4の中段に示すような係り受け情報を生成する。情報処理装置10は、第1のテキストを形態素解析して係り受け情報を生成してもよい。そして、情報処理装置10は解析結果(例えば、係り受け情報)を関係情報として取得する。図4の中段の関係情報は、ワードとワードの係り受け構造を木構造にして視認可能にしたものである。   The information processing apparatus 10 generates relation information of the first text (Step S12). FIG. 4 is a diagram illustrating a state in which the information processing apparatus 10 generates related information. For example, assume that the title that is the first text is “Actor A has announced that his wife is pregnant”. In this case, the information processing apparatus 10 performs syntax analysis (for example, dependency analysis) on the first text, and generates dependency information as illustrated in the middle of FIG. 4, for example. The information processing apparatus 10 may generate dependency information by performing morphological analysis on the first text. Then, the information processing apparatus 10 acquires an analysis result (for example, dependency information) as related information. The relation information in the middle part of FIG. 4 is made visible by making the dependency structure of words and words into a tree structure.

なお、情報処理装置10は、第1のテキストに含まれるワードの述語構造を示す情報(以下、述語構造情報という。)を関係情報として取得してもよい。第1のテキストに含まれるワードの格解析結果等を含む情報である。例えば、図4の例で、第1のテキストに含まれる“発表した”の述語構造情報は例えば“<用言:動><格解析結果:ガ/A;ヲ/事;二/−;ト/−;デ/−;時間/―>”である。この例では、“発表した”は用言(動詞)であり、格助詞の“ガ”を有する“A”と、格助詞の“ヲ”を有する“事”とが係っていることを示している。   Note that the information processing apparatus 10 may acquire information indicating a predicate structure of a word included in the first text (hereinafter, referred to as predicate structure information) as related information. This is information including a case analysis result of a word included in the first text. For example, in the example of FIG. 4, the “announced” predicate structure information included in the first text is, for example, “<prescription: behavior> <case analysis result: ga / A; wo / thing; 2 / −; / −; De / −; time / −> ”. In this example, “announced” is a predicate (verb), indicating that “A” with the case particle “ga” and “thing” with the case particle “wo” are involved. ing.

また、情報処理装置10は、第1のテキスト(例えば、タイトル)の関係情報を短縮したものを関係情報としてもよい。例えば、図4の例であれば、情報処理装置10は、木構造で示される関係情報の枝の一部を取り除いた図4の下段に示される木構造の情報を新たな関係情報としてもよい。以下の説明では、関係情報を短縮して得られる関係情報のことを短縮関係情報と呼ぶことがある。情報処理装置10は、短縮関係情報が生成予定の短縮テキスト(例えば、見出し)に相当するよう関係情報を短縮してもよい。   Further, the information processing apparatus 10 may use information obtained by shortening the relationship information of the first text (for example, a title) as the relationship information. For example, in the example of FIG. 4, the information processing apparatus 10 may use, as new relation information, the tree structure information illustrated in the lower part of FIG. 4 from which a part of the branch of the relation information represented by the tree structure is removed. . In the following description, the relationship information obtained by shortening the relationship information may be referred to as shortened relationship information. The information processing apparatus 10 may shorten the related information so that the shortened related information corresponds to a shortened text (for example, a headline) scheduled to be generated.

情報処理装置10は、第1のテキスト(本実施形態の場合、タイトル)の関係情報を入力データ、見出しを正解データとしてモデルM1の学習(例えば、教師あり学習)を行う(ステップS13)。なお、以下の説明では、学習の際、正解データとなるテキスト(本実施形態の場合、見出し)のことを「第2のテキスト」ということがある。また、テキストの生成の際、モデルから出力されるテキスト(すなわち生成条件を満たすテキスト)のことを「出力テキスト」、第2のテキストの生成元となるべきテキストのことを「入力テキスト」と呼ぶことがある。また、以下の説明では、正解データのことを教師ラベルということもある。なお、入力テキストはモデルに直接的或いは間接的に入力されるテキストのことである。入力テキストはモデルに直接入力されなくてもよい。例えば、入力テキストは関係情報に変換されてモデルに入力されてもよい。   The information processing apparatus 10 performs learning (for example, supervised learning) of the model M1 using the relationship information of the first text (in the case of the present embodiment, title) as input data and the headline as correct answer data (step S13). In the following description, a text (headline in the case of the present embodiment) that becomes correct answer data during learning may be referred to as a “second text”. In addition, when generating text, text output from the model (that is, text that satisfies the generation conditions) is referred to as “output text”, and text that should be the generation source of the second text is referred to as “input text”. Sometimes. In the following description, the correct answer data may be referred to as a teacher label. The input text is text that is input directly or indirectly to the model. The input text may not be entered directly into the model. For example, the input text may be converted into relation information and input to the model.

図5は、モデルM1の一例を示す図である。モデルM1は、例えば、RNN(Recurrent Neural Network)の一例であるLSTM(Long Short Term Memory)を用いたSequence to Sequence Model(以下、Seq2Seqともいう。)である。モデルM1は、アテンションモデル(Attention Model)を追加したSeq2Seq(Sequence to Sequence with Attention Model)であってもよい。Seq2Seqは、エンコーダ−デコーダモデルの一種であり、異なる長さのデータ列(Sequence)を入力とし、異なる長さのワード列(Sequence)を出力とすることを可能とする。   FIG. 5 is a diagram illustrating an example of the model M1. The model M1 is, for example, a Sequence to Sequence Model (hereinafter also referred to as Seq2Seq) using LSTM (Long Short Term Memory) which is an example of RNN (Recurrent Neural Network). The model M1 may be Seq2Seq (Sequence to Sequence with Attention Model) to which an attention model is added. Seq2Seq is a kind of encoder-decoder model, and allows data strings (Sequence) of different lengths to be input and word strings (Sequence) of different lengths to be output.

図5に示すモデルM1は、入力テキスト(例えば、タイトル)の関係情報に基づいて特徴情報を生成するエンコーダE1と、エンコーダE1が出力した特徴情報に基づいて出力
テキスト(例えば、見出し)を生成するデコーダD1と、を備える。
The model M1 illustrated in FIG. 5 generates an encoder E1 that generates feature information based on relation information of an input text (for example, title), and an output text (for example, a headline) based on the feature information output by the encoder E1. And a decoder D1.

エンコーダE1は、入力テキストが有する特徴を抽出する。エンコーダE1は、入力層と中間層(隠れ層)とを有する。エンコーダE1には、第1のテキストの関係情報が入力される。エンコーダE1は、入力されたデータの特徴を示す多次元量(例えば、ベクトル)である特徴情報を出力する。特徴情報は、モデルM1がアテンションモデルの場合、特徴情報はアテンションベクトルと呼ばれることもある。   The encoder E1 extracts features of the input text. The encoder E1 has an input layer and an intermediate layer (hidden layer). The encoder E1 receives the first text related information. The encoder E1 outputs feature information that is a multidimensional quantity (for example, a vector) indicating the feature of the input data. The feature information may be called an attention vector when the model M1 is an attention model.

デコーダD1は、入力テキストが短縮されたテキスト(すなわち、見出し)を出力する。デコーダD1は、中間層(隠れ層)と出力層とを有する。デコーダD1には、エンコーダE1から出力された特徴情報が入力される。特徴情報が入力されると、デコーダD1は、出力層から短縮テキストとなるワードを順次出力する。   The decoder D1 outputs a text (that is, a headline) in which the input text is shortened. The decoder D1 has an intermediate layer (hidden layer) and an output layer. The feature information output from the encoder E1 is input to the decoder D1. When the feature information is input, the decoder D1 sequentially outputs words that become abbreviated text from the output layer.

情報処理装置10は、エンコーダE1に第1のテキストの関係情報を入力した際に、デコーダD1から第1のテキストに対応する第2のテキストが出力されるよう、モデルM1の学習を行う。例えば、情報処理装置10は、デコーダD1が出力した短縮テキストが、第2のテキストに近づくように、バックプロパゲーション等の手法により、各ノード間で値が伝達する際に考慮される重み(すなわち、接続係数)の値を修正する。これにより、情報処理装置10は、モデルM1に第1のテキストの関係情報が有する特徴を学習させる。なお、情報処理装置10は、短縮テキストの分散表現となるベクトルと第2の学習用テキストの分散表現となるベクトルとのコサイン類似度に基づいて重みの値を修正してもよい。   When the information related to the first text is input to the encoder E1, the information processing apparatus 10 learns the model M1 so that the second text corresponding to the first text is output from the decoder D1. For example, the information processing apparatus 10 uses a weight (that is, a value considered when a value is transmitted between the nodes by a method such as back propagation so that the shortened text output from the decoder D1 approaches the second text). , Correct the connection coefficient). As a result, the information processing apparatus 10 causes the model M1 to learn the characteristics of the first text related information. Note that the information processing apparatus 10 may correct the weight value based on the cosine similarity between a vector that is a distributed representation of the shortened text and a vector that is a distributed representation of the second learning text.

なお、情報処理装置10は、エンコーダE1に第1のテキストの関係情報を短縮した短縮関係情報を入力した際に、デコーダD1から第1のテキストに対応する第2のテキストが出力されるよう、モデルM1の学習を行ってもよい。この場合も、情報処理装置10は、デコーダD1が出力した短縮テキストが、第2のテキストに近づくように、バックプロパゲーション等の手法により、各ノード間で値が伝達する際に考慮される重み(すなわち、接続係数)の値を修正してもよい。   The information processing apparatus 10 outputs the second text corresponding to the first text from the decoder D1 when the shortened relation information obtained by shortening the relation information of the first text is input to the encoder E1. The model M1 may be learned. Also in this case, the information processing apparatus 10 uses the weight that is considered when the value is transmitted between the nodes by a method such as backpropagation so that the shortened text output from the decoder D1 approaches the second text. The value of (that is, the connection coefficient) may be corrected.

〔1−3−2.生成処理について〕
次に、上述した学習処理によって学習が行われたモデルM1を用いて、入力テキストに対応するテキストであって生成条件を満たす出力テキストを生成する生成処理の一例について説明する。このとき、出力テキストは、例えば、入力テキストの短縮テキストである。
[1-3-2. About generation processing)
Next, an example of a generation process that generates text that corresponds to the input text and satisfies the generation conditions using the model M1 that has been learned by the above-described learning process will be described. At this time, the output text is, for example, a shortened text of the input text.

まず、情報処理装置10は、データサーバ20からモデルM1に入力される関係情報を生成するための情報を取得する(ステップS14)。例えば、情報処理装置10は、データサーバ20から、配信予定の配信コンテンツ(本文及びタイトル)を取得する。そして、情報処理装置10は、取得した配信コンテンツに含まれるタイトルを出力テキスト生成のための入力テキストとして取得する。   First, the information processing apparatus 10 acquires information for generating relation information input from the data server 20 to the model M1 (step S14). For example, the information processing apparatus 10 acquires distribution contents (text and title) scheduled to be distributed from the data server 20. Then, the information processing apparatus 10 acquires a title included in the acquired distribution content as input text for generating output text.

その後、情報処理装置10は、入力テキストに関する情報として、入力テキストの関係情報を取得する(ステップS15)。このとき、情報処理装置10は、出力テキスト(例えば、見出し)に相当する関係情報(短縮関係情報)を入力テキストの関係情報を短縮することにより生成してもよい。   Thereafter, the information processing apparatus 10 acquires related information on the input text as information on the input text (step S15). At this time, the information processing apparatus 10 may generate relation information (shortening relation information) corresponding to the output text (for example, a headline) by shortening the relation information of the input text.

そして、情報処理装置10は、内部の記憶装置からモデルM1を取得する。上述したように、モデルM1は、第1のテキストの関係情報を入力データ、見出しを正解データ(教師ラベル)として学習したモデルである。そして、情報処理装置10は、モデルM1に入力テキストの関係情報を入力することにより、出力テキストを生成する(ステップS16)。情報処理装置10は、出力テキストとして、所定の文字数以下のテキストを生成してもよい。   Then, the information processing apparatus 10 acquires the model M1 from the internal storage device. As described above, the model M1 is a model learned by using the relationship information of the first text as input data and the heading as correct data (teacher label). And the information processing apparatus 10 produces | generates an output text by inputting the relationship information of an input text into the model M1 (step S16). The information processing apparatus 10 may generate a text having a predetermined number of characters or less as the output text.

なお、モデルM1は、第1のテキストの短縮関係情報を入力データ、第2のテキストを正解データ(教師ラベル)として学習したモデルであってもよい。この場合、情報処理装置10は、第1のモデルに入力テキストの短縮関係情報を入力することにより、出力テキストを生成する。   Note that the model M1 may be a model learned by using the shortening relation information of the first text as input data and the second text as correct answer data (teacher label). In this case, the information processing apparatus 10 generates output text by inputting the shortening relation information of the input text to the first model.

出力テキストが生成されたら、情報処理装置10は、出力テキストを用いて、要約コンテンツを生成する。そして、情報処理装置10は、要約コンテンツを端末装置30に配信する(ステップS17)。   When the output text is generated, the information processing apparatus 10 generates summary content using the output text. Then, the information processing device 10 delivers the summary content to the terminal device 30 (step S17).

本実施形態によれば、モデルM1はタイトルそのものを入力データとするのではなく、タイトルの関係情報を入力データとするよう構成されている。関係情報は、文を単純な文字列として表現したデータではなく、文の構文を示すデータである。このため、情報処理装置10は、元文書と意味が異なる「警察を犯人が逮捕」等の構文が不自然な見出しの生成を少なくすることができる。結果として、情報処理装置10は、精度が高い見出しを生成できる。   According to this embodiment, the model M1 is configured not to use the title itself as input data, but to use title relation information as input data. The relationship information is not data representing a sentence as a simple character string, but data indicating the syntax of the sentence. For this reason, the information processing apparatus 10 can reduce the generation of a headline with an unnatural syntax that has a different meaning from the original document, such as “the police criminal is arrested”. As a result, the information processing apparatus 10 can generate a headline with high accuracy.

〔1−4.関係情報を使った処理の他の例〕
〔1−4−1.学習処理について〕
なお、出力テキストの生成に使用されるモデルは関係情報に加えて入力テキストが入力できるよう構成されていてもよい。図6は、実施形態に係る情報処理装置10が実行する処理の他の例を示す図である。最初に、学習処理について説明する。
[1-4. Other examples of processing using relationship information]
[1-4-1. About the learning process)
Note that the model used for generating the output text may be configured so that the input text can be input in addition to the related information. FIG. 6 is a diagram illustrating another example of the process executed by the information processing apparatus 10 according to the embodiment. First, the learning process will be described.

まず、情報処理装置10は、データサーバ20から学習データとなる情報を取得する(ステップS21)。例えば、情報処理装置10は、データサーバ20から、過去、ユーザに配信された配信コンテンツを取得する。そして、情報処理装置10は、学習データに含まれるタイトルを第1のテキストとして取得するとともに、第1のテキストの関係情報を生成する(ステップS22)。   First, the information processing apparatus 10 acquires information serving as learning data from the data server 20 (step S21). For example, the information processing apparatus 10 acquires the distribution content distributed to the user in the past from the data server 20. Then, the information processing apparatus 10 acquires the title included in the learning data as the first text and generates relation information of the first text (step S22).

情報処理装置10は、生成した関係情報を正解データ(教師ラベル)として、モデルM2(第2のモデル)の学習を行う(ステップS23)。モデルM2は、入力テキストから入力テキストの関係情報を生成するモデルである。   The information processing apparatus 10 learns the model M2 (second model) using the generated relation information as correct answer data (teacher label) (step S23). The model M2 is a model that generates input text relationship information from the input text.

図7は、モデルM2の一例を示す図である。モデルM2は、例えば、RNNの一例であるLSTMを用いたSeq2Seqである。モデルM2は、アテンションモデルを追加したSeq2Seqであってもよい。図7に示すモデルM2は、入力テキスト(例えば、タイトル)に基づいて特徴情報を生成するエンコーダE2と、エンコーダE2が出力した特徴情報に基づいて入力テキストの関係情報を生成するデコーダD2と、を備える。エンコーダE2は、入力テキストが有する特徴を抽出する。   FIG. 7 is a diagram illustrating an example of the model M2. The model M2 is, for example, Seq2Seq using LSTM which is an example of RNN. The model M2 may be Seq2Seq to which an attention model is added. The model M2 shown in FIG. 7 includes an encoder E2 that generates feature information based on input text (for example, a title), and a decoder D2 that generates relation information of input text based on the feature information output from the encoder E2. Prepare. The encoder E2 extracts features included in the input text.

エンコーダE2は、入力テキストが有する特徴を抽出する。エンコーダE2は、入力層と中間層(隠れ層)とを有する。エンコーダE2には、第1のテキストが入力される。エンコーダE2は、入力されたテキストの特徴を示す多次元量(例えば、ベクトル)である特徴情報を出力する。   The encoder E2 extracts features included in the input text. The encoder E2 has an input layer and an intermediate layer (hidden layer). The first text is input to the encoder E2. The encoder E2 outputs feature information that is a multidimensional quantity (for example, a vector) indicating the feature of the input text.

デコーダD2は、入力テキストの関係情報を出力する。デコーダD2は、中間層(隠れ層)と出力層とを有する。デコーダD2には、エンコーダE2から出力された特徴情報が入力される。特徴情報が入力されると、デコーダD2は、出力層から関係情報となるデータを出力する。   The decoder D2 outputs the relation information of the input text. The decoder D2 has an intermediate layer (hidden layer) and an output layer. The feature information output from the encoder E2 is input to the decoder D2. When the feature information is input, the decoder D2 outputs data as relation information from the output layer.

情報処理装置10は、エンコーダE2に第1のテキストを入力した際に、デコーダD2から第1のテキストの関係情報が出力されるよう、モデルM2の学習を行う。例えば、情報処理装置10は、デコーダD2が出力したデータが、第1のテキストの関係情報に近づくように、バックプロパゲーション等の手法により、各ノード間で値が伝達する際に考慮される重み(すなわち、接続係数)の値を修正する。これにより、情報処理装置10は、モデルM2に第1のテキストが有する特徴を学習させる。   The information processing apparatus 10 learns the model M2 so that when the first text is input to the encoder E2, the relationship information of the first text is output from the decoder D2. For example, the information processing apparatus 10 uses a weight that is considered when a value is transmitted between nodes by a method such as backpropagation so that the data output from the decoder D2 approaches the relation information of the first text. (Ie, the connection coefficient) value is corrected. As a result, the information processing apparatus 10 causes the model M2 to learn the characteristics of the first text.

続いて、情報処理装置10は、第1のテキスト(本実施形態の場合、タイトル)と第1のテキストの関係情報を入力データ、第2のテキスト(本実施形態の場合、見出し)を正解データとしてモデルM3(第1のモデル)の学習を行う(ステップS24)。   Subsequently, the information processing apparatus 10 inputs the relation information between the first text (in the case of this embodiment, title) and the first text as input data, and the second text (in the case of this embodiment) as correct answer data. As a result, the model M3 (first model) is learned (step S24).

図8は、モデルM3の一例を示す図である。モデルM3は、例えば、RNNの一例であるLSTMを用いたSeq2Seqである。モデルM3は、アテンションモデルを追加したSeq2Seqであってもよい。図8に示すモデルM3は、入力テキスト(例えば、タイトル)に基づいて第1の特徴情報を生成するエンコーダE31と、入力テキストの関係情報に基づいて第2の特徴情報を生成するエンコーダE32と、第1の特徴情報と第2の特徴情報とを合成して合成情報を生成する合成モデルSM1と、合成情報に基づいて出力テキスト(見出し)を生成するデコーダD3と、を備える。   FIG. 8 is a diagram illustrating an example of the model M3. The model M3 is, for example, Seq2Seq using LSTM which is an example of RNN. The model M3 may be Seq2Seq to which an attention model is added. A model M3 shown in FIG. 8 includes an encoder E31 that generates first feature information based on input text (for example, a title), an encoder E32 that generates second feature information based on relationship information of the input text, A synthesis model SM1 that synthesizes the first feature information and the second feature information to generate synthesis information, and a decoder D3 that generates an output text (heading) based on the synthesis information.

エンコーダE31は、入力テキストが有する特徴を抽出する。エンコーダE31は、入力層と中間層(隠れ層)とを有する。エンコーダE31には、第1のテキスト(本実施形態の場合、タイトル)に含まれるワードが順次入力される。エンコーダE31は、入力されたテキストの特徴を示す多次元量(例えば、ベクトル)である第1の特徴情報を出力する。   The encoder E31 extracts features of the input text. The encoder E31 has an input layer and an intermediate layer (hidden layer). In the encoder E31, words included in the first text (in this embodiment, a title) are sequentially input. The encoder E31 outputs first feature information which is a multidimensional quantity (for example, a vector) indicating the feature of the input text.

エンコーダE32は、関係情報が有する特徴を抽出する。エンコーダE32は、入力層と中間層(隠れ層)とを有する。エンコーダE32には、第1のテキストの関係情報が入力される。エンコーダE32は、入力された関係情報の特徴を示す多次元量(例えば、ベクトル)である第2の特徴情報を出力する。   The encoder E32 extracts a feature included in the related information. The encoder E32 has an input layer and an intermediate layer (hidden layer). The encoder E32 receives the first text related information. The encoder E32 outputs second feature information that is a multidimensional quantity (for example, a vector) indicating the feature of the input relation information.

合成モデルSM1は、エンコーダE31が出力する第1の特徴情報と、エンコーダE32が出力する第2の特徴情報との線形結合を合成情報として出力する。なお、合成モデルSM1は、各特徴情報に対して所定の重みを適用した合成情報を生成してもよい。なお、モデルM3は、合成モデルSM1が出力する合成情報をデコーダD3の入力層に対応する次元数まで畳み込むよう構成されていてもよい。   The synthesis model SM1 outputs a linear combination of the first feature information output from the encoder E31 and the second feature information output from the encoder E32 as synthesis information. Note that the synthesis model SM1 may generate synthesis information in which a predetermined weight is applied to each feature information. Note that the model M3 may be configured to convolve synthesis information output from the synthesis model SM1 up to the number of dimensions corresponding to the input layer of the decoder D3.

デコーダD3は、入力テキストが短縮されたテキスト(すなわち、見出し)を出力する。デコーダD3は、中間層(隠れ層)と出力層とを有する。デコーダD3には、合成モデルSM1から出力された合成情報(すなわち、第1の特徴情報及び第2の特徴情報)が入力される。合成情報が入力されると、デコーダD3は、出力層から短縮テキストとなるワードを順次出力する。   The decoder D3 outputs a text (that is, a headline) obtained by shortening the input text. The decoder D3 has an intermediate layer (hidden layer) and an output layer. The decoder D3 receives synthesis information (that is, first feature information and second feature information) output from the synthesis model SM1. When the synthesis information is input, the decoder D3 sequentially outputs words that become abbreviated text from the output layer.

情報処理装置10は、エンコーダE31に第1のテキスト、エンコーダE32に第1のテキストの関係情報を入力した際に、デコーダD3から第1のテキストに対応する第2のテキストが出力されるよう、モデルM3の学習を行う。例えば、情報処理装置10は、デコーダD3が出力した短縮テキストが、第2のテキストに近づくように、バックプロパゲーション等の手法により、各ノード間で値が伝達する際に考慮される重み(すなわち、接続係数)の値を修正する。これにより、情報処理装置10は、モデルM3に第1のテキストが有する特徴を学習させる。   When the information processing apparatus 10 inputs the first text to the encoder E31 and the first text relation information to the encoder E32, the decoder D3 outputs the second text corresponding to the first text. The model M3 is learned. For example, the information processing apparatus 10 uses a weight (that is, a weight that is taken into consideration when a value is transmitted between nodes by a method such as back propagation so that the shortened text output from the decoder D3 approaches the second text). , Correct the connection coefficient). As a result, the information processing apparatus 10 causes the model M3 to learn the characteristics of the first text.

〔1−4−2.生成処理について〕
次に、上述した学習処理によって学習が行われたモデルM2及びモデルM3を用いて出力テキストを生成する生成処理の一例について説明する。
[1-4-2. About generation processing)
Next, an example of a generation process that generates an output text using the model M2 and the model M3 learned by the learning process described above will be described.

まず、情報処理装置10は、データサーバ20からモデルM2及びモデルM3に入力される情報を取得する(ステップS25)。例えば、情報処理装置10は、データサーバ20から、配信予定の配信コンテンツ(本文及びタイトル)を取得する。そして、情報処理装置10は、取得した配信コンテンツに含まれるタイトルを入力テキストとして取得する。   First, the information processing apparatus 10 acquires information input from the data server 20 to the model M2 and the model M3 (step S25). For example, the information processing apparatus 10 acquires distribution contents (text and title) scheduled to be distributed from the data server 20. Then, the information processing apparatus 10 acquires a title included in the acquired distribution content as an input text.

その後、情報処理装置10は、内部の記憶装置からモデルM2を取得する。上述したように、モデルM1は、第1のテキストを入力データ、第1のテキストの関係情報を正解データ(教師ラベル)として学習したモデルである。そして、情報処理装置10は、モデルM2に入力テキストを入力することにより、入力テキストの関係情報を生成する(ステップS26)。   Thereafter, the information processing apparatus 10 acquires the model M2 from the internal storage device. As described above, the model M1 is a model learned using the first text as input data and the relation information of the first text as correct data (teacher label). And the information processing apparatus 10 produces | generates the relationship information of an input text by inputting an input text into the model M2 (step S26).

そして、情報処理装置10は、内部の記憶装置からモデルM3を取得する。上述したように、モデルM3は、第1のテキストと第1のテキストの関係情報を入力データ、第2のテキストを正解データ(教師ラベル)として学習したモデルである。そして、情報処理装置10は、モデルM3に入力テキストの関係情報を入力することにより、出力テキストを生成する(ステップS27)。   Then, the information processing apparatus 10 acquires the model M3 from the internal storage device. As described above, the model M3 is a model learned by using the relation information between the first text and the first text as input data and the second text as correct data (teacher label). And the information processing apparatus 10 produces | generates an output text by inputting the relationship information of an input text into the model M3 (step S27).

出力テキストが生成されたら、情報処理装置10は、出力テキストを用いて、要約コンテンツを生成する。そして、情報処理装置10は、要約コンテンツを端末装置30に配信する(ステップS28)。   When the output text is generated, the information processing apparatus 10 generates summary content using the output text. Then, the information processing device 10 distributes the summary content to the terminal device 30 (step S28).

本実施形態によれば、情報処理装置10は、タイトルに加えて、タイトルの関係情報に基づいて見出しを生成するよう構成されている。関係情報は、文を単純な文字列として表現したデータではなく、文の構文を示すデータである。このため、情報処理装置10は、元の文書と意味が異なる「警察を犯人が逮捕」等の構文が不自然な見出しの生成を少なくすることができる。結果として、情報処理装置10は、精度が高い見出しを生成できる。   According to the present embodiment, the information processing apparatus 10 is configured to generate a headline based on title relation information in addition to a title. The relationship information is not data representing a sentence as a simple character string, but data indicating the syntax of the sentence. For this reason, the information processing apparatus 10 can reduce the generation of a headline whose syntax is unnatural, such as “the police criminal arrested”, which has a different meaning from the original document. As a result, the information processing apparatus 10 can generate a headline with high accuracy.

〔1−5.関係情報を使った比較〕
〔1−5−1.学習処理について〕
なお、上述の実施形態では関係情報はモデルへの入力データと使用した。しかし、関係情報は必ずしもモデルへの入力として使用されなくてもよい。図9は、実施形態に係る情報処理装置10が実行する処理の他の例を示す図である。最初に、学習処理について説明する。
[1-5. (Comparison using relationship information)
[1-5-1. About the learning process)
In the above-described embodiment, the relationship information is used as input data to the model. However, the relationship information does not necessarily have to be used as an input to the model. FIG. 9 is a diagram illustrating another example of processing executed by the information processing apparatus 10 according to the embodiment. First, the learning process will be described.

まず、情報処理装置10は、データサーバ20から学習データとなる情報を取得する(ステップS31)。例えば、情報処理装置10は、データサーバ20から、過去、ユーザに配信された配信コンテンツを取得する。そして、情報処理装置10は、学習データに含まれるタイトルを第1のテキストとして取得する。   First, the information processing apparatus 10 acquires information serving as learning data from the data server 20 (step S31). For example, the information processing apparatus 10 acquires the distribution content distributed to the user in the past from the data server 20. Then, the information processing apparatus 10 acquires the title included in the learning data as the first text.

情報処理装置10は、第1のテキスト(本実施形態の場合、タイトル)を入力データ、第2のテキスト(本実施形態の場合、見出し)を正解データ(教師ラベル)としてモデルM4の学習を行う(ステップS32)。   The information processing apparatus 10 learns the model M4 using the first text (in the case of the present embodiment) as input data and the second text (in the case of the present embodiment) as correct data (teacher label). (Step S32).

図10は、モデルM4の一例を示す図である。モデルM4は、例えば、RNNの一例であるLSTMを用いたSeq2Seqである。モデルM4は、アテンションモデルを追加したSeq2Seqであってもよい。図10に示すモデルM4は、入力テキスト(例えば、タイトル)に基づいて特徴情報を生成するエンコーダE4と、エンコーダE4から出力された特徴情報に基づいて出力テキスト(見出し)を生成するデコーダD4と、を備える。   FIG. 10 is a diagram illustrating an example of the model M4. The model M4 is, for example, Seq2Seq using LSTM which is an example of RNN. The model M4 may be Seq2Seq to which an attention model is added. A model M4 shown in FIG. 10 includes an encoder E4 that generates feature information based on input text (for example, a title), a decoder D4 that generates output text (heading) based on the feature information output from the encoder E4, Is provided.

エンコーダE4は、入力テキストが有する特徴を抽出する。エンコーダE4は、入力層と中間層(隠れ層)とを有する。エンコーダE4には、第1のテキスト(本実施形態の場合、タイトル)に含まれるワードが順次入力される。エンコーダE4は、入力されたテキストの特徴を示す多次元量(例えば、ベクトル)である特徴情報を出力する。   The encoder E4 extracts features included in the input text. The encoder E4 has an input layer and an intermediate layer (hidden layer). In the encoder E4, words included in the first text (in the present embodiment, a title) are sequentially input. The encoder E4 outputs feature information that is a multidimensional quantity (for example, a vector) indicating the feature of the input text.

デコーダD4は、入力テキストが短縮されたテキスト(すなわち、見出し)を出力する。デコーダD4は、中間層(隠れ層)と出力層とを有する。デコーダD4には、エンコーダE4から出力された特徴情報が入力される。特徴情報が入力されると、デコーダD4は、出力層から短縮テキストとなるワードを順次出力する。   The decoder D4 outputs a text (that is, a heading) obtained by shortening the input text. The decoder D4 has an intermediate layer (hidden layer) and an output layer. The feature information output from the encoder E4 is input to the decoder D4. When the feature information is input, the decoder D4 sequentially outputs words that become abbreviated text from the output layer.

情報処理装置10は、エンコーダE4に第1のテキストを入力した際に、デコーダD4から第1のテキストに対応する第2のテキストが出力されるよう、モデルM4の学習を行う。例えば、情報処理装置10は、デコーダD4が出力した短縮テキストが、第2のテキストに近づくように、バックプロパゲーション等の手法により、各ノード間で値が伝達する際に考慮される重み(すなわち、接続係数)の値を修正する。これにより、情報処理装置10は、モデルM4に第1のテキストが有する特徴を学習させる。   The information processing apparatus 10 learns the model M4 so that when the first text is input to the encoder E4, the second text corresponding to the first text is output from the decoder D4. For example, the information processing apparatus 10 uses a weight (that is, a value that is considered when a value is transmitted between nodes by a method such as backpropagation so that the shortened text output from the decoder D4 approaches the second text). , Correct the connection coefficient). As a result, the information processing apparatus 10 causes the model M4 to learn the characteristics of the first text.

なお、情報処理装置10は、重みの値の修正には、関係情報を使用することも可能である。例えば、情報処理装置10は、第1のテキストの関係情報を予め作成しておく。そして、情報処理装置10は、デコーダD4から短縮テキスト(見出しとなるテキスト)が出力される度に、短縮テキストの関係情報を作成する。そして、情報処理装置10は、第1のテキストの関係情報と短縮テキストの関係情報との類似度を算出する。このとき、情報処理装置10は、第1のテキストの関係情報の分散表現となるベクトルと、短縮テキストの関係情報の分散表現となるベクトルと、のコサイン類似度を算出してもよい。勿論、類似度はコサイン類似度に限定されない。   Note that the information processing apparatus 10 can also use the relationship information to correct the weight value. For example, the information processing apparatus 10 creates relation information of the first text in advance. The information processing apparatus 10 creates the short text related information each time the short text (the heading text) is output from the decoder D4. Then, the information processing apparatus 10 calculates the similarity between the first text relation information and the shortened text relation information. At this time, the information processing apparatus 10 may calculate a cosine similarity between a vector that is a distributed representation of the relationship information of the first text and a vector that is a distributed representation of the relationship information of the shortened text. Of course, the similarity is not limited to the cosine similarity.

関係情報は、文を単純な文字列として表現したデータではなく、文の構文を示すデータである。このため、文の構文が異なるとその類似度は低くなる。例えば、第1のテキストが“警察が10月1日に犯人を逮捕した。”であるとする。そして、モデルM4から“警察を犯人が逮捕”が短縮テキストとして出力されたとする。この例では、第1のテキストでは“逮捕”に係る主語は“警察”なのに対し、短縮テキストでは“逮捕”に係る主語は“犯人”となっている。両者は係り受け構造が大きく異なる。そのため、この例では、第1のテキストの関係情報と短縮テキストの関係情報の類似度は低くなる。情報処理装置10は、類似度が高くなるようモデルM4の重みの値を修正していく。   The relationship information is not data representing a sentence as a simple character string, but data indicating the syntax of the sentence. For this reason, if the syntax of a sentence differs, the similarity will become low. For example, suppose the first text is “The police arrested the criminal on 1 October”. Then, it is assumed that “Police arrested by criminal” is output as a shortened text from model M4. In this example, the subject relating to “Arrest” is “Police” in the first text, whereas the subject relating to “Arrest” is “criminal” in the short text. Both have greatly different dependency structures. Therefore, in this example, the similarity between the relationship information of the first text and the relationship information of the shortened text is low. The information processing apparatus 10 corrects the weight value of the model M4 so that the degree of similarity increases.

また、情報処理装置10は、第2のテキストの関係情報と短縮テキストの関係情報との類似度に基づいてモデルM4の重みの値を修正してもよい。例えば、情報処理装置10は、第2のテキストの関係情報を予め作成しておく。そして、情報処理装置10は、デコーダD4から短縮テキスト(見出しとなるテキスト)が出力される度に、短縮テキストの関係情報を作成する。そして、情報処理装置10は、第2のテキストの関係情報と短縮テキストの関係情報との類似度を算出する。例えば、第2のテキストが“警察が犯人を逮捕”であるとする。そして、モデルM4から“警察を犯人が逮捕”が短縮テキストとして出力されたとする。この例でも、第2のテキストでは“逮捕”に係る主語は“警察”なのに対し、短縮テキストでは“逮捕”に係る主語は“犯人”となっている。両者は係り受け構造が大きく異なるので、第2のテキストの関係情報と短縮テキストの関係情報の類似度は低くなる。情報処理装置10は、類似度が高くなるようモデルM4の重みの値を修正していく。   Further, the information processing apparatus 10 may correct the weight value of the model M4 based on the similarity between the relationship information of the second text and the relationship information of the shortened text. For example, the information processing apparatus 10 creates the related information of the second text in advance. The information processing apparatus 10 creates the short text related information each time the short text (the heading text) is output from the decoder D4. Then, the information processing apparatus 10 calculates the similarity between the relationship information of the second text and the relationship information of the shortened text. For example, suppose that the second text is “Police arrests criminal”. Then, it is assumed that “Police arrested by criminal” is output as a shortened text from model M4. In this example as well, in the second text, the subject relating to “Arrest” is “Police”, whereas in the short text, the subject relating to “Arrest” is “criminal”. Since the dependency structure is greatly different between the two, the similarity between the relationship information of the second text and the relationship information of the shortened text is low. The information processing apparatus 10 corrects the weight value of the model M4 so that the degree of similarity increases.

〔1−5−2.生成処理について〕
次に、上述した学習処理によって学習が行われたモデルM4を用いて出力テキストを生成する生成処理の一例について説明する。
[1-5-2. About generation processing)
Next, an example of a generation process that generates an output text using the model M4 learned by the above-described learning process will be described.

まず、情報処理装置10は、データサーバ20からモデルM4に入力される情報を取得する(ステップS33)。例えば、情報処理装置10は、データサーバ20から、配信予定の配信コンテンツ(本文及びタイトル)を取得する。そして、情報処理装置10は、取得した配信コンテンツに含まれるタイトルを入力テキストとして取得する。   First, the information processing apparatus 10 acquires information input from the data server 20 to the model M4 (step S33). For example, the information processing apparatus 10 acquires distribution contents (text and title) scheduled to be distributed from the data server 20. Then, the information processing apparatus 10 acquires a title included in the acquired distribution content as an input text.

そして、情報処理装置10は、内部の記憶装置からモデルM4を取得する。上述したように、モデルM4は、第1のテキストを入力データ、第2のテキストを正解データ(教師ラベル)として学習したモデルである。そして、情報処理装置10は、モデルM4に入力テキストの関係情報を入力することにより、出力テキストを生成する(ステップS34)。   Then, the information processing apparatus 10 acquires the model M4 from the internal storage device. As described above, the model M4 is a model learned using the first text as input data and the second text as correct data (teacher label). And the information processing apparatus 10 produces | generates an output text by inputting the relationship information of an input text into the model M4 (step S34).

その後、情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報を作成する。そして、情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報とを比較する(ステップS35)。   Thereafter, the information processing apparatus 10 creates relationship information about the input text and relationship information about the output text. Then, the information processing apparatus 10 compares the relation information of the input text with the relation information of the output text (step S35).

例えば、関係情報が係り受け情報であるとする。情報処理装置10は、入力テキストの関係情報から出力テキストに出てこないワードを取り除くことにより、入力テキストの関係情報を短縮する。そして、情報処理装置10は、入力テキストの短縮関係情報と出力テキストの関係情報の係り受け構造(木構造)が類似するか否か判別する。このとき、情報処理装置10は、入力テキストの短縮関係情報と出力テキストの関係情報の類似度を算出し、類似度が所定の閾値以上か否かを以って類似するか否かを判別してもよい。関係情報が述語構造情報なのであれば、情報処理装置10は、述語となっているワードの格解析結果が類似するか否かを判別してもよい。   For example, it is assumed that the related information is dependency information. The information processing apparatus 10 shortens the input text relationship information by removing words that do not appear in the output text from the input text relationship information. Then, the information processing apparatus 10 determines whether or not the dependency structure (tree structure) of the shortened relationship information of the input text and the relationship information of the output text is similar. At this time, the information processing apparatus 10 calculates the similarity between the shortened relationship information of the input text and the relationship information of the output text, and determines whether the similarity is similar based on whether the similarity is equal to or greater than a predetermined threshold. May be. If the relationship information is predicate structure information, the information processing apparatus 10 may determine whether the case analysis results of the words that are predicates are similar.

情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報との比較結果(例えば、類似度や類似度に基づく判別結果)を記憶装置或いは外部の装置(例えば、データサーバ20や端末装置30)に出力する。   The information processing apparatus 10 stores the comparison result (for example, the similarity or the determination result based on the similarity) between the relationship information of the input text and the relationship information of the output text, or a storage device or an external device (for example, the data server 20 or the terminal device 30).

入力テキストの関係情報と出力テキストの関係情報とが類似する場合、情報処理装置10は、情報処理装置10は、出力テキストを用いて、要約コンテンツを生成する。そして、情報処理装置10は、要約コンテンツを端末装置30に配信する(ステップS36)。   When the relation information of the input text is similar to the relation information of the output text, the information processing apparatus 10 generates summary content using the output text. Then, the information processing device 10 distributes the summary content to the terminal device 30 (step S36).

本実施形態によれば、情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報を比較するよう構成されている。そのため、情報処理装置10のユーザは、不自然な出力テキストを即座に発見できる。   According to the present embodiment, the information processing apparatus 10 is configured to compare input text relation information and output text relation information. Therefore, the user of the information processing apparatus 10 can immediately find an unnatural output text.

〔2.情報処理装置の構成例〕
以上、本実施形態の情報処理装置10の動作を述べたが、以下、情報処理装置10の構成を説明する。
[2. Configuration example of information processing apparatus]
The operation of the information processing apparatus 10 according to the present embodiment has been described above. Hereinafter, the configuration of the information processing apparatus 10 will be described.

情報処理装置10は、端末装置30等のクライアントコンピュータからの要求を処理するサーバ用ホストコンピュータ(以下、単に「サーバ」という。)である。情報処理装置10は、PCサーバであってもよいし、ミッドレンジサーバであってもよいし、メインフレームサーバであってもよい。また、情報処理装置10は、1つのサーバにより構成されていてもよいし、協働して処理を実行する複数のサーバにより構成されていてもよい。情報処理装置10が複数のサーバで構成される場合、これらサーバの設置場所は離れていてもよい。設置場所が離れていたとしても、協働して処理を実行するのであれば、これらサーバは1つの情報処理装置とみなすことができる。情報処理装置10は、生成装置および学習装置として機能する。   The information processing apparatus 10 is a server host computer (hereinafter simply referred to as a “server”) that processes a request from a client computer such as the terminal apparatus 30. The information processing apparatus 10 may be a PC server, a midrange server, or a mainframe server. Further, the information processing apparatus 10 may be configured by a single server, or may be configured by a plurality of servers that cooperate to execute processing. When the information processing apparatus 10 includes a plurality of servers, the installation locations of these servers may be separated. Even if the installation locations are separated, these servers can be regarded as a single information processing device as long as the processing is executed in cooperation. The information processing device 10 functions as a generation device and a learning device.

上述したように、情報処理装置10は、データサーバ20及び端末装置30とネットワークを介して接続されている。ネットワークは、LAN(Local Area Network)、WAN(Wide Area Network)、電話網(携帯電話網、固定電話網等)、地域IP(Internet Protocol)網、インターネット等の通信ネットワークである。ネットワークには、有線ネットワークが含まれていてもよいし、無線ネットワークが含まれていてもよい。   As described above, the information processing apparatus 10 is connected to the data server 20 and the terminal apparatus 30 via the network. The network is a communication network such as a LAN (Local Area Network), a WAN (Wide Area Network), a telephone network (a mobile phone network, a fixed telephone network, etc.), a regional IP (Internet Protocol) network, and the Internet. The network may include a wired network or a wireless network.

図11は、実施形態に係る情報処理装置10の構成例を示す図である。情報処理装置10は、通信部11と、記憶部12と、制御部13と、を備える。なお、図11に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。   FIG. 11 is a diagram illustrating a configuration example of the information processing apparatus 10 according to the embodiment. The information processing apparatus 10 includes a communication unit 11, a storage unit 12, and a control unit 13. Note that the configuration shown in FIG. 11 is a functional configuration, and the hardware configuration may be different.

通信部11は、外部の装置と通信する通信インタフェースである。通信部11は、ネットワークインタフェースであってもよいし、機器接続インタフェースであってもよい。例えば、通信部11は、NIC(Network Interface Card)等のLANインタフェースであってもよいし、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインタフェースであってもよい。また、通信部11は、有線インタフェースであってもよいし、無線インタフェースであってもよい。通信部11は、情報処理装置10の通信手段として機能する。通信部11は、制御部13の制御に従ってデータサーバ20及び端末装置30と通信する。   The communication unit 11 is a communication interface that communicates with an external device. The communication unit 11 may be a network interface or a device connection interface. For example, the communication unit 11 may be a LAN interface such as a NIC (Network Interface Card) or a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, or the like. The communication unit 11 may be a wired interface or a wireless interface. The communication unit 11 functions as a communication unit of the information processing apparatus 10. The communication unit 11 communicates with the data server 20 and the terminal device 30 according to the control of the control unit 13.

記憶部12は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)、フラッシュメモリ、ハードディスク等のデータ読み書き可能な記憶装置である。記憶部12は、情報処理装置10の記憶手段として機能する。記憶部12は、学習データデータベース121、モデルデータベース122、及びコンテンツ情報データベース123を記憶する。   The storage unit 12 is a storage device capable of reading and writing data, such as a dynamic random access memory (DRAM), a static random access memory (SRAM), a flash memory, and a hard disk. The storage unit 12 functions as a storage unit of the information processing apparatus 10. The storage unit 12 stores a learning data database 121, a model database 122, and a content information database 123.

学習データデータベース121には、学習データが登録される。図12は、学習データデータベース121に登録される情報の一例を示す図である。学習データデータベース121には、「学習データID(Identifier)」、「本文」、「タイトル」、および「見出し」といった項目を有する情報が登録される。   Learning data is registered in the learning data database 121. FIG. 12 is a diagram illustrating an example of information registered in the learning data database 121. Information having items such as “learning data ID (Identifier)”, “text”, “title”, and “heading” is registered in the learning data database 121.

なお、図12に示す情報のうち「本文」、「タイトル」、および「見出し」は、図3に示す「本文」、「タイトル」、および「見出し」に対応する。なお、学習データデータベース121には、図12に示す情報以外にも、学習データや要約データを閲覧した利用者に関する各種の情報が登録されていてもよい。なお、図12に示す例では、学習データデータベース121に登録される情報として、「K11〜K13」、「T11〜T13」、「U11〜U13」といった概念的な情報を示したが、実際には、テキストデータやバイナリデータが登録されることとなる。   Of the information shown in FIG. 12, “text”, “title”, and “headline” correspond to “text”, “title”, and “headline” shown in FIG. In addition to the information shown in FIG. 12, various information related to the user who has viewed the learning data and the summary data may be registered in the learning data database 121. In the example shown in FIG. 12, conceptual information such as “K11 to K13”, “T11 to T13”, and “U11 to U13” is shown as information registered in the learning data database 121. Text data and binary data will be registered.

ここで、「学習データID」とは、学習データを識別するための識別子である。また、「本文」とは、ユーザに配信されたコンテンツ(例えば、記事)に含まれる本文となるテキストである。また「タイトル」とは、コンテンツ或いは当該コンテンツに含まれる本文に付されたタイトルである。また、「見出し」とは、コンテンツ(本文或いはタイトル)に付された見出しである。   Here, the “learning data ID” is an identifier for identifying learning data. Further, the “body” is a text that becomes a body included in content (for example, an article) distributed to the user. The “title” is a title attached to the content or the text included in the content. “Heading” is a heading attached to content (text or title).

例えば、図12に示す例では、学習データID「1001」、本文「K11」、タイトル「T11」、及び見出し「U11」といった情報が対応付けて登録されている。このような情報は、例えば、学習データID「1001」が示す学習データに、「K11」が示す本文と、「T11」が示すタイトルと、「U11」が示す見出しと、が含まれる旨を示す。   For example, in the example illustrated in FIG. 12, information such as a learning data ID “1001”, a text “K11”, a title “T11”, and a heading “U11” is registered in association with each other. Such information indicates, for example, that the learning data indicated by the learning data ID “1001” includes the text indicated by “K11”, the title indicated by “T11”, and the heading indicated by “U11”. .

図11に戻り、モデルデータベース122には、情報処理装置10が有するモデルのデータが登録される。図13は、モデルデータベース122に登録される情報の一例を示す図である。図13に示す例では、モデルデータベース122には、「モデルID」、および「モデルデータ」といった情報が登録されている。   Returning to FIG. 11, model data of the information processing apparatus 10 is registered in the model database 122. FIG. 13 is a diagram illustrating an example of information registered in the model database 122. In the example illustrated in FIG. 13, information such as “model ID” and “model data” is registered in the model database 122.

ここで、「モデルID」とは、各モデルを識別するための情報である。また、「モデルデータ」とは、対応付けられた「モデルID」が示すモデルのデータであり、例えば、各層におけるノードと、各ノードが採用する関数と、ノードの接続関係と、ノード間の接続に対して設定される接続係数とを含む情報である。   Here, the “model ID” is information for identifying each model. The “model data” is data of the model indicated by the associated “model ID”. For example, nodes in each layer, functions adopted by each node, connection relationships between nodes, and connections between nodes Information including a connection coefficient set for.

例えば、図13に示す例では、モデルID「2001」およびモデルデータ「M1」といった情報が対応付けて登録されている。このような情報は、例えば、「2001」が示すモデルのデータが「M1」である旨を示す。なお、図13に示す例では、モデルデータベース122に登録される情報として、「M1〜M4」といった概念的な情報を記載したが、実際には、モデルの構造や接続係数を示す文字列や数値等が登録されることとなる。以下、M1〜M4等を総称してモデルMという。   For example, in the example illustrated in FIG. 13, information such as model ID “2001” and model data “M1” is registered in association with each other. Such information indicates, for example, that the model data indicated by “2001” is “M1”. In the example shown in FIG. 13, conceptual information such as “M1 to M4” is described as information registered in the model database 122, but actually, a character string or a numerical value indicating the model structure or connection coefficient Etc. will be registered. Hereinafter, M1 to M4 and the like are collectively referred to as a model M.

モデルMは、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第1のテキストに対応するテキストであって生成条件を満たす第2のテキストとに基づいて学習したモデルである。モデルMは、入力テキストに関する情報から入力テキストに対応するテキストであって生成条件を満たすテキストを生成する。このようなモデルMは、入力テキストに関する情報を入力する入力層と、入力テキストに対応するテキストであって生成条件を満たすテキストを出力する出力層と、入力層から出力層までのいずれかの層であって出力層以外の層に属する第1要素と、第1要素と第1要素の重みとに基づいて値が算出される第2要素と、を含み、入力層に入力された情報に対し、出力層以外の各層に属する各要素を第1要素として、第1要素と第1要素の重み(すなわち、接続係数)とに基づく演算を行うことにより、入力層に入力された入力テキストに関する情報に応じて、入力テキストに対応するテキストであって生成条件を満たすテキストを出力層から出力するよう、コンピュータを機能させるためのモデルである。   The model M includes information related to first relationship information indicating a relationship between words of a plurality of words included in the first text, and text corresponding to the first text and second text satisfying a generation condition. It is a model learned based on this. The model M generates text corresponding to the input text from information on the input text and satisfying the generation condition. Such a model M includes an input layer for inputting information related to the input text, an output layer for outputting text corresponding to the input text and satisfying the generation condition, and any layer from the input layer to the output layer. A first element belonging to a layer other than the output layer, and a second element whose value is calculated based on the first element and the weight of the first element, and for information input to the input layer Information regarding the input text input to the input layer by performing an operation based on the first element and the weight of the first element (that is, the connection coefficient) with each element belonging to each layer other than the output layer as the first element This is a model for causing the computer to function so that text corresponding to the input text and satisfying the generation condition is output from the output layer.

また、モデルMは、第1のテキストを入力データ、第2のテキストを正解データとし、第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて学習したモデルであってもよい。このとき、モデルMは、入力テキストから入力テキストに対応するテキストであって生成条件を満たすテキストを生成する。このようなモデルMは、入力テキストを入力する入力層と、入力テキストに対応するテキストであって生成条件を満たすテキストを出力する出力層と、入力層から出力層までのいずれかの層であって出力層以外の層に属する第1要素と、第1要素と第1要素の重みとに基づいて値が算出される第2要素と、を含み、入力層に入力された情報に対し、出力層以外の各層に属する各要素を第1要素として、第1要素と第1要素の重み(すなわち、接続係数)とに基づく演算を行うことにより、入力層に入力された入力テキストに応じて、入力テキストに対応するテキストであって生成条件を満たすテキストを出力層から出力するよう、コンピュータを機能させるためのモデルである。   The model M has the first text as input data, the second text as correct data, the second text relation information, the text relation information obtained by inputting the first text into the model, The model may be learned based on the degree of similarity. At this time, the model M generates text corresponding to the input text from the input text and satisfying the generation condition. Such a model M includes an input layer for inputting input text, an output layer for outputting text corresponding to the input text and satisfying a generation condition, and any layer from the input layer to the output layer. A first element belonging to a layer other than the output layer, and a second element whose value is calculated based on the first element and the weight of the first element, and outputs the information input to the input layer By performing an operation based on the first element and the weight of the first element (that is, the connection coefficient) with each element belonging to each layer other than the layer as the first element, according to the input text input to the input layer, This is a model for causing a computer to function so that text corresponding to an input text and satisfying a generation condition is output from an output layer.

また、モデルMは、第1のテキストを入力データ、第1の関係情報を正解データとして学習したモデルであってもよい。このとき、モデルMは、入力テキストから入力テキストの関係情報を生成する。このようなモデルMは、入力テキストを入力する入力層と、入力テキストの関係情報を出力する出力層と、入力層から出力層までのいずれかの層であって出力層以外の層に属する第1要素と、第1要素と第1要素の重みとに基づいて値が算出される第2要素と、を含み、入力層に入力された情報に対し、出力層以外の各層に属する各要素を第1要素として、第1要素と第1要素の重み(すなわち、接続係数)とに基づく演算を行うことにより、入力層に入力された入力テキストに応じて、入力テキストの関係情報を出力層から出力するよう、コンピュータを機能させるためのモデルである。   Further, the model M may be a model in which the first text is learned as input data and the first relationship information is learned as correct answer data. At this time, the model M generates input text relationship information from the input text. Such a model M includes an input layer for inputting input text, an output layer for outputting relation information of the input text, and a layer belonging to any layer other than the output layer, from the input layer to the output layer. Each element belonging to each layer other than the output layer with respect to the information input to the input layer. By performing an operation based on the first element and the weight of the first element (that is, the connection coefficient) as the first element, the relation information of the input text is obtained from the output layer according to the input text input to the input layer. It is a model for making a computer function so as to output.

ここで、モデルMが「y=a1*x1+a2*x2+・・・+ai*xi」で示す回帰モデルで実現されるとする。この場合、モデルMが含む第1要素は、x1やx2等といった入力データ(xi)に対応する。また、第1要素の重みは、xiに対応する係数aiに対応する。ここで、回帰モデルは、入力層と出力層とを有する単純パーセプトロンと見做すことができる。各モデルを単純パーセプトロンと見做した場合、第1要素は、入力層が有するいずれかのノードに対応し、第2要素は、出力層が有するノードと見做すことができる。   Here, it is assumed that the model M is realized by a regression model represented by “y = a1 * x1 + a2 * x2 +... + Ai * xi”. In this case, the first element included in the model M corresponds to input data (xi) such as x1 and x2. The weight of the first element corresponds to the coefficient ai corresponding to xi. Here, the regression model can be regarded as a simple perceptron having an input layer and an output layer. When each model is regarded as a simple perceptron, the first element can correspond to any node of the input layer, and the second element can be regarded as a node of the output layer.

また、モデルMがDNN(Deep Neural Network)等、1つまたは複数の中間層を有するニューラルネットワークで実現されるとする。この場合、モデルMが含む第1要素は、入力層または中間層が有するいずれかのノードに対応する。また、第2要素は、第1要素と対応するノードから値が伝達されるノードである次段のノードに対応する。また、第1要素の重みは、第1要素と対応するノードから第2要素と対応するノードに伝達される値に対して考慮される重みである接続係数に対応する。   Further, it is assumed that the model M is realized by a neural network having one or a plurality of intermediate layers such as DNN (Deep Neural Network). In this case, the first element included in the model M corresponds to any node of the input layer or the intermediate layer. The second element corresponds to the next node, which is a node to which a value is transmitted from the node corresponding to the first element. The weight of the first element corresponds to a connection coefficient that is a weight considered for a value transmitted from a node corresponding to the first element to a node corresponding to the second element.

情報処理装置10は、上述した回帰モデルやニューラルネットワーク等、任意の構造を有するモデルを用いて、出力テキストの算出を行う。具体的には、モデルMは、入力テキストに関する情報が入力された場合に、入力テキストに対応するテキストであって生成条件を満たすテキストを出力するように係数が設定される。或いは、モデルMは、入力テキストを入力するが入力された場合に、入力テキストに対応するテキストであって所定の条件を満たすテキストを出力するように係数が設定される。例えば、情報処理装置10は、第2のテキストの関係情報と、第1のテキストをモデルMに入力して得られるテキストの関係情報と、の類似度に基づいて係数を設定する。情報処理装置10は、このようなモデルMを用いて、生成条件を満たすテキスト(例えば、見出し)を生成する。なお、モデルMは、入力テキストが入力された場合に、入力テキストの関係情報を出力するように係数が設定されてもよい。   The information processing apparatus 10 calculates the output text using a model having an arbitrary structure such as the above-described regression model or neural network. Specifically, in the model M, when information related to the input text is input, a coefficient is set so that the text corresponding to the input text and satisfying the generation condition is output. Alternatively, in the model M, an input text is input, but when input, the coefficient is set so that text corresponding to the input text and satisfying a predetermined condition is output. For example, the information processing apparatus 10 sets the coefficient based on the similarity between the second text relation information and the text relation information obtained by inputting the first text into the model M. The information processing apparatus 10 generates text (for example, a headline) that satisfies the generation condition using such a model M. In the model M, a coefficient may be set so as to output relation information of the input text when the input text is input.

なお、上記例では、モデルMが、入力テキスト或いは入力テキストに関する情報が入力された場合に、入力テキストに対応するテキストであって生成条件を満たすテキスト(例えば、見出し)を出力するモデル(以下、モデルVという。)である例を示した。しかし、実施形態に係るモデルMは、モデルVにデータの入出力を繰り返すことで得られる結果に基づいて生成されるモデルであってもよい。例えば、モデルVは、「入力テキスト或いは入力テキストに関する情報」を入力とし、モデルVが出力する「入力テキストに対応するテキストであって生成条件を満たすテキスト」を出力とするよう学習されたモデルであってもよい。   In the above example, when the model M receives input text or information related to the input text, the model M outputs a text (for example, a headline) that corresponds to the input text and satisfies the generation conditions (for example, headings). An example of model V) is shown. However, the model M according to the embodiment may be a model generated based on a result obtained by repeatedly inputting / outputting data to / from the model V. For example, the model V is a model learned to receive “input text or information about the input text” as input and output “text corresponding to the input text and satisfying the generation conditions” output from the model V. There may be.

また、情報処理装置10がGAN(Generative Adversarial Networks)を用いた学習処理或いは生成処理を行う場合、モデルMは、GANの一部を構成するモデルであってもよい。   When the information processing apparatus 10 performs a learning process or a generation process using GAN (Generative Adversarial Networks), the model M may be a model that constitutes a part of the GAN.

図11に戻り、コンテンツ情報データベース123には、ユーザに配信されるコンテンツの情報が登録される。例えば、コンテンツ情報データベース123には、コンテンツパートナーから取得した記事等が登録される。図14は、コンテンツ情報データベース123に登録される情報の一例を示す図である。コンテンツ情報データベース123には、「コンテンツID」、「本文」、及び「タイトル」といった項目を有する情報が登録される。なお、「コンテンツID」とは、コンテンツのデータを識別するための識別子である。「本文」、及び「タイトル」は、図12に示す「本文」、及び「タイトル」と同様である。   Returning to FIG. 11, the content information database 123 registers information about the content to be distributed to the user. For example, articles acquired from content partners are registered in the content information database 123. FIG. 14 is a diagram illustrating an example of information registered in the content information database 123. In the content information database 123, information having items such as “content ID”, “text”, and “title” is registered. The “content ID” is an identifier for identifying content data. The “text” and “title” are the same as the “text” and “title” shown in FIG.

図11に戻り、制御部13は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサによって、情報処理装置10内部の記憶装置に記憶されている各種プログラムがRAM等を作業領域として実行されることにより実現される。また、制御部13は、コントローラであり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。   Returning to FIG. 11, the control unit 13 is a controller and is stored in a storage device inside the information processing apparatus 10 by a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). Various programs are implemented by executing the RAM or the like as a work area. The control unit 13 is a controller, and may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).

また、制御部13は、記憶部12に記憶されるモデルM(モデルM1〜M4等)に従った情報処理により、モデルMの入力層に入力されたデータ(例えば、関係情報、タイトル)に対し、モデルMが有する係数(すなわち、モデルMが学習した各種の特徴に対応する係数)に基づく演算を行い、モデルMの出力層から出力テキスト(例えば、見出し)を出力する。   In addition, the control unit 13 performs data processing (for example, relationship information, title) input to the input layer of the model M by information processing according to the model M (models M1 to M4, etc.) stored in the storage unit 12. The calculation based on the coefficients of the model M (that is, the coefficients corresponding to the various features learned by the model M) is performed, and output text (for example, headings) is output from the output layer of the model M.

制御部13は、図11に示すように、学習データ取得部131と、関係情報取得部132と、学習部133と、出力情報取得部134と、生成部135と、比較部136と、出力制御部137と、を備える。制御部13を構成するブロック(学習データ取得部131〜出力制御部137)はそれぞれ制御部13の機能を示す機能ブロックである。これら機能ブロックはソフトウェアブロックであってもよいし、ハードウェアブロックであってもよい。例えば、上述の機能ブロックが、それぞれ、ソフトウェア(マイクロプログラムを含む。)で実現される1つのソフトウェアモジュールであってもよいし、半導体チップ(ダイ)上の1つの回路ブロックであってもよい。勿論、各機能ブロックがそれぞれ1つのプロセッサ或いは1つの集積回路であってもよい。機能ブロックの構成方法は任意である。なお、制御部13は上述の機能ブロックとは異なる機能単位で構成されていてもよい。   As shown in FIG. 11, the control unit 13 includes a learning data acquisition unit 131, a relationship information acquisition unit 132, a learning unit 133, an output information acquisition unit 134, a generation unit 135, a comparison unit 136, and output control. Part 137. Blocks constituting the control unit 13 (learning data acquisition unit 131 to output control unit 137) are functional blocks indicating functions of the control unit 13, respectively. These functional blocks may be software blocks or hardware blocks. For example, each functional block described above may be one software module realized by software (including a microprogram), or may be one circuit block on a semiconductor chip (die). Of course, each functional block may be one processor or one integrated circuit. The method of configuring the functional block is arbitrary. In addition, the control part 13 may be comprised by the functional unit different from the above-mentioned functional block.

学習データ取得部131は、学習データとして、第1のテキストに関する情報と、第1のテキストに対応するテキストであって生成条件を満たす第2のテキストと、を取得する。例えば、学習データ取得部131は、第1のテキストに関する情報として、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報を取得する。例えば、学習データ取得部131は、第1のテキストに関する情報として、第1の関係情報を取得する。或いは、学習データ取得部131は、第1のテキストに関する情報として、第1の関係情報を短縮した第2の関係情報を取得する。或いは、学習データ取得部131は、第1のテキストに関する情報として、第1のテキストと第1の関係情報を取得する。学習データ取得部131は、第1のテキストと、第1のテキストに対応するテキストであって生成条件を満たす第2のテキストと、を取得する。   The learning data acquisition unit 131 acquires, as learning data, information related to the first text and a second text that corresponds to the first text and satisfies the generation condition. For example, the learning data acquisition unit 131 acquires information related to first relationship information indicating a relationship between words of a plurality of words included in the first text as information related to the first text. For example, the learning data acquisition unit 131 acquires first relation information as information related to the first text. Or the learning data acquisition part 131 acquires the 2nd relationship information which shortened the 1st relationship information as information regarding a 1st text. Or the learning data acquisition part 131 acquires a 1st text and 1st relationship information as information regarding a 1st text. The learning data acquisition unit 131 acquires the first text and the second text that corresponds to the first text and satisfies the generation condition.

関係情報取得部132は、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報を取得する。また、関係情報取得部132は、第1の関係情報を短縮した第2の関係情報を取得する。   The relationship information acquisition unit 132 acquires first relationship information indicating a relationship between words of a plurality of words included in the first text. Moreover, the relationship information acquisition part 132 acquires the 2nd relationship information which shortened the 1st relationship information.

学習部133は、モデルMの学習を行い、学習したモデルMをモデルデータベース122に格納する。より具体的には、学習部133は、第1のテキストに関する情報をモデルMに入力した際に、モデルMが第2のテキスト(例えば、入力したタイトルに対応する見出し)を出力するように、モデルMの接続係数の設定を行う。すなわち、学習部133は、入力テキストに関する情報を入力した際に、モデルMが、入力テキストに対応するテキストであって生成条件を満たす出力テキストを出力するように、モデルMの学習を行う。また、学習部133は、第1のテキストをモデルMに入力した際に、モデルMが第2のテキストを出力するように、モデルMの接続係数の設定を行う。例えば、モデルMは、第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいてモデルMの接続係数の設定を行う。   The learning unit 133 learns the model M and stores the learned model M in the model database 122. More specifically, when the learning unit 133 inputs information related to the first text to the model M, the model M outputs the second text (for example, a headline corresponding to the input title). Set the connection coefficient of model M. That is, the learning unit 133 learns the model M so that when the information related to the input text is input, the model M outputs the output text satisfying the generation condition that is the text corresponding to the input text. In addition, the learning unit 133 sets the connection coefficient of the model M so that when the first text is input to the model M, the model M outputs the second text. For example, the model M sets the connection coefficient of the model M based on the similarity between the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model.

例えば、学習部133は、モデルMが有する入力層のノードであって、入力層に入力される情報と対応する特徴を学習したエンコーダの入力層と対応するノードに第1のテキスト或いは第1のテキストに関する情報を入力し、各中間層を辿ってモデルMの出力層までデータを伝播させることで、第1のテキストに対応するテキストであって生成条件を満たすテキストを出力させる。そして、学習部133は、モデルMが実際に出力したテキストと、学習データに含まれる第2のテキスト(例えば、見出し)との差に基づいて、モデルMの接続係数を修正する。例えば、学習部133は、バックプロパゲーション等の手法を用いて、接続係数の修正を行ってもよい。モデルMは、第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて接続係数の修正を行ってもよい。また、学習部133は、第2のテキストの分散表現となるベクトルと、モデルMが実際に出力したテキストの分散表現となるベクトルとのコサイン類似度に基づいて、接続係数の修正を行ってもよい。   For example, the learning unit 133 is a node in the input layer of the model M, and the first text or the first text is input to the node corresponding to the input layer of the encoder that has learned the feature corresponding to the information input to the input layer. By inputting information related to the text and propagating data through the intermediate layers to the output layer of the model M, the text corresponding to the first text and satisfying the generation condition is output. Then, the learning unit 133 corrects the connection coefficient of the model M based on the difference between the text actually output by the model M and the second text (for example, heading) included in the learning data. For example, the learning unit 133 may correct the connection coefficient using a technique such as backpropagation. The model M may correct the connection coefficient based on the similarity between the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model. Further, the learning unit 133 may correct the connection coefficient based on the cosine similarity between the vector that is the distributed representation of the second text and the vector that is the distributed representation of the text actually output by the model M. Good.

なお、学習部133は、いかなる学習アルゴリズムを用いてモデルMを学習してもよい。例えば、学習部133は、ニューラルネットワーク、サポートベクターマシン(support vector machine)、クラスタリング、強化学習等の学習アルゴリズムを用いて、モデルMを学習してよい。   Note that the learning unit 133 may learn the model M using any learning algorithm. For example, the learning unit 133 may learn the model M using a learning algorithm such as a neural network, a support vector machine, clustering, or reinforcement learning.

ここで、学習部133は、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第2のテキストとに基づいて、入力テキストに関する情報から所定の条件を満たす出力テキストを生成する第1のモデルの学習を行う。このとき、第1のモデルは、出力テキストとして、所定の文字数以下のテキストを生成するモデルであってもよい。   Here, the learning unit 133 determines a predetermined condition from the information regarding the input text based on the information regarding the first relationship information indicating the relationship between the words of the plurality of words included in the first text and the second text. A first model that generates an output text that satisfies is learned. At this time, the first model may be a model that generates text having a predetermined number of characters or less as output text.

また、学習部133は、第1の関係情報を入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。   The learning unit 133 learns the first model using the first relation information as input data and the second text as correct data.

また、学習部133は、第1の関係情報を短縮した第2の関係情報を入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。   The learning unit 133 learns the first model using the second relation information obtained by shortening the first relation information as input data and the second text as correct data.

また、学習部133は、第1のテキストと第1の関係情報とを入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。   The learning unit 133 learns the first model using the first text and the first relation information as input data and the second text as correct answer data.

また、学習部133は、第1のテキストを入力データ、第1の関係情報を正解データとして、入力テキストから入力テキストの関係情報を生成する第2のモデルの学習を行う。   In addition, the learning unit 133 learns the second model that generates the relationship information of the input text from the input text using the first text as input data and the first relationship information as correct data.

また、学習部133は、第1のテキストを入力データ、第2のテキストを正解データとして、入力テキストから所定の条件を満たす出力テキストを生成するモデルの学習を行う。このとき、学習部133は、第1のテキストの関係情報或いは第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて、モデルの学習を行う。   The learning unit 133 also learns a model that generates an output text that satisfies a predetermined condition from the input text by using the first text as input data and the second text as correct data. At this time, the learning unit 133 is based on the similarity between the relationship information of the first text or the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model. Train the model.

出力情報取得部134は、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストとに基づいて学習した第1のモデルに入力される入力テキストに関する情報を取得する。出力情報取得部134は、第1のテキストを入力データ、第2のテキストを正解データとして学習したモデルに入力される入力テキストを取得する。   The output information acquisition unit 134 is information related to first relation information indicating a relation between words of a plurality of words included in the first text, and text corresponding to the first text, and a second condition that satisfies a predetermined condition. The information about the input text input to the first model learned based on the text is acquired. The output information acquisition unit 134 acquires input text that is input to a model learned using the first text as input data and the second text as correct answer data.

生成部135は、入力テキストに関する情報を第1のモデルに入力することにより、入力テキストに対応するテキストであって所定の条件を満たす出力テキストを生成する。   The generation unit 135 inputs information related to the input text to the first model, thereby generating an output text that corresponds to the input text and satisfies a predetermined condition.

第1のモデルは、第1の関係情報を入力データ、第2のテキストを正解データとして学習したモデルである。生成部135は、第1のモデルに入力テキストの関係情報を入力することにより、出力テキストを生成する。   The first model is a model obtained by learning the first relation information as input data and the second text as correct answer data. The generation unit 135 generates output text by inputting the relationship information of the input text to the first model.

第1のモデルは、第1の関係情報を短縮した第2の関係情報を入力データ、第2のテキストを正解データとして学習したモデルである。生成部135は、第1のモデルに入力テキストの関係情報を短縮した関係情報を入力することにより、出力テキストを生成する。   The first model is a model in which the second relation information obtained by shortening the first relation information is learned as input data and the second text is learned as correct data. The generation unit 135 generates output text by inputting the relationship information obtained by shortening the relationship information of the input text to the first model.

第1のモデルは、第1のテキストと第1の関係情報とを入力データ、第2のテキストを正解データとして学習したモデルである。生成部135は、第1のモデルに入力テキストと入力テキストの関係情報とを入力することにより、出力テキストを生成する。   The first model is a model in which the first text and the first relationship information are learned as input data, and the second text is learned as correct data. The generation unit 135 generates an output text by inputting the input text and the relationship information of the input text to the first model.

第1のモデルは、第1のテキストと第1の関係情報とを入力データ、第2のテキストを正解データとして学習したモデルである。生成部135は、第1のテキストを入力データ、第1の関係情報を正解データとして学習した第2のモデルに入力テキストを入力することにより、入力テキストの関係情報を生成する。   The first model is a model in which the first text and the first relationship information are learned as input data, and the second text is learned as correct data. The generation unit 135 generates the relationship information of the input text by inputting the input text to the second model learned using the first text as input data and the first relationship information as correct data.

また、生成部135は、出力テキストとして、所定の文字数以下のテキストを生成する。   The generation unit 135 generates a text having a predetermined number of characters or less as the output text.

また、生成部135は、入力テキストをモデルに入力することにより、入力テキストに対応するテキストであって所定の条件を満たす出力テキストを生成する。   In addition, the generation unit 135 generates an output text that satisfies a predetermined condition that is a text corresponding to the input text by inputting the input text into the model.

比較部136は、入力テキストの関係情報と出力テキストの関係情報とを比較する。   The comparison unit 136 compares the relationship information of the input text with the relationship information of the output text.

出力制御部137は、生成部135が生成したテキストを利用者に対して出力する。例えば、出力制御部137は、端末装置30からの要求に応じて、生成部135が生成したテキストが含まれるコンテンツを配信する。なお、出力制御部137は、生成部135が生成したテキストが含まれるコンテンツをデータサーバ20に提供し、データサーバ20から配信させてもよい。   The output control unit 137 outputs the text generated by the generation unit 135 to the user. For example, the output control unit 137 distributes content including the text generated by the generation unit 135 in response to a request from the terminal device 30. Note that the output control unit 137 may provide content including the text generated by the generation unit 135 to the data server 20 and distribute the content from the data server 20.

〔3.情報処理装置の処理フロー〕
次に、情報処理装置10が実行する処理の手順について説明する。情報処理装置10は学習処理と生成処理とを実行する。情報処理装置10はマルチタスクOSを備え、これらの処理を並行して実行可能である。
[3. Processing flow of information processing apparatus]
Next, a procedure of processing executed by the information processing apparatus 10 will be described. The information processing apparatus 10 performs learning processing and generation processing. The information processing apparatus 10 includes a multitask OS and can execute these processes in parallel.

〔3−1.学習処理〕
最初に学習処理を説明する。図15は、学習処理の一例を示すフローチャートである。学習処理は、入力テキストに関する情報から出力テキストを生成するモデルMを学習する処理である。情報処理装置10は、ユーザから処理開始命令を受信すると、学習処理を実行する。
[3-1. Learning process)
First, the learning process will be described. FIG. 15 is a flowchart illustrating an example of the learning process. The learning process is a process of learning a model M that generates output text from information related to input text. When the information processing apparatus 10 receives a process start command from the user, the information processing apparatus 10 executes a learning process.

まず、情報処理装置10は、学習データを取得する(ステップS101)。例えば、情報処理装置10は、データサーバ20から配信コンテンツ(本文及びタイトル)の情報を取得するとともに、配信コンテンツに対応する見出しを取得する。このとき、情報処理装置10は、タイトルを第1のテキスト、見出しを第2のテキストとして取得する。   First, the information processing apparatus 10 acquires learning data (step S101). For example, the information processing apparatus 10 acquires information on the distribution content (text and title) from the data server 20 and acquires a headline corresponding to the distribution content. At this time, the information processing apparatus 10 acquires the title as the first text and the heading as the second text.

続いて、情報処理装置10は、第1のテキストの関係情報を取得する(ステップS102)。   Subsequently, the information processing apparatus 10 acquires the relationship information of the first text (Step S102).

続いて、情報処理装置10は、第1のテキストを入力データ、第1のテキストの関係情報を正解データとして、関係情報生成のためのモデル(例えば、図6に示すモデルM2)の学習を実行する(ステップS103)。   Subsequently, the information processing apparatus 10 performs learning of a model for generating relationship information (for example, the model M2 shown in FIG. 6) using the first text as input data and the relationship information of the first text as correct data. (Step S103).

続いて、情報処理装置10は、第1のテキストの関係情報を入力データ、第2のテキストを正解データとして、第2のテキスト(見出し)生成のためのモデル(例えば、図1に示すモデルM1)の学習を実行する(ステップS104)。情報処理装置10は、第1のテキストと第1のテキストの関係情報を入力データ、第2のテキストを正解データとして、第2のテキスト(見出し)生成のためのモデル(例えば、図6に示すモデルM3)の学習を実行してもよい。   Subsequently, the information processing apparatus 10 uses the relation information of the first text as input data and the second text as correct answer data, for example, a model for generating the second text (heading) (for example, the model M1 shown in FIG. 1). ) Is executed (step S104). The information processing apparatus 10 uses the relationship information between the first text and the first text as input data and the second text as correct data, and generates a model (for example, shown in FIG. 6) for generating the second text (heading). Learning of model M3) may be performed.

或いは、情報処理装置10は、第1のテキストと入力データ、第2のテキストを正解データとして、第2のテキスト(見出し)生成のためのモデル(例えば、図9に示すモデルM4)の学習を実行してもよい。このとき、情報処理装置10は、第1のテキストの関係情報或いは第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて、モデルの学習を行ってもよい。   Alternatively, the information processing apparatus 10 learns a model for generating the second text (heading) (for example, the model M4 shown in FIG. 9) using the first text and input data and the second text as correct answer data. May be executed. At this time, the information processing apparatus 10 is based on the similarity between the relationship information of the first text or the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model. The model may be learned.

学習の実行が終了したら、情報処理装置10は、学習処理を終了する。   When the execution of learning ends, the information processing apparatus 10 ends the learning process.

〔3−2.生成処理〕
次に生成処理を説明する。図16は、生成処理の一例を示すフローチャートである。生成処理は、入力テキストに関する情報から出力テキスト(入力テキストの短縮テキスト)を生成する処理である。「入力テキスト」はモデルに直接的或いは間接的に入力されるテキストであり、出力テキストはモデルから出力されるテキストである。また、「入力テキストに関する情報」は、入力テキストの関係情報であってもよいし、入力テキストと入力テキストの関係情報であってもよい。「入力テキストに関する情報」は、入力テキストそのものであってもよい。情報処理装置10は、ユーザから処理開始命令を受信すると、生成処理を実行する。
[3-2. Generation process)
Next, the generation process will be described. FIG. 16 is a flowchart illustrating an example of the generation process. The generation process is a process for generating an output text (short text of the input text) from information related to the input text. “Input text” is text input directly or indirectly to the model, and output text is text output from the model. Further, “information related to input text” may be input text related information, or input text and input text related information. The “information about the input text” may be the input text itself. When the information processing apparatus 10 receives a process start command from the user, the information processing apparatus 10 executes a generation process.

まず、情報処理装置10は、コンテンツ情報を取得する(ステップS201)。例えば、情報処理装置10は、データサーバ20から配信コンテンツ(本文及びタイトル)の情報を取得する。このとき、情報処理装置10は、タイトルを入力テキストとして取得してもよい。   First, the information processing apparatus 10 acquires content information (step S201). For example, the information processing apparatus 10 acquires information on distribution contents (text and title) from the data server 20. At this time, the information processing apparatus 10 may acquire a title as input text.

続いて、情報処理装置10は、入力テキストの関係情報を取得する(ステップS202)。このとき、情報処理装置10は、入力テキストを図6に示すモデルM2に入力することにより関係情報を取得してもよい。   Subsequently, the information processing apparatus 10 acquires related information of the input text (step S202). At this time, the information processing apparatus 10 may acquire the relationship information by inputting the input text to the model M2 illustrated in FIG.

続いて、情報処理装置10は、ステップS201及び/又はステップS202で取得した情報をモデルに入力して出力テキストを生成する(ステップS203)。例えば、情報処理装置10は、ステップS202で取得した関係情報を図1に示すモデルM1に入力することにより出力テキストを生成する。或いは、情報処理装置10は、ステップS201で取得した入力テキストとステップS202で取得した関係情報を図6に示すモデルM3に入力することにより出力テキストを生成する。或いは、情報処理装置10は、ステップS201で取得した入力テキストを図9に示すモデルM4に入力することにより出力テキストを生成する。   Subsequently, the information processing apparatus 10 generates the output text by inputting the information acquired in step S201 and / or step S202 into the model (step S203). For example, the information processing apparatus 10 generates output text by inputting the relationship information acquired in step S202 to the model M1 illustrated in FIG. Alternatively, the information processing apparatus 10 generates the output text by inputting the input text acquired in step S201 and the relationship information acquired in step S202 to the model M3 illustrated in FIG. Alternatively, the information processing apparatus 10 generates the output text by inputting the input text acquired in step S201 to the model M4 illustrated in FIG.

続いて、情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報との比較を実行する(ステップS204)。なお、比較の結果、両者が類似しない場合(例えば、類似度が所定の閾値以下の場合)、情報処理装置10は、両者が類似しない旨をユーザに出力してもよい。   Subsequently, the information processing apparatus 10 compares the relation information of the input text with the relation information of the output text (step S204). As a result of the comparison, when the two are not similar (for example, when the similarity is a predetermined threshold value or less), the information processing apparatus 10 may output to the user that the two are not similar.

続いて、情報処理装置10は、ステップS203で生成した出力テキスト(見出し)をユーザに出力する(ステップS205)。出力が完了したら、情報処理装置10は、生成処理を終了する。   Subsequently, the information processing apparatus 10 outputs the output text (heading) generated in step S203 to the user (step S205). When the output is completed, the information processing apparatus 10 ends the generation process.

〔4.変形例〕
上述の実施形態は一例を示したものであり、種々の変更及び応用が可能である。
[4. (Modification)
The above-described embodiment shows an example, and various changes and applications are possible.

例えば、上述の実施形態では、情報処理装置10は、第1のテキストをタイトル、第2のテキストを見出しとしてモデルM1〜M4の学習を行った。しかし、第1のテキスト、及び第2のテキストは上記の例に限定されない。例えば、情報処理装置10は、第1のテキストを本文、第2のテキストを見出しとしてモデルM1〜M4の学習を行ってもよい。その他、第1のテキスト、及び第2のテキストとするテキストは任意に変更可能である。同様に、テキストの生成時、入力テキストとするテキストも任意に変更可能である。   For example, in the above-described embodiment, the information processing apparatus 10 learns the models M1 to M4 using the first text as the title and the second text as the headline. However, the first text and the second text are not limited to the above example. For example, the information processing apparatus 10 may learn the models M1 to M4 using the first text as the body and the second text as the headline. In addition, the text used as the first text and the second text can be arbitrarily changed. Similarly, when generating text, the text used as input text can be arbitrarily changed.

また、上述の実施形態では、情報処理装置10は、第1のテキストを入力データ、第1のテキストの関係情報を正解データとしてモデルM2の学習を行った。しかし、情報処理装置10は、第1のテキストを入力データ、第1のテキストの関係情報を短縮した短縮関係情報を正解データとしてモデルM2の学習を行ってもよい。そして、情報処理装置10は、このように学習したモデルM2に第1のテキストを入力することにより、短縮関係情報を生成してもよい。   Further, in the above-described embodiment, the information processing apparatus 10 learns the model M2 using the first text as input data and the relationship information of the first text as correct data. However, the information processing apparatus 10 may learn the model M2 using the first text as input data and the shortened relationship information obtained by shortening the relationship information of the first text as correct data. Then, the information processing apparatus 10 may generate the shortening relation information by inputting the first text to the model M2 learned in this way.

また、上述の実施形態では、モデルMを構成するエンコーダおよびデコーダは、LSTMにより構成されるものとしたが、LSTM以外のRNNにより構成されていてもよい。モデルMを構成するエンコーダおよびデコーダは、CNN(Convolution Neural Network)等、RNN以外のニューラルネットワークであってもよい。その他、モデルMを構成するエンコーダおよびデコーダは、単純に入力された情報量の次元数を変化させるニューラルネットワークであってもよい。このとき、モデルMを構成するエンコーダは、入力された情報の次元量を圧縮することで入力された情報が有する特徴を抽出するよう構成されていてもよい。また、モデルMを構成するデコーダは、エンコーダによって抽出された特徴の次元量を増大させ、エンコーダに入力された情報よりも次元数が少ない情報を出力するよう構成されていてもよい。   Further, in the above-described embodiment, the encoder and the decoder configuring the model M are configured by LSTM, but may be configured by RNN other than LSTM. The encoder and decoder that constitute the model M may be a neural network other than the RNN, such as a CNN (Convolution Neural Network). In addition, the encoder and decoder constituting the model M may be a neural network that simply changes the number of dimensions of the input information amount. At this time, the encoders constituting the model M may be configured to extract features of the input information by compressing the dimensionality of the input information. In addition, the decoder constituting the model M may be configured to increase the dimension amount of the feature extracted by the encoder and output information having a smaller number of dimensions than the information input to the encoder.

本実施形態の情報処理装置10を制御する制御装置は、専用のコンピュータシステムによって実現してもよいし、通常のコンピュータシステムにより実現してもよい。例えば、上述の動作を実行するためのプログラムまたはデータ(例えば、モデルM)を、光ディスク、半導体メモリ、磁気テープ、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に格納して配布し、該プログラムをコンピュータにインストールし、上述の処理を実行することによって制御装置を構成してもよい。制御装置は、情報処理装置10の外部の装置(例えば、パーソナルコンピュータ)であってもよいし、内部の装置(例えば、制御部13)であってもよい。また、上記プログラムをインターネット等のネットワーク上のサーバ装置が備えるディスク装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。また、上述の機能を、OS(Operating System)とアプリケーションソフトとの協働により実現してもよい。この場合には、OS以外の部分を媒体に格納して配布してもよいし、OS以外の部分をサーバ装置に格納しておき、コンピュータにダウンロード等できるようにしてもよい。   The control device that controls the information processing apparatus 10 according to the present embodiment may be realized by a dedicated computer system or an ordinary computer system. For example, a program or data (for example, model M) for executing the above-described operation is stored and distributed in a computer-readable recording medium such as an optical disk, a semiconductor memory, a magnetic tape, or a flexible disk, and the program is distributed to the computer. The control device may be configured by installing the software and executing the above-described processing. The control device may be an external device (for example, a personal computer) of the information processing device 10 or an internal device (for example, the control unit 13). Further, the program may be stored in a disk device provided in a server device on a network such as the Internet so that it can be downloaded to a computer. Further, the above-described functions may be realized by cooperation between an OS (Operating System) and application software. In this case, a part other than the OS may be stored and distributed in a medium, or a part other than the OS may be stored in a server device and downloaded to a computer.

また、上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。   In addition, among the processes described in the above embodiments, all or a part of the processes described as being automatically performed can be manually performed, or the processes described as being manually performed All or a part of the above can be automatically performed by a known method. In addition, the processing procedures, specific names, and information including various data and parameters shown in the document and drawings can be arbitrarily changed unless otherwise specified. For example, the various types of information illustrated in each drawing is not limited to the illustrated information.

また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。   Further, each component of each illustrated apparatus is functionally conceptual, and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.

また、上述してきた各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。   Moreover, each embodiment mentioned above can be combined suitably in the range which does not contradict a process content.

〔5.ハードウェア構成〕
実施形態及び変形例に係る情報処理装置10は、例えば図17に示すような構成のコンピュータ1000によっても実現可能である。図17は、情報処理装置10の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU(Central Processing Unit)1100、RAM1200、ROM1300、HDD(Hard Disk Drive)1400、通信インタフェース(I/F)1500、入出力インタフェース(I/F)1600、及びメディアインタフェース(I/F)1700を有する。
[5. Hardware configuration)
The information processing apparatus 10 according to the embodiment and the modification may be realized by a computer 1000 having a configuration as illustrated in FIG. FIG. 17 is a hardware configuration diagram illustrating an example of a computer that implements the functions of the information processing apparatus 10. The computer 1000 includes a CPU (Central Processing Unit) 1100, a RAM 1200, a ROM 1300, an HDD (Hard Disk Drive) 1400, a communication interface (I / F) 1500, an input / output interface (I / F) 1600, and a media interface (I / F). ) 1700.

CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。   The CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400 and controls each unit. The ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 is started up, a program depending on the hardware of the computer 1000, and the like.

HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インタフェース1500は、ネットワークNを介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータをネットワークNを介して他の機器へ送信する。   The HDD 1400 stores programs executed by the CPU 1100, data used by the programs, and the like. The communication interface 1500 receives data from other devices via the network N and sends the data to the CPU 1100, and transmits data generated by the CPU 1100 to other devices via the network N.

CPU1100は、入出力インタフェース1600を介して、ディスプレイやプリンタ等の出力装置、及び、キーボードやマウス等の入力装置を制御する。CPU1100は、入出力インタフェース1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インタフェース1600を介して出力装置へ出力する。   The CPU 1100 controls an output device such as a display and a printer and an input device such as a keyboard and a mouse via an input / output interface 1600. The CPU 1100 acquires data from the input device via the input / output interface 1600. In addition, the CPU 1100 outputs the generated data to the output device via the input / output interface 1600.

メディアインタフェース1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインタフェース1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。   The media interface 1700 reads a program or data stored in the recording medium 1800 and provides it to the CPU 1100 via the RAM 1200. The CPU 1100 loads such a program from the recording medium 1800 onto the RAM 1200 via the media interface 1700, and executes the loaded program. The recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. Etc.

例えば、コンピュータ1000が実施形態に係る情報処理装置10として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムまたはデータ(例えば、モデルM)を実行することにより、制御部13を実現する。コンピュータ1000のCPU1100は、これらのプログラムまたはデータ(例えば、モデルM)を記録媒体1800から読み取って実行するが、他の例として、他の装置からネットワークNを介してこれらのプログラムまたはデータ(例えば、モデルM)を取得してもよい。   For example, when the computer 1000 functions as the information processing apparatus 10 according to the embodiment, the CPU 1100 of the computer 1000 implements the control unit 13 by executing a program or data (for example, model M) loaded on the RAM 1200. To do. The CPU 1100 of the computer 1000 reads these programs or data (for example, model M) from the recording medium 1800 and executes them, but as another example, these programs or data (for example, for example, from other devices via the network N). Model M) may be obtained.

以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の行に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。   As described above, some of the embodiments of the present application have been described in detail with reference to the drawings. It is possible to implement the present invention in other forms with improvements.

〔6.効果〕
本実施形態によれば、情報処理装置10は、第1のテキストに関する情報と、第1のテキストに対応するテキストであって生成条件を満たす第2のテキストと、を取得する。そして、情報処理装置10は、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第2のテキストとに基づいて、入力テキストに関する情報から生成条件を満たす出力テキストを生成する第1のモデルの学習を行う。このとき、第1のモデルは、出力テキストとして、所定の文字数以下のテキストを生成するモデルであってもよい。第1のモデルは、関係情報に基づき学習しているので不自然な構文のテキストの生成が少ない。第1のモデルを使うことにより、情報処理装置10は、精度が高いテキストを生成できる。
[6. effect〕
According to the present embodiment, the information processing apparatus 10 acquires information related to the first text and a second text that corresponds to the first text and satisfies the generation condition. Then, the information processing apparatus 10 determines the generation condition from the information related to the input text based on the information related to the first relationship information indicating the relationship between the words of the plurality of words included in the first text and the second text. A first model that generates output text that satisfies is learned. At this time, the first model may be a model that generates text having a predetermined number of characters or less as output text. Since the first model learns based on the relationship information, the generation of text with an unnatural syntax is small. By using the first model, the information processing apparatus 10 can generate highly accurate text.

情報処理装置10は、第1の関係情報を入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。これにより、情報処理装置10は、精度が高いモデルを生成できる。結果として、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 learns the first model using the first relation information as input data and the second text as correct data. Thereby, the information processing apparatus 10 can generate a model with high accuracy. As a result, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1の関係情報を短縮した第2の関係情報を入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。第1のモデルは、より第2のテキストに近い第2の関係情報(短縮関係情報)に基づき学習している。第1のモデルの精度が高いので、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 learns the first model using the second relation information obtained by shortening the first relation information as input data and the second text as correct data. The first model learns based on second relation information (shortening relation information) closer to the second text. Since the accuracy of the first model is high, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1のテキストと第1の関係情報とを入力データ、第2のテキストを正解データとして第1のモデルの学習を行う。これにより、情報処理装置10は、精度が高いモデルを生成できる、結果として、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 learns the first model using the first text and the first relation information as input data and the second text as correct answer data. Thereby, the information processing apparatus 10 can generate a model with high accuracy. As a result, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1のテキストを入力データ、第1の関係情報を正解データとして、入力テキストから入力テキストの関係情報を生成する第2のモデルの学習を行う。これにより、情報処理装置10は、関係情報生成のための精度の高いモデルを生成できる。   The information processing apparatus 10 learns the second model that generates the relationship information of the input text from the input text using the first text as input data and the first relationship information as correct data. Thereby, the information processing apparatus 10 can generate a highly accurate model for generating the relationship information.

情報処理装置10は、第1のテキストと、第1のテキストに対応するテキストであって生成条件を満たす第2のテキストと、を取得する。また、情報処理装置10は、第1のテキストを入力データ、第2のテキストを正解データとして、入力テキストから生成条件を満たす出力テキストを生成するモデルの学習を行う。そして、情報処理装置10は、第1のテキストの関係情報或いは第2のテキストの関係情報と、第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて、モデルの学習を行う。情報処理装置10が生成するモデルは、関係情報の類似度に基づき学習しているので不自然な構文のテキストの生成が少ない。第1のモデルを使うことにより、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 acquires the first text and the second text that corresponds to the first text and satisfies the generation condition. In addition, the information processing apparatus 10 learns a model that generates an output text satisfying a generation condition from the input text by using the first text as input data and the second text as correct data. And the information processing apparatus 10 is based on the similarity between the relationship information of the first text or the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model. Train the model. Since the model generated by the information processing apparatus 10 learns based on the similarity of the relationship information, the generation of text with an unnatural syntax is small. By using the first model, the information processing apparatus 10 can generate highly accurate text.

情報処理装置10は、第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と第1のテキストに対応するテキストであって生成条件を満たす第2のテキストとに基づいて学習した第1のモデルに入力される入力テキストに関する情報を取得する。そして、情報処理装置10は、入力テキストに関する情報を第1のモデルに入力することにより、入力テキストに対応するテキストであって生成条件を満たす出力テキストを生成する。このとき、情報処理装置10は、出力テキストとして、所定の文字数以下のテキストを生成してもよい。第1のモデルは、関係情報に基づき学習しているので不自然な構文のテキストの生成が少ない。結果として、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 includes information related to first relationship information indicating a relationship between words of a plurality of words included in the first text, and text corresponding to the first text and satisfying a generation condition. The information regarding the input text input into the 1st model learned based on these is acquired. And the information processing apparatus 10 produces | generates the output text which is a text corresponding to an input text, and satisfy | fills a production | generation condition by inputting the information regarding an input text into a 1st model. At this time, the information processing apparatus 10 may generate a text having a predetermined number of characters or less as the output text. Since the first model learns based on the relationship information, the generation of text with an unnatural syntax is small. As a result, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1のモデルは、第1の関係情報を入力データ、第2のテキストを正解データとして学習したモデルである。そして、情報処理装置10は、第1のモデルに入力テキストの関係情報を入力することにより、出力テキストを生成する。これにより、情報処理装置10は、精度が高いテキストを生成できる。   In the information processing apparatus 10, the first model is a model learned using the first relation information as input data and the second text as correct data. And the information processing apparatus 10 produces | generates an output text by inputting the relationship information of an input text into a 1st model. Thereby, the information processing apparatus 10 can generate text with high accuracy.

第1のモデルは、第1の関係情報を短縮した第2の関係情報を入力データ、第2のテキストを正解データとして学習したモデルである。情報処理装置10は、第1のモデルに入力テキストの関係情報を短縮した関係情報を入力することにより、出力テキストを生成する。これにより、情報処理装置10は、精度が高いテキストを生成できる。第1のモデルは、より第2のテキストに近い第2の関係情報(短縮関係情報)に基づき学習している。第1のモデルの精度が高いので、情報処理装置10は、精度が高いテキストを生成できる。   The first model is a model in which the second relation information obtained by shortening the first relation information is learned as input data and the second text is learned as correct data. The information processing apparatus 10 generates output text by inputting the relationship information obtained by shortening the relationship information of the input text to the first model. Thereby, the information processing apparatus 10 can generate text with high accuracy. The first model learns based on second relation information (shortening relation information) closer to the second text. Since the accuracy of the first model is high, the information processing apparatus 10 can generate text with high accuracy.

第1のモデルは、第1のテキストと第1の関係情報とを入力データ、第2のテキストを正解データとして学習したモデルである。情報処理装置10は、第1のモデルに入力テキストと入力テキストの関係情報とを入力することにより、出力テキストを生成する。これにより、情報処理装置10は、精度が高いテキストを生成できる。   The first model is a model in which the first text and the first relationship information are learned as input data, and the second text is learned as correct data. The information processing apparatus 10 generates the output text by inputting the input text and the relationship information of the input text to the first model. Thereby, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1のテキストを入力データ、第1の関係情報を正解データとして学習した第2のモデルに入力テキストを入力することにより、入力テキストの関係情報を生成する。これにより、情報処理装置10は、精度が高いテキストを生成できる。   The information processing apparatus 10 generates the relationship information of the input text by inputting the input text to the second model learned using the first text as input data and the first relationship information as correct data. Thereby, the information processing apparatus 10 can generate text with high accuracy.

情報処理装置10は、第1のテキストを入力データ、第2のテキストを正解データとして学習したモデルに入力される入力テキストを取得する。そして、情報処理装置10は、入力テキストをモデルに入力することにより、入力テキストに対応するテキストであって生成条件を満たす出力テキストを生成する。そして、情報処理装置10は、入力テキストの関係情報と出力テキストの関係情報とを比較する。これにより、情報処理装置10のユーザは、不自然な出力テキストを即座に発見できる。   The information processing apparatus 10 acquires input text input to a model learned using the first text as input data and the second text as correct data. Then, the information processing apparatus 10 generates the output text that satisfies the generation condition and is the text corresponding to the input text by inputting the input text into the model. Then, the information processing apparatus 10 compares the relationship information of the input text with the relationship information of the output text. Thereby, the user of the information processing apparatus 10 can immediately find an unnatural output text.

以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。   As described above, some of the embodiments of the present application have been described in detail with reference to the drawings. However, these are merely examples, and various modifications, including the aspects described in the disclosure section of the invention, based on the knowledge of those skilled in the art, It is possible to implement the present invention in other forms with improvements.

また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、学習部は、学習手段や学習回路に読み替えることができる。   In addition, the “section (module, unit)” described above can be read as “means” or “circuit”. For example, the learning unit can be read as learning means or a learning circuit.

10…情報処理装置
11…通信部
12…記憶部
121…学習データデータベース
122…モデルデータベース
123…コンテンツ情報データベース
13…制御部
131…学習データ取得部
132…関係情報取得部
133…学習部
134…出力情報取得部
135…生成部
136…比較部
137…出力制御部
20…データサーバ
30…端末装置
M1、M2、M3、M4…モデル
E1、E2、E31、E32、E4…エンコーダ
SM1…合成モデル
D1、D2、D3、D4…デコーダ
DESCRIPTION OF SYMBOLS 10 ... Information processing apparatus 11 ... Communication part 12 ... Storage part 121 ... Learning data database 122 ... Model database 123 ... Content information database 13 ... Control part 131 ... Learning data acquisition part 132 ... Relation information acquisition part 133 ... Learning part 134 ... Output Information acquisition unit 135... Generation unit 136... Comparison unit 137... Output control unit 20... Data server 30.. D2, D3, D4 ... Decoder

Claims (24)

第1のテキストに関する情報と、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得部と、
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第2のテキストとに基づいて、入力テキストに関する情報から前記所定の条件を満たす出力テキストを生成する第1のモデルの学習を行う学習部と、
を備えることを特徴とする学習装置。
An acquisition unit that acquires information about the first text, and a second text that corresponds to the first text and satisfies a predetermined condition;
An output text satisfying the predetermined condition is generated from the information related to the input text based on the information related to the first relation information indicating the relationship between the words of the plurality of words included in the first text and the second text. A learning unit for learning the first model to be
A learning apparatus comprising:
前記学習部は、前記第1の関係情報を入力データ、前記第2のテキストを正解データとして前記第1のモデルの学習を行う、
ことを特徴とする請求項1に記載の学習装置。
The learning unit learns the first model using the first relation information as input data and the second text as correct data.
The learning apparatus according to claim 1.
前記学習部は、前記第1の関係情報を短縮した第2の関係情報を入力データ、前記第2のテキストを正解データとして前記第1のモデルの学習を行う、
ことを特徴とする請求項1に記載の学習装置。
The learning unit learns the first model by using the second relation information obtained by shortening the first relation information as input data and the second text as correct data.
The learning apparatus according to claim 1.
前記学習部は、前記第1のテキストと前記第1の関係情報とを入力データ、前記第2のテキストを正解データとして前記第1のモデルの学習を行う、
ことを特徴とする請求項1に記載の学習装置。
The learning unit learns the first model using the first text and the first relation information as input data, and the second text as correct answer data.
The learning apparatus according to claim 1.
前記学習部は、前記第1のテキストを入力データ、前記第1の関係情報を正解データとして、前記入力テキストから前記入力テキストの関係情報を生成する第2のモデルの学習を行う、
ことを特徴とする請求項4に記載の学習装置。
The learning unit learns a second model that generates relation information of the input text from the input text using the first text as input data and the first relation information as correct answer data.
The learning apparatus according to claim 4.
前記第1のモデルは、前記出力テキストとして、所定の文字数以下のテキストを生成するモデルである、
ことを特徴とする請求項1〜5のいずれか1項に記載の学習装置。
The first model is a model that generates a text having a predetermined number of characters or less as the output text.
The learning apparatus according to claim 1, wherein the learning apparatus is a learning apparatus.
第1のテキストと、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得部と、
前記第1のテキストを入力データ、前記第2のテキストを正解データとして、入力テキストから前記所定の条件を満たす出力テキストを生成するモデルの学習を行う学習部と、を備え、
前記学習部は、前記第1のテキストの関係情報或いは前記第2のテキストの関係情報と、前記第1のテキストを前記モデルに入力して得られるテキストの関係情報と、の類似度に基づいて、前記モデルの学習を行う、
ことを特徴とする学習装置。
An acquisition unit configured to acquire a first text and a second text that corresponds to the first text and satisfies a predetermined condition;
A learning unit that learns a model that generates the output text satisfying the predetermined condition from the input text using the first text as input data and the second text as correct answer data,
The learning unit is based on a degree of similarity between the relationship information of the first text or the relationship information of the second text and the relationship information of the text obtained by inputting the first text into the model. Learn the model,
A learning apparatus characterized by that.
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストとに基づいて学習した第1のモデルに入力される入力テキストに関する情報を取得する取得部と、
前記入力テキストに関する情報を前記第1のモデルに入力することにより、前記入力テキストに対応するテキストであって前記所定の条件を満たす出力テキストを生成する生成部と、
を備えることを特徴とする生成装置。
Based on information related to first relation information indicating a relation between words of a plurality of words included in the first text, and a second text that corresponds to the first text and satisfies a predetermined condition. An acquisition unit for acquiring information related to the input text input to the learned first model;
A generation unit that generates information corresponding to the input text and that satisfies the predetermined condition by inputting information related to the input text to the first model;
A generating apparatus comprising:
前記第1のモデルは、前記第1の関係情報を入力データ、前記第2のテキストを正解データとして学習したモデルであり、
前記生成部は、前記第1のモデルに前記入力テキストの関係情報を入力することにより、前記出力テキストを生成する、
ことを特徴とする請求項8に記載の生成装置。
The first model is a model obtained by learning the first relation information as input data and the second text as correct answer data,
The generation unit generates the output text by inputting relation information of the input text to the first model.
The generating apparatus according to claim 8.
前記第1のモデルは、前記第1の関係情報を短縮した第2の関係情報を入力データ、前記第2のテキストを正解データとして学習したモデルであり、
前記生成部は、前記第1のモデルに前記入力テキストの関係情報を短縮した関係情報を入力することにより、前記出力テキストを生成する、
ことを特徴とする請求項8に記載の生成装置。
The first model is a model in which the second relation information obtained by shortening the first relation information is learned as input data, and the second text is learned as correct data,
The generation unit generates the output text by inputting relationship information obtained by shortening the relationship information of the input text to the first model.
The generating apparatus according to claim 8.
前記第1のモデルは、前記第1のテキストと前記第1の関係情報とを入力データ、前記第2のテキストを正解データとして学習したモデルであり、
前記生成部は、前記第1のモデルに前記入力テキストと前記入力テキストの関係情報とを入力することにより、前記出力テキストを生成する、
ことを特徴とする請求項8に記載の生成装置。
The first model is a model in which the first text and the first relation information are learned as input data and the second text is learned as correct data,
The generation unit generates the output text by inputting the input text and relation information of the input text to the first model.
The generating apparatus according to claim 8.
前記生成部は、前記第1のテキストを入力データ、前記第1の関係情報を正解データとして学習した第2のモデルに前記入力テキストを入力することにより、前記入力テキストの関係情報を生成する、
ことを特徴とする請求項11に記載の生成装置。
The generating unit generates the relation information of the input text by inputting the input text to a second model learned using the first text as input data and the first relation information as correct data.
The generating apparatus according to claim 11.
前記生成部は、前記出力テキストとして、所定の文字数以下のテキストを生成する、
ことを特徴とする請求項8〜12のいずれか1項に記載の生成装置。
The generation unit generates a text having a predetermined number of characters or less as the output text.
The generation device according to claim 8, wherein the generation device is a device.
第1のテキストを入力データ、第2のテキストを正解データとして学習したモデルに入力される入力テキストを取得する取得部と、
前記入力テキストを前記モデルに入力することにより、前記入力テキストに対応するテキストであって所定の条件を満たす出力テキストを生成する生成部と、
前記入力テキストの関係情報と前記出力テキストの関係情報とを比較する比較部と、
を備えることを特徴とする生成装置。
An acquisition unit that acquires an input text input to a model that has been learned using the first text as input data and the second text as correct data;
Generating a text corresponding to the input text and generating an output text satisfying a predetermined condition by inputting the input text into the model;
A comparison unit that compares the relationship information of the input text and the relationship information of the output text;
A generating apparatus comprising:
学習装置が実行する学習方法であって、
第1のテキストに関する情報と、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得工程と、
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第2のテキストとに基づいて、入力テキストに関する情報から前記所定の条件を満たす出力テキストを生成する第1のモデルの学習を行う学習工程と、
を含むことを特徴とする学習方法。
A learning method executed by a learning device,
An acquisition step of acquiring information relating to the first text, and a second text corresponding to the first text and satisfying a predetermined condition;
An output text satisfying the predetermined condition is generated from the information related to the input text based on the information related to the first relation information indicating the relationship between the words of the plurality of words included in the first text and the second text. A learning process for learning the first model to be performed;
The learning method characterized by including.
学習装置が実行する学習方法であって、
第1のテキストと、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得工程と、
前記第1のテキストを入力データ、前記第2のテキストを正解データとして、入力テキストから前記所定の条件を満たす出力テキストを生成するモデルの学習を行う学習工程と、を含み、
前記学習工程では、前記第2のテキストの関係情報と、前記第1のテキストを前記モデルに入力して得られるテキストの関係情報と、の類似度に基づいて、前記モデルの学習を行う、
ことを特徴とする学習方法。
A learning method executed by a learning device,
An acquisition step of acquiring a first text and a second text corresponding to the first text and satisfying a predetermined condition;
A learning step of learning a model that generates the output text satisfying the predetermined condition from the input text, using the first text as input data and the second text as correct answer data,
In the learning step, the model is learned based on the similarity between the relationship information of the second text and the relationship information of the text obtained by inputting the first text to the model.
A learning method characterized by that.
生成装置が実行する生成方法であって、
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストとに基づいて学習した第1のモデルに入力される入力テキストに関する情報を取得する取得工程と、
前記入力テキストに関する情報を前記第1のモデルに入力することにより、前記入力テキストに対応するテキストであって前記所定の条件を満たす出力テキストを生成する生成工程と、
を含むことを特徴とする生成方法。
A generation method executed by a generation device,
Based on information related to first relation information indicating a relation between words of a plurality of words included in the first text, and a second text that corresponds to the first text and satisfies a predetermined condition. An acquisition step of acquiring information relating to the input text input to the learned first model;
Generating a text corresponding to the input text and satisfying the predetermined condition by inputting information on the input text into the first model;
A generation method comprising:
生成装置が実行する生成方法であって、
第1のテキストを入力データ、第2のテキストを正解データとして学習したモデルに入力される入力テキストを取得する取得工程と、
前記入力テキストを前記モデルに入力することにより、前記入力テキストに対応するテキストであって所定の条件を満たす出力テキストを生成する生成工程と、
前記入力テキストの関係情報と前記出力テキストの関係情報とを比較する比較工程と、
を含むことを特徴とする生成方法。
A generation method executed by a generation device,
An acquisition step of acquiring an input text input to a model learned using the first text as input data and the second text as correct data;
Generating a text corresponding to the input text and satisfying a predetermined condition by inputting the input text into the model;
A comparison step of comparing the relationship information of the input text with the relationship information of the output text;
A generation method comprising:
第1のテキストに関する情報と、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得手順と、
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第2のテキストとに基づいて、入力テキストに関する情報から前記所定の条件を満たす出力テキストを生成するモデルの学習を行う学習手順と、
をコンピュータに実行させるための学習プログラム。
An acquisition procedure for acquiring information related to the first text, and a second text corresponding to the first text and satisfying a predetermined condition;
An output text satisfying the predetermined condition is generated from the information related to the input text based on the information related to the first relation information indicating the relationship between the words of the plurality of words included in the first text and the second text. Learning procedure to learn the model to be
A learning program to make a computer execute.
第1のテキストと、前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストと、を取得する取得手順と、
前記第1のテキストを入力データ、前記第2のテキストを正解データとして、入力テキストから前記所定の条件を満たす出力テキストを生成するモデルの学習を行う学習手順と、をコンピュータに実行させ、
前記学習手順では、前記第2のテキストの関係情報と、前記第1のテキストを前記モデルに入力して得られるテキストの関係情報と、の類似度に基づいて、前記モデルの学習を行う、
ことを特徴とする学習プログラム。
An acquisition procedure for acquiring a first text and a second text that corresponds to the first text and satisfies a predetermined condition;
A learning procedure for learning a model for generating an output text satisfying the predetermined condition from the input text, using the first text as input data and the second text as correct answer data;
In the learning procedure, the model is learned based on the similarity between the relationship information of the second text and the relationship information of the text obtained by inputting the first text to the model.
A learning program characterized by that.
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストとに基づいて学習したモデルに入力される入力テキストに関する情報を取得する取得手順と、
前記入力テキストに関する情報を前記モデルに入力することにより、前記入力テキストに対応するテキストであって前記所定の条件を満たす出力テキストを生成する生成手順と、
をコンピュータに実行させるための生成プログラム。
Based on information related to first relation information indicating a relation between words of a plurality of words included in the first text, and a second text that corresponds to the first text and satisfies a predetermined condition. An acquisition procedure for acquiring information about the input text input to the learned model;
A generation procedure for generating output text satisfying the predetermined condition, which is text corresponding to the input text by inputting information on the input text to the model;
A generation program that causes a computer to execute.
第1のテキストを入力データ、第2のテキストを正解データとして学習したモデルに入力される入力テキストを取得する取得手順と、
前記入力テキストを前記モデルに入力することにより、前記入力テキストに対応するテキストであって所定の条件を満たす出力テキストを生成する生成手順と、
前記入力テキストの関係情報と前記出力テキストの関係情報とを比較する比較手順と、
をコンピュータに実行させるための生成プログラム。
An acquisition procedure for acquiring an input text input to a model learned using the first text as input data and the second text as correct data;
Generating a text corresponding to the input text and generating an output text satisfying a predetermined condition by inputting the input text into the model;
A comparison procedure for comparing the relationship information of the input text with the relationship information of the output text;
A generation program that causes a computer to execute.
第1のテキストに含まれる複数のワードのワード間の関係を示す第1の関係情報に関する情報と前記第1のテキストに対応するテキストであって所定の条件を満たす第2のテキストとに基づいて学習したモデルであって、
入力テキストに関する情報を入力する入力層と、
前記入力テキストに対応するテキストであって前記所定の条件を満たすテキストを出力する出力層と、
前記入力層から前記出力層までのいずれかの層であって前記出力層以外の層に属する第1要素と、
前記第1要素と前記第1要素の重みとに基づいて値が算出される第2要素と、を含み、
前記入力層に入力された入力テキストに関する情報に応じて、前記入力テキストに対応するテキストであって前記所定の条件を満たすテキストを出力層から出力するよう、
コンピュータを機能させるためのモデル。
Based on information related to first relation information indicating a relation between words of a plurality of words included in the first text, and a second text that corresponds to the first text and satisfies a predetermined condition. A learned model,
An input layer for entering information about the input text;
An output layer that outputs text corresponding to the input text and satisfying the predetermined condition;
A first element belonging to any layer from the input layer to the output layer other than the output layer;
A second element whose value is calculated based on the first element and a weight of the first element;
According to the information on the input text input to the input layer, the text corresponding to the input text and satisfying the predetermined condition is output from the output layer,
A model for making a computer function.
第1のテキストを入力データ、第2のテキストを正解データとし、前記第2のテキストの関係情報と、前記第1のテキストをモデルに入力して得られるテキストの関係情報と、の類似度に基づいて学習したモデルであって、
入力テキストを入力する入力層と、
前記入力テキストに対応するテキストであって所定の条件を満たすテキストを出力する出力層と、
前記入力層から前記出力層までのいずれかの層であって前記出力層以外の層に属する第1要素と、
前記第1要素と前記第1要素の重みとに基づいて値が算出される第2要素と、を含み、
前記入力層に入力された入力テキストに応じて、前記入力テキストに対応するテキストであって前記所定の条件を満たすテキストを出力層から出力するよう、
コンピュータを機能させるためのモデル。
The first text is input data, the second text is correct data, and the degree of similarity between the relation information of the second text and the relation information of the text obtained by inputting the first text into the model A model learned based on
An input layer for entering input text,
An output layer that outputs text corresponding to the input text and satisfying a predetermined condition;
A first element belonging to any layer from the input layer to the output layer other than the output layer;
A second element whose value is calculated based on the first element and a weight of the first element;
In response to the input text input to the input layer, text corresponding to the input text and satisfying the predetermined condition is output from the output layer.
A model for making a computer function.
JP2017180167A 2017-09-20 2017-09-20 Learning device, generator, learning method, generation method, learning program, and generation program Active JP6982444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180167A JP6982444B2 (en) 2017-09-20 2017-09-20 Learning device, generator, learning method, generation method, learning program, and generation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180167A JP6982444B2 (en) 2017-09-20 2017-09-20 Learning device, generator, learning method, generation method, learning program, and generation program

Publications (2)

Publication Number Publication Date
JP2019057034A true JP2019057034A (en) 2019-04-11
JP6982444B2 JP6982444B2 (en) 2021-12-17

Family

ID=66107532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180167A Active JP6982444B2 (en) 2017-09-20 2017-09-20 Learning device, generator, learning method, generation method, learning program, and generation program

Country Status (1)

Country Link
JP (1) JP6982444B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152199B1 (en) * 2016-06-28 2017-06-21 ヤフー株式会社 Generating device, generating method, and generating program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152199B1 (en) * 2016-06-28 2017-06-21 ヤフー株式会社 Generating device, generating method, and generating program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
江里口 瑛子、外2名: "句構造へのアテンションに基づくニューラル機械翻訳モデル", 言語処理学会 第22回年次大会 発表論文集 [ONLINE], vol. 第22回, JPN6021009113, March 2016 (2016-03-01), JP, pages 697 - 700, ISSN: 0004466093 *
瀧川 雅也、外2名: "線形化された構文情報を用いた生成型ニューラル文要約", 言語処理学会 第23回年次大会 発表論文集 [ONLINE], vol. 第23回, JPN6021009112, March 2017 (2017-03-01), JP, pages 1058 - 1061, ISSN: 0004466092 *

Also Published As

Publication number Publication date
JP6982444B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP6355800B1 (en) Learning device, generating device, learning method, generating method, learning program, and generating program
US20240078386A1 (en) Methods and systems for language-agnostic machine learning in natural language processing using feature extraction
US20220188700A1 (en) Distributed machine learning hyperparameter optimization
US9262716B2 (en) Content response prediction
US9582569B2 (en) Targeted content distribution based on a strength metric
WO2022142121A1 (en) Abstract sentence extraction method and apparatus, and server and computer-readable storage medium
US20230232052A1 (en) Machine learning techniques for detecting surges in content consumption
JP6986978B2 (en) Information processing equipment, information processing methods, and information processing programs
US20150040098A1 (en) Systems and methods for developing and delivering platform adaptive web and native application content
US20180101617A1 (en) Ranking Search Results using Machine Learning Based Models
US9754015B2 (en) Feature rich view of an entity subgraph
CN105074694A (en) System and method for natural language processing
US11531927B2 (en) Categorical data transformation and clustering for machine learning using natural language processing
Pelekh et al. Design of a system for dynamic integration of weakly structured data based on mash-up technology
JP7088646B2 (en) Generator, learning device, generation method, learning method, generation program, and learning program
JP2019020930A (en) Learning device, learning method, learning program, learning data, and model
JP2019079088A (en) Learning device, program parameter and learning method
JP6529559B2 (en) Learning apparatus, generating apparatus, learning method, generating method, learning program, generating program, and model
JP2018077671A (en) Information processing apparatus, information processing method, apparatus for generating prediction models, method for generating prediction models and program
JP6906456B2 (en) Learning devices, learning methods, and learning programs
JP6979899B2 (en) Generator, learning device, generation method, learning method, generation program, and learning program
JP6982444B2 (en) Learning device, generator, learning method, generation method, learning program, and generation program
JP2019021218A (en) Learning device, program parameter, learning method and model
TWI574169B (en) Method of operating a solution searching system and solution searching system
JP7008152B1 (en) Information processing equipment, information processing methods and information processing programs

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211119

R150 Certificate of patent or registration of utility model

Ref document number: 6982444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350