JP2019056160A - Joined iron-based component and method for manufacturing the same - Google Patents

Joined iron-based component and method for manufacturing the same Download PDF

Info

Publication number
JP2019056160A
JP2019056160A JP2017182309A JP2017182309A JP2019056160A JP 2019056160 A JP2019056160 A JP 2019056160A JP 2017182309 A JP2017182309 A JP 2017182309A JP 2017182309 A JP2017182309 A JP 2017182309A JP 2019056160 A JP2019056160 A JP 2019056160A
Authority
JP
Japan
Prior art keywords
iron base
base member
powder
iron
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017182309A
Other languages
Japanese (ja)
Inventor
松本 伸彦
Nobuhiko Matsumoto
伸彦 松本
賢武 三宅
Kenbu Miyake
賢武 三宅
雄介 大石
Yusuke Oishi
雄介 大石
栄介 保科
Eisuke Hoshina
栄介 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2017182309A priority Critical patent/JP2019056160A/en
Publication of JP2019056160A publication Critical patent/JP2019056160A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for manufacturing a joined iron-based component exhibiting a high joining strength.SOLUTION: A method for manufacturing a joined iron-based component in the present invention comprises a fitting step of obtaining an assembly in which, on an outer peripheral side of a first iron-based substance, a close-ringed second compact formed by press-forming a second base powder containing a second iron-based powder is fit, and a sinter-joining step of heating the assembly to obtain a joined iron-based component formed by joining a first iron-based component consisting of a first iron-based substance and a second iron-based component consisting of a second sintered body formed by sintering the second compact at a close-ringed joint interface. The second iron-based powder contains C:0.5-1.8% and a carbide-forming element consisting of W and/or V:6-16% provided that the powder entirety is taken 100 mass%. The second iron-based powder preferably contains further one or more of Si:0.1-1%, Mn:0.1-0.7% or Co:0.1-12%. The base powder may contain a carbon source powder (graphite powder, etc.) meeting C:0.01-0.8 mass%.SELECTED DRAWING: Figure 3A

Description

本発明は、少なくとも二つの鉄基部材を接合させた接合鉄基部材と、その製造方法に関する。   The present invention relates to a bonded iron base member obtained by bonding at least two iron base members and a method for manufacturing the same.

自動車分野等で用いられる複雑な形状の部材は、鉄系粉末からなる成形体を焼結させた鉄基焼結体(単に「焼結体」という。)からなることが多い。これにより、いわゆる部材のニアネットシェイプ化を図れ、機械加工の削減や歩留りの向上等による大幅な製造コストの低減が可能となる。   A member having a complicated shape used in the automobile field or the like is often made of an iron-based sintered body (simply referred to as “sintered body”) obtained by sintering a formed body made of iron-based powder. As a result, the so-called near-net shape of the member can be achieved, and the manufacturing cost can be significantly reduced by reducing machining or improving the yield.

もっとも、一度の成形と焼結により得られる焼結体の形状は、成形金型から型抜き可能な形状に制限される。また焼結体は、通常、全体的に均質的であり、部位により材質や特性(ヤング率、強度等)を変化させることは難しい。   However, the shape of the sintered body obtained by one molding and sintering is limited to a shape that can be removed from the molding die. In addition, the sintered body is usually homogeneous as a whole, and it is difficult to change the material and properties (Young's modulus, strength, etc.) depending on the part.

しかし、焼結体を他部材と強固に接合できれば、より複雑な形状の部材や、部位により材質や特性が異なる部材でも、低コストで製造することが可能となる。これに関連する記載が、例えば、下記の特許文献にある。   However, if the sintered body can be firmly joined to the other member, it is possible to manufacture a member having a more complicated shape or a member having different materials and characteristics depending on the part at low cost. The description relevant to this is, for example, in the following patent document.

特開昭56−10859号公報JP-A-56-10859 特公昭58−13603号公報Japanese Patent Publication No.58-13603 特公昭2009−91609号公報Japanese Patent Publication No. 2009-91609 特開2010−215951号公報JP 2010-215951 A

特許文献1は、P添加された鉄系材料(特願昭52−128120号)からなるカム等を液相焼結させて、ステムに一体化させたカムシャフトを提案している。   Patent Document 1 proposes a camshaft in which a cam or the like made of an iron-based material to which P is added (Japanese Patent Application No. 52-128120) is liquid-phase sintered and integrated with a stem.

特許文献2は、C:1%(黒鉛粉)とP:1.2%(フェロアロイ)を含む鉄系材料からなる予備焼結したカムピースを、カムシャフトに圧入固定後に液相焼結させて一体化させるカムシャフトの製造方法を提案している。   Patent Document 2 discloses that a pre-sintered cam piece made of an iron-based material containing C: 1% (graphite powder) and P: 1.2% (ferroalloy) is liquid-phase sintered after being press-fitted and fixed to a camshaft. A method for manufacturing a camshaft is proposed.

特許文献3は、Cを含まないFe−25%Cr−20%Ni粉末とCo−28%Mo−8%Cr−2.5%Si粉末との混合粉末からなる予備焼結した外側部材圧粉体を、溶製ステンレス鋼に嵌入後に固相拡散接合させた焼結複合摺動部材の製造方法を提案している。   Patent Document 3 discloses a pre-sintered outer member compact made of a mixed powder of Fe-25% Cr-20% Ni powder and Co-28% Mo-8% Cr-2.5% Si powder not containing C. A method for manufacturing a sintered composite sliding member in which a body is solid-phase diffusion bonded after being inserted into molten stainless steel is proposed.

特許文献4は、黒鉛粉末(1%)、鉄−リン合金粉末および高Cr鉄合金粉(残部)からなる混合粉末からなる予備焼結した外側部材圧粉体を、溶製ステンレス鋼に嵌入後に固相拡散接合させた焼結複合摺動部材の製造方法を提案している。   In Patent Document 4, after pre-sintered outer member green compact composed of mixed powder composed of graphite powder (1%), iron-phosphorus alloy powder and high Cr iron alloy powder (remainder) is inserted into melted stainless steel. A method of manufacturing a sintered composite sliding member that is solid phase diffusion bonded is proposed.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる組成系の原料粉末からなる焼結体(外側部材)を他部材(内側部材)に接合させた接合鉄基部材の製造方法等を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a bonded iron base member obtained by bonding a sintered body (outer member) made of a raw material powder having a composition different from the conventional one to another member (inner member). It aims at providing the manufacturing method of this.

本発明者はこの課題を解決すべく鋭意研究した結果、Cと炭化物形成元素を所定量含む鉄基粉末を用いることにより、高特性な接合鉄基部材を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor succeeded in obtaining a high-performance bonded iron-base member by using an iron-base powder containing a predetermined amount of C and a carbide-forming element. By developing this result, the present invention described below has been completed.

《接合鉄基部材の製造方法》
本発明の接合鉄基部材製造方法は、第1鉄基体の外周側に、第2鉄基粉末を含む第2原料粉末を加圧成形してなる閉環状の第2成形体を嵌入した組立体を得る嵌入工程と、該組立体を加熱して、該第1鉄基体からなる第1鉄基部材と該第2成形体を焼結させた第2焼結体からなる第2鉄基部材とが閉環状の接合界面部で接合された接合鉄基部材を得る焼結接合工程とを備え、前記第2鉄基粉末は、該第2鉄基粉末全体を100質量%(以下単に「%」という。)として、C:0.5〜1.8%、Wおよび/またはVからなる炭化物形成元素(合計):6〜16%含む。
<< Method for Manufacturing Bonded Iron Base Member >>
In the method for producing a bonded iron base member of the present invention, an assembly in which a closed second molded body formed by pressure-molding a second raw material powder containing a second iron base powder is fitted on the outer peripheral side of the first iron base. A fitting step for obtaining the first iron base member made of the first iron base and the second iron base member made of the second sintered body obtained by sintering the second molded body by heating the assembly. And a sintered joining step of obtaining a joined iron base member joined at a closed annular joining interface portion, and the second iron base powder is 100% by mass (hereinafter simply referred to as “%”). C): 0.5 to 1.8%, and carbide forming elements composed of W and / or V (total): 6 to 16%.

本発明の製造方法によれば、焼結接合工程時に、第2成形体がほぼ形状を維持したまま緻密な第2焼結体となって、その内側に配設された第1鉄基体と接合する。こうして第1鉄基部材(内側部材)と第2鉄基部材(外側部材)が強固に接合された接合鉄基部材により、単なる焼結体では得られない複雑な形状や異なる特性等を有する複合部材の提供が可能となる。   According to the manufacturing method of the present invention, at the time of the sintering joining process, the second molded body becomes a dense second sintered body while maintaining substantially the shape, and joined with the first iron base disposed inside the second sintered body. To do. A composite iron base member in which the first iron base member (inner member) and the second iron base member (outer member) are firmly joined in this way has a complex shape and different characteristics that cannot be obtained with a simple sintered body. The member can be provided.

本発明の製造方法により、第2成形体が第2焼結体となる際に第1鉄基体と強固に接合されるメカニズムの詳細は現状定かではないが、接合界面で生じる炭素の拡散に加えて、第2焼結体内の少なくとも接合界面近傍で出現し得るFe−C系(共晶)液相も関与していると推察される。具体的には、次のように考えられる。   The details of the mechanism that is firmly bonded to the ferrous substrate when the second molded body becomes the second sintered body by the manufacturing method of the present invention is not clear at present, but in addition to the diffusion of carbon generated at the bonding interface Thus, it is presumed that an Fe—C-based (eutectic) liquid phase that can appear at least near the bonding interface in the second sintered body is also involved. Specifically, it is considered as follows.

従来、Fe−C系液相(単に「液相」ともいう。)は、黒鉛粉末、Fe−C系粉末さらにはFe−C−P系粉末等を用いて出現させることが多かった。しかし、このような粉末を用いると、共晶点付近(Fe−Cなら1140℃付近)でピンポイント的に液相が出現し易くなる。その結果、接合界面近傍における液相量の制御ができず、安定した接合強度の確保が困難となったり、液相の出現が急激なため、焼結体が形状崩れ等を起こし易くなり、ニアネットシェイプな接合鉄基部材を得ることが困難であった。   Conventionally, the Fe—C liquid phase (also simply referred to as “liquid phase”) has often appeared using graphite powder, Fe—C powder, or Fe—C—P powder. However, when such a powder is used, a liquid phase tends to appear pinpointly near the eutectic point (around 1140 ° C. for Fe—C). As a result, the amount of the liquid phase in the vicinity of the bonding interface cannot be controlled, and it is difficult to ensure stable bonding strength, or the appearance of the liquid phase is rapid. It was difficult to obtain a net-shaped bonded iron base member.

一方、本発明では、第2鉄基部材のベースとなる鉄基粉末(単に「ベース鉄粉」ともいう。)が、Cと、特定の炭化物形成元素(Cr、W、MoまたはV)とを同時に適量含んでいる。炭化物形成元素は、安定な炭化物を形成するため、少なくとも焼結接合工程時にCをピンポイントで急激に放出することがない。このため第2成形体中または第2焼結体中において液相は緩やかに出現し、第2焼結体と第1鉄基体の接合界面近傍における液相を適量に保持し得る。こうして第1鉄基部材と第2鉄基部材が接合界面で均質的に接合されて、高い接合強度が発揮され得る。また、第2成形体中または第2焼結体中における液相の出現が緩やかであるため、少なくとも第2鉄基部材のニアネットシェイプ化も確保される。   On the other hand, in the present invention, the iron-based powder (also simply referred to as “base iron powder”) serving as the base of the second iron-based member contains C and a specific carbide-forming element (Cr, W, Mo, or V). Contains the proper amount at the same time. Since the carbide forming element forms a stable carbide, at least during the sintering joining process, C is not rapidly released at a pinpoint. Therefore, the liquid phase appears gently in the second molded body or the second sintered body, and an appropriate amount of the liquid phase in the vicinity of the joining interface between the second sintered body and the first iron base can be maintained. Thus, the first iron base member and the second iron base member are uniformly bonded at the bonding interface, and high bonding strength can be exhibited. In addition, since the appearance of the liquid phase in the second molded body or the second sintered body is moderate, at least the second iron base member can be formed into a near net shape.

《接合鉄基部材》
本発明は接合鉄基部材としても把握できる。すなわち本発明は、第1鉄基部材と、該第1鉄基部材の外周面に接合された閉環状の第2鉄基部材と、を備える接合鉄基部材であって、該第2鉄基部材は、該第2鉄基部材全体を100質量%(以下単に「%」という。)として、C:0.5〜2.5%と、Wおよび/またはVからなる炭化物形成元素:6〜16%とを含む第2焼結体からなる接合鉄基部材でもよい。
《Bonded iron base member》
The present invention can also be grasped as a bonded iron base member. That is, the present invention is a joined iron base member comprising a first iron base member and a closed annular second iron base member joined to the outer peripheral surface of the first iron base member, the second iron base The member is 100% by mass (hereinafter, simply referred to as “%”) of the entire ferric base member, and C: 0.5 to 2.5%, and a carbide forming element composed of W and / or V: 6 to It may be a bonded iron base member made of a second sintered body containing 16%.

《その他》
(1)本明細書では、説明の便宜上、内側(中心側)から外側に向かって順に配置される各部材(成形体、焼結体等)に「第1」または「第2」を付与したが、それら序数自体に特別な意味はない。また本明細書でいう「鉄基」とは、対象物全体に対してFeが50質量%以上であることを示す。
<Others>
(1) In this specification, for convenience of explanation, “first” or “second” is given to each member (molded body, sintered body, etc.) arranged in order from the inside (center side) to the outside. But the ordinal numbers themselves have no special meaning. In addition, the “iron group” in the present specification indicates that Fe is 50% by mass or more with respect to the entire object.

第2成形体と嵌合させる第1鉄基体は、成形体、焼結体、溶製鋼等のいずれでもよく、本明細書では、焼結接合工程後の第1鉄基体を第1鉄基部材という。なお、第1鉄基体(鉄基部材)は、中実状に限らず、中空状、環状でもよい。また、第1鉄基部材(第1焼結体)と第2鉄基部材(第2焼結体)は、合金組成や特性(密度、ヤング率、強度等)が同じものでもよい。   The first iron base to be fitted with the second molded body may be any of a molded body, a sintered body, molten steel, and the like. In this specification, the first iron base after the sintering joining process is referred to as the first iron base member. That's it. The first iron base (iron base member) is not limited to a solid shape, and may be hollow or annular. Further, the first iron base member (first sintered body) and the second iron base member (second sintered body) may have the same alloy composition and characteristics (density, Young's modulus, strength, etc.).

本明細書でいう真密度(ρ)は、原料粉末の配合組成と配合した各粉末の比重から算出されるポアフリー密度(PFD)である。なお、既にある焼結体のPFDは、その焼結体を鍛造・据え込み等して得られた圧縮体の体積と重量を実測して求まる。 The true density (ρ 0 ) referred to in the present specification is a pore-free density (PFD) calculated from the blending composition of the raw material powder and the specific gravity of each blended powder. Note that the PFD of an existing sintered body is obtained by actually measuring the volume and weight of a compressed body obtained by forging / setting the sintered body.

本明細書でいう溶製鋼には、純鉄またはそれに近い鋼材(C:0.2%未満)、炭素鋼、合金鋼(特にCを含む合金鋼)さらにステンレス鋼等が含まれる。   The molten steel referred to in this specification includes pure iron or a steel material close thereto (C: less than 0.2%), carbon steel, alloy steel (particularly alloy steel containing C), stainless steel, and the like.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

焼結前の組立体を示す模式図である。It is a schematic diagram which shows the assembly before sintering. 接合強度を測定する抜出試験の説明図である。It is explanatory drawing of the extraction test which measures joining strength. 焼結したアウター単体の外観写真である。It is an external appearance photograph of the sintered outer simple substance. 抜出試験後の試料1に係る外観写真と、その接合界面近傍の金属組織写真である。It is the external appearance photograph which concerns on the sample 1 after a extraction test, and the metal structure photograph of the joining interface vicinity. 抜出試験後の試料C2に係る外観写真である。It is an external appearance photograph concerning sample C2 after an extraction test. 抜出試験後の試料23に係る接合界面近傍の金属組織写真である。It is a metal structure photograph of the joint interface vicinity which concerns on the sample 23 after an extraction test. インナー(溶製鋼)とアウターの寸法差(内外径差)が異なる各試料の外観写真である。It is an external appearance photograph of each sample from which an inner (melting steel) and an outer dimension difference (inside and outside diameter difference) differ. それら各試料におけるアウターの寸法変化(外径変化)を示す散布図である。It is a scatter diagram which shows the outer dimension change (outer diameter change) in each of these samples.

本明細書で説明する内容は、本発明の接合鉄基部材のみならず、その製造方法にも該当し得る。製造方法に関する構成要素は物に関する構成要素ともなり得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。   The contents described in this specification can be applied not only to the bonded iron base member of the present invention but also to the manufacturing method thereof. A component related to the manufacturing method can also be a component related to an object. One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention.

(1)原料粉末
原料粉末は一種以上の鉄基粉末を含み、その内の一つの鉄基粉末は少なくとも所定量のCと炭化物形成元素とを共に含む。鉄基粉末中のCは、鉄基粉末全体を100質量%(単に「%」という。)として、0.5〜1.8%さらには0.8〜1.6%含まれると好ましい。その鉄基粉末全体に対して、Wおよび/またはVからなる炭化物形成元素は合計で6〜16%、7〜15%さらには7.5〜14.5%含まれると好ましい。特にWは6〜13%さらには7〜11%、Vは1〜5%さらには1.5〜4%含まれると好ましい。このような炭化物形成元素は、焼結接合時に出現する液相量の制御、焼結体の緻密化や高剛性化等に寄与する。
(1) Raw material powder The raw material powder contains one or more iron-based powders, and one of the iron-based powders contains at least a predetermined amount of C and a carbide-forming element. C in the iron-based powder is preferably contained in an amount of 0.5 to 1.8%, more preferably 0.8 to 1.6%, based on 100% by mass (simply referred to as “%”) of the entire iron-based powder. It is preferable that a total of 6 to 16%, 7 to 15%, and further 7.5 to 14.5% of carbide forming elements composed of W and / or V are included in the iron-based powder. In particular, W is preferably contained in 6 to 13%, more preferably 7 to 11%, and V is contained in 1 to 5%, more preferably 1.5 to 4%. Such a carbide forming element contributes to control of the amount of liquid phase appearing at the time of sintering joining, densification and high rigidity of the sintered body, and the like.

鉄基粉末は、Cや炭化物形成元素に加えて、Si:0.1〜1%さらには0.2〜0.6%、Mn:0.1〜0.7%さらには0.2〜0.5%、Co:0.1〜12%さらには8〜11%の一種以上を含んでもよい。これらの元素は高温域での強度や耐摩耗性の確保に寄与する。   In addition to C and carbide forming elements, the iron-based powder is Si: 0.1 to 1%, further 0.2 to 0.6%, Mn: 0.1 to 0.7%, and further 0.2 to 0. 0.5%, Co: 0.1 to 12%, or 8 to 11% may be included. These elements contribute to securing strength and wear resistance at high temperatures.

鉄基粉末の全体組成の一例は、C:0.5〜1.8%、炭化物形成元素:6〜16%、Si:0.1〜1%、Mn:0.1〜0.7%、残部:Feおよび不純物である。さらに、Co:0.1〜12%含んでもよい。   An example of the overall composition of the iron-based powder is as follows: C: 0.5 to 1.8%, carbide forming element: 6 to 16%, Si: 0.1 to 1%, Mn: 0.1 to 0.7%, The balance: Fe and impurities. Furthermore, Co: 0.1 to 12% may be included.

原料粉末は、上述した組成を有する一種の鉄基粉末だけでもよいし、異なる組成の鉄基粉末、炭素源粉末、合金元素粉末等を含んでもよい。但し、原料粉末全体に対して、上述した組成からなる鉄基粉末(第2鉄基粉末)を95質量%以上さらには98質量%以上含むと好ましい。   The raw material powder may be only one kind of iron-based powder having the above-described composition, or may include iron-based powder, carbon source powder, alloy element powder and the like having different compositions. However, it is preferable that 95 mass% or more, further 98 mass% or more of the iron-based powder (ferric iron-based powder) having the above-described composition is included with respect to the entire raw material powder.

鉄基粉末とは別に炭素源粉末を原料粉末へ配合してもよい。炭素源粉末の添加により、焼結接合時に出現する液相量を調整し得る。炭素源粉末として、Cを含有する合金(例えば鉄系合金)や化合物(例えばFeC)、黒鉛(Gr)粉末等を用いることができる。一例として、原料粉末全体(100質量%)に対して、黒鉛粉末を0.1〜1%さらには0.2〜0.8%添加するとよい。但し、黒鉛粉末等の添加量が過多になると、液相の制御が困難となり、接合強度や保形性が低下し得る。 In addition to the iron-based powder, a carbon source powder may be added to the raw material powder. By adding the carbon source powder, it is possible to adjust the amount of liquid phase that appears at the time of sintering joining. As the carbon source powder, an alloy containing C (for example, an iron-based alloy), a compound (for example, Fe 3 C), graphite (Gr) powder, or the like can be used. As an example, 0.1 to 1%, further 0.2 to 0.8% of graphite powder may be added to the entire raw material powder (100% by mass). However, when the added amount of graphite powder or the like is excessive, it is difficult to control the liquid phase, and joint strength and shape retention can be reduced.

本発明では、Cと炭化物形成元素の協調により液相を制御して、接合鉄基部材の接合強度や保形性を確保している。このため、原料粉末は、その全体を100質量%として、P:0.1%未満、0.05%未満さらには0.01%以下でもよい。また、第2鉄基部材の高剛性化を図る観点から、Vをそれぞれ6%以下さらには5%以下とし、W量を相対的に多くしてもよい。   In the present invention, the liquid phase is controlled by the cooperation of C and the carbide forming element to ensure the bonding strength and shape retention of the bonded iron base member. For this reason, the raw material powder may be P: less than 0.1%, less than 0.05%, or even 0.01% or less, based on 100% by mass as a whole. Further, from the viewpoint of increasing the rigidity of the ferrous base member, V may be 6% or less, further 5% or less, respectively, and the amount of W may be relatively increased.

鉄基粉末は、粒度が212μm以下(−212μm)の一般的なものでもよいが、平均粒径(メジアン径:D50)が1〜20μmさらには5〜15μmであるか、篩い分けで定まる粒度が45μm以下(−45μm)に分級されたものであると、焼結体の緻密化を図れて好ましい。なお、粒度(または平均粒径)の大きい粗粉とその小さい微粉を混在させて用いてもよい。   The iron-based powder may have a general particle size of 212 μm or less (−212 μm), but the average particle size (median diameter: D50) is 1 to 20 μm, further 5 to 15 μm, or a particle size determined by sieving. It is preferable that the particles be classified to 45 μm or less (−45 μm) because the sintered body can be densified. In addition, you may mix and use the coarse powder with a large particle size (or average particle diameter) and the small fine powder.

(2)成形工程
第2成形体は、鉄基粉末を含む原料粉末を加圧して得られる。成形圧力は、例えば、350〜1000MPaさらには450〜850MPaとするとよい。成形体同士を接合する場合、各成形体の成形圧力は同じでも異なっていてもよい。内側に配設される第1成形体の成形圧力を高めるほど、より高い接合強度が得られ易い。
(2) Molding step The second compact is obtained by pressing a raw material powder containing iron-based powder. The molding pressure is preferably 350 to 1000 MPa, more preferably 450 to 850 MPa. When the molded bodies are joined to each other, the molding pressure of each molded body may be the same or different. As the molding pressure of the first molded body disposed on the inner side is increased, higher bonding strength is easily obtained.

成形工程は、冷間成形(室温成形)でも温間成形でも良い。また、粉末と金型との潤滑は、内部潤滑剤を粉末に配合して行ってもよいし、金型潤滑により行ってもよい。金型潤滑を行う場合、金型潤滑温間加圧成形法(詳細は特許3309970号公報等を参照)を用いると好ましい。   The forming process may be cold forming (room temperature forming) or warm forming. The lubrication between the powder and the mold may be performed by blending an internal lubricant with the powder, or may be performed by mold lubrication. When performing mold lubrication, it is preferable to use a mold lubrication warm pressure molding method (refer to Japanese Patent No. 3309970 for details).

(3)嵌入工程
焼結接合前に、第1鉄基体(成形体、焼結体または溶製鋼)の外周側に第2成形体を嵌入した組立体を用意する。第1鉄基体と第2成形体の嵌め合いは、第2成形体を崩壊させない程度の締り嵌めでも良いし、隙間嵌めでもよい。もっとも、第2成形体は焼結接合時に緻密化すると共に内側寸法が僅かに収縮するため、嵌入工程は、第1鉄基体に第2成形体を隙間嵌めする工程でもよい。隙間嵌めにより、圧入作業等を省略でき、第2成形体の崩壊も防止できる。
(3) Insertion process Before the sintering joining, an assembly is prepared in which the second compact is inserted on the outer peripheral side of the first iron base (molded body, sintered body or melted steel). The fit between the first iron base and the second molded body may be an interference fit that does not collapse the second molded body, or may be a gap fit. However, since the second molded body is densified at the time of sintering joining and the inner dimension is slightly shrunk, the fitting process may be a process of gap fitting the second molded body to the first iron base. By fitting the gap, press-fitting work or the like can be omitted, and the second molded body can be prevented from collapsing.

第2成形体の内側寸法(例えば内径)に対する第1鉄基体の外側寸法(例えば外径)の割合(単に「寸法比」ともいう。)が大きくなるほど、嵌合面間の隙間(クリアランス)は小さくなり、接合強度も向上し易い。逆に、寸法比が小さくなるほど、クリアランスは大きくなり、保形性が確保され易い。寸法比が88〜93%さらには89〜92%であると、接合強度と保形性の両立が図れて好ましい(特に第1鉄基体が溶製鋼からなる場合)。   As the ratio of the outer dimension (for example, outer diameter) of the first iron base to the inner dimension (for example, inner diameter) of the second molded body (also simply referred to as “dimension ratio”) increases, the gap (clearance) between the fitting surfaces increases. It becomes small and it is easy to improve joint strength. Conversely, the smaller the dimensional ratio, the greater the clearance and the easier it is to retain shape retention. When the dimensional ratio is 88 to 93%, more preferably 89 to 92%, both the joint strength and the shape retention can be achieved (particularly when the ferrous substrate is made of molten steel).

上述したクリアランスは、嵌合面間の基準寸法、第1鉄基体の材質、第2成形体の組成や密度、焼結(接合)条件等に応じて適宜調整され得る。例えば、成形体同士の焼結接合なら、クリアランスは1〜100μmさらには5〜50μm程度とするとよい。基準寸法に対するクリアランスは、0.05〜1%さらには0.1〜0.5%程度とするとよい。   The clearance described above can be appropriately adjusted according to the reference dimension between the fitting surfaces, the material of the first iron base, the composition and density of the second molded body, the sintering (joining) conditions, and the like. For example, in the case of sintered joining between molded bodies, the clearance may be about 1 to 100 μm, further about 5 to 50 μm. The clearance with respect to the reference dimension is preferably about 0.05 to 1%, more preferably about 0.1 to 0.5%.

(4)焼結接合工程
組立体を加熱することにより、第2成形体は第2焼結体となり、第1鉄基部材と第2鉄基部材が(拡散)接合された接合鉄基部材が得られる。
(4) Sinter bonding step By heating the assembly, the second molded body becomes the second sintered body, and the bonded iron base member in which the first iron base member and the second iron base member are (diffusion) bonded is provided. can get.

加熱温度(焼結温度)は、Fe−C系液相を生じる1140℃以上が好ましく、例えば、1140℃〜1350℃、1180〜1300℃さらには1200〜1280℃とするとよい。   The heating temperature (sintering temperature) is preferably 1140 ° C. or higher that generates an Fe—C-based liquid phase, for example, 1140 ° C. to 1350 ° C., 1180 to 1300 ° C., further 1200 to 1280 ° C.

加熱時間(上記温度を保持する時間)は、例えば、0.1〜3時間さらには0.1〜1時間であると好ましい。加熱雰囲気は、真空雰囲気、不活性ガス(Arガス等)雰囲気の他、窒素雰囲気が好ましい。雰囲気中のNは、鉄基粉末中の炭化物(またはその形成元素:WまたはV)等に作用して、液相の出現に寄与し、接合強度を高め得る。   The heating time (time for maintaining the temperature) is preferably 0.1 to 3 hours, and more preferably 0.1 to 1 hour, for example. The heating atmosphere is preferably a nitrogen atmosphere in addition to a vacuum atmosphere or an inert gas (Ar gas or the like) atmosphere. N in the atmosphere acts on carbides (or its forming elements: W or V) in the iron-based powder, contributes to the appearance of a liquid phase, and can increase the bonding strength.

(5)その他
上述した組立体は、第1鉄基体の内側または第2成形体の外側に、さらに別な第3成形体等を嵌入した多重組立体でもよい。焼結接合工程後の冷却速度を大きくすると、焼結体の金属組織の粗大化等を抑制できて好ましい。接合鉄基部材は、焼結接合工程後、さらに、焼鈍、焼準、時効、調質(焼き入れ、焼き戻し)、浸炭、窒化等の熱処理工程が施されてもよい。
(5) Others The assembly described above may be a multiple assembly in which another third molded body or the like is inserted inside the first iron base or the second molded body. Increasing the cooling rate after the sintering joining step is preferable because it can suppress the coarsening of the metal structure of the sintered body. The bonded iron base member may be further subjected to a heat treatment step such as annealing, normalizing, aging, tempering (quenching, tempering), carburizing, and nitriding after the sintering bonding step.

《接合鉄基部材》
(1)第2鉄基部材(第2焼結体)
第2鉄基部材は、上述した原料粉末の成形体が焼結されてなる。原料粉末中に炭素源粉末(黒鉛粉末等)が含まれ得る場合も考慮すると、第2鉄基部材は、その全体を100質量%として、C:0.5〜2.5%と、Wおよび/またはVからなる炭化物形成元素:6〜16%とを含む第2焼結体からなると好ましい。また、第2焼結体は、Si:0.1〜1%、Mn:0.1〜0.7%またはCo:0.1〜12%の一種以上を含んでもよい。さらに、第2焼結体は、P:0.1%未満またはV:6%以下であってもよい。
《Bonded iron base member》
(1) Second iron base member (second sintered body)
The ferrous base member is formed by sintering the above-described raw material powder compact. Considering the case where carbon source powder (graphite powder or the like) may be included in the raw material powder, the ferric iron-based member has C: 0.5 to 2.5%, W and It is preferable that the second sintered body contains a carbide forming element composed of V and / or V: 6 to 16%. The second sintered body may include one or more of Si: 0.1 to 1%, Mn: 0.1 to 0.7%, or Co: 0.1 to 12%. Further, the second sintered body may be P: less than 0.1% or V: 6% or less.

第2焼結体は、真密度(ρ)に対する嵩密度(ρ)の割合である相対密度(100×ρ/ρ)が97%以上、98%以上さらには99%以上ともなり得る。第2焼結体が緻密になるほど、第2焼結体の機械的特性(強度、剛性等)の向上を図れる。例えば、上述した組成からなる高密度な第2焼結体であれば、ヤング率が200〜240GPaさらには210〜230GPa程度にもなり得る。 In the second sintered body, the relative density (100 × ρ / ρ 0 ), which is the ratio of the bulk density (ρ) to the true density (ρ 0 ), can be 97% or more, 98% or more, and even 99% or more. As the second sintered body becomes denser, the mechanical properties (strength, rigidity, etc.) of the second sintered body can be improved. For example, if it is a high-density second sintered body having the above-described composition, the Young's modulus can be about 200 to 240 GPa, further about 210 to 230 GPa.

(2)本発明によれば、複雑な形状の部材や部位毎に特性が異なる部材等の提供が容易となる。第1鉄基部材は焼結材でも溶製材でも良いため、接合鉄基部材として、例えば、溶製鋼からなる軸部に、焼結材からなる付属体(歯車、カムロブ、カウンターウエイト等)を設けた伝動軸、カムシャフト、クランクシャフト等がある。 (2) According to the present invention, it becomes easy to provide a member having a complicated shape or a member having different characteristics for each part. Since the first iron base member may be sintered or melted, an attachment (gear, cam lobe, counterweight, etc.) made of sintered material is provided on the shaft made of melted steel, for example. There are transmission shaft, camshaft, crankshaft and so on.

原料粉末の配合組成、成形条件、焼結条件等を変更した多数の試料を製作し、それらの測定、観察および評価を行った。これらを通じて、本発明の内容をさらに具体的に説明する。   A number of samples were prepared with different raw material powder composition, molding conditions, sintering conditions, etc., and their measurements, observations and evaluations were performed. Through these, the contents of the present invention will be described more specifically.

[実施例1/成形体同士の接合]
《試料の製造》
(1)原料粉末
表1に示すように、成分組成が異なる複数のベース鉄粉(鉄基粉末)を用意した。表1に示した各ベース鉄粉は、いずれもアトマイズ粉であり、SKH粉末およびSKH2粉末は株式会社神戸製鋼製であり、FCM1粉末、FM1粉末、FNCM1粉末およびFC1粉末はヘガネスAB社製であり、FCM2粉末およびFM2粉末はエプソンアトミックス株式会社製である。表1に示した成分組成は、各ベース鉄粉全体に対する質量割合である。
[Example 1 / Jointing of molded bodies]
<Production of sample>
(1) Raw material powder As shown in Table 1, a plurality of base iron powders (iron-based powders) having different component compositions were prepared. Each of the base iron powders shown in Table 1 is atomized powder, SKH powder and SKH2 powder are made by Kobe Steel, and FCM1 powder, FM1 powder, FNCM1 powder and FC1 powder are made by Höganäs AB. FCM2 powder and FM2 powder are manufactured by Epson Atmix Co., Ltd. The component composition shown in Table 1 is a mass ratio with respect to the entire base iron powder.

表1に示した「粒度」は、篩い分けまたは平均粒径により求めた。篩いを用いた分級に関してはJIS Z 8801に準拠して特定され、「−aμm(aμm以下)」は、公称目開き:aμmの篩いを通過した粉末であることを意味する。「平均粒度」はレーザー回折式粒度分布測定器による粒度分布測定に基づくメジアン径(D50)とした。   The “particle size” shown in Table 1 was determined by sieving or average particle size. The classification using a sieve is specified according to JIS Z 8801, and “−a μm (a μm or less)” means a powder having passed through a sieve having a nominal opening: a μm. The “average particle size” was a median diameter (D50) based on particle size distribution measurement using a laser diffraction particle size distribution analyzer.

ベース鉄粉の他、黒鉛(Gr)粉末(日本黒鉛社製JCPB、平均粒径:5μm)も用意した。黒鉛粉末をベース鉄粉に加える場合、各粉末を表2および表3A・Bに示す割合で秤量配合した後、乳鉢で3分間予備混合し、さらにボールミルで30分間回転混合した。こうして得られた混合粉末を原料粉末として用いた。なお、各表に示した黒鉛粉末の配合量は、原料粉末(混合粉末)全体に対する質量割合である。   In addition to the base iron powder, graphite (Gr) powder (JCPB manufactured by Nippon Graphite Co., Ltd., average particle size: 5 μm) was also prepared. When graphite powder was added to the base iron powder, each powder was weighed and blended in the proportions shown in Table 2 and Tables 3A and B, then premixed for 3 minutes in a mortar, and further rotationally mixed in a ball mill for 30 minutes. The mixed powder thus obtained was used as a raw material powder. In addition, the compounding quantity of the graphite powder shown in each table | surface is a mass ratio with respect to the whole raw material powder (mixed powder).

(2)成形工程
キャビティ形状の異なる2種の金型を用意した。一つは、円柱軸状のインナー(第1鉄基体、第1鉄基部材)となる成形体(第1成形体)を得るための円筒型(φ14mm×H10mm)である。もう一つは、円環状のアウター(第2鉄基部材)となる成形体(第2成形体)を得るためのリング型(φ14mm×φ23mm×H6mm)である。
(2) Molding process Two types of molds having different cavity shapes were prepared. One is a cylindrical shape (φ14 mm × H10 mm) for obtaining a molded body (first molded body) that becomes a cylindrical shaft-shaped inner (first iron base, first iron base member). The other is a ring mold (φ14 mm × φ23 mm × H6 mm) for obtaining a molded body (second molded body) to be an annular outer (second iron base member).

特に断らない限り、本実施例に係るインナー用成形体の外周面とアウター用成形体の内周面とが、基準寸法φ14mmに対して隙間嵌めとなるように、円筒型の内径とリング型の内径(中心に配置される円柱状のコアの外径)とを設定した。   Unless otherwise specified, the inner diameter of the cylindrical mold and the ring mold so that the outer peripheral surface of the inner molded body and the inner peripheral surface of the outer molded body according to this example are fitted with a gap with respect to the reference dimension φ14 mm. The inner diameter (the outer diameter of a cylindrical core disposed at the center) was set.

成形は、内部潤滑剤を用いずに、金型潤滑温間加圧成形法(特許3309970号公報参照)により、各金型のキャビティに充填した原料粉末を温間中(金型温度:150℃)中で加圧して行った。成形圧力は392〜980MPaの範囲で調整した。特に断らない限り、インナー用成形体は392MPaで成形し、アウター用成形体は490MPaで成形した。こうして種々のインナー用成形体とアウター用成形体を得た。   Molding is performed without using an internal lubricant by using a mold lubrication warm pressure molding method (see Japanese Patent No. 3309970), while the raw material powder filled in the cavity of each mold is warm (mold temperature: 150 ° C.). ) Under pressure. The molding pressure was adjusted in the range of 392 to 980 MPa. Unless otherwise specified, the inner molded body was molded at 392 MPa, and the outer molded body was molded at 490 MPa. Thus, various molded articles for inner and outer molded articles were obtained.

(3)焼結工程
インナー用成形体とアウター用成形体の接合に先だって、表2に示すように、各成形体を単独で焼結させた焼結体も用意し、それらを密度測定に供した。
(3) Sintering process Prior to joining the molded body for the inner and the molded body for the outer, as shown in Table 2, a sintered body obtained by sintering each molded body independently is also prepared and used for density measurement. did.

焼結(後述の焼結接合を含む)は、バッチ式焼結炉(島津メクテム株式会社製PVSGgr20/20)を用いて行った。焼結雰囲気は真空雰囲気または窒素雰囲気として、1250℃×30分間(均熱保持時間)の加熱を行った。加熱終了後、1000℃まで炉冷した後、400kPaの窒素ガスを導入して急冷した。   Sintering (including sintering joining described later) was performed using a batch-type sintering furnace (PVSGgr 20/20 manufactured by Shimadzu Mektem Co., Ltd.). The sintering atmosphere was a vacuum atmosphere or a nitrogen atmosphere, and heating was performed at 1250 ° C. for 30 minutes (soaking time). After the heating, the furnace was cooled to 1000 ° C., and then quenched by introducing 400 kPa of nitrogen gas.

(4)焼結接合工程
図1Aに示すように、インナー用成形体とアウター用成形体を嵌合させて組立体とした。この組立体を、上述した焼結工程と同様な条件で加熱した。こうして表3Aおよび表3B(両者を併せて単に「表3」という。)に示すように、軸状のインナー(第1焼結体、第1鉄基部材)と環状のアウター(第2焼結体、第2鉄基部材)とが閉環状の接合界面部で接合された種々の接合体(接合鉄基部材)を得た。
(4) Sintering step As shown in FIG. 1A, the inner molded body and the outer molded body were fitted to form an assembly. This assembly was heated under the same conditions as in the above-described sintering step. Thus, as shown in Table 3A and Table 3B (both are simply referred to as “Table 3”), an axial inner (first sintered body, first iron base member) and an annular outer (second sintered) The various joined bodies (joined iron base member) were obtained by joining the body and the second iron base member) at the joint interface of the closed ring.

《測定》
(1)相対密度
表2に示す各試料(成形体単体と焼結体単体)について相対密度(密度比)を求めた。相対密度は、真密度(ρ)に対する嵩密度(ρ)の割合(100×ρ/ρ)として算出した。嵩密度(ρ)は、成形体と焼結体を実測して得た寸法と重量から算出した。真密度(ρ)は、各原料粉末の組成と比重に基づいて算出したPFDを用いた。こうして得られた各試料に係る相対密度を表2に併せて示した。
<Measurement>
(1) Relative density Relative density (density ratio) was determined for each sample (molded body and sintered body) shown in Table 2. The relative density was calculated as a ratio (100 × ρ / ρ 0 ) of the bulk density (ρ) to the true density (ρ 0 ). The bulk density (ρ) was calculated from the size and weight obtained by actually measuring the molded body and the sintered body. For the true density (ρ 0 ), PFD calculated based on the composition and specific gravity of each raw material powder was used. The relative density of each sample thus obtained is also shown in Table 2.

(2)寸法差
表3に示す各試料について、各アウター用成形体の内径(R2)と、各インナー用成形体の外径(R1)を実測した。それらの実測値と、両成形体を嵌合させたときのクリアランスとなる寸法差(ΔR=R2−R1)を表3に併せて示した。
(2) Dimensional Difference For each sample shown in Table 3, the inner diameter (R2) of each outer molded body and the outer diameter (R1) of each inner molded body were measured. These measured values and the dimensional difference (ΔR = R2−R1) that becomes the clearance when both molded bodies are fitted are shown in Table 3.

(3)接合強度(抜出試験)
図1Bに示すような抜出治具を用いた抜出試験により、インナーとアウターの接合強度を測定した。具体的にいうと、先ず、円環状の保持治具にインナー側の凸部を嵌合して接合体を保持する。次に、インナー側の凹部に嵌めた円柱状の押圧治具へ、上方から荷重を印加する。
(3) Bonding strength (extraction test)
The bonding strength between the inner and outer was measured by an extraction test using an extraction jig as shown in FIG. 1B. Specifically, first, the inner side convex portion is fitted into an annular holding jig to hold the joined body. Next, a load is applied from above to a cylindrical pressing jig fitted in the recess on the inner side.

アウターとインナーが分離したとき、またはいずれか一方が破壊したときの負荷荷重(F)を測定する。この負荷荷重を、予め求めておいたアウターとインナーの接合界面部の円筒状面積(d:φ14mm×H:4mm)で除することにより接合強度を求めた。この結果も表3に併せて示した。   The load (F) is measured when the outer and inner parts are separated or when one of them breaks. The joint strength was determined by dividing this load by the cylindrical area (d: φ14 mm × H: 4 mm) of the joint interface between the outer and inner joints obtained in advance. The results are also shown in Table 3.

《観察》
表2に示す試料の一部について、アウター用成形体を単独で焼結させた焼結体の外観を図2に示した。
<< Observation >>
FIG. 2 shows the appearance of a sintered body obtained by sintering the outer molded body independently for a part of the samples shown in Table 2.

表3に示す試料の一部について、抜出試験後の外観と、接合界面近傍の金属組織写真とを図3Aおよび図3B(両者を併せて単に「図3」という。)に示した。なお、金属組織写真は、試料を切断、樹脂埋め、鏡面研磨した後、光学顕微鏡で観察したものである。   A part of the sample shown in Table 3 is shown in FIG. 3A and FIG. 3B (appearance “figure 3” together) as the appearance after the pull-out test and the metal structure photograph in the vicinity of the bonding interface. In addition, the metallographic photograph was observed with an optical microscope after cutting the sample, filling it with resin, and mirror polishing.

《評価》
(1)緻密化
表2に示す各試料について、成形体の相対密度と焼結体の相対密度との比較により次のことがわかる。ベース鉄粉がSKHである場合、黒鉛粉末の添加の有無、成形圧力、焼結雰囲気にかかわらず、焼結体はほぼ真密度に近いレベルまで大幅に緻密化することがわかった。またそれらの焼結体は、図2に示す外観写真(試料R1、R5)から明らかなように、表面荒れや形状崩れ等がなく、成形時の形状が維持されていた。
<Evaluation>
(1) Densification For each sample shown in Table 2, the following can be seen by comparing the relative density of the compact and the relative density of the sintered body. It was found that when the base iron powder is SKH, the sintered body is densified substantially to a level close to the true density regardless of whether graphite powder is added, molding pressure, and sintering atmosphere. Further, as apparent from the appearance photographs (samples R1 and R5) shown in FIG. 2, these sintered bodies were free from surface roughness and shape deformation, and maintained the shape during molding.

一方、SKH以外のベース鉄粉を用いた場合、黒鉛粉末:0.4〜0.6%では緻密な焼結体が得られず、その緻密化には黒鉛粉末:1.5%以上の添加が必要であった。また、図2に示す外観写真(試料R9、R10)から明らかなように、黒鉛粉末:1.5%以上の焼結体は、表面荒れや形状崩れを生じることもわかった。   On the other hand, when a base iron powder other than SKH is used, a dense sintered body cannot be obtained with graphite powder: 0.4 to 0.6%, and graphite powder: addition of 1.5% or more is required for the densification. Was necessary. Further, as apparent from the appearance photographs (samples R9 and R10) shown in FIG. 2, it was also found that the sintered body of graphite powder: 1.5% or more causes surface roughness and shape collapse.

(2)接合強度
表3から明らかなように、アウターにSKHまたはSKH2を用いた試料はいずれも、インナーに用いたベース鉄粉の種類、成形圧力、組立体の焼結雰囲気等に拘わらず、接合界面で破壊(分離)することがなく、十分な接合強度が得られることがわかった。このように接合強度が十分であり、抜出試験により母材破断する一例(試料1)を図3Aに示した。
(2) Bonding strength As is clear from Table 3, all samples using SKH or SKH2 for the outer, regardless of the type of base iron powder used for the inner, molding pressure, sintering atmosphere of the assembly, etc. It was found that sufficient bonding strength was obtained without breaking (separating) at the bonding interface. FIG. 3A shows an example (sample 1) in which the bonding strength is sufficient and the base material is broken by the extraction test.

逆に、アウターにSKHまたはSKH2以外の粉末を用いた試料はいずれも、接合強度が不十分であり、図3Bに一例(試料C2)を示すように、抜出試験後、インナーとアウターは界面で分離して破壊した。   Conversely, any sample using powder other than SKH or SKH2 for the outer layer has insufficient bonding strength. As shown in an example (sample C2) in FIG. Separated and destroyed.

(3)黒鉛粉末と焼結雰囲気
表3に示す試料1〜12からわかるように、アウター側の黒鉛粉末量が少ない場合、窒素雰囲気中で焼結させた試料の方が真空雰囲気中で焼結させた試料よりも接合強度が高くなり易いことがわかった。これはSKH中に含まれる炭化物形成元素またはその炭化物が、雰囲気中の窒素と作用して、Fe−C液相化やC拡散に寄与したためと推察される。
(3) Graphite powder and sintering atmosphere As can be seen from samples 1 to 12 shown in Table 3, when the amount of graphite powder on the outer side is small, the sample sintered in a nitrogen atmosphere is sintered in a vacuum atmosphere. It was found that the bonding strength is likely to be higher than that of the prepared sample. This is presumably because the carbide forming element contained in SKH or its carbide contributed to Fe-C liquid phase formation and C diffusion by acting with nitrogen in the atmosphere.

一方、表3に示す試料13〜18または試料31〜38からわかるように、アウター側の黒鉛粉末量が比較的多くなると、焼結雰囲気は接合強度に殆ど影響を及ぼさないこともわかった。   On the other hand, as can be seen from Samples 13 to 18 or Samples 31 to 38 shown in Table 3, it has also been found that when the amount of graphite powder on the outer side is relatively large, the sintering atmosphere hardly affects the bonding strength.

(4)インナー
表3に示す試料22、23からわかるように、アウターとインナーの両方にSKHを用いた場合、黒鉛粉末の添加量、インナー側の成形圧力、焼結雰囲気等にかかわらず、十分な接合強度が確保されることもわかった。
(4) Inner As can be seen from samples 22 and 23 shown in Table 3, when SKH is used for both the outer and inner, it is sufficient regardless of the amount of graphite powder added, the molding pressure on the inner side, the sintering atmosphere, etc. It was also found that a sufficient bonding strength was ensured.

[実施例2/溶製鋼と成形体の接合]
《試料の製造および測定》
実施例1で用いた焼結体からなるインナーを、溶製鋼(JIS SCM435)を機械加工したインナーに変更した試料を製造した。インナーの外径(R1)は、表4に示すように変化させた。その他は、実施例1の場合と同様な方法で試料を製造、測定および観察した。各試料の製造条件、接合強度等を表4に併せて示した。なお、表4には、アウター(R2)とインナー(R1)の寸法差(ΔR)に加えて寸法比(R1/R2)も示した。
Example 2 Joining Molten Steel and Molded Body
<Production and measurement of sample>
A sample was produced in which the inner made of the sintered body used in Example 1 was changed to an inner machined from molten steel (JIS SCM435). The outer diameter (R1) of the inner was changed as shown in Table 4. Other than that, the sample was manufactured, measured and observed in the same manner as in Example 1. The production conditions, bonding strength, etc. of each sample are also shown in Table 4. Table 4 also shows the dimensional ratio (R1 / R2) in addition to the dimensional difference (ΔR) between the outer (R2) and the inner (R1).

ちなみに、インナーに用いた溶製鋼(SCM435)は、機械構造用合金鋼であり、その主な成分組成(質量%)は、SCM435:Fe−(0.33〜0.38)%C−(0.15〜0.35)%Si−(0.6〜0.9)%Mn−(0.9〜1.2)%Cr−(0.15〜0.3)%Moである。   Incidentally, the molten steel (SCM435) used for the inner is an alloy steel for machine structure, and its main component composition (mass%) is SCM435: Fe- (0.33-0.38)% C- (0.15-0.35)% Si- (0.6-0.9)% Mn- (0.9-1.2)% Cr- (0.15-0.3)% Mo.

《評価》
(1)接合強度
表4から明らかなように、寸法差または寸法比を適切に設定すれば、SKHの焼結材からなるアウターは、溶製材からインナーとも強固に接合することが確認できた。具体的にいうと、高い接合強度を確保するために、例えば、寸法比を88%以上さらには89%以上とするとよい。基準寸法(φ14mm)に対していえば、例えば、寸法差を1.6mm以下とすればよい
<Evaluation>
(1) Joining strength As is clear from Table 4, it was confirmed that if the dimensional difference or the dimensional ratio was appropriately set, the outer made of the sintered material of SKH was strongly joined to the inner from the melted material. Specifically, in order to ensure high bonding strength, for example, the dimensional ratio may be 88% or more, further 89% or more. Speaking with respect to the standard dimension (φ14 mm), for example, the dimensional difference may be 1.6 mm or less.

抜出試験後の試料23について、その接合界面近傍を光学顕微鏡で観察した金属組織を図4に示した。図4から明らかなように、接合界面の近傍には亀裂等が見られず、アウターとインナーの接合状態が均質的であることが確認された。   FIG. 4 shows the metal structure of the sample 23 after the extraction test, in which the vicinity of the bonding interface was observed with an optical microscope. As is clear from FIG. 4, no cracks or the like were observed in the vicinity of the bonding interface, and it was confirmed that the bonding state of the outer and inner was homogeneous.

(2)アウターの変形
表4に示した各試料について、焼結接合後の外観を図5に示した。また、アウターの中央部から端部にわたる外径変化を図6に示した。図5および図6から明らかなように、寸法差が小さくなる程(寸法比が大きくなる程)、アウターは鼓状に変形し易くなることがわかった。この観点から、少なくともインナーを溶製鋼とする場合、寸法比を93%以下さらには91%以下とすると好ましい。基準寸法(φ14mm)に対していえば、例えば、寸法差を1.1mm以上さらには1.3mm以上とすると好ましい。
(2) Deformation of outer The appearance of each sample shown in Table 4 after sintered joining is shown in FIG. Moreover, the outer diameter change from the center part of an outer part to an edge part was shown in FIG. As is clear from FIGS. 5 and 6, it was found that the outer dimension is more easily deformed into a drum shape as the dimensional difference becomes smaller (as the dimensional ratio becomes larger). From this viewpoint, when at least the inner is made of molten steel, the dimensional ratio is preferably 93% or less, and more preferably 91% or less. With respect to the reference dimension (φ14 mm), for example, it is preferable that the dimensional difference is 1.1 mm or more, further 1.3 mm or more.

ちなみに、寸法差が小さくなる程(寸法比が大きくなる程)、アウターが鼓状に変形し易くなる理由は、次のように推察される。先ず、焼結(接合)工程中に、アウター内周面とインナー外周面が接触し、アウター内周面側からインナー外周面側へ炭素が拡散(移動)する。これにより、炭素量が増加したインナー外周面近傍で、液相化が生じ易くなり、収縮し易くなる。そしてアウターは、成形時に圧縮軸方向の中央側が両端側よりも密度が低い傾向にあり、この分、焼結時に中央側でより収縮し易くなる。こうしてアウターは、軸方向の中央側で両端側よりも収縮量が大きくなり、鼓状に変形すると考えられる。   Incidentally, the reason why the outer becomes easier to deform into a drum shape as the dimensional difference becomes smaller (as the dimensional ratio becomes larger) is presumed as follows. First, during the sintering (joining) step, the outer inner peripheral surface and the inner outer peripheral surface come into contact, and carbon diffuses (moves) from the outer inner peripheral surface side to the inner outer peripheral surface side. As a result, in the vicinity of the inner peripheral surface where the carbon content has increased, liquid phase is likely to occur and shrinkage is likely to occur. The outer side of the outer side tends to have a lower density at the center side in the compression axis direction than the both end sides at the time of molding. In this way, it is considered that the outer has a contraction amount larger at the center side in the axial direction than both ends, and deforms into a drum shape.

Claims (16)

第1鉄基体の外周側に、第2鉄基粉末を含む第2原料粉末を加圧成形してなる閉環状の第2成形体を嵌入した組立体を得る嵌入工程と、
該組立体を加熱して、該第1鉄基体からなる第1鉄基部材と該第2成形体を焼結させた第2焼結体からなる第2鉄基部材とが閉環状の接合界面部で接合された接合鉄基部材を得る焼結接合工程とを備え、
前記第2鉄基粉末は、該第2鉄基粉末全体を100質量%(以下単に「%」という。)として、
C:0.5〜1.8%、
Wおよび/またはVからなる炭化物形成元素(合計):6〜16%、
含む接合鉄基部材の製造方法。
A fitting step of obtaining an assembly in which a second annular molded body formed by press-molding a second raw material powder containing a second iron-based powder is fitted on the outer peripheral side of the first iron base;
The assembly is heated so that the first iron base member made of the first iron base and the second iron base member made of the second sintered body obtained by sintering the second molded body are in a closed annular joint interface. And a sintered joining step for obtaining a joined iron base member joined at a portion,
The ferric base powder is 100% by mass (hereinafter simply referred to as “%”) of the entire ferric base powder.
C: 0.5-1.8%
Carbide forming elements consisting of W and / or V (total): 6-16%,
The manufacturing method of the joining iron base member containing.
前記第2原料粉末は、該第2原料粉末全体に対して前記第2鉄基粉末を95質量%以上含む請求項1に記載の接合鉄基部材の製造方法。   2. The method for producing a bonded iron base member according to claim 1, wherein the second raw material powder contains 95% by mass or more of the second iron base powder with respect to the entire second raw material powder. 前記第2原料粉末は、該第2原料粉末全体を100質量%(単に「%」という。)として、P:0.1%未満である請求項2に記載の接合鉄基部材の製造方法。   3. The method for manufacturing a bonded iron base member according to claim 2, wherein the second raw material powder is P: less than 0.1% with the entire second raw material powder being 100 mass% (simply referred to as “%”). 前記第2鉄基粉末は、さらに、Si:0.1〜1%、Mn:0.1〜0.7%またはCo:0.1〜12%の一種以上を含む請求項1〜3のいずれかに記載の接合鉄基部材の製造方法。   The ferric-based powder further includes one or more of Si: 0.1 to 1%, Mn: 0.1 to 0.7%, or Co: 0.1 to 12%. A method for producing a bonded iron base member according to claim 1. 前記第2原料粉末は、前記第2鉄基粉末とは別な炭素源粉末を含む請求項1〜4のいずれかに記載の接合鉄基部材の製造方法。   The said 2nd raw material powder is a manufacturing method of the joining iron base member in any one of Claims 1-4 containing the carbon source powder different from the said 2nd iron base powder. 前記炭素源粉末は、黒鉛粉末であり、
該黒鉛粉末は、前記第2原料粉末全体に対して0.1〜1質量%含まれる請求項5に記載の接合鉄基部材の製造方法。
The carbon source powder is a graphite powder,
The method for producing a bonded iron base member according to claim 5, wherein the graphite powder is contained in an amount of 0.1 to 1 mass% with respect to the entire second raw material powder.
前記嵌入工程は、前記第1鉄基体に前記第2成形体を隙間嵌めする工程である請求項1〜6のいずれかに記載の接合鉄基部材の製造方法。   The method for manufacturing a bonded iron base member according to any one of claims 1 to 6, wherein the inserting step is a step of fitting the second molded body into the gap with the first iron base. 前記嵌入工程は、前記第2成形体の内側寸法に対する前記第1鉄基体の外側寸法の割合を88〜93%とする請求項7に記載の接合鉄基部材の製造方法。   The said insertion process is a manufacturing method of the joining iron base member of Claim 7 which sets the ratio of the outer dimension of the said 1st iron base | substrate with respect to the inner dimension of the said 2nd molded object to 88 to 93%. 前記第2成形体は、前記第2原料粉末を350〜1000MPaで加圧されてなる1〜8のいずれかに記載の接合鉄基部材の製造方法。   The said 2nd molded object is a manufacturing method of the joining iron base member in any one of 1-8 formed by pressurizing the said 2nd raw material powder at 350-1000 MPa. 前記焼結接合工程は、前記組立体を1140〜1350℃で加熱する工程である請求項1〜9のいずれかに記載の接合鉄基部材の製造方法。   The said sintered joining process is a process of heating the said assembly at 1140-1350 degreeC, The manufacturing method of the joining iron base member in any one of Claims 1-9. 前記焼結接合工程は、前記組立体を窒素雰囲気中で加熱する工程である請求項1〜10のいずれかの接合鉄基部材の製造方法。   The method for manufacturing a bonded iron base member according to any one of claims 1 to 10, wherein the sintered bonding step is a step of heating the assembly in a nitrogen atmosphere. 第1鉄基部材と、
該第1鉄基部材の外周面に接合された閉環状の第2鉄基部材と、
を備える接合鉄基部材であって、
該第2鉄基部材は、該第2鉄基部材全体を100質量%(以下単に「%」という。)として、C:0.5〜2.5%と、Wおよび/またはVからなる炭化物形成元素:6〜16%とを含む第2焼結体からなる接合鉄基部材。
A first iron base member;
A closed annular second iron base member joined to the outer peripheral surface of the first iron base member;
A bonded iron base member comprising:
The second ferrous base member is composed of 100% by mass (hereinafter simply referred to as “%”) of the second ferrous base member, and C: 0.5 to 2.5%, and a carbide composed of W and / or V. Forming element: A bonded iron base member made of a second sintered body containing 6 to 16%.
前記第2焼結体は、さらに、P:0.1%未満である請求項12に記載の接合鉄基部材。   The joined iron base member according to claim 12, wherein the second sintered body is further P: less than 0.1%. 前記第2焼結体は、さらに、Si:0.1〜1%、Mn:0.1〜0.7%またはCo:0.1〜12%の一種以上を含む請求項12または13に記載の接合鉄基部材。   The second sintered body further includes at least one of Si: 0.1 to 1%, Mn: 0.1 to 0.7%, or Co: 0.1 to 12%. Bonded iron base member. 前記第2焼結体は、真密度(ρ)に対する嵩密度(ρ)の割合である相対密度(100×ρ/ρ)が97%以上である請求項12〜14のいずれかに記載の接合鉄基部材。 15. The second sintered body has a relative density (100 × ρ / ρ 0 ) that is a ratio of a bulk density (ρ) to a true density (ρ 0 ) of 97% or more. Bonded iron base member. 前記第1鉄基部材は、焼結材または溶製材からなる請求項12〜15のいずれかに記載の接合鉄基部材。   The bonded iron base member according to claim 12, wherein the first iron base member is made of a sintered material or a melted material.
JP2017182309A 2017-09-22 2017-09-22 Joined iron-based component and method for manufacturing the same Pending JP2019056160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182309A JP2019056160A (en) 2017-09-22 2017-09-22 Joined iron-based component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182309A JP2019056160A (en) 2017-09-22 2017-09-22 Joined iron-based component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2019056160A true JP2019056160A (en) 2019-04-11

Family

ID=66107228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182309A Pending JP2019056160A (en) 2017-09-22 2017-09-22 Joined iron-based component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2019056160A (en)

Similar Documents

Publication Publication Date Title
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP5110398B2 (en) Iron-based sintered alloy, method for producing iron-based sintered alloy, and connecting rod
JP6112473B2 (en) Iron-based sintered sliding member
JP5588879B2 (en) Pre-alloyed copper alloy powder forged connecting rod
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
JP6142987B2 (en) Iron-based sintered sliding member
JP2014196526A (en) Iron-based sintered alloy for sliding member and production method thereof
US20090129964A1 (en) Method of forming powder metal components having surface densification
CN111788025B (en) Sintered valve guide and method for manufacturing same
JP2001523763A (en) High density molding method by powder blending
JP6149718B2 (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JP5936954B2 (en) Manufacturing method of machine parts
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP2019056160A (en) Joined iron-based component and method for manufacturing the same
US11883883B2 (en) Process for manufacturing toroid parts
US11097346B1 (en) Process for manufacturing toroid parts
JP3246574B2 (en) Manufacturing method of sintered composite machine parts
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
US11850662B1 (en) High strength part having powder metal internal ring
JP2019151910A (en) Method for producing composite sintered member and composite sintered member
JP2018062695A (en) Jointed iron-based component and manufacturing method therefor
JP2017101331A (en) Iron-based sintered slide member and production method therefor
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP2002115513A (en) Iron group sintered alloy two-layer valve seat and method of its manufacture